1
|
Pietsch C, Pawlak P, Konrad J. Acute Stress Effects over Time on the Gene Expression and Neurotransmitter Patterns in the Carp ( Cyprinus carpio) Brain. Animals (Basel) 2024; 14:3413. [PMID: 39682377 DOI: 10.3390/ani14233413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Changes in gene expression in carps' brains over time following acute stressors has not been studied in detail so far. Consequently, a stress trial with juvenile common carp was conducted to investigate transcriptomic differences in four brain parts in response to acute negative stressors and feed reward, focusing on appetite-related genes, serotonergic and dopaminergic pathways, and other involved systems, at 30, 60, and 90 min after treatments. The treatments showed pronounced effects on the gene expression patterns across brain parts compared to control fish. Notably, npy expression increased in the telencephalon following negative stressors and feed reward, suggesting a stress-coping mechanism by promoting food intake. Unlike zebrafish, cart expression in carp showed varying responses, indicating species-specific regulation of appetite and stress. Serotonergic and dopaminergic pathways were also affected, with alterations in the respective receptors' expression, confirming their roles in stress and reward processing. Additionally, this study highlights the involvement of the opioid- and gamma-aminobutyric acid systems in stress and feeding regulation across brain parts. Furthermore, principal component analyses revealed that neurotransmitter levels in the different brain parts contribute to the explained variance. These findings deepen our understanding of how different fish species react to acute stress and rewards.
Collapse
Affiliation(s)
- Constanze Pietsch
- School of Agricultural, Forest and Food Sciences (HAFL), Bern University of Applied Sciences (BFH), 3052 Zollikofen, Switzerland
| | - Paulina Pawlak
- School of Agricultural, Forest and Food Sciences (HAFL), Bern University of Applied Sciences (BFH), 3052 Zollikofen, Switzerland
| | - Jonathan Konrad
- School of Agricultural, Forest and Food Sciences (HAFL), Bern University of Applied Sciences (BFH), 3052 Zollikofen, Switzerland
| |
Collapse
|
2
|
Clavenzani P, Lattanzio G, Bonaldo A, Parma L, Busti S, Oterhals Å, Romarheim OH, Aspevik T, Gatta PP, Mazzoni M. Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream. Animals (Basel) 2023; 13:3020. [PMID: 37835626 PMCID: PMC10571541 DOI: 10.3390/ani13193020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The present study was designed to evaluate the effects of dietary levels of bioactive peptides (BPs) derived from salmon processing by-products on the presence and distribution of peptic cells (oxyntopeptic cells, OPs) and enteric endocrine cells (EECs) that contain GHR, NPY and SOM in the gastric mucosa of European seabass and gilthead seabream. In this study, 27 seabass and 27 seabreams were divided into three experimental groups: a control group (CTR) fed a control diet and two groups fed different levels of BP to replace fishmeal: 5% BP (BP5%) and 10% BP (BP10%). The stomach of each fish was sampled and processed for immunohistochemistry. Some SOM, NPY and GHR-IR cells exhibited alternating "open type" and "closed type" EECs morphologies. The BP10% group (16.8 ± 7.5) showed an increase in the number of NPY-IR cells compared to CTR (CTR 8.5 ± 4.8) and BP5% (BP10% vs. CTR p ≤ 0.01; BP10% vs. BP5% p ≤ 0.05) in the seabream gastric mucosa. In addition, in seabream gastric tissue, SOM-IR cells in the BP 10% diet (16.8 ± 3.5) were different from those in CTR (12.5 ± 5) (CTR vs. BP 10% p ≤ 0.05) and BP 5% (12.9 ± 2.5) (BP 5% vs. BP 10% p ≤ 0.01). EEC SOM-IR cells increased at 10% BP (5.3 ± 0.7) compared to 5% BP (4.4 ± 0.8) (5% BP vs. 10% BP p ≤ 0.05) in seabass. The results obtained may provide a good basis for a better understanding of the potential of salmon BPs as feed ingredients for seabass and seabream.
Collapse
Affiliation(s)
- Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Giulia Lattanzio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Luca Parma
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Serena Busti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Åge Oterhals
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Odd Helge Romarheim
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Tone Aspevik
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| |
Collapse
|
3
|
Appetite regulating genes in zebrafish gut; a gene expression study. PLoS One 2022; 17:e0255201. [PMID: 35853004 PMCID: PMC9295983 DOI: 10.1371/journal.pone.0255201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
The underlying molecular pathophysiology of feeding disorders, particularly in peripheral organs, is still largely unknown. A range of molecular factors encoded by appetite-regulating genes are already described to control feeding behaviour in the brain. However, the important role of the gastrointestinal tract in the regulation of appetite and feeding in connection to the brain has gained more attention in the recent years. An example of such inter-organ connection can be the signals mediated by leptin, a key regulator of body weight, food intake and metabolism, with conserved anorexigenic effects in vertebrates. Leptin signals functions through its receptor (lepr) in multiple organs, including the brain and the gastrointestinal tract. So far, the regulatory connections between leptin signal and other appetite-regulating genes remain unclear, particularly in the gastrointestinal system. In this study, we used a zebrafish mutant with impaired function of leptin receptor to explore gut expression patterns of appetite-regulating genes, under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-hours refeeding). We provide evidence that most appetite-regulating genes are expressed in the zebrafish gut. On one hand, we did not observed significant differences in the expression of orexigenic genes (except for hcrt) after changes in the feeding condition. On the other hand, we found 8 anorexigenic genes in wild-types (cart2, cart3, dbi, oxt, nmu, nucb2a, pacap and pomc), as well as 4 genes in lepr mutants (cart3, kiss1, kiss1r and nucb2a), to be differentially expressed in the zebrafish gut after changes in feeding conditions. Most of these genes also showed significant differences in their expression between wild-type and lepr mutant. Finally, we observed that impaired leptin signalling influences potential regulatory connections between anorexigenic genes in zebrafish gut. Altogether, these transcriptional changes propose a potential role of leptin signal in the regulation of feeding through changes in expression of certain anorexigenic genes in the gastrointestinal tract of zebrafish.
Collapse
|
4
|
Transcriptome Sequencing Analysis Reveals Dynamic Changes in Major Biological Functions during the Early Development of Clearhead Icefish, Protosalanx chinensis. FISHES 2022. [DOI: 10.3390/fishes7030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early development, when many important developmental events occur, is a critical period for fish. However, research on the early development of clearhead icefish is very limited, especially in molecular research. In this study, we aimed to explore the dynamic changes in the biological functions of five key periods in clearhead icefish early development, namely the YL (embryonic), PM (first day after hatching), KK (fourth day after hatching), LC (seventh day after hatching), and SL (tenth day after hatching) stages, through transcriptome sequencing and different analysis strategies. A trend expression analysis and an enrichment analysis revealed that the expression ofgenes encoding G protein-coupled receptors and their ligands, i.e., prss1_2_3, pomc, npy, npb, sst, rln3, crh, gh, and prl that are associated with digestion and feeding regulation gradually increased during early development. In addition, a weighted gene co-expression network analysis (WGCNA) showed that eleven modules were significantly associated with early development, among which nine modules were significantly positively correlated. Through the enrichment analysis and hub gene identification results of these nine modules, it was found that the pathways related to eye, bone, and heart development were significantly enriched in the YL stage, and the ccnd2, seh1l, kdm6a, arf4, and ankrd28 genes that are associated with cell proliferation and differentiation played important roles in these developmental processes; the pak3, dlx3, dgat2, and tas1r1 genes that are associated with jaw and tooth development, TG (triacylglycerol) synthesis, and umami amino acid receptors were identified as hub genes for the PM stage; the pathways associated with aerobic metabolism and unsaturated fatty acid synthesis were significantly enriched in the KK stage, with the foxk, slc13a2_3_5, ndufa5, and lsc2 genes playing important roles; the pathways related to visual perception were significantly enriched in the LC stage; and the bile acid biosynthetic and serine-type peptidase activity pathways were significantly enriched in the SL stage. These results provide a more detailed understanding of the processes of early development of clearhead icefish.
Collapse
|
5
|
Farzin M, Hassanpour S, Zendehdel M, Vazir B, Asghari A. Effects of Intracerebroventricular Injection of Spexin and its Interaction with NPY, GalR 2 and GalR 3 Receptors on the Central Food Intake Regulation and Nutritional Behavior in Broiler Chickens. Neurosci Lett 2022; 777:136589. [PMID: 35346778 DOI: 10.1016/j.neulet.2022.136589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/31/2023]
Abstract
Food intake and appetite in birds can be adjusted by the complex homeostatic control mechanisms. There seem to be many similarities between mammalian and avian species in terms of the regulatory feeding systems. Therefore, the aim of this study was to investigate the effects of ICV injection of spexin and its interaction with GalR and NPY receptors on central food intake regulation and nutritional behavior in broiler chickens. In experiment 1, chicken received ICV injection of saline, spexin (2.5nmol), spexin (5nmol) and spexin (10nmol). In experiment 2, birds received ICV injection of saline, B5063 (NPY1 receptor antagonist 1.25µg), spexin (10nmol) and B5063+spexin. In experiments 3-6, SF22 (NPY2 receptor antagonist ,1.25µg), ML0891 (NPY5 receptor antagonist ,1.25µg), M871 (GalR2 receptor antagonist ,10nmol) and SNAP37889 (GalR3 receptor antagonist,10nmol) were injected in chickens instead of B5063. Then food intake was measured until 120 minutes after the injection and nutritional behavior was monitored at 30 minutes after the injection. Based on the data, a dose-dependent hypophagia was observed by the injection of spexin (P<0.05). Concomitant injection of B5063+spexin enhanced spexin-induced hypophagia (P<0.05). Co-injection of SNAP37889+spexin (10nmol) attenuated -induced hypophagia (P<0.05). Spexin (5 and 10 nmol) decreased number of steps, jumps, the exploratory food and pecks at 15 minutes after the injection (P<0.05). Spexin (5 and 10nmol) decreased standing time while siting time and rest time increased at 10 minutes after injection (P<0.05). Based on observations, spexin-induced hypophagia could be mediated by NPY1 and GalR3 receptors in neonatal broiler chickens.
Collapse
Affiliation(s)
- Mohaya Farzin
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Morteza Zendehdel
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Bita Vazir
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Asghari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Sexual plasticity in bony fishes: Analyzing morphological to molecular changes of sex reversal. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Yu X, Yan H, Li W. Recent advances in neuropeptide-related omics and gene editing: Spotlight on NPY and somatostatin and their roles in growth and food intake of fish. Front Endocrinol (Lausanne) 2022; 13:1023842. [PMID: 36267563 PMCID: PMC9576932 DOI: 10.3389/fendo.2022.1023842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Feeding and growth are two closely related and important physiological processes in living organisms. Studies in mammals have provided us with a series of characterizations of neuropeptides and their receptors as well as their roles in appetite control and growth. The central nervous system, especially the hypothalamus, plays an important role in the regulation of appetite. Based on their role in the regulation of feeding, neuropeptides can be classified as orexigenic peptide and anorexigenic peptide. To date, the regulation mechanism of neuropeptide on feeding and growth has been explored mainly from mammalian models, however, as a lower and diverse vertebrate, little is known in fish regarding the knowledge of regulatory roles of neuropeptides and their receptors. In recent years, the development of omics and gene editing technology has accelerated the speed and depth of research on neuropeptides and their receptors. These powerful techniques and tools allow a more precise and comprehensive perspective to explore the functional mechanisms of neuropeptides. This paper reviews the recent advance of omics and gene editing technologies in neuropeptides and receptors and their progresses in the regulation of feeding and growth of fish. The purpose of this review is to contribute to a comparative understanding of the functional mechanisms of neuropeptides in non-mammalians, especially fish.
Collapse
|
8
|
Tolås I, Kalananthan T, Gomes AS, Lai F, Norland S, Murashita K, Rønnestad I. Regional Expression of npy mRNA Paralogs in the Brain of Atlantic Salmon ( Salmo salar, L.) and Response to Fasting. Front Physiol 2021; 12:720639. [PMID: 34512390 PMCID: PMC8427667 DOI: 10.3389/fphys.2021.720639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is known as a potent orexigenic signal in vertebrates, but its role in Atlantic salmon has not yet been fully established. In this study, we identified three npy paralogs, named npya1, npya2, and npyb, in the Atlantic salmon genome. In silico analysis revealed that these genes are well conserved across the vertebrate’s lineage and the mature peptide sequences shared at least 77% of identity with the human homolog. We analyzed mRNA expression of npy paralogs in eight brain regions of Atlantic salmon post-smolt, and the effect of 4 days of fasting on the npy expression level. Results show that npya1 was the most abundant paralog, and was predominantly expressed in the telencephalon, followed by the midbrain and olfactory bulb. npya2 mRNA was highly abundant in hypothalamus and midbrain, while npyb was found to be highest expressed in the telencephalon, with low mRNA expression levels detected in all the other brain regions. 4 days of fasting resulted in a significant (p < 0.05) decrease of npya1 mRNA expression in the olfactory bulb, increased npya2 mRNA expression in the midbrain and decreased npyb mRNA expression in the pituitary. In the hypothalamus, the vertebrate appetite center, expression of the npy paralogs was not significantly affected by feeding status. However, we observed a trend of increased npya2 mRNA expression (p = 0.099) following 4 days of fasting. Altogether, our findings provide a solid basis for further research on appetite and energy metabolism in Atlantic salmon.
Collapse
Affiliation(s)
- Ingvill Tolås
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sissel Norland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Tamaki, Japan
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Zhang C, Yan Y, Zhang Q, Jiang Q. Molecular cloning and characterization of the novel adropin from tilapia (Oreochromis niloticus): Involvement in the control of food intake. Neuropeptides 2021; 88:102165. [PMID: 34126542 DOI: 10.1016/j.npep.2021.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 11/19/2022]
Abstract
Adropin has been shown to be involved in the regulation of food intake in mice. However, the mechanism of adropin in feeding regulation is still largely unknown. Using the tilapia, Oreochromis niloticus, we identified and characterized a novel form of adropin (designated adropin-b) encoding a 68-amino acid precursor. Although adropin-b shared low amino acid identities with its tilapia paralog (designated adropin-a), synteny analysis proved that tilapia adropin is orthologous to its human counterpart. The transcripts of adropin-b were ubiquitously expressed in various tissues with the highest levels in the olfactory bulb. A decrease in adropin-b mRNA levels was observed 1 h following a meal in the olfactory bulb, hypothalamus, and optic tectum, whereas fasting for 7 days induced an increase in adropin-b mRNA levels in the olfactory bulb, hypothalamus, and optic tectum of tilapia brain. However, no changes in adropin-a mRNA levels were observed in the postprandial and fasting state. Intraperitoneal injection of tilapia adropin-b was shown to increase food consumption, but adropin-a did not affect feeding. Co-treatment of the fish with adropin-b and neuropeptide Y (NPY) had no additive effects on appetite. The appetite stimulatory effects of adropin-b appeared to be mediated by upregulating the orexigenic Npy, Orexin, and Proapelin gene expression, paralleled by inhibition of the mRNA levels of anorexigenic proopiomelanocortin (Pomc) and cocaine-amphetamine-regulated transcript (Cart) in vivo and in vitro. These observations suggested that adropin-b participated in appetite control and gene regulation of central orexigenic and anorexigenic factors in a fish model.
Collapse
Affiliation(s)
- Chaoyi Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yisha Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qianli Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quan Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
The Roles of Neuropeptide Y ( Npy) and Peptide YY ( Pyy) in Teleost Food Intake: A Mini Review. Life (Basel) 2021; 11:life11060547. [PMID: 34200824 PMCID: PMC8230510 DOI: 10.3390/life11060547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide Y family (NPY) is a potent orexigenic peptide and pancreatic polypeptide family comprising neuropeptide Y (Npy), peptide YYa (Pyya), and peptide YYb (Pyyb), which was previously known as peptide Y (PY), and tetrapod pancreatic polypeptide (PP), but has not been exhaustively documented in fish. Nonetheless, Npy and Pyy to date have been the key focus of countless research studies categorizing their copious characteristics in the body, which, among other things, include the mechanism of feeding behavior, cortical neural activity, heart activity, and the regulation of emotions in teleost. In this review, we focused on the role of neuropeptide Y gene (Npy) and peptide YY gene (Pyy) in teleost food intake. Feeding is essential in fish to ensure growth and perpetuation, being indispensable in the aquaculture settings where growth is prioritized. Therefore, a better understanding of the roles of these genes in food intake in teleost could help determine their feeding regime, regulation, growth, and development, which will possibly be fundamental in fish culture.
Collapse
|
11
|
Yousefi M, Jonaidi H, Sadeghi B. Influence of peripheral lipopolysaccharide (LPS) on feed intake, body temperature and hypothalamic expression of neuropeptides involved in appetite regulation in broilers and layer chicks. Br Poult Sci 2020; 62:110-117. [PMID: 32820660 DOI: 10.1080/00071668.2020.1813254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. This study examined the expression of genes related to appetite-regulating neuropeptides in the hypothalamus of broiler and layer chicks (Gallus gallus) after intraperitoneal (IP) injection of lipopolysaccharide (LPS). 2. Both broiler and layer chicks received (n = 10 per group) LPS at doses of 0 and 200 µg and feed intake was measured up to 6 h after injection. In a further experiment, (n = 8 per group) mRNA abundance of some hypothalamic neuropeptides was measured 2 h after injection. The rectal temperature of each chick was measured before and 2 h post-injection. 3. Feed intake was significantly decreased by LPS from 2 h after injection and thereafter, while the rectal temperature did not change. 4. LPS decreased the expression of appetite-enhancing neuropeptides: neuropeptide Y (NPY) and agouti-related peptide (AgRP) in broilers and, NPY in layer chicks. The expression of appetite-suppressing neuropeptides (corticotrophin-releasing factor (CRF), proopiomelanocortin (POMC) and, cocaine and amphetamine regulated-transcript (CART) was not changed in broilers, while CRF tended to decrease and POMC was significantly decreased in layers. The abundance of the cytokine tumour necrosis factor-alpha (TNF-α) did not change in broilers but was decreased in layers. 5. The findings indicated that the reduction in gene expression of hypothalamic appetite-enhancing neuropeptides NPY and AgRP is responsible for anorexia caused by LPS at a dose that did not influence body temperature.
Collapse
Affiliation(s)
- M Yousefi
- Division of Physiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman (SBUK) , Kerman, Iran
| | - H Jonaidi
- Division of Physiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman (SBUK) , Kerman, Iran
| | - B Sadeghi
- Division of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman (SBUK) , Kerman, Iran
| |
Collapse
|
12
|
BARRIOS CARLOSE, SANTINÓN JUANJOSÉ, DOMITROVIC HUGOA, SÁNCHEZ SEBASTIÁN, HERNÁNDEZ DAVIDR. Localization and distribution of CCK-8, NPY, Leu-ENK-, and Ghrelin- in the digestive tract of Prochilodus lineatus (Valenciennes, 1836). ACTA ACUST UNITED AC 2020; 92:e20181165. [DOI: 10.1590/0001-3765202020181165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
|
13
|
Hatef A, Unniappan S. Metabolic hormones and the regulation of spermatogenesis in fishes. Theriogenology 2019; 134:121-128. [PMID: 31167155 DOI: 10.1016/j.theriogenology.2019.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 02/08/2023]
Abstract
Metabolic hormones play essential regulatory roles in many biological processes, including morphogenesis, growth, and reproduction through the maintenance of energy balance. Various metabolic hormones originally discovered in mammals, including ghrelin, leptin, and nesfatin-1 have been identified and characterized in fish. However, physiological roles of these metabolic hormones in regulating reproduction are largely unknown in fishes, especially in males. While the information available is restricted, this review attempts to summarize the main findings on the roles of metabolic peptides on the reproductive system in male fishes with an emphasis on testicular development and spermatogenesis. Specifically, the primary goal is to review the physiological interactions between hormones that regulate reproduction and hormones that regulate metabolism as a critical determinant of testicular function. A brief introduction to the localization of metabolic hormones in fish testis is also provided. Besides, the consequences of fasting and food deprivation on testicular development and sperm quality will be discussed with a focus on interactions between metabolic and reproductive hormones.
Collapse
Affiliation(s)
- Azadeh Hatef
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
14
|
Shewale S, Ali I, Hadawale K, Bhargava S. Response of NPY immunoreactivity in the tadpole brain exposed to energy rich and energy depleted states. Neuropeptides 2018; 71:1-10. [PMID: 30029890 DOI: 10.1016/j.npep.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
Abstract
The central control of feeding in animals depends upon the alternating actions of orexigenic and anorectic peptides. Studies at understanding the food intake mechanisms have emphasised the role of Neuropeptide Y as a potent orexigenic peptide in the brain. The aim of this study is to investigate the response of NPY system to positive and negative energy states and elucidate a holistic response of NPY expression throughout the brain of a tadpole model. The pre-metamorphic tadpoles of Euphlyctis cyanophlyctis were subjected to fasting, or intra-cranially injected with glucose or 2-deoxy-d-Glucose (2DG)-a metabolic antagonist of glucose and the response of the NPY system in the entire brain was studied using immunohistochemistry. Glucose injections reduced the basal expression of NPY- immunoreactive perikarya (upto 20%) in the olfactory bulb, nucleus pre-opticus, infundibulum, raphe nucleus and the distal lobe of pituitary. These regions responded to the intracranial injections of 2DG by increasing the expression of NPY up to 30%. Animals deprived of food also possessed the same response except that the increase was much intense in the 2DG injected tadpoles. Our observations lead us to the conclusion that NPY containing neurons in the discrete brain areas may be involved in the maintenance of glucose homeostasis in amphibians and, since these regions also contain the glucose sensing neurons, we further suggest that the release of NPY might be regulated by the glucose sensing neurons of the brain.
Collapse
Affiliation(s)
- Swapnil Shewale
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India; Department of Zoology, Bhavan's Hazarimal Somani College, Chowpatty, Mumbai 400 007, India
| | - Ishfaq Ali
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Kavita Hadawale
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Shobha Bhargava
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
15
|
Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018; 60:R171-R199. [PMID: 29467140 DOI: 10.1530/jme-17-0320] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.
Collapse
Affiliation(s)
- José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da SaúdeLaboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y BiotecnologíaInstituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Cortés R, Teles M, Oliveira M, Fierro-Castro C, Tort L, Cerdá-Reverter JM. Effects of acute handling stress on short-term central expression of orexigenic/anorexigenic genes in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:257-272. [PMID: 29071448 DOI: 10.1007/s10695-017-0431-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Physiological mechanisms driving stress response in vertebrates are evolutionarily conserved. These mechanisms involve the activation of both the hypothalamic-sympathetic-chromaffin cell (HSC) and the hypothalamic-pituitary-adrenal (HPA) axes. In fish, the reduction of food intake levels is a common feature of the behavioral response to stress but the central mechanisms coordinating the energetic response are not well understood yet. In this work, we explore the effects of acute stress on key central systems regulating food intake in fish as well as on total body cortisol and glucose levels. We show that acute stress induced a rapid increase in total body cortisol with no changes in body glucose, at the same time promoting a prompt central response by activating neuronal pathways. All three orexigenic peptides examined, i.e., neuropeptide y (npy), agouti-related protein (agrp), and ghrelin, increased their central expression level suggesting that these neuronal systems are not involved in the short-term feeding inhibitory effects of acute stress. By contrast, the anorexigenic precursors tested, i.e., cart peptides and pomc, exhibited increased expression after acute stress, suggesting their involvement in the anorexigenic effects.
Collapse
Affiliation(s)
- Raul Cortés
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain
- Universidad Bernardo O'Higgins, Centro de Investigación en Recursos Naturales y Sustentabilidad, Fábrica1990, Santiago, Chile
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Camino Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - José Miguel Cerdá-Reverter
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
17
|
Blanco AM, Sundarrajan L, Bertucci JI, Unniappan S. Why goldfish? Merits and challenges in employing goldfish as a model organism in comparative endocrinology research. Gen Comp Endocrinol 2018; 257:13-28. [PMID: 28185936 DOI: 10.1016/j.ygcen.2017.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
Goldfish has been used as an unconventional model organism to study a number of biological processes. For example, goldfish is a well-characterized and widely used model in comparative endocrinology, especially in neuroendocrinology. Several decades of research has established and validated an array of tools to study hormones in goldfish. The detailed brain atlas of goldfish, together with the stereotaxic apparatus, are invaluable tools for the neuroanatomic localization and central administration of endocrine factors. In vitro techniques, such as organ and primary cell cultures, have been developed using goldfish. In vivo approaches using goldfish were used to measure endogenous hormonal milieu, feeding, behaviour and stress. While there are many benefits in using goldfish as a model organism in research, there are also challenges associated with it. One example is its tetraploid genome that results in the existence of multiple isoforms of endocrine factors. The presence of extra endogenous forms of peptides and its receptors adds further complexity to the already redundant multifactorial endocrine milieu. This review will attempt to discuss the importance of goldfish as a model organism in comparative endocrinology. It will highlight some of the merits and challenges in employing goldfish as an animal model for hormone research in the post-genomic era.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Avenida Intendente Marinos Km. 8,2, 7130 Chascomús, Buenos Aires, Argentina.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
18
|
Lal B. Seasonal ovarian immunolocalization of neuropeptide Y and its role in steriodogenesis in Asian catfish, Clarias batrachus. Gen Comp Endocrinol 2018; 255:32-39. [PMID: 29017851 DOI: 10.1016/j.ygcen.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/27/2017] [Accepted: 10/06/2017] [Indexed: 02/01/2023]
Abstract
The present study was undertaken to examine the cellular localization and potential steroidogenic role of neuropeptide Y (NPY) in the ovary of the freshwater catfish, Clarias batrachus. NPY-immunoreaction was observed in the follicular cells (granulosa and thecal cells) in the growing ovarian follicles, and the intensity of staining increased steadily from the initiation of follicular development until follicles were fully grown. Thereafter as follicles matured the stain intensity decreased. Positive correlations were found between NPY expression and the ovarian levels of 17β-estradiol, testosterone, and activities of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD) in the ovary. In vitro NPY treatment stimulated the production of the two steroids and the activities of two enzymes. This is the first report of NPY immunoreactivity at the cellular level in the fish ovary and implicates this orexigenic peptide in the modulation of ovarian steroidogenesis.
Collapse
Affiliation(s)
- Bechan Lal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
19
|
González-Stegmaier R, Villarroel-Espíndola F, Manríquez R, López M, Monrás M, Figueroa J, Enríquez R, Romero A. New immunomodulatory role of neuropeptide Y (NPY) in Salmo salar leucocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:303-309. [PMID: 28676307 DOI: 10.1016/j.dci.2017.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Neuropeptide Y (NPY) plays different roles in mammals such as: regulate food intake, memory retention, cardiovascular functions, and anxiety. It has also been shown in the modulation of chemotaxis, T lymphocyte differentiation, and leukocyte migration. In fish, NPY expression and functions have been studied but its immunomodulatory role remains undescribed. This study confirmed the expression and synthesis of NPY in S. salar under inflammation, and validated a commercial antibody for NPY detection in teleost. Additionally, immunomodulatory effects of NPY were assayed in vitro and in vivo. Phagocytosis and superoxide anion production in leukocytes and SHK cells were induced under stimulation with a synthetic peptide. IL-8 mRNA was selectively and strongly induced in the spleen, head kidney, and isolated cells, after in vivo challenge with NPY. All together suggest that NPY is expressed in immune tissues and modulates the immune response in teleost fish.
Collapse
Affiliation(s)
- Roxana González-Stegmaier
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| | | | - René Manríquez
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio López
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Mónica Monrás
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Figueroa
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Ricardo Enríquez
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Alex Romero
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| |
Collapse
|
20
|
Fischer EK, O'Connell LA. Modification of feeding circuits in the evolution of social behavior. ACTA ACUST UNITED AC 2017; 220:92-102. [PMID: 28057832 DOI: 10.1242/jeb.143859] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification.
Collapse
Affiliation(s)
- Eva K Fischer
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lauren A O'Connell
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
21
|
Delgado MJ, Cerdá-Reverter JM, Soengas JL. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Front Neurosci 2017; 11:354. [PMID: 28694769 PMCID: PMC5483453 DOI: 10.3389/fnins.2017.00354] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model.
Collapse
Affiliation(s)
- María J. Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones CientíficasCastellón, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| |
Collapse
|
22
|
Matsuda K, Matsumura K, Shimizu SS, Nakamachi T, Konno N. Neuropeptide Y-Induced Orexigenic Action Is Attenuated by the Orexin Receptor Antagonist in Bullfrog Larvae. Front Neurosci 2017; 11:176. [PMID: 28420957 PMCID: PMC5378779 DOI: 10.3389/fnins.2017.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
In bullfrog larvae at the pre- and pro-metamorphic stages, feeding behavior is regulated by appetite factors such as orexigenic peptides. In fact, food intake is enhanced by intracerebroventricular (ICV) administration of neuropeptide Y (NPY) and orexin A. Using goldfish, our previous study indicated that the orexigenic action of NPY is mediated by orexin A, suggesting the functional interaction between the two. However, there is little information about whether the action of orexin A mediates the orexigenic action of NPY in bullfrog larvae. Therefore, we examined the effect of the orexin receptor antagonist, SB334867 on the orexigenic action of NPY in larvae. The stimulatory effect of ICV injection of NPY at 10 pmol/g body weight (BW) on food intake was abolished by treatment with SB334867 at 60 pmol/g BW. These results suggest that, in bullfrog larvae, there is a neuronal relationship between the NPY and orexin systems, and that the orexigenic action of NPY is mediated by the orexin A-induced orexigenic action.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of ToyamaToyama, Japan.,Laboratory of Regulatory Biology, Graduate School of Innovative Life Sciences, University of ToyamaToyama, Japan
| | - Kairi Matsumura
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of ToyamaToyama, Japan
| | - Syun-Suke Shimizu
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of ToyamaToyama, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of ToyamaToyama, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of ToyamaToyama, Japan
| |
Collapse
|
23
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
24
|
Li M, Tan X, Sui Y, Jiao S, Wu Z, Wang L, You F. The stimulatory effect of neuropeptide Y on growth hormone expression, food intake, and growth in olive flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:11-18. [PMID: 27406384 DOI: 10.1007/s10695-016-0263-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Neuropeptide Y (NPY) is a 36-amino acid peptide known to be a strong orexigenic (appetite-stimulating) factor in many species. In this study, we investigated the effect of NPY on food intake and growth in the olive flounder (Paralichthys olivaceus). Recombinant full-length NPY was injected intraperitoneally into olive flounder at the dose of 1 μg/g body weight; phosphate buffered saline was used as the negative control. In a long-term experiment, NPY and control groups were injected every fifth day over a period of 30 days. In a short-term experiment, NPY and control groups were given intraperitoneal injections and maintained for 24 h. Food intake and growth rates were significantly higher in fish injected with recombinant NPY than in the control fish (P < 0.05). Higher growth hormone (GH) and NPY mRNA transcript levels were observed in both experiments, indicating a stimulatory effect of NPY on GH release. These findings demonstrate that NPY is an effective appetite-stimulating factor in olive flounder with the potential to improve the growth of domestic fish species and enhance efficiency in aquaculture.
Collapse
Affiliation(s)
- Meijie Li
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yulei Sui
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
25
|
Wang X, Miao J, Liu P, Pan L. Role of neuropeptide F in regulating filter feeding of Manila clam, Ruditapes philippinarum. Comp Biochem Physiol B Biochem Mol Biol 2016; 205:30-38. [PMID: 28007616 DOI: 10.1016/j.cbpb.2016.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Endogenous signals which may be involved in the regulation of filter feeding in bivalves have never been examined. NPY/NPF homologue has been proved to play an important role in the regulation of food intake in vertebrate and several invertebrates. In this study, a NPF homologue was cloned from visceral ganglia of clam Ruditapes philippinarum. The full-length cDNA sequence was 892bp in length and encoded a precursor of 82 amino acid residues. We then examined the effects of fasting and refeeding on the filtration rates (FR), plasma glucose concentration (PGC), 5-HT, DA and the expression level of the rp-NPF and insulin transcript. The mRNA expression level of rp-NPF in visceral ganglion was increased during fasting, and rose to highest level on 72h after starvation and declined immediately after food had been supplied. Hemocoel injection of rp-NPF(5μg/g)significantly increased FR of clams within 2h. Compared to the controls, a significant increase in insulin mRNA levels was observed at 8h after injection. Contents of 5-HT and DA also increased in the 5μg/grp-NPF administrated clams at 8 and 24h after injection. These results suggest that, similar to vertebrates, NPF, insulin, 5-HT and DA may play a role in the regulation of feeding in R. philippinarum.
Collapse
Affiliation(s)
- Xin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Peipei Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
26
|
Jørgensen EH, Bernier NJ, Maule AG, Vijayan MM. Effect of long-term fasting and a subsequent meal on mRNA abundances of hypothalamic appetite regulators, central and peripheral leptin expression and plasma leptin levels in rainbow trout. Peptides 2016; 86:162-170. [PMID: 26471905 DOI: 10.1016/j.peptides.2015.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 01/02/2023]
Abstract
Knowledge about neuroendocrine mechanisms regulating appetite in fish, including the role of leptin, is inconclusive. We investigated leptin mRNA abundance in various tissues, plasma leptin levels and the hypothalamic gene expression of putative orexigenic (neuropeptide Y and agouti-regulated peptide) and anorexigenic (melanocortin receptor, proopiomelanocortins (POMCs), cocaine- and amphetamine-regulated transcript and corticotropin-releasing factor) neuropeptides in relation to feeding status in rainbow trout (Oncorhynchus mykiss). Blood and tissues were first (Day 1) sampled from trout that had been fed or fasted for 4 months and the day after (Day 2) from fasted fish after they had been given a large meal, and their continuously fed counterparts. The fasted fish ate vigorously when they were presented a meal. There were no differences between fed, fasted and re-fed fish in hypothalamic neuropeptide transcript levels, except for pomca1 and pomcb, which were higher in fasted fish than in fed fish at Day 1, and which, for pomcb, decreased to the level in fed fish after the meal at Day 2. Plasma leptin levels did not differ between fasted, re-fed and fed fish. A higher leptina1 transcript level was seen in the belly flap of fasted fish than in fed fish, even after re-feeding on Day 2. The data do not reveal causative roles of the investigated brain neuropeptides, or leptin, in appetite regulation. It is suggested that the elevated pomc transcript levels provide a satiety signal that reduces energy expenditure during prolonged fasting. The increase in belly flap leptin transcript with fasting, which did not decrease upon re-feeding, indicates a tissue-specific role of leptin in long-term regulation of energy homeostasis.
Collapse
Affiliation(s)
- Even H Jørgensen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Alec G Maule
- USGS, WFRC, Columbia River Research Laboratory, 5501 Cook-Underwood Rd. Cook, WA 98605, USA
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
27
|
Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci 2016; 10:540. [PMID: 27965528 PMCID: PMC5126056 DOI: 10.3389/fnins.2016.00540] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Fish are the most diversified group of vertebrates and, although progress has been made in the past years, only relatively few fish species have been examined to date, with regards to the endocrine regulation of feeding in fish. In fish, as in mammals, feeding behavior is ultimately regulated by central effectors within feeding centers of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues. Although basic endocrine mechanisms regulating feeding appear to be conserved among vertebrates, major physiological differences between fish and mammals and the diversity of fish, in particular in regard to feeding habits, digestive tract anatomy and physiology, suggest the existence of fish- and species-specific regulating mechanisms. This review provides an overview of hormones known to regulate food intake in fish, emphasizing on major hormones and the main fish groups studied to date.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of NewfoundlandSt. John's, NL, Canada
| |
Collapse
|
28
|
Mensah ET, Blanco AM, Donini A, Unniappan S. Brain and intestinal expression of galanin-like peptide (GALP), galanin receptor R1 and galanin receptor R2, and GALP regulation of food intake in goldfish (Carassius auratus). Neurosci Lett 2016; 637:126-135. [PMID: 27884736 DOI: 10.1016/j.neulet.2016.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/05/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
Galanin-like peptide (GALP) is a 60 amino acid neuropeptide originally discovered from porcine hypothalamus, and is involved in the regulation of food intake in mammals. Since its discovery, GALP and its receptors (GALR1 and GALR2) have been characterized in mammals, but no publications are available on GALP in fish and other non-mammals. The present study aimed to characterize brain and intestinal GALP and its receptors using immunohistochemistry in a teleost, the goldfish (Carassius auratus), and to study its effects on feeding behavior. Immunostaining of brain sections shows the presence of GALP- and GALR1- and GALR2-like immunoreactive cells in different encephalic areas, including the telencephalon, some hypothalamic nuclei, the optic tectum, the torus longitudinalis and the cerebellum. Signal for GALP was also observed in the fasciculus retroflexus. In the gut, GALP-and GALR1 and GALR2 immunoreactive cells were detected in the mucosa. Results from the feeding study demonstrate that intracerebroventricular administration of GALP (1ng/g bodyweight) increases goldfish food intake at 1h post-injection. These observations form the first report on the presence of GALP in the fish brain and gut, and also on its modulatory role on fish feeding behavior. GALP, as in mammals, appears to be a functional neuropeptide in goldfish.
Collapse
Affiliation(s)
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Andrew Donini
- Department of Biology, York University, Toronto, Canada.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
29
|
Tachibana T, Tsutsui K. Neuropeptide Control of Feeding Behavior in Birds and Its Difference with Mammals. Front Neurosci 2016; 10:485. [PMID: 27853416 PMCID: PMC5089991 DOI: 10.3389/fnins.2016.00485] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/10/2016] [Indexed: 12/29/2022] Open
Abstract
Feeding is an essential behavior for animals to sustain their lives. Over the past several decades, many neuropeptides that regulate feeding behavior have been identified in vertebrates. These neuropeptides are called “feeding regulatory neuropeptides.” There have been numerous studies on the role of feeding regulatory neuropeptides in vertebrates including birds. Some feeding regulatory neuropeptides show different effects on feeding behavior between birds and other vertebrates, particularly mammals. The difference is marked with orexigenic neuropeptides. For example, melanin-concentrating hormone, orexin, and motilin, which are regarded as orexigenic neuropeptides in mammals, have no effect on feeding behavior in birds. Furthermore, ghrelin and growth hormone-releasing hormone, which are also known as orexigenic neuropeptides in mammals, suppress feeding behavior in birds. Thus, it is likely that the feeding regulatory mechanism has changed during the evolution of vertebrates. This review summarizes the recent knowledge of peptidergic feeding regulatory factors in birds and discusses the difference in their action between birds and other vertebrates.
Collapse
Affiliation(s)
- Tetsuya Tachibana
- Laboratory of Animal Production, Department of Agrobiological Science, Faculty of Agriculture, Ehime University Matsuyama, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University Tokyo, Japan
| |
Collapse
|
30
|
Takahashi A, Kasagi S, Murakami N, Furufuji S, Kikuchi S, Mizusawa K, Andoh T. Chronic effects of light irradiated from LED on the growth performance and endocrine properties of barfin flounder Verasper moseri. Gen Comp Endocrinol 2016; 232:101-8. [PMID: 26795919 DOI: 10.1016/j.ygcen.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/03/2016] [Accepted: 01/11/2016] [Indexed: 01/07/2023]
Abstract
We investigated the effects of specific wavelengths of light on the growth of barfin flounder. The fish, reared in white tanks in a dark room, were irradiated with light from light-emitting diodes (LEDs) with peak wavelengths of 464nm (blue), 518nm (green), and 635nm (red) under a controlled photoperiod (10.5:13.5, light-dark cycle; 06:00-16:30, light). Fish were reared for four weeks in three independent experiments at three different water temperatures (averages of 14.9°C, 8.6°C, and 6.6°C). The fish irradiated with blue and green light had higher specific growth rates (% body weight⋅day(-1)) than fish irradiated with red light. Notably, green light had the greatest effect on growth among the three light wavelengths at 6.6°C. In the brains of fish reared at 6.6°C, the amounts of melanin-concentrating hormone 1 mRNA under green light were lower than those under red light, and amounts of proopiomelanocortin-C mRNA under blue and green light were higher than those under red light. No differences were observed for other neuropeptides tested. In the pituitary, no difference was observed in growth hormone mRNA content. In plasma, higher levels of insulin and insulin-like growth factor-I were observed in fish under green light than those of fish under red light. These results suggest that the endocrine systems of barfin flounder are modulated by a specific wavelength of light that stimulates somatic growth.
Collapse
Affiliation(s)
- Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan.
| | - Satoshi Kasagi
- School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Naoto Murakami
- Hokkaido National Fisheries Research Institute, Fisheries Research Agency, Hokkaido 088-1108, Japan
| | | | | | - Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Tadashi Andoh
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Nagasaki 851-2213, Japan
| |
Collapse
|
31
|
|
32
|
Ji W, Ping HC, Wei KJ, Zhang GR, Shi ZC, Yang RB, Zou GW, Wang WM. Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) in blunt snout bream (Megalobrama amblycephala): cDNA cloning, tissue distribution and mRNA expression changes responding to fasting and refeeding. Gen Comp Endocrinol 2015; 223:108-19. [PMID: 26316038 DOI: 10.1016/j.ygcen.2015.08.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 01/22/2023]
Abstract
Blunt snout bream (Megalobrama amblycephala Yih, 1955) is an endemic freshwater fish in China for which the endocrine mechanism of regulation of feeding has never been examined. Ghrelin, neuropeptide Y (NPY) and cholecystokinin (CCK) play important roles in the regulation of fish feeding. In this study, full-length cDNAs of ghrelin, NPY and CCK were cloned and analyzed from blunt snout bream. Both the ghrelin and NPY genes of blunt snout bream had the same amino acid sequences as grass carp, and CCK also shared considerable similarity with that of grass carp. The three genes were expressed in a wide range of adult tissues, with the highest expression levels of ghrelin in the hindgut, NPY in the hypothalamus and CCK in the pituitary, respectively. Starvation challenge experiments showed that the expression levels of ghrelin and NPY mRNA increased in brain and intestine after starvation, and the expression levels of CCK decreased after starvation. Refeeding could bring the expression levels of the three genes back to the control levels. These results indicated that the feeding behavior of blunt snout bream was regulated by the potential correlative actions of ghrelin, NPY and CCK, which contributed to the defense against starvation. This study will further our understanding of the function of ghrelin, NPY and CCK and the molecular mechanism of feeding regulation in teleosts.
Collapse
Affiliation(s)
- Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China
| | - Hai-Chao Ping
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China.
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China.
| | - Ze-Chao Shi
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China
| | - Rui-Bin Yang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, PR China
| | - Gui-Wei Zou
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China
| | - Wei-Min Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of China, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
33
|
Striberny A, Ravuri CS, Jobling M, Jørgensen EH. Seasonal Differences in Relative Gene Expression of Putative Central Appetite Regulators in Arctic Charr (Salvelinus alpinus) Do Not Reflect Its Annual Feeding Cycle. PLoS One 2015; 10:e0138857. [PMID: 26421838 PMCID: PMC4589418 DOI: 10.1371/journal.pone.0138857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022] Open
Abstract
The highly seasonal anadromous Arctic charr (Salvelinus alpinus) was used to investigate the possible involvement of altered gene expression of brain neuropeptides in seasonal appetite regulation. Pro-opiomelanocortin (POMCA1, POMCA2), Cocaine and amphetamine regulated transcript (CART), Agouti related Peptide (AgRP), Neuropeptide Y (NPY) and Melanocortin Receptor 4 (MC4-R) genes were examined. The function of centrally expressed Leptin (Lep) in fish remains unclear, so Lep (LepA1, LepA2) and Leptin Receptor (LepR) genes were included in the investigation. In a ten months study gene expression was analysed in hypothalamus, mesencephalon and telencephalon of immature charr held under natural photoperiod (69°38’N) and ambient temperature and given excess feed. From April to the beginning of June the charr did not feed and lost weight, during July and August they were feeding and had a marked increase in weight and condition factor, and from November until the end of the study the charr lost appetite and decreased in weight and condition factor. Brain compartments were sampled from non-feeding charr (May), feeding charr (July), and non-feeding charr (January). Reverse transcription real-time quantitative PCR revealed temporal patterns of gene expression that differed across brain compartments. The non-feeding charr (May, January) had a lower expression of the anorexigenic LepA1, MC4-R and LepR in hypothalamus and a higher expression of the orexigenic NPY and AgRP in mesencephalon, than the feeding charr (July). In the telencephalon, LepR was more highly expressed in January and May than in July. These results do not indicate that changes in central gene expression of the neuropeptides investigated here directly induce seasonal changes in feeding in Arctic charr.
Collapse
Affiliation(s)
- Anja Striberny
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Chandra Sekhar Ravuri
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Malcolm Jobling
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Even Hjalmar Jørgensen
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
34
|
Maximino C, Silva RXDC, da Silva SDNS, Rodrigues LDSDS, Barbosa H, de Carvalho TS, Leão LKDR, Lima MG, Oliveira KRM, Herculano AM. Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front Behav Neurosci 2015; 9:233. [PMID: 26441567 PMCID: PMC4561806 DOI: 10.3389/fnbeh.2015.00233] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/18/2015] [Indexed: 01/04/2023] Open
Abstract
Current models in biological psychiatry focus on a handful of model species, and the majority of work relies on data generated in rodents. However, in the same sense that a comparative approach to neuroanatomy allows for the identification of patterns of brain organization, the inclusion of other species and an adoption of comparative viewpoints in behavioral neuroscience could also lead to increases in knowledge relevant to biological psychiatry. Specifically, this approach could help to identify conserved features of brain structure and behavior, as well as to understand how variation in gene expression or developmental trajectories relates to variation in brain and behavior pertinent to psychiatric disorders. To achieve this goal, the current focus on mammalian species must be expanded to include other species, including non-mammalian taxa. In this article, we review behavioral neuroscientific experiments in non-mammalian species, including traditional "model organisms" (zebrafish and Drosophila) as well as in other species which can be used as "reference." The application of these domains in biological psychiatry and their translational relevance is considered.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Rhayra Xavier do Carmo Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Suéllen de Nazaré Santos da Silva
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Laís do Socorro dos Santos Rodrigues
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Hellen Barbosa
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
| | - Tayana Silva de Carvalho
- Universität Duisburg-EssenEssen, Germany
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Luana Ketlen dos Reis Leão
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Monica Gomes Lima
- Laboratório de Neurociências e Comportamento, Departamento de Morfologia e Ciências Fisiológicas, Campus VIII – Marabá, Universidade do Estado do ParáMarabá, Brazil
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Karen Renata Matos Oliveira
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Anderson Manoel Herculano
- Laboratório de Neurofarmacologia Experimental, Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| |
Collapse
|
35
|
Neuroendocrine control of appetite in Atlantic halibut (Hippoglossus hippoglossus): Changes during metamorphosis and effects of feeding. Comp Biochem Physiol A Mol Integr Physiol 2015; 183:116-25. [DOI: 10.1016/j.cbpa.2015.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/18/2014] [Accepted: 01/15/2015] [Indexed: 12/14/2022]
|
36
|
Espigares F, Carrillo M, Gómez A, Zanuy S. The Forebrain-Midbrain Acts as Functional Endocrine Signaling Pathway of Kiss2/Gnrh1 System Controlling the Gonadotroph Activity in the Teleost Fish European Sea Bass (Dicentrarchus labrax)1. Biol Reprod 2015; 92:70. [DOI: 10.1095/biolreprod.114.125138] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
37
|
Yuan X, Cai W, Liang XF, Su H, Yuan Y, Li A, Tao YX. Obestatin partially suppresses ghrelin stimulation of appetite in "high-responders" grass carp, Ctenopharyngodon idellus. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:144-9. [PMID: 25737031 DOI: 10.1016/j.cbpa.2015.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/01/2015] [Accepted: 02/23/2015] [Indexed: 12/17/2022]
Abstract
Ghrelin and obestatin are two gastrointestinal peptides obtained by post-translational processing of a common precursor, preproghrelin. The effect of obestatin on food intake is still controversial. The aim of the present study was to investigate the effects of ghrelin and obestatin on food intake in grass carp, Ctenopharyngodon idellus. Fish received intraperitoneal (IP) injection of saline, ghrelin (100 ng g(-1)BW), obestatin-like (25 ng g(-1)BW) and ghrelin in combination with obestatin-like. Ghrelin stimulation of food intake varied considerably among individual fish with 70.8% eliciting a robust response. In these high-responders, food intake was significantly increased by IP ghrelin within 2 h. Co-administration of ghrelin and obestatin-like resulted in a decrease in food intake, indicating that obestatin was able to antagonize the effect of ghrelin. However, IP obestatin-like alone could not regulate food intake in grass carp. RT-PCR analysis demonstrated that IP ghrelin peptide led to a significant increase in mRNA abundance of NPY, Y8a and Y8b genes compared to saline injected fish, while in combination with obestatin-like peptide decreased ghrelin-induced gene expressions of these three genes. IP sole obestatin-like peptide did not modify the expression levels of NPY, Y8a, Y8b, CART and POMC compared to the control group. Therefore, IP administration of obestatin-like peptide, partially blocking the ghrelin-induced appetite, investigated the possible involvement of obestatin as a mediator of the ghrelin stimulatory action on food intake, at least in "high-responders" grass carp.
Collapse
Affiliation(s)
- Xiaochen Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei 430070, China
| | - Wenjing Cai
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei 430070, China.
| | - Hang Su
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei 430070, China
| | - Yongchao Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei 430070, China.
| | - Aixuan Li
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei 430070, China
| | - Ya-Xiong Tao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei 430070, China
| |
Collapse
|
38
|
Relative distribution of gastrin-, CCK-8-, NPY- and CGRP-immunoreactive cells in the digestive tract of dorado (Salminus brasiliensis). Tissue Cell 2015; 47:123-31. [PMID: 25771084 DOI: 10.1016/j.tice.2015.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/16/2023]
Abstract
The endocrine cells (ECs) of the gastrointestinal mucosa form the largest endocrine system in the body, not only in terms of cell numbers but also in terms of the different produced substances. Data describing the association between the relative distributions of the peptide-specific ECs in relation to feeding habits can be useful tools that enable the creation of a general expected pattern of EC distribution. We aimed to investigate the distribution of ECs immunoreactive for the peptides gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in different segments of the digestive tract of carnivorous fish dorado (Salminus brasiliensis) by using immunohistochemistry procedures. The distribution of endocrine cells immunoreactive for gastrin (GAS), cholecystokinin (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in digestive tract of dorado S. brasiliensis was examined by immunohistochemistry. The results describe the association between the distribution of the peptide-specific endocrine cells and feeding habits in different carnivorous fish. The largest number of endocrine cells immunoreactive for GAS, CCK-8, and CGRP were found in the pyloric stomach region and the pyloric caeca. However, NPY-immunoreactive endocrine cells were markedly restricted to the midgut. The distribution pattern of endocrine cells identified in S. brasiliensis is similar to that found in other carnivorous fishes.
Collapse
|
39
|
Volkoff H. In vitro assessment of interactions between appetite-regulating peptides in brain of goldfish (Carassius auratus). Peptides 2014; 61:61-8. [PMID: 25219945 DOI: 10.1016/j.peptides.2014.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 12/30/2022]
Abstract
Orexins, apelin, melanin-concentrating hormone (MCH), neuropeptide Y (NPY) and cocaine and amphetamine regulated transcript (CART) are important appetite-regulating factors produced by the brain of both mammals and fish. These peptide systems and their target areas are widely distributed within the central nervous system. Although morphological connections between some of these systems have been demonstrated in the brain, little is known about the functional interactions between these systems, in particular in fish. In order to better understand the interactions between appetite-related peptides, the effects of in vitro treatments of hindbrain, forebrain and hypothalamus--a major feeding regulating area--fragments with MCH, apelin and orexin on the expression of MCH, apelin, orexin, CART (forms 1 and 2) and NPY were assessed. Overall, the apelin and orexin systems stimulate each other and stimulate the NPY system while inhibiting the CART system, which is consistent with the known orexigenic actions of these two peptides. The actions of MCH remain unclear: although it appears to interact positively with orexigenic systems--as it stimulates both the orexin and apelin systems and its expression is increased by apelin--it also increases the hypothalamic expression of CART2--but not CART1--an anorexigenic factor, and inhibits the NPY system in all brain regions examined. This study suggests that MCH, apelin, orexin, CART and NPY do influence each other within the brain of goldfish and that these interactions might differ in nature and strength according to the peptide form and the brain region considered.
Collapse
Affiliation(s)
- Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada.
| |
Collapse
|
40
|
Pérez-Fernández J, Megías M, Pombal MA. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus). J Comp Neurol 2014; 522:1132-54. [PMID: 24127055 DOI: 10.1002/cne.23481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, 36310-Vigo, Spain
| | | | | |
Collapse
|
41
|
Nisembaum LG, de Pedro N, Delgado MJ, Sánchez-Bretaño A, Isorna E. Orexin as an input of circadian system in goldfish: Effects on clock gene expression and locomotor activity rhythms. Peptides 2014; 52:29-37. [PMID: 24284416 DOI: 10.1016/j.peptides.2013.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
Orexins are neuropeptides mainly known for regulating feeding behavior and sleep-wakefulness cycle in vertebrates. Daily variations of orexin-A expression have been reported in fish, with the highest levels preceding feeding time. However, it is unknown if such variations could be related with daily rhythms of clock genes, which form the molecular core of circadian oscillators. The aim of the present study was to identify the possible role of orexin as an input element of the goldfish circadian system. It was investigated the effects of orexin-A (10ng/gbw) intracerebroventricular injections on the expression of clock genes, NPY and ghrelin, as well as on daily locomotor activity rhythms. Goldfish held under 12L:12D photoperiod and injected at midday with orexin or saline, were sacrificed at 1 and 3h post-injection. The analysis of genes expression by qReal Time PCR showed an increment of Per genes in hypothalamus and foregut at 3h post-injection, but not in hindgut and liver. The gBmal1a expression remained unaltered in all the studied tissues. Orexin induced NPY in the hypothalamus and ghrelin in the foregut. Locomotor activity was studied in fish daily injected with orexin for several consecutive days under different experimental conditions. Orexin synchronized locomotor activity in goldfish maintained in 24L and fasting conditions. Present results support a cross-talking between orexin-A and other feeding regulators at central and peripheral level, and suggest, for the first time, a role of this peptide as an input of the circadian system in fish.
Collapse
Affiliation(s)
- Laura G Nisembaum
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Nuria de Pedro
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Aída Sánchez-Bretaño
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Esther Isorna
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
42
|
Shahjahan M, Kitahashi T, Parhar IS. Central pathways integrating metabolism and reproduction in teleosts. Front Endocrinol (Lausanne) 2014; 5:36. [PMID: 24723910 PMCID: PMC3971181 DOI: 10.3389/fendo.2014.00036] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 01/08/2023] Open
Abstract
Energy balance plays an important role in the control of reproduction. However, the cellular and molecular mechanisms connecting the two systems are not well understood especially in teleosts. The hypothalamus plays a crucial role in the regulation of both energy balance and reproduction, and contains a number of neuropeptides, including gonadotropin-releasing hormone (GnRH), orexin, neuropeptide-Y, ghrelin, pituitary adenylate cyclase-activating polypeptide, α-melanocyte stimulating hormone, melanin-concentrating hormone, cholecystokinin, 26RFamide, nesfatin, kisspeptin, and gonadotropin-inhibitory hormone. These neuropeptides are involved in the control of energy balance and reproduction either directly or indirectly. On the other hand, synthesis and release of these hypothalamic neuropeptides are regulated by metabolic signals from the gut and the adipose tissue. Furthermore, neurons producing these neuropeptides interact with each other, providing neuronal basis of the link between energy balance and reproduction. This review summarizes the advances made in our understanding of the physiological roles of the hypothalamic neuropeptides in energy balance and reproduction in teleosts, and discusses how they interact with GnRH, kisspeptin, and pituitary gonadotropins to control reproduction in teleosts.
Collapse
Affiliation(s)
- Md. Shahjahan
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Takashi Kitahashi
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar, Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya 46150, Malaysia e-mail:
| |
Collapse
|
43
|
Pérez Sirkin DI, Suzuki H, Cánepa MM, Vissio PG. Orexin and neuropeptide Y: tissue specific expression and immunoreactivity in the hypothalamus and preoptic area of the cichlid fish Cichlasoma dimerus. Tissue Cell 2013; 45:452-9. [PMID: 24138942 DOI: 10.1016/j.tice.2013.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/28/2023]
Abstract
Neuropeptide Y (NPY) and orexin are neuropeptides involved in the regulation of feeding in vertebrates. In this study we determined the NPY and orexin mRNA tissue expression and their immunoreactivity distribution in both preoptic area and hypothalamus, regions involved in the regulation of feeding behavior. Both peptides presented a wide expression in all tissues examined. The NPY-immunoreactive (ir) cells were localized in the ventral nucleus posterioris periventricularis (NPPv) and numerous ir-NPY fibers were found in the nucleus lateralis tuberis (NLT), the nucleus recess lateralis (NRL) and the neurohypophysis. Ir-orexin cells were observed in the NPPv, dorsal NLT, ventral NLT, lateral NLT (NLTl) and the lateral NRL. Ir-orexin fibers were widespread distributed along all the hypothalamus, especially in the NLTl. Additionally, we observed the presence of ir-orexin immunostaining in adenohypophyseal cells, especially in somatotroph cells and the presence of a few ir-orexin-A fibers in the neurohypophysis. In conclusion, both peptides have an ubiquitous mRNA tissue expression and are similarly distributed in the hypothalamus and preoptic area of Cichlasoma dimerus. The presence of ir-orexin in adenohypohyseal cells and the presence of ir-orexin and NPY fibers in the neurohypophysis suggest that both peptides may play an important neuroendocrine role in anterior pituitary.
Collapse
Affiliation(s)
- D I Pérez Sirkin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, Dpto. de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina; IBBEA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | | |
Collapse
|
44
|
Zhong C, Song Y, Wang Y, Zhang T, Duan M, Li Y, Liao L, Zhu Z, Hu W. Increased food intake in growth hormone-transgenic common carp (Cyprinus carpio L.) may be mediated by upregulating Agouti-related protein (AgRP). Gen Comp Endocrinol 2013; 192:81-8. [PMID: 23583469 DOI: 10.1016/j.ygcen.2013.03.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 11/28/2022]
Abstract
In fish, food intake and feeding behavior are crucial for survival, competition, growth and reproduction. Growth hormone (GH)-transgenic common carp exhibit an enhanced growth rate, increased food intake and higher feed conversion rate. However, the underlying molecular mechanisms of feeding regulation in GH-transgenic (TG) fish are not clear. In this study, we observed feeding behavior of TG and non-transgenic (NT) common carp, and analyzed the mRNA expression levels of NPY, AgRP I, orexin, POMC, CCK, and CART I in the hypothalamus and telencephalon after behavioral observation. We detected similar gene expression levels in the hypothalamus of TG and NT common carp, which had been cultured in the field at the same age. Furthermore, we tested the effects of GH on hypothalamus fragments in vitro to confirm our findings. We demonstrated that TG common carp displayed increased food intake and reduced food consumption time, which were associated with a marked increase in hypothalamic AgRP I mRNA expression. Our results suggest that elevated GH levels may influence food intake and feeding behavior by upregulating the hypothalamic orexigenic factor AgRP I in GH-transgenic common carp.
Collapse
Affiliation(s)
- Chengrong Zhong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
46
|
Piccinetti CC, Migliarini B, Olivotto I, Simoniello MP, Giorgini E, Carnevali O. Melatonin and peripheral circuitries: insights on appetite and metabolism in Danio rerio. Zebrafish 2013; 10:275-82. [PMID: 23682835 PMCID: PMC3760084 DOI: 10.1089/zeb.2012.0844] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a neuroendocrine transducer of circadian/circannual rhythms able to synchronize organism's physiological activity. On the basis of our recent findings on appetite regulation by melatonin in the zebrafish brain, the aim of this study was to evaluate melatonin's role in peripheral circuitries regulating food intake, growth, and lipid metabolism. For this purpose, the effect of two melatonin doses (100 nM and 1 μM) administered for 10 days, via water, to adult zebrafish was evaluated at both physiological and molecular levels. The major signals controlling energy homeostasis were analyzed together. Additionally, the effect of melatonin doses on muscle metabolic resources was evaluated. The results obtained indicate that melatonin reduces food intake by stimulating molecules involved in appetite inhibition, such as leptin (LPT), in the liver and intestine and MC4R, a melanocortin system receptor, in the liver. Moreover, melatonin decreases hepatic insulin-like growth factor-I (IGF-I) gene expression, involved in growth process and other signals involved in lipid metabolism such as proliferator-activated receptors (PPARα, β, and γ) and sterol regulatory element-binding protein (SREBP). These results were correlated with lower levels of lipids in the muscles as evidenced by the macromolecular pools analyses. The findings obtained in this study could be of great interest for a better understanding of the molecular mechanisms as the basis of food intake control and, in turn, can be a useful tool for medical and aquaculture applications.
Collapse
Affiliation(s)
- Chiara Carla Piccinetti
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Beatrice Migliarini
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Ike Olivotto
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Pasquale Simoniello
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Oliana Carnevali
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| |
Collapse
|
47
|
Shimizu S, Azuma M, Morimoto N, Kikuyama S, Matsuda K. Effect of neuropeptide Y on food intake in bullfrog larvae. Peptides 2013; 46:102-7. [PMID: 23756158 DOI: 10.1016/j.peptides.2013.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Neuropeptide Y (NPY) is a potent orexigenic neuropeptide implicated in appetite regulation in mammals. However, except for teleost fish such as the goldfish and zebrafish, the involvement of NPY in the regulation of feeding in non-mammalian vertebrates has not been well studied. Anuran amphibian larvae feed and grow during the pre- and pro-metamorphic stages, but, thereafter they stop feeding as the metamorphic climax approaches. Therefore, orexigenic factors seem to play important roles in pre- and pro-metamorphic larvae. We investigated the role of NPY in food intake using bullfrog larvae including pre- and pro-metamorphic stages, and examined the effect of feeding status on the expression level of the NPY transcript in the hypothalamus. NPY mRNA levels in hypothalamus specimens obtained from larvae that had been fasted for 3 days were higher than those in larvae that had been fed normally. We then investigated the effect of intracerebroventricular (ICV) administration of NPY on food intake in the larvae. Cumulative food intake was significantly increased by ICV administration of NPY (5 and 10 pmol/g body weight, BW) during a 15-min observation period. The NPY-induced orexigenic action (10 pmol/g BW) was blocked by treatment with a NPY Y1 receptor antagonist, BIBP-3226 (100 pmol/g BW). These results indicate that NPY acts as an orexigenic factor in bullfrog larvae.
Collapse
Affiliation(s)
- Shunsuke Shimizu
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan
| | | | | | | | | |
Collapse
|
48
|
Babichuk NA, Volkoff H. Changes in expression of appetite-regulating hormones in the cunner (Tautogolabrus adspersus) during short-term fasting and winter torpor. Physiol Behav 2013; 120:54-63. [PMID: 23831740 DOI: 10.1016/j.physbeh.2013.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/26/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022]
Abstract
Feeding in vertebrates is controlled by a number of appetite stimulating (orexigenic, e.g., orexin and neuropeptide Y, NPY) and appetite suppressing (anorexigenic, e.g., cholecystokinin, CCK and cocaine- and amphetamine-regulated transcript, CART) hormones. Cunners (Tautogolabrus adspersus) survive the winter in shallow coastal waters by entering a torpor-like state, during which they forgo feeding. In order to better understand the mechanisms regulating appetite/fasting in these fish, quantitative real-time PCR was used to measure transcript expression levels of four appetite-regulating hormones: NPY, CART, orexin and CCK in the forebrain (hypothalamus and telencephalon) and CCK in the gut of fed, short-term summer fasted, and natural winter torpor cunners. Summer fasting induced a decrease in hypothalamic orexin levels and telencephalon NPY, CART and CCK mRNA levels. All brain hormone mRNA levels decreased during natural torpor as compared to fed summer fish. In the gut, CCK expression levels decreased during summer fasting. These results indicate that, in cunner, orexin, NPY, CART and CCK may play a role in appetite regulation and might mediate different physiological responses to short-term summer fasting and torpor-induced long-term fasting.
Collapse
Affiliation(s)
- Nicole A Babichuk
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | | |
Collapse
|
49
|
Won ET, Borski RJ. Endocrine regulation of compensatory growth in fish. Front Endocrinol (Lausanne) 2013; 4:74. [PMID: 23847591 PMCID: PMC3696842 DOI: 10.3389/fendo.2013.00074] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/06/2013] [Indexed: 01/06/2023] Open
Abstract
Compensatory growth (CG) is a period of accelerated growth that occurs following the alleviation of growth-stunting conditions during which an organism can make up for lost growth opportunity and potentially catch up in size with non-stunted cohorts. Fish show a particularly robust capacity for the response and have been the focus of numerous studies that demonstrate their ability to compensate for periods of fasting once food is made available again. CG is characterized by an elevated growth rate resulting from enhanced feed intake, mitogen production, and feed conversion efficiency. Because little is known about the underlying mechanisms that drive the response, this review describes the sequential endocrine adaptations that lead to CG; namely during the precedent catabolic phase (fasting) that taps endogenous energy reserves, and the following hyperanabolic phase (refeeding) when accelerated growth occurs. In order to elicit a CG response, endogenous energy reserves must first be moderately depleted, which alters endocrine profiles that enhance appetite and growth potential. During this catabolic phase, elevated ghrelin and growth hormone (GH) production increase appetite and protein-sparing lipolysis, while insulin-like growth factors (IGFs) are suppressed, primarily due to hepatic GH resistance. During refeeding, temporal hyperphagia provides an influx of energy and metabolic substrates that are then allocated to somatic growth by resumed IGF signaling. Under the right conditions, refeeding results in hyperanabolism and a steepened growth trajectory relative to constantly fed controls. The response wanes as energy reserves are re-accumulated and homeostasis is restored. We ascribe possible roles for select appetite and growth-regulatory hormones in the context of the prerequisite of these catabolic and hyperanabolic phases of the CG response in teleosts, with emphasis on GH, IGFs, cortisol, somatostatin, neuropeptide Y, ghrelin, and leptin.
Collapse
Affiliation(s)
- Eugene T. Won
- Department of Biology, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
50
|
Ping HC, Feng K, Zhang GR, Wei KJ, Zou GW, Wang WM. Ontogeny expression of ghrelin, neuropeptide Y and cholecystokinin in blunt snout bream, Megalobrama amblycephala. J Anim Physiol Anim Nutr (Berl) 2013; 98:338-46. [DOI: 10.1111/jpn.12084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/16/2013] [Indexed: 12/14/2022]
Affiliation(s)
- H.-C. Ping
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; College of Fisheries; Huazhong Agricultural University; Wuhan China
| | - K. Feng
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; College of Fisheries; Huazhong Agricultural University; Wuhan China
| | - G.-R. Zhang
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; College of Fisheries; Huazhong Agricultural University; Wuhan China
| | - K.-J. Wei
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; College of Fisheries; Huazhong Agricultural University; Wuhan China
| | - G.-W. Zou
- Key Laboratory of Freshwater Biodiversity Conservation; Ministry of Agriculture; Yangtze River Fisheries Research Institute; Chinese Academy of Fishery Sciences; Wuhan China
| | - W.-M. Wang
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture; College of Fisheries; Huazhong Agricultural University; Wuhan China
| |
Collapse
|