1
|
Cheng Y, Zhang R, Li X, Zhou X, Chen M, Liu A. The Dopamine Transporter Is a New Target for Ischemic Stroke. CNS Neurosci Ther 2024; 30:e70092. [PMID: 39467829 PMCID: PMC11518691 DOI: 10.1111/cns.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/11/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
AIMS Dopamine transporter (DAT) can regulate DA homeostasis and has been implicated in many nervous system diseases. Whether DAT is involved in the protection against ischemic stroke is unclear. METHODS In vivo microdialysis measurements of DA were recorded in the ischemic penumbral area of mice with middle cerebral artery occlusion (MCAO). DAT coding gene, Slc6a3 mutation, and DAT overexpression animals were performed MCAO. Madopar (compound formulation of levodopa) and nomifensine (DA reuptake inhibitor) were administered in MCAO animals. Brain slices were prepared in Slc6a3 mutation or wild-type (WT) animals with MCAO to record miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs). The effects of DA and its dopamine-1 receptor (D1R) antagonists (SCH-23390) on mEPSCs, mIPSCs, and neurons protection were recorded. RESULTS MCAO caused a prominent increase in DA. Slc6a3 mutation significantly attenuated the ischemic injury, whereas DAT overexpression aggravated this injury. Both nomifensine and madopar protected against brain injury. Slc6a3 mutation and DA restored the disturbance of mEPSCs and mIPSC, and protected against neuron death, which was abolished by SCH-23390. CONCLUSION DAT inhibition might be explored as a strategy for ischemic stroke prevention. DA and D1R involve in the restoration of synaptic dysfunction and neuron protection.
Collapse
Affiliation(s)
- Yan‐Qiong Cheng
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ruo‐Xi Zhang
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xing‐Yuan Li
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiao‐Ting Zhou
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ming Chen
- MOE Frontier Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Ai‐Jun Liu
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
3
|
Cincotta AH, Cersosimo E, Alatrach M, Ezrokhi M, Agyin C, Adams J, Chilton R, Triplitt C, Chamarthi B, Cominos N, DeFronzo RA. Bromocriptine-QR Therapy Reduces Sympathetic Tone and Ameliorates a Pro-Oxidative/Pro-Inflammatory Phenotype in Peripheral Blood Mononuclear Cells and Plasma of Type 2 Diabetes Subjects. Int J Mol Sci 2022; 23:ijms23168851. [PMID: 36012132 PMCID: PMC9407769 DOI: 10.3390/ijms23168851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bromocriptine-QR is a sympatholytic dopamine D2 agonist for the treatment of type 2 diabetes that has demonstrated rapid (within 1 year) substantial reductions in adverse cardiovascular events in this population by as yet incompletely delineated mechanisms. However, a chronic state of elevated sympathetic nervous system activity and central hypodopaminergic function has been demonstrated to potentiate an immune system pro-oxidative/pro-inflammatory condition and this immune phenotype is known to contribute significantly to the advancement of cardiovascular disease (CVD). Therefore, the possibility exists that bromocriptine-QR therapy may reduce adverse cardiovascular events in type 2 diabetes subjects via attenuation of this underlying chronic pro-oxidative/pro-inflammatory state. The present study was undertaken to assess the impact of bromocriptine-QR on a wide range of immune pro-oxidative/pro-inflammatory biochemical pathways and genes known to be operative in the genesis and progression of CVD. Inflammatory peripheral blood mononuclear cell biology is both a significant contributor to cardiovascular disease and also a marker of the body’s systemic pro-inflammatory status. Therefore, this study investigated the effects of 4-month circadian-timed (within 2 h of waking in the morning) bromocriptine-QR therapy (3.2 mg/day) in type 2 diabetes subjects whose glycemia was not optimally controlled on the glucagon-like peptide 1 receptor agonist on (i) gene expression status (via qPCR) of a wide array of mononuclear cell pro-oxidative/pro-inflammatory genes known to participate in the genesis and progression of CVD (OXR1, NRF2, NQO1, SOD1, SOD2, CAT, GSR, GPX1, GPX4, GCH1, HMOX1, BiP, EIF2α, ATF4, PERK, XBP1, ATF6, CHOP, GSK3β, NFkB, TXNIP, PIN1, BECN1, TLR2, TLR4, TLR10, MAPK8, NLRP3, CCR2, GCR, L-selectin, VCAM1, ICAM1) and (ii) humoral measures of sympathetic tone (norepinephrine and normetanephrine), whole-body oxidative stress (nitrotyrosine, TBARS), and pro-inflammatory factors (IL-1β, IL-6, IL-18, MCP-1, prolactin, C-reactive protein [CRP]). Relative to pre-treatment status, 4 months of bromocriptine-QR therapy resulted in significant reductions of mRNA levels in PBMC endoplasmic reticulum stress-unfolded protein response effectors [GRP78/BiP (34%), EIF2α (32%), ATF4 (29%), XBP1 (25%), PIN1 (14%), BECN1 (23%)], oxidative stress response proteins [OXR1 (31%), NRF2 (32%), NQO1 (39%), SOD1 (52%), CAT (26%), GPX1 (33%), GPX4 (31%), GCH1 (30%), HMOX1 (40%)], mRNA levels of TLR pro-inflammatory pathway proteins [TLR2 (46%), TLR4 (20%), GSK3β (19%), NFkB (33%), TXNIP (18%), NLRP3 (32%), CCR2 (24%), GCR (28%)], mRNA levels of pro-inflammatory cellular receptor proteins CCR2 and GCR by 24% and 28%, and adhesion molecule proteins L-selectin (35%) and VCAM1 (24%). Relative to baseline, bromocriptine-QR therapy also significantly reduced plasma levels of norepinephrine and normetanephrine by 33% and 22%, respectively, plasma pro-oxidative markers nitrotyrosine and TBARS by 13% and 10%, respectively, and pro-inflammatory factors IL-18, MCP1, IL-1β, prolactin, and CRP by 21%,13%, 12%, 42%, and 45%, respectively. These findings suggest a unique role for circadian-timed bromocriptine-QR sympatholytic dopamine agonist therapy in reducing systemic low-grade sterile inflammation to thereby reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Anthony H. Cincotta
- VeroScience LLC, Tiverton, RI 02878, USA
- Correspondence: ; Tel.: +1-401-816-0525
| | - Eugenio Cersosimo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mariam Alatrach
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Christina Agyin
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - John Adams
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Robert Chilton
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Curtis Triplitt
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | - Ralph A. DeFronzo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Prajapati R, Seong SH, Paudel P, Park SE, Jung HA, Choi JS. In Vitro and In Silico Characterization of Kurarinone as a Dopamine D 1A Receptor Antagonist and D 2L and D 4 Receptor Agonist. ACS OMEGA 2021; 6:33443-33453. [PMID: 34926894 PMCID: PMC8674921 DOI: 10.1021/acsomega.1c04109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Alterations in the expression and/or activity of brain G-protein-coupled receptors (GPCRs) such as dopamine D1R, D2LR, D3R, and D4R, vasopressin V1AR, and serotonin 5-HT1AR are noted in various neurodegenerative diseases (NDDs). Since studies have indicated that flavonoids can target brain GPCRs and provide neuroprotection via inhibition of monoamine oxidases (hMAOs), our study explored the functional role of kurarinone, an abundant lavandulated flavonoid in Sophora flavescens, on dopamine receptor subtypes, V1AR, 5-HT1AR, and hMAOs. Radioligand binding assays revealed considerable binding of kurarinone on D1R, D2LR, and D4R. Functional GPCR assays unfolded the compound's antagonist behavior on D1R (IC50 42.1 ± 0.35 μM) and agonist effect on D2LR and D4R (EC50 22.4 ± 3.46 and 71.3 ± 4.94 μM, respectively). Kurarinone was found to inhibit hMAO isoenzymes in a modest and nonspecific manner. Molecular docking displayed low binding energies during the intermolecular interactions of kurarinone with the key residues of the deep orthosteric binding pocket and the extracellular loops of D1R, D2LR, and D4R, validating substantial binding affinities to these prime targets. With appreciable D2LR and D4R agonism and D1R antagonism, kurarinone might be a potential compound that can alleviate clinical symptoms of Parkinson's disease and other NDDs.
Collapse
Affiliation(s)
- Ritu Prajapati
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
- Natural
Products Research Division, Honam National
Institute of Biological Resource, Mokpo 58762, Republic
of Korea
| | - Pradeep Paudel
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
- National
Center for Natural Products Research, The
University of Mississippi, Oxford, Mississippi 38677, United States
| | - Se Eun Park
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
- Department
of Biomedical Science, Asan Medical Institute
of Convergence Science and Technology, Seoul 05505, Republic
of Korea
| | - Hyun Ah Jung
- Department
of Food Science and Human Nutrition, Jeonbuk
National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
6
|
Wong FY, Gogos A, Hale N, Ingelse SA, Brew N, Shepherd KL, van den Buuse M, Walker DW. Impact of hypoxia-ischemia and dopamine treatment on dopamine receptor binding density in the preterm fetal sheep brain. J Appl Physiol (1985) 2020; 129:1431-1438. [PMID: 33054660 DOI: 10.1152/japplphysiol.00677.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dopamine is often used to treat hypotension in preterm infants who are at risk of hypoxic-ischemic (HI) brain injury due to cerebral hypoperfusion and impaired autoregulation. There is evidence that systemically administered dopamine crosses the preterm blood-brain barrier. However, the effects of exogenous dopamine and cerebral HI on dopaminergic signaling in the immature brain are unknown. We determined the effect of HI and dopamine on D1 and D2 receptor binding and expressions of dopamine transporter (DAT) and tyrosine hydroxylase (TH) in the striatum of the preterm fetal sheep. Fetal sheep (99 days of gestation, term = 147days) were unoperated controls (n = 6) or exposed to severe HI using umbilical cord occlusion and saline infusion (UCO + saline, n = 8) or to HI with dopamine infusion (UCO + dopamine, 10 µg/kg/min, n = 7) for 74 h. D1 and D2 receptor densities were measured by autoradiography in vitro. DAT, TH, and cell death were measured using immunohistochemistry. HI resulted in cell death in the caudate nucleus and putamen, and dopamine infusion started before HI did not exacerbate or ameliorate these effects. HI led to reduced D1 and D2 receptor densities in the caudate nucleus and reduction in DAT protein expression in the caudate and putamen. Fetal brains exposed to dopamine in addition to HI were not different from those exposed to HI alone in these changes in dopaminergic parameters. We conclude that dopamine infusion does not alter the striatal cell death or the reductions in D1 and D2 receptor densities and DAT protein expression induced by HI in the preterm brain.NEW & NOTEWORTHY This is the first study on the effects of hypoxia-ischemia and dopamine treatment on the dopaminergic pathway in the preterm brain. In the striatum of fetal sheep (equivalent to ∼26-28 wk of human gestation), we demonstrate that hypoxia-ischemia leads to cell death, reduces D1 and D2 receptors, and reduces dopamine transporter. Intravenous dopamine infusion at clinical dosage used in preterm human infants does not alter the striatal cell death, D1 and D2 receptor density levels, and DAT protein expressions after hypoxia-ischemia in the preterm brain.
Collapse
Affiliation(s)
- F Y Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia.,Monash Newborn, Monash Medical Centre, Melbourne, Australia
| | - A Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - N Hale
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
| | - S A Ingelse
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
| | - N Brew
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia
| | - K L Shepherd
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | - M van den Buuse
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia.,School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - D W Walker
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
7
|
Wei P, Wang P, Li B, Gu H, Liu J, Wang Z. Divergence and Convergence of Cerebral Ischemia Pathways Profile Deciphers Differential Pure Additive and Synergistic Mechanisms. Front Pharmacol 2020; 11:80. [PMID: 32161541 PMCID: PMC7053362 DOI: 10.3389/fphar.2020.00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Aim The variable mechanisms on additive and synergistic effects of jasminoidin (JA)-Baicalin (BA) combination and JA-ursodeoxycholic acid (UA) combination in treating cerebral ischemia are not completely understood. In this study, we explored the differential pure mechanisms of additive and synergistic effects based on pathway analysis that excluded ineffective interference. Methods The MCAO mice were divided into eight groups: sham, vehicle, BA, JA, UA, Concha Margaritifera (CM), BA-JA combination (BJ), and JA-UA combination (JU). The additive and synergistic effects of combination groups were identified by cerebral infarct volume calculation. The differentially expressed genes based on a microarray chip containing 16,463 oligoclones were uploaded to GeneGo MetaCore software for pathway analyses and function catalogue. The comparison of specific pathways and functions crosstalk between different groups were analyzed to reveal the underlying additive and synergistic pharmacological variations. Results Additive BJ and synergistic JU were more effective than monotherapies of BA, JA, and UA, while CM was ineffective. Compared with monotherapies, 43 pathways and six functions were found uniquely in BJ group, with 33 pathways and three functions in JU group. We found six overlapping pathways and six overlapping functions between BJ and JU groups, which mainly involved central nervous system development. Thirty-seven specific pathways and 10 functions were activated by additive BJ, which were mainly related to cell adhesion and G-protein signaling; and 27 specific pathways and three functions of synergistic JU were associated with regulation of metabolism, DNA damage, and translation. The overlapping and distinct pathways and functions may contribute to different additive and synergistic effects. Conclusion The divergence pathways of pure additive effect of BJ were mainly related to cell adhesion and G-protein signaling, while the pure synergistic mechanism of JU depended on metabolism, translation and DNA damage. Such a systematic analysis of pathways may provide an important paradigm to reveal the pharmacological mechanisms underlying drug combinations.
Collapse
Affiliation(s)
- Penglu Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Risperidone Treatment after Transient Ischemia Induces Hypothermia and Provides Neuroprotection in the Gerbil Hippocampus by Decreasing Oxidative Stress. Int J Mol Sci 2019; 20:ijms20184621. [PMID: 31540405 PMCID: PMC6770640 DOI: 10.3390/ijms20184621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence from preclinical and clinical studies has shown that mild hypothermia is neuroprotective against ischemic stroke. We investigated the neuroprotective effect of post-risperidone (RIS) treatment against transient ischemic injury and its mechanisms in the gerbil brain. Transient ischemia (TI) was induced in the telencephalon by bilateral common carotid artery occlusion (BCCAO) for 5 min under normothermic condition (37 ± 0.2 °C). Treatment of RIS induced hypothermia until 12 h after TI in the TI-induced animals under uncontrolled body temperature (UBT) compared to that under controlled body temperature (CBT) (about 37 °C). Neuroprotective effect was statistically significant when we used 5 and 10 mg/kg doses (p < 0.05, respectively). In the RIS-treated TI group, many CA1 pyramidal neurons of the hippocampus survived under UBT compared to those under CBT. In this group under UBT, post-treatment with RIS to TI-induced animals markedly attenuated the activation of glial cells, an increase of oxidative stress markers [dihydroethidium, 8-hydroxy-2' -deoxyguanosine (8-OHdG), and 4-Hydroxynonenal (4-HNE)], and a decrease of superoxide dismutase 2 (SOD2) in their CA1 pyramidal neurons. Furthermore, RIS-induced hypothermia was significantly interrupted by NBOH-2C-CN hydrochloride (a selective 5-HT2A receptor agonist), but not bromocriptine mesylate (a D2 receptor agonist). Our findings indicate that RIS-induced hypothermia can effectively protect neuronal cell death from TI injury through attenuation of glial activation and maintenance of antioxidants, showing that 5-HT2A receptor is involved in RIS-induced hypothermia. Therefore, RIS could be introduced to reduce body temperature rapidly and might be applied to patients for hypothermic therapy following ischemic stroke.
Collapse
|
9
|
Kurisu K, Kim JY, You J, Yenari MA. Therapeutic Hypothermia and Neuroprotection in Acute Neurological Disease. Curr Med Chem 2019; 26:5430-5455. [PMID: 31057103 PMCID: PMC6913523 DOI: 10.2174/0929867326666190506124836] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023]
Abstract
Therapeutic hypothermia has consistently been shown to be a robust neuroprotectant in many labs studying different models of neurological disease. Although this therapy has shown great promise, there are still challenges at the clinical level that limit the ability to apply this routinely to each pathological condition. In order to overcome issues involved in hypothermia therapy, understanding of this attractive therapy is needed. We review methodological concerns surrounding therapeutic hypothermia, introduce the current status of therapeutic cooling in various acute brain insults, and review the literature surrounding the many underlying molecular mechanisms of hypothermic neuroprotection. Because recent work has shown that body temperature can be safely lowered using pharmacological approaches, this method may be an especially attractive option for many clinical applications. Since hypothermia can affect multiple aspects of brain pathophysiology, therapeutic hypothermia could also be considered a neuroprotection model in basic research, which would be used to identify potential therapeutic targets. We discuss how research in this area carries the potential to improve outcome from various acute neurological disorders.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | - Jong Youl Kim
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Departments of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jesung You
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
10
|
Wang W, Liu L, Chen C, Jiang P, Zhang T. Protective effects of dopamine D2/D3 receptor agonist piribedil on learning and memory of rats exposed to global cerebral ischemia–reperfusion. Neurosci Lett 2018; 684:181-186. [DOI: 10.1016/j.neulet.2018.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 01/18/2023]
|
11
|
Pottoo FH, Tabassum N, Javed MN, Nigar S, Rasheed R, Khan A, Barkat MA, Alam MS, Maqbool A, Ansari MA, Barreto GE, Ashraf GM. The Synergistic Effect of Raloxifene, Fluoxetine, and Bromocriptine Protects Against Pilocarpine-Induced Status Epilepticus and Temporal Lobe Epilepsy. Mol Neurobiol 2018; 56:1233-1247. [PMID: 29881945 DOI: 10.1007/s12035-018-1121-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/11/2018] [Indexed: 10/14/2022]
|
12
|
Momosaki S, Ito M, Yamato H, Iimori H, Sumiyoshi H, Morimoto K, Imamoto N, Watabe T, Shimosegawa E, Hatazawa J, Abe K. Longitudinal imaging of the availability of dopamine transporter and D2 receptor in rat striatum following mild ischemia. J Cereb Blood Flow Metab 2017; 37:605-613. [PMID: 26911894 PMCID: PMC5381454 DOI: 10.1177/0271678x16635183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The changes in the availability of striatal dopamine transporter and dopamine D2 receptor after mild focal ischemia in rats were measured using a small animal positron emission tomography system. Mild focal ischemia was induced by 20-minute middle cerebral artery occlusion. [11C]PE2I binding to dopamine transporter was transiently increased on the ipsilateral side of the striatum at 2 days after middle cerebral artery occlusion. On day 7 and 14 after middle cerebral artery occlusion, [11C]PE2I binding levels were decreased. In contrast, [11C]raclopride binding to dopamine D2 receptor in the ipsilateral striatum had not changed at 2 days after middle cerebral artery occlusion. [11C]Raclopride binding was significantly decreased on the ischemic side of the striatum at 7 and 14 days after middle cerebral artery occlusion. Moreover, on day 1 and 2 after middle cerebral artery occlusion, significant circling behavior to the contralateral direction was induced by amphetamine challenge. This behavior disappeared at 7 days after middle cerebral artery occlusion. At 14 days, circling behavior to the ipsilateral direction (middle cerebral artery occlusion side) was significantly increased, and that to the contralateral direction also appeared again. The present study suggested that amphetamine-induced circling behavior indicated striatal dopaminergic alterations and that dopamine transporter and dopamine D2 receptor binding could be key markers for predicting motor dysfunction after mild focal ischemia.
Collapse
Affiliation(s)
- Sotaro Momosaki
- 1 Department of Drug Metabolism & Pharmacokinetics, Shionogi & Co., Ltd., Osaka, Japan
| | - Miwa Ito
- 1 Department of Drug Metabolism & Pharmacokinetics, Shionogi & Co., Ltd., Osaka, Japan
| | - Hiroko Yamato
- 2 Department of Applied Chemistry & Analysis, Shionogi & Co., Ltd., Osaka, Japan
| | - Hitoshi Iimori
- 2 Department of Applied Chemistry & Analysis, Shionogi & Co., Ltd., Osaka, Japan
| | - Hirokazu Sumiyoshi
- 2 Department of Applied Chemistry & Analysis, Shionogi & Co., Ltd., Osaka, Japan
| | - Kenji Morimoto
- 2 Department of Applied Chemistry & Analysis, Shionogi & Co., Ltd., Osaka, Japan
| | - Natsumi Imamoto
- 1 Department of Drug Metabolism & Pharmacokinetics, Shionogi & Co., Ltd., Osaka, Japan
| | - Tadashi Watabe
- 4 Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,5 PET Molecular Imaging Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eku Shimosegawa
- 3 Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,4 Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,5 PET Molecular Imaging Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Hatazawa
- 4 Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.,5 PET Molecular Imaging Center, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Abe
- 1 Department of Drug Metabolism & Pharmacokinetics, Shionogi & Co., Ltd., Osaka, Japan.,3 Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
13
|
Liu K, Khan H, Geng X, Zhang J, Ding Y. Pharmacological hypothermia: a potential for future stroke therapy? Neurol Res 2017; 38:478-90. [PMID: 27320243 DOI: 10.1080/01616412.2016.1187826] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mild physical hypothermia after stroke has been associated with positive outcomes. Despite the well-studied beneficial effects of hypothermia in the treatment of stroke, lack of precise temperature control, intolerance for the patient, and immunosuppression are some of the reasons which limit its clinical translation. Pharmacologically induced hypothermia has been explored as a possible treatment option following stroke in animal models. Currently, there are eight classes of pharmacological agents/agonists with hypothermic effects affecting a multitude of systems including cannabinoid, opioid, transient receptor potential vanilloid 1 (TRPV1), neurotensin, thyroxine derivatives, dopamine, gas, and adenosine derivatives. Interestingly, drugs in the TRPV1, neurotensin, and thyroxine families have been shown to have effects in thermoregulatory control in decreasing the compensatory hypothermic response during cooling. This review will briefly present drugs in the eight classes by summarizing their proposed mechanisms of action as well as side effects. Reported thermoregulatory effects of the drugs will also be presented. This review offers the opinion that these agents may be useful in combination therapies with physical hypothermia to achieve faster and more stable temperature control in hypothermia.
Collapse
Affiliation(s)
- Kaiyin Liu
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Hajra Khan
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA
| | - Xiaokun Geng
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| | - Jun Zhang
- c China-America Institute of Neuroscience, Xuanwu Hospital , Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Department of Neurological Surgery , Wayne State University School of Medicine , Detroit , MI , USA.,b Department of Neurology, Beijing Luhe Hospital , Capital Medical University , Beijing , China
| |
Collapse
|
14
|
Tapia-Bustos A, Perez-Lobos R, Vío V, Lespay-Rebolledo C, Palacios E, Chiti-Morales A, Bustamante D, Herrera-Marschitz M, Morales P. Modulation of Postnatal Neurogenesis by Perinatal Asphyxia: Effect of D 1 and D 2 Dopamine Receptor Agonists. Neurotox Res 2016; 31:109-121. [PMID: 27638511 DOI: 10.1007/s12640-016-9669-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 01/18/2023]
Abstract
Perinatal asphyxia (PA) is associated to delayed cell death, affecting neurocircuitries of basal ganglia and hippocampus, and long-term neuropsychiatric disabilities. Several compensatory mechanisms have been suggested to take place, including cell proliferation and neurogenesis. There is evidence that PA can increase postnatal neurogenesis in hippocampus and subventricular zone (SVZ), modulated by dopamine, by still unclear mechanisms. We have studied here the effect of selective dopamine receptor agonists on cell death, cell proliferation and neurogenesis in organotypic cultures from control and asphyxia-exposed rats. Hippocampus and SVZ sampled at 1-3 postnatal days were cultured for 20-21 days. At day in vitro (DIV) 19, cultures were treated either with SKF38393 (10 and 100 µM, a D1 agonist), quinpirole (10 µM, a D2 agonist) or sulpiride (10 μM, a D2 antagonist) + quinpirole (10 μM) and BrdU (10 μM, a mitosis marker) for 24 h. At DIV 20-21, cultures were processed for immunocytochemistry for microtubule-associated protein-2 (MAP-2, a neuronal marker), and BrdU, evaluated by confocal microscopy. Some cultures were analysed for cell viability at DIV 20-21 (LIVE/DEAD kit). PA increased cell death, cell proliferation and neurogenesis in hippocampus and SVZ cultures. The increase in cell death, but not in cell proliferation, was inhibited by both SKF38393 and quinpirole treatment. Neurogenesis was increased by quinpirole, but only in hippocampus, in cultures from both asphyxia-exposed and control-animals, effect that was antagonised by sulpiride, leading to the conclusion that dopamine modulates neurogenesis in hippocampus, mainly via D2 receptors.
Collapse
Affiliation(s)
- A Tapia-Bustos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - R Perez-Lobos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - V Vío
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - C Lespay-Rebolledo
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - E Palacios
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - A Chiti-Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - D Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - M Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile.,Biomedical Neuroscience Institute, BNI, ICBM, Medical Faculty, University of Chile, Santiago, Chile
| | - P Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile. .,Biomedical Neuroscience Institute, BNI, ICBM, Medical Faculty, University of Chile, Santiago, Chile.
| |
Collapse
|
15
|
Dopamine D2 receptor availability is linked to hippocampal-caudate functional connectivity and episodic memory. Proc Natl Acad Sci U S A 2016; 113:7918-23. [PMID: 27339132 DOI: 10.1073/pnas.1606309113] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
D1 and D2 dopamine receptors (D1DRs and D2DRs) may contribute differently to various aspects of memory and cognition. The D1DR system has been linked to functions supported by the prefrontal cortex. By contrast, the role of the D2DR system is less clear, although it has been hypothesized that D2DRs make a specific contribution to hippocampus-based cognitive functions. Here we present results from 181 healthy adults between 64 and 68 y of age who underwent comprehensive assessment of episodic memory, working memory, and processing speed, along with MRI and D2DR assessment with [(11)C]raclopride and PET. Caudate D2DR availability was positively associated with episodic memory but not with working memory or speed. Whole-brain analyses further revealed a relation between hippocampal D2DR availability and episodic memory. Hippocampal and caudate D2DR availability were interrelated, and functional MRI-based resting-state functional connectivity between the ventral caudate and medial temporal cortex increased as a function of caudate D2DR availability. Collectively, these findings indicate that D2DRs make a specific contribution to hippocampus-based cognition by influencing striatal and hippocampal regions, and their interactions.
Collapse
|
16
|
Huck JHJ, Freyer D, Böttcher C, Mladinov M, Muselmann-Genschow C, Thielke M, Gladow N, Bloomquist D, Mergenthaler P, Priller J. De novo expression of dopamine D2 receptors on microglia after stroke. J Cereb Blood Flow Metab 2015; 35:1804-11. [PMID: 26104289 PMCID: PMC4635235 DOI: 10.1038/jcbfm.2015.128] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 04/01/2015] [Accepted: 04/27/2015] [Indexed: 11/09/2022]
Abstract
Dopamine is the predominant catecholamine in the brain and functions as a neurotransmitter. Dopamine is also a potent immune modulator. In this study, we have characterized the expression of dopamine receptors on murine microglia. We found that cultured primary microglia express dopamine D1, D2, D3, D4, and D5 receptors. We specifically focused on the D2 receptor (D2R), a major target of antipsychotic drugs. Whereas D2Rs were strongly expressed on striatal neurons in vivo, we did not detect any D2R expression on resident microglia in the healthy brains of wild-type mice or transgenic mice expressing the green fluorescent protein (GFP) under the control of the Drd2 promoter. However, cerebral ischemia induced the expression of D2R on Iba1-immunoreactive inflammatory cells in the infarct core and penumbra. Notably, D2R expression was confined to CD45(hi) cells, and GFP BM chimeras revealed that D2R was expressed on activated resident microglia as well as on peripherally derived macrophages in the ischemic brain. Importantly, the D2/3R agonist, pramipexole, enhanced the secretion of nitrite by cultured microglia in response to proinflammatory stimuli. Thus, dopamine may serve as a modulator of microglia function during neuroinflammation.
Collapse
Affiliation(s)
- Jojanneke H J Huck
- Laboratory of Molecular Psychiatry, Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dorette Freyer
- Departments of Experimental Neurology, Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Chotima Böttcher
- Laboratory of Molecular Psychiatry, Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mihovil Mladinov
- Laboratory of Molecular Psychiatry, Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Muselmann-Genschow
- Departments of Experimental Neurology, Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mareike Thielke
- Departments of Experimental Neurology, Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Gladow
- Laboratory of Molecular Psychiatry, Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dana Bloomquist
- Laboratory of Molecular Psychiatry, Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mergenthaler
- Departments of Experimental Neurology, Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Cluster of Excellence 'NeuroCure', Berlin, Germany.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Josef Priller
- Laboratory of Molecular Psychiatry, Department of Neuropsychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Cluster of Excellence 'NeuroCure', Berlin, Germany.,BIH and DZNE, Berlin, Germany
| |
Collapse
|
17
|
An explorative study regarding the effect of l-deprenyl on cognitive and functional recovery in patients after stroke. J Neurol Sci 2015; 349:117-23. [PMID: 25592412 DOI: 10.1016/j.jns.2014.12.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/02/2014] [Accepted: 12/28/2014] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Selegiline (l-deprenyl) is a selective monoamine oxidase type B inhibitor that has been shown to have neurotrophic and anti-apoptotic properties and to protect neurons in different experimental models of cerebral ischaemia. The aim of this explorative study was to investigate whether selegiline could enhance cognitive and functional recovery in stroke survivors. METHODS This was a randomized controlled study in which patients enrolled within two weeks of stroke underwent a clinical and functional evaluation and a neuropsychological assessment. The patients were given selegiline (10mg/day) or matched placebo once a day for six weeks in addition to standard rehabilitation care. RESULTS Of 137 stroke survivors, 47 patients met the inclusion criteria and were randomly assigned to the Study Group (n=23) or the Control Group (n=24). The statistical analysis showed a significant improvement in most neuropsychological tests after two and six weeks in the study group; these improvements were not replicated in the control group. The between-group analysis revealed that the domains of attention and executive functions benefited most from the drug treatment. With regard to functional status, comparison of clinical scores at admission and discharge showed a statistically significant enhancement in both groups without statistically significant differences between the groups. CONCLUSIONS These preliminary results suggest that selegiline administered in the subacute phase can promote cognitive functioning in stroke patients. Further studies will elucidate whether and how this enhancement can impact on functional recovery in the short and in the long term.
Collapse
|
18
|
Kim KT, Chung KJ, Lee HS, Ko IG, Kim CJ, Na YG, Kim KH. Neuroprotective effects of tadalafil on gerbil dopaminergic neurons following cerebral ischemia. Neural Regen Res 2014; 8:693-701. [PMID: 25206715 PMCID: PMC4146079 DOI: 10.3969/j.issn.1673-5374.2013.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/30/2013] [Indexed: 01/11/2023] Open
Abstract
Impairment of dopamine function, which is known to have major effects on behaviors and cognition, is one of the main problems associated with cerebral ischemia. Tadalafil, a long-acting phosphodiesterase type-5 inhibitor, is known to ameliorate neurologic impairment induced by brain injury, but not in dopaminergic regions. We investigated the neuroprotective effects of treatment with tadalafil on cyclic guanosine monophosphate level and dopamine function following cerebral ischemia. Forty adult Mongolian gerbils were randomly and evenly divided into five groups (n = 8 in each group): Sham-operation group, cerebral ischemia-induced and 0, 0.1, 1, and 10 mg/kg tadalafil-treated groups, respectively. Tadalafil dissolved in distilled water was administered orally for 7 consecutive days, starting 1 day after surgery. Cyclic guanosine monophosphate assay and immunohistochemistry were performed for thyrosine hydroxylase expression and western blot analysis for dopamine D2 receptor expression. A decrease in cyclic guanosine monophosphate level following cerebral ischemia was found with an increase in thyrosine hydroxylase activity and a decrease in dopamine D2 receptor expression in the striatum and substantia nigra region. However, treatment with tadalafil increased cyclic guanosine monophosphate expression, suppressed thyrosine hydroxylase expression and increased dopamine D2 receptor expression in the striatum and substantia nigra region in a dose-dependent manner. Tadalafil might ameliorate cerebral ischemia-induced dopaminergic neuron injury. Therefore, tadalafil has the potential as a new neuroprotective treatment strategy for cerebral ischemic injury.
Collapse
Affiliation(s)
- Kwang Taek Kim
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| | - Kyung Jin Chung
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| | - Han Sae Lee
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| | - Il Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Chang Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yong Gil Na
- Department of Urology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon 301-721, Republic of Korea
| | - Khae Hawn Kim
- Department of Urology, Gachon University Gil Medical Center, Gachon University, Incheon 405-760, Republic of Korea
| |
Collapse
|
19
|
Zhang M, Wang H, Zhao J, Chen C, Leak RK, Xu Y, Vosler P, Chen J, Gao Y, Zhang F. Drug-induced hypothermia in stroke models: does it always protect? CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:371-80. [PMID: 23469851 DOI: 10.2174/1871527311312030010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/06/2012] [Accepted: 11/11/2012] [Indexed: 12/19/2022]
Abstract
Ischemic stroke is a common neurological disorder lacking a cure. Recent studies show that therapeutic hypothermia is a promising neuroprotective strategy against ischemic brain injury. Several methods to induce therapeutic hypothermia have been established; however, most of them are not clinically feasible for stroke patients. Therefore, pharmacological cooling is drawing increasing attention as a neuroprotective alternative worthy of further clinical development. We begin this review with a brief introduction to the commonly used methods for inducing hypothermia; we then focus on the hypothermic effects of eight classes of hypothermia-inducing drugs: the cannabinoids, opioid receptor activators, transient receptor potential vanilloid, neurotensins, thyroxine derivatives, dopamine receptor activators, hypothermia-inducing gases, adenosine, and adenine nucleotides. Their neuroprotective effects as well as the complications associated with their use are both considered. This article provides guidance for future clinical trials and animal studies on pharmacological cooling in the setting of acute stroke.
Collapse
Affiliation(s)
- Meijuan Zhang
- Department of Neurology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Martín A, Gómez-Vallejo V, San Sebastián E, Padró D, Markuerkiaga I, Llarena I, Llop J. In vivo imaging of dopaminergic neurotransmission after transient focal ischemia in rats. J Cereb Blood Flow Metab 2013; 33:244-52. [PMID: 23149560 PMCID: PMC3564194 DOI: 10.1038/jcbfm.2012.162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The precise biologic mechanisms involved in functional recovery processes in response to stroke such as dopaminergic neurotransmission are still largely unknown. For this purpose, we performed in parallel in vivo magnetic resonance imaging and positron emission tomography (PET) with [(18)F]fluorodeoxyglucose ([(18)F]FDG) and [(11)C]raclopride at 1, 3, 7, 14, 21, and 28 days after middle cerebral artery occlusion in rats. In the ischemic territory, PET [(18)F]FDG showed a initial decrease in cerebral metabolism followed by a time-dependent recovery to quasi-normal values at day 14 after ischemia. The PET with [(11)C]raclopride, a ligand for dopamine D(2) receptor, showed a sustained binding during the first week after ischemia that declined dramatically from day 14 to day 28. Interestingly, a slight increase in [(11)C]raclopride binding was observed at days 1 to 3 followed by the uppermost binding at day 7 in the contralateral territory. Likewise, in vitro autoradiography using [(3)H]raclopride confirmed these in vivo results. Finally, the neurologic test showed major neurologic impairment at day 1 followed by a recovery of the cerebral function at day 28 after cerebral ischemia. Taken together, these results might suggest that dopamine D(2) receptor changes in the contralateral hemisphere could have a key role in functional recovery after cerebral ischemia.
Collapse
Affiliation(s)
- Abraham Martín
- Molecular Imaging Unit, CIC biomaGUNE, San Sebastián, Spain.
| | | | | | | | | | | | | |
Collapse
|
21
|
Kam KY, Jalin AMA, Choi YW, Kaengkan P, Park SW, Kim YH, Kang SG. Ziprasidone attenuates brain injury after focal cerebral ischemia induced by middle cerebral artery occlusion in rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:69-74. [PMID: 22627197 DOI: 10.1016/j.pnpbp.2012.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 04/29/2012] [Accepted: 05/14/2012] [Indexed: 11/29/2022]
Abstract
Ziprasidone is an atypical antipsychotic drug used for the treatment of schizophrenia. Recent studies have reported that atypical antipsychotics have neuroprotective effects against brain injury. In the present study, the effect of ziprasidone on ischemic brain injury was investigated. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in rats. All the animals experienced ischemia for 1h and then underwent reperfusion. The infarct size induced by MCAO was significantly reduced in the animals that received acute treatment with 5mg/kg ziprasidone and subchronic treatment with 2.5mg/kg ziprasidone for 7 days compared with that in the vehicle-treated animals. The acute treatment with ziprasidone significantly improved neurological functions, as measured by the modified neurological severity score, in a dose-dependent manner. The subchronic treatment produced more rapid recovery from functional deficits than the vehicle treatment. The immunohistochemical investigation revealed that the subchronic treatment prevented severe loss of neuronal marker intensity and attenuated the increased in microglial marker intensity in the infarcted cortical area. These results suggest that ziprasidone has neuroprotective effects in a rat model of ischemic stroke and provide new insight for its clinical applications.
Collapse
Affiliation(s)
- Kyung-Yoon Kam
- Department of Occupational Therapy, Inje University, Gimhae 621-749, South Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Central dopaminergic system and its implications in stress-mediated neurological disorders and gastric ulcers: short review. Adv Pharmacol Sci 2012; 2012:182671. [PMID: 23008702 PMCID: PMC3449100 DOI: 10.1155/2012/182671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/11/2012] [Accepted: 08/14/2012] [Indexed: 11/17/2022] Open
Abstract
For decades, it has been suggested that dysfunction of dopaminergic pathways and their associated modulations in dopamine levels play a major role in the pathogenesis of neurological disorders. Dopaminergic system is involved in the stress response, and the neural mechanisms involved in stress are important for current research, but the recent and past data on the stress response by dopaminergic system have received little attention. Therefore, we have discussed these data on the stress response and propose a role for dopamine in coping with stress. In addition, we have also discussed gastric stress ulcers and their correlation with dopaminergic system. Furthermore, we have also highlighted some of the glucocorticoids and dopamine-mediated neurological disorders. Our literature survey suggests that dopaminergic system has received little attention in both clinical and preclinical research on stress, but the current research on this issue will surely identify a better understanding of stressful events and will give better ideas for further efficient antistress treatments.
Collapse
|
23
|
Zhang YF, Wang XY, Guo F, Burns K, Guo QY, Wang XM. Simultaneously changes in striatum dopaminergic and glutamatergic parameters following hypoxic-ischemic neuronal injury in newborn piglets. Eur J Paediatr Neurol 2012; 16:271-8. [PMID: 21723167 DOI: 10.1016/j.ejpn.2011.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 04/28/2011] [Accepted: 05/27/2011] [Indexed: 12/21/2022]
Abstract
Basal ganglia injury (BGI) is a type of perinatal hypoxic-ischemic (H-I) brain injury. Both malfunctions of glutamatergic and dopaminergic pathways in striatum were suggested to contribute to BGI. In current study, we investigated the imaging profile of glutamate (Glx) levels by proton magnetic resonance spectroscopy ((1)H-MRS), and the expression of dopamine D2 receptors (D2R) and dopamine transporter (DAT) by immunohistochemical staining in a newborn piglet model of H-I brain injury. We found that the number of striatal D2R positive neurons decreased following H-I brain injury, and the decrease in positive neuron number was consistent with the degree of striatum. Following H-I brain insult, the number of striatal DAT positive neurons and glutamate level were simultaneously increased initially, followed by a gradual decline toward control level. There was a positive correlation between the changes in striatal DAT positive neurons and glutamate level following H-I brain insults in newborn piglets. Our findings suggest that following H-I brain insult, striatal D2R positive neurons decreased due to neuron death; straital DAT initially increased to compensate for dopamine uptake; and glutamatergic and dopaminergic systems in striatum may act in an interdependent way in the striatum of newborn piglets.
Collapse
Affiliation(s)
- Yan-Fen Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | | | | | | | | | | |
Collapse
|
24
|
Delis F, Benveniste H, Xenos M, Grandy D, Wang GJ, Volkow ND, Thanos PK. Loss of dopamine D2 receptors induces atrophy in the temporal and parietal cortices and the caudal thalamus of ethanol-consuming mice. Alcohol Clin Exp Res 2011; 36:815-25. [PMID: 22017419 DOI: 10.1111/j.1530-0277.2011.01667.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The need of an animal model of alcoholism becomes apparent when we consider the genetic diversity of the human populations, an example being dopamine D2 receptor (DRD2) expression levels. Research suggests that low DRD2 availability is associated with alcohol abuse, while higher DRD2 levels may be protective against alcoholism. This study aims to establish whether (i) the ethanol-consuming mouse is a suitable model of alcohol-induced brain atrophy and (ii) DRD2 protect the brain against alcohol toxicity. METHODS Adult Drd2+/+ and Drd2-/- mice drank either water or 20% ethanol solution for 6 months. At the end of the treatment period, the mice underwent magnetic resonance (MR) imaging under anesthesia. MR images were registered to a common space, and regions of interest were manually segmented. RESULTS We found that chronic ethanol intake induced a decrease in the volume of the temporal and parietal cortices as well as the caudal thalamus in Drd2-/- mice. CONCLUSIONS The result suggests that (i) normal DRD2 expression has a protective role against alcohol-induced brain atrophy and (ii) in the absence of Drd2 expression, prolonged ethanol intake reproduces a distinct feature of human brain pathology in alcoholism, the atrophy of the temporal and parietal cortices.
Collapse
Affiliation(s)
- Foteini Delis
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Bromocriptine methylate suppresses glial inflammation and moderates disease progression in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 2011; 232:41-52. [PMID: 21867702 DOI: 10.1016/j.expneurol.2011.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/19/2011] [Accepted: 08/08/2011] [Indexed: 11/23/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by a selective loss of upper and lower motor neurons. Since oxidative stress plays a crucial role in the progression of motor neuron loss observed in ALS, anti-oxidative agents could be an important therapeutic means for the ALS treatment. We have previously developed a drug screening system allowing the identification of small chemical compounds that upregulate endogenous neuronal apoptosis inhibitory protein (NAIP), an oxidative stress-induced cell death suppressor. Using this system, we identified the dopamine D2 receptor agonist bromocriptine (BRC) as one of NAIP-upregulating compounds. In this study, to prove the efficacy of BRC in ALS, we conducted a set of preclinical studies using a transgenic ALS mouse model carrying the H46R mutation in the human Cu/Zn superoxide dismutase (SOD1) gene ALS(SOD1(H46R)) by the post-onset administration of BRC. ALS(SOD1(H46R)) mice receiving BRC showed sustained motor functions and modest prolonged survival after onset. Further, BRC treatment delayed anterior horn cell loss, and reduced the number of reactive astrocytes and the level of inflammatory factors such as inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α in the spinal cord of late symptomatic mice. In vitro study showed the reduced level of extracellular TNF-α after lipopolysaccharide (LPS) exposure in BRC-treated mouse astrocytes. BRC-treated ALS(SOD1(H46R)) mice also showed a reduced level of oxidative damage in the spinal cord. Notably, BRC treatment resulted in an upregulation of anti-oxidative stress genes, activating transcription factor 3 (ATF3) and heme oxygenase-1 (HO-1), and the generation of a glutathione (GSH) in SH-SY5Y cultured neuronal cells in a dopamine receptor-independent manner. These results imply that BRC protects motor neurons from the oxidative injury via suppression of astrogliosis in the spinal cord of ALS(SOD1(H46R)) mice. Thus, BRC might be a promising therapeutic agent for the treatment of ALS.
Collapse
|
26
|
Zweckberger K, Simunovic F, Kiening KL, Unterberg AW, Sakowitz OW. Effects of lisuride hydrogen maleate on pericontusional tissue metabolism, brain edema formation, and contusion volume development after experimental traumatic brain injury in rats. Neurosci Lett 2011; 499:189-93. [PMID: 21658430 DOI: 10.1016/j.neulet.2011.05.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/12/2011] [Accepted: 05/23/2011] [Indexed: 11/29/2022]
Abstract
After traumatic brain injury (TBI), the primary insult is followed by a cascade of secondary events which lead to enlargement of the primary lesion and are potentially amenable to therapeutic intervention. Lisuride is a dopaminergic agonist with additional serotoninergic, adrenergic, and glutamate antagonistic properties. In lack of previous data on lisuride in TBI, and based on well documented changes of dopamine metabolism after TBI, we speculated that lisuride could provide neuroprotection in the acute and post-acute stage of controlled cortical impact (CCI) injury in rats. The effect of varying dosages of lisuride on physiological parameter was investigated. Cerebral microdialysis (CMD) was employed to provide a temporal profile of lactate, pyruvate, glucose and glutamate in the pericontusional brain tissue. Additionally, brain edema formation and the development of contusion volume were assessed. In this study, no effect of treatment was seen on physiological parameters or microdialysis profiling of tissue metabolites. Whereas posttraumatic increase in brain water content and an increase in contusion volume could be observed, there was no significant effect of treatment. Taken together, our results suggest that lisuride does not provide neuroprotection in the CCI model at the acute and subacute stages. Based on the available literature, however, it might be possible that dopamine agonists such as lisuride, respectively, improve outcome in terms of cognitive function in a chronic setting.
Collapse
Affiliation(s)
- K Zweckberger
- Department of Neurosurgery, University Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
27
|
Shirasaki Y, Sugimura M, Sato T. Bromocriptine, an ergot alkaloid, inhibits excitatory amino acid release mediated by glutamate transporter reversal. Eur J Pharmacol 2010; 643:48-57. [PMID: 20599932 DOI: 10.1016/j.ejphar.2010.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/11/2010] [Accepted: 06/04/2010] [Indexed: 11/26/2022]
Abstract
Bromocriptine, a dopamine D(2) receptor agonist, has widely been used for patients with Parkinson's disease. The aim of the present study was to investigate the effect of bromocriptine on glutamate transporter. Since the astroglial glutamate transporter GLT-1 (EAAT2) is the predominant isoform in the forebrain, we generated EAAT2-expressing human embryonic kidney cells and immortalized mouse astrocytes. In the present studies, we observed a GLT-1-immunoreactive band and significant Na(+)-dependent d-[(3)H] aspartate uptake. Furthermore, the glutamate transporter inhibitors, dl-threo-beta-benzyloxyaspartic acid (TBOA) and dihydrokainate (DHK), displayed a dose-dependent reduction of d-[(3)H] aspartate uptake in both types of cells. In contrast, cells exposed to either chemical anoxia or high KCl elicited a marked release of d-[(3)H] aspartate, and the release was inhibited by TBOA and DHK, implying the contribution of glutamate transporter reversal. Interestingly, we found that bromocriptine dose-dependently inhibits d-[(3)H] aspartate release elicited by chemical anoxia or high KCl, while no changes occurred in the uptake. The inhibitory action of bromocriptine was not affected by sulpiride, a dopamine D(2) receptor antagonist. On the other hand, bromocriptine had no effect on swelling-induced d-[(3)H] aspartate release, which is mediated by volume-regulated anion channels. In vivo studies revealed that bromocriptine suppresses the excessive elevation of glutamate levels in gerbils subjected to transient forebrain ischemia in a manner similar to DHK. Taken together, these results provide evidence that bromocriptine inhibits excitatory amino acid release via reversed operation of GLT-1 without altering forward transport.
Collapse
Affiliation(s)
- Yasufumi Shirasaki
- Biological Research Laboratories, Daiichi-Sankyo Co., Ltd., Tokyo, Japan.
| | | | | |
Collapse
|
28
|
Ono SI, Hirai K, Tokuda EI. Effects of pergolide mesilate on metallothionein mRNAs expression in a mouse model for Parkinson disease. Biol Pharm Bull 2010; 32:1813-7. [PMID: 19801850 DOI: 10.1248/bpb.32.1813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dopamine agonists have neuroprotective properties in addition to their original pharmacologic function. We examined the effects of pergolide mesilate (PM) on the levels of metallothionein mRNA expression and lipid peroxidation in the corpus striata of 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonian mice. Mice were administered normal saline (vehicle as a control), PM, or MPTP. A consecutive 7-d administration of MPTP via a gastric tube at a dose of 30 mg/kg significantly decreased metallothionein (MT)-I mRNA expression but did not influence MT-III mRNA expression. Lipid peroxidation, measured as the production of malondialdehyde reactive substances, did not increase after MPTP treatment. Although PM administration alone did not effect MT-I expression, an additional consecutive 7-d administration of PM (30 mug/kg) following MPTP treatment recovered the decreased MT-I level and increased MT-III expression. Lipid peroxidation was significantly suppressed. These results suggest that PM exerts an antioxidative property through the induction of MT-I and MT-III mRNAs simultaneously in response to cellular and/or tissue injury.
Collapse
Affiliation(s)
- Shin-ichi Ono
- Research Unit of Clinical Pharmacy, College of Pharmacy, Nihon University, Funabashi, Chiba274-8555, Japan.
| | | | | |
Collapse
|
29
|
Zweckberger K, Simunovic F, Kiening KL, Unterberg AW, Sakowitz OW. Anticonvulsive effects of the dopamine agonist lisuride maleate after experimental traumatic brain injury. Neurosci Lett 2010; 470:150-4. [PMID: 20056133 DOI: 10.1016/j.neulet.2009.12.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/29/2009] [Accepted: 12/29/2009] [Indexed: 01/30/2023]
Abstract
Traumatic brain injury is a heterogeneous disease, encompassing a wide range of pathologies. The dopamine agonist lisuride is well established in the therapy of Parkinson's disease. Additionally to its dopaminergic effects it decreases prolactine release, reducing the amount of inflammatory mediators such as TNF-alpha or Il-6. Lisuride has strong binding affinity to serotonergic and histaminergic receptors on neuronal and glial cells leading to scavenging of highly reactive free radicals. Due to its interaction with dopaminergic D2 and D4 receptors as well as 5-HT-1A receptors, NMDA-receptor signaling and glutamate-mediated excitotoxicity can be modulated beneficially. Despite of these promising neuroprotective effects, experimental data scrutinizing the effects of lisuride after acute brain injury are sparse. We therefore investigated the effect of lisuride after controlled cortical impact injury (CCII) in rats. 70 male Sprague-Dawley rats were randomized to lisuride or to placebo treatment by an initial s.c. loading dose (0.3mg/kg BW) and following continuous application (0.5mg/kg/d) by s.c. implanted osmotic pumps. In three experimental groups we determined (sub)acute neuro-physiological changes after trauma. Mean arterial blood pressure, intracranial pressure, and electrical brain activity were monitored acutely for up to 3h after trauma. Brain edema formation was assessed 24h after CCII. Furthermore, contusion volumes were quantified by magnetic resonance tomography and neurological testing was performed for up to 7 days after injury. Associated with the administration of lisuride there was a significant reduction in duration and number of post-traumatic seizures. Despite of a sustained arterial hypotension following the initial bolus administration in the treatment group, contusion volumes and neurological function tests did not differ significantly in comparison to the control group. Overall, lisuride seems to have significant anticonvulsive effects but seems not to influence secondary brain damage in this experimental model.
Collapse
Affiliation(s)
- Klaus Zweckberger
- Department of Neurosurgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
30
|
Abstract
The mechanisms of brain ischemic insult include glutamate excitoxicity, calcium toxicity, free radicals, nitric oxide, inflammatory reactions, as well as dysfunctions of endoplasmic reticulum and mitochondrion. These injury cascades are interconnected in complex ways, thus it is hard to compare their pathogenic importances in ischemia models. And the research in cellular and molecular pathways has spurred the studies in potential neuroprotections mainly in pharmacological fields, such as anti-excitotoxic treatment, calcium-channel antagonism, approaches for inhibition of oxidation, inflammation and apoptosis, etc. Besides, other protective interventions including thrombolysis, arteriogenesis, regeneration therapy, and ischemia preconditioning or postconditioning, are also under investigations. Despite the present difficulties, we are quite optimistic towards future clinical applications of neuroprotective agents, by optimizing experimental approaches and clinical trials.
Collapse
|
31
|
Mysiw WJ, Bogner JA, Corrigan JD, Fugate LP, Clinchot DM, Kadyan V. The impact of acute care medications on rehabilitation outcome after traumatic brain injury. Brain Inj 2009; 20:905-11. [PMID: 17062422 DOI: 10.1080/02699050600743972] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To examine the impact of medications with known central nervous system (CNS) mechanisms of action, given during the acute care stages after traumatic brain injury (TBI), on the extent of cognitive and motor recovery during inpatient rehabilitation. DESIGN Retrospective extraction of data utilizing an inception cohort of moderate and severe TBI survivors. METHODS The records of 182 consecutive moderate and severe TBI survivors admitted to a single, large, Midwestern level I trauma centre and subsequently transferred for acute inpatient rehabilitation were abstracted for the presence of 11 categories of medication, three measures of injury severity (worst 24 hour Glasgow Coma Scale, worst pupillary response, intra-cranial hypertension), three measures of outcome (Function Independence Measure (FIM) Motor and Cognitive scores at both rehabilitation admission and discharge and duration of post-traumatic amnesia (PTA)). MAIN OUTCOME AND RESULTS The narcotics, benzodiazepines and neuroleptics were the most common categories of CNS active medications (92%, 67% and 43%, respectively). The three categories of medications appeared to have no significant outcome on the FIM outcome variables. The neuroleptics affected cognitive recovery with almost 7 more days required to clear PTA in the neuroleptic treated group. The presence of benzodiazepines did tend to obscure the impact of neuroleptics on PTA duration but the negative impact of neuroleptics on PTA duration remained significant. CONCLUSIONS The results suggest that the use of neuroleptics during the acute care stage of recovery has a negative impact on recovery of cognitive function at discharge from inpatient rehabilitation. Due to the paucity of subjects with hemiplegia in this cohort, conclusions could not be drawn as to the impact of acute care medications on motor recovery.
Collapse
Affiliation(s)
- W Jerry Mysiw
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Castri P, Busceti C, Battaglia G, Girardi F, Cavallari M, Orzi F, Fornai F. Protection by Apomorphine in Two Independent Models of Acute Inhibition of Oxidative Metabolism in Rodents. Clin Exp Hypertens 2009; 28:387-94. [PMID: 16833051 DOI: 10.1080/10641960600549827] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Apomorphine was administered by continuous infusion in the mouse following acute inhibition of oxidative metabolism induced by systemic administration of MPTP, and in the gerbil following transient occlusion of the carotid arteries. The dosage employed was comparable to the one used in the treatment of severe on-off fluctuations in Parkinson's disease. The results show that apomorphine significantly diminishes the striatal lesion caused by MPTP and the size of the infarct associated with the transient global ischemia. These data suggest that apomorphine is neuroprotective, probably by means of an antioxidant effect, at doses that are clinically used. The finding may be relevant to brain ischemia as well to chronic neurodegeneration.
Collapse
Affiliation(s)
- Paola Castri
- Department of Neurological Sciences, University of Roma, "La Sapienza", Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Li Q, Wong JH, Lu G, Antonio GE, Yeung DK, Ng TB, Forster LE, Yew DT. Gene expression of synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex of the spontaneously hypertensive rat (SHR). Biochim Biophys Acta Mol Basis Dis 2009; 1792:766-76. [PMID: 19482079 DOI: 10.1016/j.bbadis.2009.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 12/20/2022]
Abstract
Dopamine is believed to play an important role in the etiology of attention-deficit/hyperactivity disorder (ADHD). In our previous study, we showed that gene expression of dopamine D4 receptor decreased in the spontaneously hypertensive rat (SHR) in the prefrontal cortex (PFC). In the present study, we explored the potential causes of dysfunction in the dopamine system in ADHD. It is the first time that neuronal activities in both juvenile SHR and WKY rats have been measured by functional MRI (fMRI). Our results showed that in PFC the Blood Oxygenation Level Dependent (BOLD) signal response in SHR was much higher than WKY under stressful situations. We tested the effects of acute and repeated administration of amphetamine on behavioral changes in SHR combined with the expression of the neuronal activity marker, c-fos, in the PFC. Meanwhile dopamine-related gene expression was measured in the PFC after repeated administration of amphetamine. We found that potential neuronal damage occurred through deficit of D2-like receptor protective functions in the PFC of the SHR. We also measured the expression of synaptosomal-associated protein 25 (SNAP-25) in SHR in PFC. The results showed decreased expression of SNAP-25 mRNA in the PFC of SHR; this defect disappeared after repeated injection of D-AMP.
Collapse
Affiliation(s)
- Qi Li
- The Department of Psychiatry, Faculty of Medicine, The University of Hong Kong, 21 Sasson Road, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaewsuk S, Tannenberg RK, Kuo SW, Björkman ST, Govitrapong P, Stadlin A, Dodd PR. Regional expression of dopamine D1 and D2 receptor proteins in the cerebral cortex of asphyxic newborn infants. J Child Neurol 2009; 24:183-93. [PMID: 19182156 DOI: 10.1177/0883073808322669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dopamine D(1) and D(2) receptor protein expression was examined by Western blotting in newborn infants dying from cerebral asphyxia between 31 and 42 weeks' gestation, and matched controls. Frontal, occipital, temporal, and motor cortex tissue samples were obtained at autopsy (median postmortem interval 35 hours) and frozen for storage at -80 degrees C. A total of 2 immunoreactive bands were detected with each primary antibody in infant brain, whereas a single band was present in adult human and rat tissue. Immunoreactivity varied between cortical areas for both receptors, but their regional patterns differed significantly. D(1) protein levels were higher in motor and temporal cortex than in frontal or occipital cortex. D(2) protein showed graded expression frontal > motor > occipital > temporal cortex. Asphyxia cases showed lower expression of the upper D(2) immunoreactive band, but no difference in regional pattern. Lower D(2) receptor expression may attenuate stress responses and underlie increased vulnerability to hypoxia at birth.
Collapse
Affiliation(s)
- Sukit Kaewsuk
- Neuro-Behavioural Biology Center, Institute of Science and Technology for Research and Development, Mahidol University, Thailand
| | | | | | | | | | | | | |
Collapse
|
35
|
Agnati LF, Leo G, Genedani S, Piron L, Rivera A, Guidolin D, Fuxe K. Common key-signals in learning and neurodegeneration: focus on excito-amino acids, beta-amyloid peptides and alpha-synuclein. J Neural Transm (Vienna) 2008; 116:953-74. [PMID: 19018448 DOI: 10.1007/s00702-008-0150-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 10/20/2008] [Indexed: 01/11/2023]
Abstract
In this paper a hypothesis that some special signals ("key-signals" excito-amino acids, beta-amyloid peptides and alpha-synuclein) are not only involved in information handling by the neuronal circuits, but also trigger out substantial structural and/or functional changes in the Central Nervous System (CNS) is introduced. This forces the neuronal circuits to move from one stable state towards a new state, but in doing so these signals became potentially dangerous. Several mechanisms are put in action to protect neurons and glial cells from these potentially harmful signals. However, in agreement with the Red Queen Theory of Ageing (Agnati et al. in Acta Physiol Scand 145:301-309, 1992), it is proposed that during ageing these neuroprotective processes become less effective while, in the meantime, a shortage of brain plasticity occurs together with an increased need of plasticity for repairing the wear and tear of the CNS. The paper presents findings supporting the concept that such key-signals in instances such as ageing may favour neurodegenerative processes in an attempt of maximizing neuronal plasticity.
Collapse
Affiliation(s)
- L F Agnati
- Department of BioMedical Sciences, University of Modena, Via Campi 287, 41100 Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Cheng BC, Chang CP, Liu WP, Lin MT. Both mild hypothermia and dopamine D2 agonist are neuroprotective against hyperthermia-induced injury in PC12 cells. Neurosci Lett 2008; 443:140-4. [DOI: 10.1016/j.neulet.2008.07.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/21/2008] [Accepted: 07/30/2008] [Indexed: 11/24/2022]
|
37
|
Srikumar BN, Raju TR, Shankaranarayana Rao BS. Contrasting effects of bromocriptine on learning of a partially baited radial arm maze task in the presence and absence of restraint stress. Psychopharmacology (Berl) 2007; 193:363-74. [PMID: 17468850 DOI: 10.1007/s00213-007-0801-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 04/09/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE Severe, traumatic stress or repeated exposure to stress can result in long-term deleterious effects, including hippocampal cell atrophy and death, which, in turn, result in memory impairments and behavioural abnormalities. The dopaminergic D(2) receptor agonist, bromocriptine, has been shown to modulate learning, and chronic stress is associated with dopaminergic dysfunction. OBJECTIVES In the present study, we evaluated the effects of bromocriptine in the presence or absence of restraint stress. MATERIALS AND METHODS Adult male Wistar rats were subjected to restraint stress for 21 days (6 h/day) followed by bromocriptine treatment, and learning was assessed in the partially baited radial arm maze task. In a separate group of animals, the effects of bromocriptine per se was evaluated. Dopamine levels were estimated by high-performance liquid chromatography with electrochemical detection. RESULTS Stressed rats showed impairment in both acquisition and retention of the radial arm maze task, and bromocriptine treatment after stress showed a reversal of stress-induced impairment. Interestingly, in the absence of stress, bromocriptine exhibited dose-dependent differential effects on learning. While rats treated with bromocriptine 5 mg/kg, i.p., demonstrated impairment in learning, the bromocriptine 10 mg/kg and vehicle-treated groups did not differ from normal controls. To understand the neurochemical basis for the effects of bromocriptine, dopamine levels were estimated. The stress-induced decrease in dopamine levels in the hippocampus and frontal cortex were restored by bromocriptine treatment. In contrast, bromocriptine alone (5 mg/kg, i.p.) decreased dopamine levels in the frontal cortex and striatum. CONCLUSIONS Our study shows that amelioration of stress-induced learning impairment correlates with restoration of dopamine levels by bromocriptine treatment.
Collapse
Affiliation(s)
- B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | | | | |
Collapse
|
38
|
Yang ZJ, Torbey M, Li X, Bernardy J, Golden WC, Martin LJ, Koehler RC. Dopamine receptor modulation of hypoxic-ischemic neuronal injury in striatum of newborn piglets. J Cereb Blood Flow Metab 2007; 27:1339-51. [PMID: 17213860 PMCID: PMC2084487 DOI: 10.1038/sj.jcbfm.9600440] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dopamine receptors regulate glutamatergic neurotransmission and Na(+),K(+)-ATPase via protein kinase A (PKA) and dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32)-dependent signaling. Consequently, dopamine receptor activation may modulate neonatal hypoxic-ischemic (H-I) neuronal damage in the selectively vulnerable putamen enriched with dopaminergic receptors. Piglets subjected to two durations of hypoxia followed by asphyxic cardiac arrest were treated with a D1-like (SCH23390) or D2-like (sulpiride) receptor antagonist. At 4 days of recovery from less severe H-I, the remaining viable neurons in putamen were 60% of control, but nearly completely salvaged by pretreatment with SCH23390 or sulpiride. After more severe H-I in which only 18% of neurons were viable, partial neuroprotection was seen with SCH23390 pretreatment (50%) and posttreatment (39%) and with sulpiride pretreatment (35%), but not with sulpiride posttreatment (24%). Dopamine was significantly elevated in microdialysis samples from putamen during asphyxia and the first 15 mins of reoxygenation. Pretreatment with SCH23390 or sulpiride largely attenuated the increased nitrotyrosine and the decreased Na(+),K(+)-ATPase activity that occurred at 3 h after severe H-I. Pretreatment with SCH23390, but not sulpiride, also attenuated H-I-induced increases in PKA-dependent phosphorylation of Thr34 on DARPP-32, Ser943 on the alpha subunit of Na(+),K(+)-ATPase, and Ser897 of the N-methyl-D-aspartate (NMDA) receptor NR1 subunit. These findings indicate that D1 and D2 dopamine receptor activation contribute to neuronal death in newborn putamen after H-I in association with increased protein nitration and decreased Na(+),K(+)-ATPase activity. Furthermore, mechanisms of D1 receptor toxicity may involve DARPP-32-dependent phosphorylation of NMDA receptor NR1 and Na(+),K(+)-ATPase.
Collapse
Affiliation(s)
- Zeng-Jin Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Sahin M, Saxena A, Joost P, Lewerenz J, Methner A. Induction of Bcl-2 by functional regulation of G-protein coupled receptors protects from oxidative glutamate toxicity by increasing glutathione. Free Radic Res 2007; 40:1113-23. [PMID: 17050165 DOI: 10.1080/10715760600838191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glutamate treatment depletes hippocampal HT22 cells of glutathione, which renders the cells incapable to reduce reactive oxygen species and ultimately cumulates in cell death by oxidative stress. HT22 cells resistant to glutamate displayed increased phosphorylation of cAMP-response-element binding (CREB) and decreased ERK1/2 suggestive of differences in signal transmission. We investigated the amount of candidate G-protein-coupled receptors involved in this resistance and found an increase in mRNA for receptors activated by the vasoactive intestinal peptide VIP (VPAC2, 12.6-fold) and glutamate like the metabotropic glutamate receptor mGlu1 (5.3-fold). Treating cells with VIP and glutamate led to the same changes in protein phosphorylation observed in resistant cells and induced the proto-oncogene Bcl-2. Bcl-2 overexpression protected by increasing the amount of intracellular glutathione and Bcl-2 knockdown by small interfering RNAs (siRNA) increased glutamate susceptibility of resistant cells. Other receptors upregulated in this paradigm might represent useful targets in the treatment of neurological diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Mert Sahin
- Department of Neurology, Heinrich Heine Universität Düsseldorf, Moorenstreet 5, 40225, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
40
|
Chiasson K, Daoust B, Levesque D, Martinoli MG. Dopamine D2 agonists, bromocriptine and quinpirole, increase MPP+ -induced toxicity in PC12 cells. Neurotox Res 2006; 10:31-42. [PMID: 17000468 DOI: 10.1007/bf03033332] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dopaminergic cell loss in the mesencephalic substantia nigra is the hallmark of Parkinson's disease and may be associated with abnormal oxidative metabolic activity. However, the delicate balance underlying dopamine decline and oxidative stress is still a matter of debate. The aim of this study was to analyze the possible modulation of D2 agonists and antagonists on MPP+ (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion) -induced cellular death in differentiated and undifferentiated PC12 cells. Using colorimetric assays, western blots and reverse transcriptase-PCR, we demonstrated that two D2 agonists, bromocriptine and quinpirole, consistently increased MPP+ -induced cytotoxicity in both differentiated and undifferentiated PC12 cells, whereas D2 antagonists do not modulate cell death. However, this increase in cellular death was reversed when bromocriptine or quinpirole were used in presence of D2 antagonists. On the other hand, 1-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine (GBR 12909), a potent inhibitor of the dopamine transporter, partially reversed MPP+ -induced cellular death and completely abolished the increase of cellular death induced by bromocriptine. Dopamine agonists and antagonists also modulate the expression of the dopamine transporter in PC12 cells; in particular, bromocriptine may alter MPP+ uptake by increasing DAT expression We also show that, in our cellular paradigm, D2 receptor mRNA levels are more abundant that D3 mRNA levels and MPP+ and /or bromocriptine could not modulate D2 gene expression while D3 gene expression clearly decrease after MPP+ and /or bromocriptine treatment.
Collapse
Affiliation(s)
- Keith Chiasson
- Department of Biochemistry and Groupe de Recherche en Neurosciences, Université du Québec á Trois-Riviéres, Trois-Riviéres, Québec, Canada
| | | | | | | |
Collapse
|
41
|
Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J. Changes in Antioxidant Defense Enzymes after d-amphetamine Exposure: Implications as an Animal Model of Mania. Neurochem Res 2006; 31:699-703. [PMID: 16770742 DOI: 10.1007/s11064-006-9070-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2006] [Indexed: 12/29/2022]
Abstract
Studies have demonstrated that oxidative stress is associated with amphetamine-induced neurotoxicity, but little is known about the adaptations of antioxidant enzymes in the brain after amphetamine exposure. We studied the effects of acute and chronic amphetamine administration on superoxide dismutase (SOD) and catalase (CAT) activity, in a rodent model of mania. Male Wistar rats received either a single IP injection of D-: amphetamine (1 mg/kg, 2 mg/kg, or 4 mg/kg) or vehicle (acute treatment). In the chronic treatment rats received a daily IP injection of either D-: amphetamine (1 mg/kg, 2 mg/kg, or 4 mg/kg) or vehicle for 7 days. Locomotor behavior was assessed using the open field test. SOD and CAT activities were measured in the prefrontal cortex, hippocampus, and striatum. Acute and to a greater extent chronic amphetamine treatment increased locomotor behavior and affected SOD and CAT activities in the prefrontal cortex, hippocampus and striatum. Our findings suggest that amphetamine exposure is associated with an imbalance between SOD and CAT activity in the prefrontal cortex, hippocampus and striatum.
Collapse
Affiliation(s)
- Benício N Frey
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zou S, Li L, Pei L, Vukusic B, Van Tol HHM, Lee FJS, Wan Q, Liu F. Protein-protein coupling/uncoupling enables dopamine D2 receptor regulation of AMPA receptor-mediated excitotoxicity. J Neurosci 2006; 25:4385-95. [PMID: 15858065 PMCID: PMC6725121 DOI: 10.1523/jneurosci.5099-04.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
here is considerable evidence that dopamine D2 receptors can modulate AMPA receptor-mediated neurotoxicity. However, the molecular mechanism underlying this process remains essentially unclear. Here we report that D2 receptors inhibit AMPA-mediated neurotoxicity through two pathways: the activation of phosphoinositide-3 kinase (PI-3K) and downregulation of AMPA receptor plasma membrane expression, both involving a series of protein-protein coupling/uncoupling events. Agonist stimulation of D2 receptors promotes the formation of the direct protein-protein interaction between the third intracellular loop of the D2 receptor and the ATPase N-ethylmaleimide-sensitive factor (NSF) while uncoupling the NSF interaction with the carboxyl tail (CT) of the glutamate receptor GluR2 subunit of AMPA receptors. Previous studies have shown that full-length NSF directly couples to the GluR2CT and facilitates AMPA receptor plasma membrane expression. Furthermore, the CT region of GluR2 subunit is also responsible for several other intracellular protein couplings, including p85 subunit of PI-3K. Therefore, the direct coupling of D2-NSF and concomitant decrease in the NSF-GluR2 interaction results in a decrease of AMPA receptor membrane expression and an increase in the interaction between GluR2 and the p85 and subsequent activation of PI-3K. Disruption of the D2-NSF interaction abolished the ability of D2 receptor to attenuate AMPA-mediated neurotoxicity by blocking the D2 activation-induced changes in PI-3K activity and AMPA receptor plasma membrane expression. Furthermore, the D2-NSF-GluR2-p85 interactions are also responsible for the D2 inhibition of ischemia-induced cell death. These data may provide a new avenue to identify specific targets for therapeutics to modulate glutamate receptor-governed diseases, such as stroke.
Collapse
Affiliation(s)
- Shengwei Zou
- Department of Neuroscience, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada M5T 1R8
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bozzi Y, Borrelli E. Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it? Trends Neurosci 2006; 29:167-74. [PMID: 16443286 DOI: 10.1016/j.tins.2006.01.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/09/2005] [Accepted: 01/06/2006] [Indexed: 11/19/2022]
Abstract
Accurate control of dopamine levels and/or the resulting dopamine-receptor interaction is essential for brain function. Indeed, several human neurological and psychiatric disorders are characterized by dysfunctions of the dopaminergic system. Dopamine has been reported to exert either protective or toxic effects on neurons, yet it is unclear whether these effects are receptor-dependent and, if so, which dopamine receptor could be involved. The D(2) dopamine receptor occupies a privileged position because its signalling might be neuroprotective in human diseases, such as Parkinson's disease, ischaemia and epilepsy. Unravelling the role of D(2) receptors in neuronal death and survival might be central to understanding the mechanisms that underlie several neuropathologies.
Collapse
Affiliation(s)
- Yuri Bozzi
- Istituto di Neuroscienze del CNR, via Moruzzi 1, 56100 Pisa, Italy
| | | |
Collapse
|
44
|
Kline AE, Massucci JL, Ma X, Zafonte RD, Dixon CE. Bromocriptine reduces lipid peroxidation and enhances spatial learning and hippocampal neuron survival in a rodent model of focal brain trauma. J Neurotrauma 2005; 21:1712-22. [PMID: 15684763 DOI: 10.1089/neu.2004.21.1712] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oxidative stress is a significant contributor to the secondary sequelae of traumatic brain injury (TBI), and may mediate subsequent neurobehavioral deficits and histopathology. The present study examined the neuroprotective effects of bromocriptine (BRO), a dopamine D2 receptor agonist with significant antioxidant properties, on cognition, histopathology, and lipid peroxidation in a rodent model of focal brain trauma. BRO (5 mg/kg) or a comparable volume of vehicle (VEH) was administered intraperitoneally 15 min prior to cortical impact or sham injury. In experiment 1, spatial learning was assessed in an established water maze task on post-surgery days 14-18, followed by quantification of hippocampal cell survival and cortical lesion volume at 4 weeks. In experiment 2, rats were sacrificed 1 hr post-surgery, and malondialdehyde (MDA), the end product of lipid peroxidation, was measured in the frontal cortex, striatum, and substantia nigra using a thiobarbituric acid reactive substances assay. The TBI+BRO group was significantly more adept at locating a hidden platform in the water maze compared to the TBI+VEH group and also exhibited a greater percentage of surviving CA3 hippocampal neurons. TBI increased MDA in all examined regions of the VEH-treated, but not BRO-treated group versus SHAMs. MDA was significantly decreased in both the striatum (4.22 +/- 0.52 versus 5.60 +/- 0.44 nmol per mg/tissue +/- SEM) and substantia nigra (4.18 +/- 0.35 versus 7.76 +/- 2.05) of the TBI+BRO versus TBI+VEH groups, respectively, while only a trend toward decreased MDA was observed in the frontal cortex (5.44 +/- 0.44 versus 6.96 +/- 0.77). These findings suggest that TBI-induced oxidative stress is attenuated by acute BRO treatment, which may, in part, explain the benefit in cognitive and histological outcome.
Collapse
Affiliation(s)
- Anthony E Kline
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | |
Collapse
|
45
|
Picada JN, Roesler R, Henriques JAP. Genotoxic, neurotoxic and neuroprotective activities of apomorphine and its oxidized derivative 8-oxo-apomorphine. Braz J Med Biol Res 2005; 38:477-86. [PMID: 15962173 DOI: 10.1590/s0100-879x2005000400001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apomorphine is a dopamine receptor agonist proposed to be a neuroprotective agent in the treatment of patients with Parkinson's disease. Both in vivo and in vitro studies have shown that apomorphine displays both antioxidant and pro-oxidant actions, and might have either neuroprotective or neurotoxic effects on the central nervous system. Some of the neurotoxic effects of apomorphine are mediated by its oxidation derivatives. In the present review, we discuss recent studies from our laboratory in which the molecular, cellular and neurobehavioral effects of apomorphine and its oxidized derivative, 8-oxo-apomorphine-semiquinone (8-OASQ), were evaluated in different experimental models, i.e., in vitro genotoxicity in Salmonella/microsome assay and WP2 Mutoxitest, sensitivity assay in Saccharomyces cerevisiae, neurobehavioral procedures (inhibition avoidance task, open field behavior, and habituation) in rats, stereotyped behavior in mice, and Comet assay and oxidative stress analyses in mouse brain. Our results show that apomorphine and 8-OASQ induce differential mutagenic, neurochemical and neurobehavioral effects. 8-OASQ displays cytotoxic effects and oxidative and frameshift mutagenic activities, while apomorphine shows antimutagenic and antioxidant effects in vitro. 8-OASQ induces a significant increase of DNA damage in mouse brain tissue. Both apomorphine and 8-OASQ impair memory for aversive training in rats, although the two drugs showed a different dose-response pattern. 8-OASQ fails to induce stereotyped behaviors in mice. The implications of these findings are discussed in the light of evidence from studies by other groups. We propose that the neuroprotective and neurotoxic effects of dopamine agonists might be mediated, in part, by their oxidized metabolites.
Collapse
Affiliation(s)
- J N Picada
- Curso de Farmácia, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | | | | |
Collapse
|
46
|
Xu ZC, Ling G, Sahr RN, Neal-Beliveau BS. Asymmetrical changes of dopamine receptors in the striatum after unilateral dopamine depletion. Brain Res 2005; 1038:163-70. [PMID: 15757632 DOI: 10.1016/j.brainres.2005.01.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 01/07/2005] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
Dopamine plays an important role in modulating synaptic transmission in the striatum and has great influence on the function of the basal ganglia. Degeneration of dopamine neurons in the substantia nigra (SN) is the major cause of many neurological disorders, and the reduction of dopamine innervation results in alterations of dopamine receptors in the striatum. It has been shown that the nigrostriatal dopamine system has functional and neurochemical asymmetry. To investigate the lateralization of dopamine receptors in the striatum after dopamine denervation, the present study used quantitative autoradiography to compare the changes in dopamine receptor binding in the left and right striatum in rats after unilateral dopamine depletion. In comparison to control levels, dopamine D1)-like receptor binding, labeled with [3H]-SCH23390, in the dorsal striatum was reduced 2 weeks after unilateral lesions of the SN with 6-hydroxydopamine. D1-like receptor binding was decreased in the ipsilateral striatum following unilateral lesions of either the left or right SN. The left and right striatum responded similarly to unilateral SN lesions, as there were no significant differences in the percent decrease in D1-like binding in the two striata. In contrast, D2-like receptor binding, labeled with [3H]-spiroperidol, was significantly increased in the dorsal striatum following an ipsilateral SN lesion. Furthermore, the up-regulation of D2-like receptors in the right striatum was significantly greater than that in the left striatum after an ipsilateral lesion. The asymmetrical up-regulation of striatal D2 receptors after extensive dopamine depletion might contribute to the lateralization of the nigrostriatal system observed in some pathological conditions.
Collapse
Affiliation(s)
- Zao C Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 507, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
47
|
Rosin C, Colombo S, Calver AA, Bates TE, Skaper SD. Dopamine D2 and D3 receptor agonists limit oligodendrocyte injury caused by glutamate oxidative stress and oxygen/glucose deprivation. Glia 2005; 52:336-43. [PMID: 16078234 DOI: 10.1002/glia.20250] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dopamine receptor activation is thought to contribute adversely to several neuropathological disorders, including Parkinson's disease and schizophrenia. In addition, dopamine may have a neuroprotective role: dopamine receptor agonists are reported to protect nerve cells by virtue of their antioxidant properties as well as by receptor-mediated mechanisms. White matter injury can also be a significant factor in neurological disorders. Using real-time RT-PCR, we show that differentiated rat cortical oligodendrocytes express dopamine D2 receptor and D3 receptor mRNA. Oligodendrocytes were vulnerable to oxidative glutamate toxicity and to oxygen/glucose deprivation injury. Agonists for dopamine D2 and D3 receptors provided significant protection of oligodendrocytes against these two forms of injury, and the protective effect was diminished by D2 and D3 antagonists. Levels of oligodendrocyte D2 receptor and D3 receptor protein, as measured by Western blotting, appeared to increase following combined oxygen and glucose deprivation. Our results suggest that dopamine D2 and D3 receptor activation may play an important role in oligodendrocyte protection against oxidative glutamate toxicity and oxygen-glucose deprivation injury.
Collapse
MESH Headings
- Animals
- Cell Death/drug effects
- Cell Death/physiology
- Cells, Cultured
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Glucose/metabolism
- Glutamic Acid/metabolism
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/physiopathology
- Hypoxia-Ischemia, Brain/prevention & control
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Oxygen/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine/genetics
- Receptors, Dopamine/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/metabolism
Collapse
Affiliation(s)
- Claudia Rosin
- Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, Harlow, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Frietsch T, Kirsch JR. Strategies of neuroprotection for intracranial aneurysms. Best Pract Res Clin Anaesthesiol 2004; 18:595-630. [PMID: 15460548 DOI: 10.1016/j.bpa.2004.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuroprotection for patients with intracranial aneurysms encompasses the preservation of brain cells endangered by a limited blood and oxygen supply due to aneurysm rupture, clipping or coiling, as well as vasospasm. A large variety of prophylactic and therapeutic neuroprotective strategies have been proposed, but success in human disease is quite limited. Topics of this chapter are the pathophysiology and treatment options of aneurysms, as well as promising neuroprotective strategies in further developmental stages: both physiologically based (hyperoxygenation, hypothermia, avoidance of hyperthermia and hyperglycaemia, hypertension, haemodilution and hypervolaemia) and pharmacologically based (antifibrinolytic drugs, calcium antagonists, anaesthetics, magnesium, erythropoietin and others). New concepts are ischaemic preconditioning, growth factors, and gene therapy. Each strategy is rated on underlying evidence, and research agendas are mentioned.
Collapse
Affiliation(s)
- Thomas Frietsch
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health and Science University, 3181 Sam Jackson Park Road UHS 2, Portland, OR 97239, USA.
| | | |
Collapse
|
49
|
Narkar V, Kunduzova O, Hussain T, Cambon C, Parini A, Lokhandwala M. Dopamine D2-like receptor agonist bromocriptine protects against ischemia/reperfusion injury in rat kidney. Kidney Int 2004; 66:633-40. [PMID: 15253716 DOI: 10.1111/j.1523-1755.2004.00783.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dopamine, via activation of D1-like and D2-like receptors, plays an important role in the regulation of renal sodium excretion. Recently, we demonstrated that dopamine D2-like receptor agonist (bromocriptine) stimulates p44/42 mitogen-activated protein kinases (MAPKs) and Na+,K(+)ATPase (NKA) activity in proximal tubular epithelial cells. Since both these parameters are compromised in ischemia/reperfusion (I/R) injury to the kidney, we investigated whether bromocriptine protects against the injury. METHODS In this study we used unilateral rat model of renal I/R injury. The Sprague-Dawley rats were divided into vehicle and bromocriptine groups. The vehicle and bromocriptine group was treated with vehicle and bromocriptine (500 microg/kg intravenously), respectively, 15 minutes before the induction of unilateral ischemia followed by 24- or 48-hour reperfusion. At the end of 24 or 48 hours the animals were sacrificed to collect control and ischemic kidney cortices, in which necrosis, apoptosis, NKA activity, NKA alpha1 subunit expression, and p44/42 MAPK phosphorylation were measured. RESULTS We found extensive necrosis, apoptosis, and decreased NKA activity (with no change in alpha1 subunit) in the ischemic kidney cortex compared to the nonischemic cortex from the vehicle-treated rats as early as 24 hours post-reperfusion. In contrast, I/R injury-induced necrotic, apoptotic, and decrease in NKA activity were absent in the outer cortex of bromocriptine-treated rats after 24 or 48 hours. Interestingly, we detected significantly higher phosphorylation of p44/42 MAPKs in control and ischemic kidneys of bromocriptine-treated rats compared to those of vehicle-treated rats. CONCLUSION Therefore, bromocriptine, a D1-like receptor agonist, may protect against I/R injury to proximal tubules of the kidney, via p44/42 MAPK activation.
Collapse
Affiliation(s)
- Vihang Narkar
- Heart and Kidney Institute College of Pharmacy, University of Houston, Houston, Texas 77204-5041, USA
| | | | | | | | | | | |
Collapse
|
50
|
Agnati LF, Leo G, Vergoni AV, Martínez E, Hockemeyer J, Lluis C, Franco R, Fuxe K, Ferré S. Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson’s disease. Brain Res Bull 2004; 64:155-64. [PMID: 15342103 DOI: 10.1016/j.brainresbull.2004.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/04/2004] [Accepted: 06/09/2004] [Indexed: 11/24/2022]
Abstract
Adenosine A2A receptors are a new target for drug development in Parkinson's disease. Some experimental and clinical data suggest that A2A receptor antagonists can provide symptomatic improvement by potentiating the effects of L-DOPA as well as a decrease in secondary effects such as L-DOPA-induced dyskinesia. L-DOPA-induced behavioral sensitization in unilateral 6-hydroxydopamine-lesioned rats is frequently used as an experimental model of L-DOPA-induced dyskinesia. In the present work this model was used to evaluate the effect of the A2A receptor agonist CGS 21680 and the A2A receptor antagonist MSX-3 on L-DOPA-induced behavioral sensitization and 6-hydroxydopamine-induced striatal dopamine denervation. L-DOPA-induced behavioral sensitization was determined as an increase in L-DOPA-induced abnormal involuntary movements and enhancement of apomorphine-induced turning behavior. Striatal dopamine innervation was determined by measuring tyrosine-hydroxylase immunoreactivity. Chronic administration of MSX-3 was not found to be effective at counteracting L-DOPA-induced behavioral sensitization. On the other hand, CGS 21680 completely avoided the development of L-DOPA-induced behavioral sensitization. The analysis of the striatal dopamine innervation showed that L-DOPA-CGS 21680 co-treatment conferred neuroprotection to the toxic effects of 6-hydroxydopamine. This neuroprotective effect was dependent on A2A and D2 receptor stimulation, since it was counteracted by MSX-3 and by the D2 receptor antagonist haloperidol. These results open new therapeutic avenues in early events in Parkinson's disease.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Biomedial Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|