1
|
Fu Q, Yu Q, Luo H, Liu Z, Ma X, Wang H, Cheng Z. Protective effects of wogonin in the treatment of central nervous system and degenerative diseases. Brain Res Bull 2025; 221:111202. [PMID: 39814324 DOI: 10.1016/j.brainresbull.2025.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties. In ischemic stroke models, wogonin reduces infarct size and enhances neurological outcomes by mitigating inflammation and oxidative stress. For patients with hemorrhagic stroke and traumatic brain injury, it accelerates hematoma regression, mitigates secondary brain damage, and promotes neurogenesis, making it an entirely new treatment option for patients with limited access to this type of therapy. Its anticonvulsant and anxiolytic effects are mediated through GABA-A receptor modulation. Moreover, wogonin shows promise in treating neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease by promoting autophagy and reducing neuroinflammation. Additionally, it exhibits antiviral properties, offering potential benefits against CNS infections. Despite extensive preclinical evidence, further clinical studies are warranted to confirm its efficacy and safety in humans. This review highlights the great therapeutic potential of wogonin in terms of CNS protection. However, despite the substantial preclinical evidence, further large-scale clinical studies are necessary. Future researchers need to further explore the long-term efficacy and safety of wogonin in clinical trials and translate it for early application in the clinical treatment of true CNS disorders.
Collapse
Affiliation(s)
- Qingan Fu
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China
| | - Qingyun Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China
| | - Hongdan Luo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhekang Liu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaowei Ma
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China
| | - Huijian Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China
| | - Zhijuan Cheng
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, 330006 Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. The modulation of immune cell death in connection to microRNAs and natural products. Front Immunol 2024; 15:1425602. [PMID: 39759512 PMCID: PMC11695430 DOI: 10.3389/fimmu.2024.1425602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
Immunogenic cell death (ICD) spatiotemporally regulates damage-associated molecular patterns (DAMPs) derived from dying cancer cells to signal the immune response. Intriguingly, these DAMPs and cytokines also induce cellular responses in non-immune cells, particularly cancer cells. Several ICD-modulating natural products and miRNAs have been reported to regulate the DAMP, cytokine, and cell death responses, but they lack systemic organization and connection. This review summarizes the impacts of natural products and miRNAs on the DAMP and cytokine responses and cancer cell death responses (apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis). We establish the rationale that ICD inducers of natural products have modulating effects on miRNAs, targeting DAMPs and cytokines for immune and cancer cell death responses. In conclusion, DAMP, cytokine, and cell death responses are intricately linked in cancer cells, and they are influenced by ICD-modulating natural products and miRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Wang D, Chen Y, Li J, Wu E, Tang T, Singla RK, Shen B, Zhang M. Natural products for the treatment of age-related macular degeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155522. [PMID: 38820665 DOI: 10.1016/j.phymed.2024.155522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a chronic retinal disease that significantly influences the vision of the elderly. PURPOSE There is no effective treatment and prevention method. The pathogenic process behind AMD is complex, including oxidative stress, inflammation, and neovascularization. It has been demonstrated that several natural products can be used to manage AMD, but systematic summaries are lacking. STUDY DESIGN AND METHODS PubMed, Web of Science, and ClinicalTrials.gov were searched using the keywords "Biological Products" AND "Macular Degeneration" for studies published within the last decade until May 2023 to summarize the latest findings on the prevention and treatment of age-related macular degeneration through the herbal medicines and functional foods. RESULTS The eligible studies were screened, and the relevant information about the therapeutic action and mechanism of natural products used to treat AMD was extracted. Our findings demonstrate that natural substances, including retinol, phenols, and other natural products, prevent the development of new blood vessels and protect the retina from oxidative stress in cells and animal models. However, they have barely been examined in clinical studies. CONCLUSION Natural products could be highly prospective candidate drugs used to treat AMD, and further preclinical and clinical research is required to validate it to control the disease.
Collapse
Affiliation(s)
- Dongyue Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiakun Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Erman Wu
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tong Tang
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
4
|
Stępnik K, Kukula-Koch W, Płaziński W. Molecular and Pharmacokinetic Aspects of the Acetylcholinesterase-Inhibitory Potential of the Oleanane-Type Triterpenes and Their Glycosides. Biomolecules 2023; 13:1357. [PMID: 37759757 PMCID: PMC10526139 DOI: 10.3390/biom13091357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The acetylcholinesterase-inhibitory potential of the oleanane-type triterpenes and their glycosides from thebark of Terminalia arjuna (Combreatceae), i.e.,arjunic acid, arjunolic acid, arjungenin, arjunglucoside I, sericic acid and arjunetin, is presented. The studies are based on in silico pharmacokinetic and biomimetic studies, acetylcholinesterase (AChE)-inhibitory activity tests and molecular-docking research. Based on the calculated pharmacokinetic parameters, arjunetin and arjunglucoside I are indicated as able to cross the blood-brain barrier. The compounds of interest exhibit a marked acetylcholinesterase inhibitory potential, which was tested in the TLC bioautography test. The longest time to reach brain equilibrium is observed for both the arjunic and arjunolic acids and the shortest one for arjunetin. All of the compounds exhibit a high and relatively similar magnitude of binding energies, varying from ca. -15 to -13 kcal/mol. The superposition of the most favorable positions of all ligands interacting with AChE is analyzed. The correlation between the experimentally determined IC50 values and the steric parameters of the molecules is investigated. The inhibition of the enzyme by the analyzed compounds shows their potential to be used as cognition-enhancing agents. For the most potent compound (arjunglucoside I; ARG), the kinetics of AChE inhibition were tested. The Michaelis-Menten constant (Km) for the hydrolysis of the acetylthiocholine iodide substrate was calculated to be 0.011 mM.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodźki 1, 20-093 Lublin, Poland;
| | - Wojciech Płaziński
- Department of Biopharmacy, Medical University of Lublin, ul. Chodźki 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| |
Collapse
|
5
|
Stępnik K, Kukula-Koch W, Plazinski W, Rybicka M, Gawel K. Neuroprotective Properties of Oleanolic Acid-Computational-Driven Molecular Research Combined with In Vitro and In Vivo Experiments. Pharmaceuticals (Basel) 2023; 16:1234. [PMID: 37765042 PMCID: PMC10536188 DOI: 10.3390/ph16091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Oleanolic acid (OA), as a ubiquitous compound in the plant kingdom, is studied for both its neuroprotective and neurotoxic properties. The mechanism of acetylcholinesterase (AChE) inhibitory potential of OA is investigated using molecular dynamic simulations (MD) and docking as well as biomimetic tests. Moreover, the in vitro SH-SY5Y human neuroblastoma cells and the in vivo zebrafish model were used. The inhibitory potential towards the AChE enzyme is examined using the TLC-bioautography assay (the IC50 value is 9.22 μM). The CH-π interactions between the central fragment of the ligand molecule and the aromatic cluster created by the His440, Phe288, Phe290, Phe330, Phe331, Tyr121, Tyr334, Trp84, and Trp279 side chains are observed. The results of the in vitro tests using the SH-SY5Y cells indicate that the viability rate is reduced to 71.5%, 61%, and 43% at the concentrations of 100 µg/mL, 300 µg/mL, and 1000 µg/mL, respectively, after 48 h of incubation, whereas cytotoxicity against the tested cell line with the IC50 value is 714.32 ± 32.40 µg/mL. The in vivo tests on the zebrafish prove that there is no difference between the control and experimental groups regarding the mortality rate and morphology (p > 0.05).
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie–Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland;
| | - Wojciech Plazinski
- Department of Biopharmacy, Medical University of Lublin, ul. Chodzki 4a, 20-093 Lublin, Poland;
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Magda Rybicka
- Department of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, ul. Abrahama 58, 80-307 Gdańsk, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, ul. Jaczewskiego Str. 8b, 20-090 Lublin, Poland;
| |
Collapse
|
6
|
Shi L, Deng Y, Luo D, Li L, Kuang X, Qi A, Fu B. Exploration of the possible mechanisms of Ling Gui Zhu Gan decoction in nephrotic syndrome based on network pharmacology, molecular docking and molecular dynamics simulation. Medicine (Baltimore) 2023; 102:e34446. [PMID: 37478256 PMCID: PMC10662869 DOI: 10.1097/md.0000000000034446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/30/2023] [Indexed: 07/23/2023] Open
Abstract
This study aimed to explore the possible mechanisms of Ling Gui Zhu Gan decoction (LGZGD) in the treatment of nephrotic syndrome (NS) using network pharmacology combined with molecular docking and molecular dynamics simulation. The active ingredients of LGZGD and their targets were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Swiss Target Prediction database. The NS targets were retrieved from Genecards, OMIM and Drugbank databases. Next, the intersecting targets of drug and disease were imported into the String database for protein-protein interaction network analysis, and the core targets were identified through topological analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed in the Metascape platform. Finally, molecular docking and molecular dynamics simulation were performed for further validation. The network analysis showed that 109 active ingredients of LGZGD were associated with 105 targets in NS. The key active ingredients (quercetin, kaempferol, naringenin, licochalcone A, formononetin, beta-sitosterol) and the core targets (IL6, AKT1, TNF, VEGFA, TP53, JUN, IL1B, CASP3, EGFR, and STAT3) were further identified. Enrichment analysis indicated that multiple biological processes and pathways, including AGE-RAGE, PI3K-Akt, JAK-STAT, and HIF-1 signaling pathways, might be regulated by LGZGD in the treatment of NS. Molecular docking and molecular dynamics simulation results further indicated that the key active ingredients of LGZGD could stably bind to the core targets through hydrogen bonding and hydrophobic interaction. This study demonstrates that the active ingredients of LGZGD may regulate multiple targets, biological processes and signaling pathways in NS. Our findings may provide a theoretical basis for further studies on LGZGD in the treatment of NS.
Collapse
Affiliation(s)
- Li Shi
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuanjun Deng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Denggui Luo
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Lei Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xuyi Kuang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Airong Qi
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bo Fu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Baicalein, Baicalin, and Wogonin: Protective Effects against Ischemia-Induced Neurodegeneration in the Brain and Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8377362. [PMID: 34306315 PMCID: PMC8263226 DOI: 10.1155/2021/8377362] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Ischemia is a common pathological condition present in many neurodegenerative diseases, including ischemic stroke, retinal vascular occlusion, diabetic retinopathy, and glaucoma, threatening the sight and lives of millions of people globally. Ischemia can trigger excessive oxidative stress, inflammation, and vascular dysfunction, leading to the disruption of tissue homeostasis and, ultimately, cell death. Current therapies are very limited and have a narrow time window for effective treatment. Thus, there is an urgent need to develop more effective therapeutic options for ischemia-induced neural injuries. With emerging reports on the pharmacological properties of natural flavonoids, these compounds present potent antioxidative, anti-inflammatory, and antiapoptotic agents for the treatment of ischemic insults. Three major active flavonoids, baicalein, baicalin, and wogonin, have been extracted from Scutellaria baicalensis Georgi (S. baicalensis); all of which are reported to have low cytotoxicity. They have been demonstrated to exert promising pharmacological capabilities in preventing cell and tissue damage. This review focuses on the therapeutic potentials of these flavonoids against ischemia-induced neurotoxicity and damage in the brain and retina. The bioactivity and bioavailability of baicalein, baicalin, and wogonin are also discussed. It is with hope that the therapeutic potential of these flavonoids can be utilized and developed as natural treatments for ischemia-induced injuries of the central nervous system (CNS).
Collapse
|
8
|
Zhang X, Gao R, Zhou Z, Tang X, Lin J, Wang L, Zhou X, Shen T. A network pharmacology based approach for predicting active ingredients and potential mechanism of Lianhuaqingwen capsule in treating COVID-19. Int J Med Sci 2021; 18:1866-1876. [PMID: 33746604 PMCID: PMC7976588 DOI: 10.7150/ijms.53685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
The outbreak of severe respiratory disease caused by SARS-CoV-2 has led to millions of infections and raised global health concerns. Lianhuaqingwen capsule (LHQW-C), a traditional Chinese medicine (TCM) formula widely used for respiratory diseases, shows therapeutic efficacy in the application of coronavirus disease 2019 (COVID-19). However, the active ingredients, drug targets, and the therapeutic mechanisms of LHQW-C in treating COVID-19 are poorly understood. In this study, an integrating network pharmacology approach including pharmacokinetic screening, target prediction (targets of the host and targets from the SARS-CoV-2), network analysis, GO enrichment analysis, KEGG pathway enrichment analysis, and virtual docking were conducted. Finally, 158 active ingredients in LHQW-C were screen out, and 49 targets were predicted. GO function analysis revealed that these targets were associated with inflammatory response, oxidative stress reaction, and other biological processes. KEGG enrichment analysis indicated that the targets of LHQW-C were highly enriched to several immune response-related and inflammation-related pathways, including the IL-17 signaling pathway, TNF signaling pathway, NF-kappa B signaling pathway, and Th17 cell differentiation. Moreover, four key components (quercetin, luteolin, wogonin, and kaempferol) showed a high binding affinity with SARS-CoV-2 3-chymotrypsin-like protease (3CL pro). The study indicates that some anti-inflammatory ingredients in LHQW-C probably modulate the inflammatory response in severely ill patients with COVID-19.
Collapse
Affiliation(s)
- Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zubing Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuehua Tang
- Academic Department, Zhuhai Ebang Pharmaceutical Co., Ltd. Zhuhai, China
| | - Jingjing Lin
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Huynh DL, Ngau TH, Nguyen NH, Tran GB, Nguyen CT. Potential therapeutic and pharmacological effects of Wogonin: an updated review. Mol Biol Rep 2020; 47:9779-9789. [PMID: 33165817 DOI: 10.1007/s11033-020-05972-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Flavonoids are members of polyphenolic compounds, which are naturally presented in fruits, vegetables, and some medicinal plants. Traditionally, the root of Scutellaria baicalensis is widely used as Chinese herbal medicine and contains several major bioactive compounds such as Wogonin, Scutellarein, Baicalein, and Baicalin. Experimental and clinical evidence has been proving that Wogonin exhibits diverse biological activities such as anti-cancer, anti-inflammation, and treatment of bacterial and viral infections. In this review, we summarize and emphasize the benefits of Wogonin as a therapeutic adjuvant for anti-viral infection, anti-inflammation, neuroprotection as well as anxiolytic and anticonvulsant. Moreover, the molecular mechanism(s) how Wogonin mediates the cellular signal pathways and immune responses are also discussed and highlighted valuable properties of Wogonin in multiple therapies.
Collapse
Affiliation(s)
- Do Luong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| | - Tran Hoang Ngau
- Faculty of Biotechnology, Ho Chi Minh University of Food and Industry, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam
| | - Gia-Buu Tran
- Department of Biotechnology, Institute of Biotechnology and Food-Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| | - Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
10
|
Parmar T, Ortega JT, Jastrzebska B. Retinoid analogs and polyphenols as potential therapeutics for age-related macular degeneration. Exp Biol Med (Maywood) 2020; 245:1615-1625. [PMID: 32438835 PMCID: PMC7787542 DOI: 10.1177/1535370220926938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT Age-related macular degeneration (AMD) is a devastating retinal degenerative disease. Epidemiological reports showed an expected increasing prevalence of AMD in the near future. The only one existing FDA-approved pharmacological treatment involves an anti-vascular endothelial growth factor (VEGF) therapy with serious disadvantages. This limitation emphasizes an alarming need to develop new therapeutic approaches to prevent and treat AMD. In this review, we summarize scientific data unraveling the therapeutic potential of the specific retinoid and natural compounds. The experimental results reported by us and other research groups demonstrated that retinoid analogs and compounds with natural product scaffolds could serve as lead compounds for the development of new therapeutic agents with potential to prevent or slow down the pathogenesis of AMD.
Collapse
Affiliation(s)
- Tanu Parmar
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T Ortega
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Smith JF, Starr EG, Goodman MA, Hanson RB, Palmer TA, Woolstenhulme JB, Weyand JA, Marchant AD, Bueckers SL, Nelson TK, Sterling MT, Rose BJ, Porter JP, Eggett DL, Kooyman DL. Topical Application of Wogonin Provides a Novel Treatment of Knee Osteoarthritis. Front Physiol 2020; 11:80. [PMID: 32132930 PMCID: PMC7040489 DOI: 10.3389/fphys.2020.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by inflammatory degradation of articular cartilage and subchondral bone. Wogonin, a compound extracted from the plant Scutellaria baicalensis (colloquially known as skullcap), has previously been shown to have direct anti-inflammatory and antioxidative properties. We examined the pain-reducing, anti-inflammatory, and chondroprotective effects of wogonin when applied as a topical cream. We validated the efficacy of delivering wogonin transdermally in a cream using pig ear skin in a Franz diffusion system. Using a surgical mouse model, we examined the severity and progression of OA with and without the topical application of wogonin. Using a running wheel to track activity, we found that mice with wogonin treatment were statistically more active than mice receiving vehicle treatment. OA progression was analyzed using modified Mankin and OARSI scoring and direct quantification of cyst-like lesions at the chondro-osseus junction; in each instance we observed a statistically significant attenuation of OA severity among mice treated with wogonin compared to the vehicle treatment. Immunohistochemistry revealed a significant decrease in protein expression of transforming growth factor β1 (TGF-β1), high temperature receptor A1 (HTRA1), matrix metalloprotease 13 (MMP-13) and NF-κB in wogonin-treated mice, further bolstering the cartilage morphology assessments in the form of a decrease in inflammatory and OA biomarkers.
Collapse
Affiliation(s)
- Jacob F. Smith
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Evan G. Starr
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Michael A. Goodman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Romney B. Hanson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Trent A. Palmer
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Jonathan B. Woolstenhulme
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Jeffery A. Weyand
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Andrew D. Marchant
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Shawen L. Bueckers
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Tanner K. Nelson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Matthew T. Sterling
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Brandon J. Rose
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - James P. Porter
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | | | - David L. Kooyman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
12
|
Baicalin protects against ethanol-induced chronic gastritis in rats by inhibiting Akt/NF-κB pathway. Life Sci 2019; 239:117064. [DOI: 10.1016/j.lfs.2019.117064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
|
13
|
Zhao Y, Xu Z, Wang T, Li Y, Yang L, Liu S, Shi R, Ma Y. Simultaneous quantitation of 23 bioactive compounds in Tanreqing capsule by high‐performance liquid chromatography electrospray ionization tandem mass spectrometry. Biomed Chromatogr 2019; 33:e4531. [DOI: 10.1002/bmc.4531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Yining Zhao
- Department of PharmacologyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Zhangyao Xu
- Department of PharmacologyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Tianming Wang
- Department of PharmacologyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Yuanyuan Li
- Department of PharmacologyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Li Yang
- Centre for Traditional Chinese Medicine of Complexity SystemsShanghai University of Traditional Chinese Medicine Shanghai China
| | - Shaoyong Liu
- Shanghai Kai Bao Pharmaceutical CO. Ltd Shanghai China
| | - Rong Shi
- Department of PharmacologyShanghai University of Traditional Chinese Medicine Shanghai China
| | - Yueming Ma
- Department of PharmacologyShanghai University of Traditional Chinese Medicine Shanghai China
| |
Collapse
|
14
|
Baicalin alleviates 6-hydroxydopamine-induced neurotoxicity in PC12 cells by down-regulation of microRNA-192-5p. Brain Res 2018; 1708:84-92. [PMID: 30552896 DOI: 10.1016/j.brainres.2018.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD), which is caused by neurodegenerative disorder, has no effective treatment until now. Baicalin was reported to have neuroprotective effects. Hence, we investigated the effects of baicalin on PD in an in vitro cell model by using 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in rat pheochromocytoma PC12 cells. PC12 cells were stimulated by 6-OHDA and were treated with baicalin and/or transfected with miR-192-5p mimic or negative control (NC). Cell viability and apoptosis were examined by Cell Counting Kit-8 assay and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) analysis, respectively. The expression of p62, ratio of light chain (LC)3-II/LC3-I, miR-192-5p was detected by qRT-PCR. All protein expression levels were analyzed by western blot. We found that 6-OHDA significantly inhibited cell viability, induced apoptosis and autophagy, while baicalin reversed the results led by 6-OHDA. Moreover, baicalin negatively regulated expression of miR-192-5p. Under baicalin treatment, transfection with miR-192-5p mimic decreased cell viability and induced apoptosis and autophagy in 6-OHDA-treated cells compared with NC. In addition, the phosphorylation of phosphatidylinositol 3'-kinase (PI3K) and protein kinase B (AKT) was statistically down-regulated by baicalin then thereafter reversed by miR-192-5p mimic. Baicalin reduced 6-OHDA-induced cell injury through down-regulation of miR-192-5p, as well as regulation of PI3K/AKT and MDM-2/p53 signal pathways.
Collapse
|
15
|
Protective role of flavonoid baicalin from Scutellaria baicalensis in periodontal disease pathogenesis: A literature review. Complement Ther Med 2018; 38:11-18. [DOI: 10.1016/j.ctim.2018.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/26/2018] [Accepted: 03/23/2018] [Indexed: 12/25/2022] Open
|
16
|
Extraction Process, Component Analysis, and In Vitro Antioxidant, Antibacterial, and Anti-Inflammatory Activities of Total Flavonoid Extracts from Abutilon theophrasti Medic. Leaves. Mediators Inflamm 2018; 2018:3508506. [PMID: 29725269 PMCID: PMC5872602 DOI: 10.1155/2018/3508506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/04/2018] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
The flavonoid fraction was extracted from the leaves of Abutilon theophrasti Medic., which are usually used as a traditional Chinese herbal medicine for the treatment of inflammation and joint pain. The current study focused on the extraction process, component analysis, and in vitro antioxidant, antibacterial, and anti-inflammatory activities of the flavonoid fraction as a part of ongoing research on bioactive substances from natural plant sources. This study evaluated the antioxidant activities via assays of DPPH radical scavenging capacity, ABTS radical scavenging capacity, and reducing power and investigated inhibitory activities against Escherichia coli, Salmonella, Staphylococcus aureus, and Streptococcus. Moreover, the inflammatory activity of the flavonoid fraction was estimated by measurement of the content of tumor necrosis factor alpha, interleukin-1-beta, interleukin-6, interleukin-10, nitric oxide, and cyclooxygenase-2 and the gene expression levels of several inflammation markers, such as inducible nitric oxide synthase and cyclooxygenase-2, in RAW 264.7 macrophages after LPS treatment. In addition, the underlying anti-inflammatory mechanisms, that is, the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, were also revealed from the gene and protein expression levels. Taken together, these results suggested that the flavonoid fraction might exert in vitro antioxidant, antibacterial, and anti-inflammatory effects on LPS-stimulated RAW 264.7 macrophages and will be potentially useful as an adjuvant treatment for oxidative stress and bacterial and inflammatory diseases.
Collapse
|
17
|
Chirumbolo S. Baicalin in flavocoxid may act against hepatitis B virus via a pro-inflammatory pathway. Inflamm Res 2017; 67:203-205. [DOI: 10.1007/s00011-017-1111-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 01/16/2023] Open
|
18
|
Baicalin may alleviate inflammatory infiltration in dextran sodium sulfate-induced chronic ulcerative colitis via inhibiting IL-33 expression. Life Sci 2017; 186:125-132. [DOI: 10.1016/j.lfs.2017.08.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
|
19
|
Baicalin and baicalein attenuate renal fibrosis in vitro via inhibition of the TGF-β1 signaling pathway. Exp Ther Med 2017; 14:3074-3080. [PMID: 28928802 PMCID: PMC5590043 DOI: 10.3892/etm.2017.4888] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 06/05/2017] [Indexed: 01/03/2023] Open
Abstract
Baicalin and baicalein are flavonoid compounds derived from Scutellaria baicalensis Georgi. These compounds have been used in the treatment of numerous diseases, including fibrotic diseases. However, research regarding their antifibrotic effects and mechanism of action in renal fibrosis is limited. In the present study, normal rat kidney interstitial fibroblast (NRK-49F) cells were stimulated with transforming growth factor (TGF)-β1, with or without baicalin/baicalein, and assessed for proliferation, apoptosis, extracellular matrix (ECM) accumulation, collagen expression, TGF-β1 expression and mothers against decapentaplegic homolog 3 (SMAD3) protein activation. The results revealed that baicalin and baicalein exhibited antifibrotic effects in vitro, whereas baicalein had a stronger inhibitory action compared with baicalin on TGF-β1-induced NRK-49F cell proliferation, deposition of ECM, collagen synthesis, endogenous TGF-β1 expression and phosphorylation of SMAD3. In conclusion, the findings of the present study indicate that baicalin and baicalein, particularly baicalein, exhibit antifibrotic effects in vitro by inhibiting the TGF-β1 pathway. Therefore, these compounds have the potential to be developed as novel agents to treat renal fibrosis.
Collapse
|
20
|
Sakai H, Tabata S, Kimura M, Yabe S, Isa Y, Kai Y, Sato F, Yumoto T, Miyano K, Narita M, Uezono Y. Active Ingredients of Hange-shashin-to, Baicalelin and 6-Gingerol, Inhibit 5-Fluorouracil-Induced Upregulation of CXCL1 in the Colon to Attenuate Diarrhea Development. Biol Pharm Bull 2017; 40:2134-2139. [DOI: 10.1248/bpb.b17-00479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroyasu Sakai
- Department of Analytical Pathophysiology, Division of Pharmacy Professional Development and Research, Hoshi University
| | - Shoko Tabata
- Department of Analytical Pathophysiology, Division of Pharmacy Professional Development and Research, Hoshi University
| | - Minami Kimura
- Department of Analytical Pathophysiology, Division of Pharmacy Professional Development and Research, Hoshi University
| | - Saori Yabe
- Department of Analytical Pathophysiology, Division of Pharmacy Professional Development and Research, Hoshi University
| | - Yosuke Isa
- Department of Analytical Pathophysiology, Division of Pharmacy Professional Development and Research, Hoshi University
| | - Yuki Kai
- Department of Analytical Pathophysiology, Division of Pharmacy Professional Development and Research, Hoshi University
| | - Fumiaki Sato
- Department of Analytical Pathophysiology, Division of Pharmacy Professional Development and Research, Hoshi University
| | - Tetsuro Yumoto
- Department of Analytical Pathophysiology, Division of Pharmacy Professional Development and Research, Hoshi University
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute
| | | | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute
- Division of Supportive Cancer Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center
- Innovation Center for Supportive, Palliative and Psychosocial Care, National Cancer Center Hospital
| |
Collapse
|
21
|
Wang JY, Chuang HN, Chiu JH, Fu SL, Tsai TH, Tsou AP, Hu CP, Chi CW, Yeh SF, Lui WY, Wu CW, Chou CK. Effects of Scutellaria baicalensis Georgi on Macrophage-Hepatocyte Interaction Through Cytokines Related to Growth Control of Murine Hepatocytes. Exp Biol Med (Maywood) 2016; 231:444-55. [PMID: 16565440 DOI: 10.1177/153537020623100410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The aim of this study is to elucidate the effects of Scutellaria baicalensis Georgi (SbG) extract and its constituents on macrophage-hepatocyte interaction in primary cultures. By using trans-well primary Kupffer cell culture or conditioned medium (CM) from murine macrophage RAW264.7 cell line (RAW cells), effects of SbG on hepatocyte growth were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and trypan blue exclusion assay. Cytokine production, antibody-neutralization studies, and molecular mechanisms of transforming growth factor (TGF)-β1 gene expression were elucidated on SbG-treated RAW264.7 cells. In addition, recombinant human TGF-β1 (r-human TGF-β1) was added to elucidate the mechanisms of SbG effects on cultured hepatocytes. Immunohistochemistry using anti-NF-κB antibody was used to determine the possible signal transduction pathways in primary hepatocyte culture. The results showed that SbG stimulated the proliferation of cultured hepatocytes, possibly through NF-κB, but not of Toll-like receptor 4 activation; whereas SbG-RAW-CM and SbG in trans-well significantly suppressed the proliferation of hepatocytes. Antibody-neutralization studies revealed that TGF-β1 was the main antimitotic cytokine in SbG-treated RAW cells CM. The growth stimulation effect of SbG on cultured hepatocytes was inhibited by exogenous administration of r-human TGF-β1. Furthermore, SbG induced NF-κB translocation into the nuclei of cultured cells. In the RAW264.7 line, SbG and baicalin stimulated TGF-β1 gene expression via NF-κB and protein kinase C activation. We conclude that SbG stimulates hepatocyte growth via activation of the NF-κB pathway and induces TGF-β1 gene expression through the Kupffer cell–hepatocyte interaction, which subsequently results in the inhibition of SbG-stimulated hepatocyte growth.
Collapse
Affiliation(s)
- Jir-You Wang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, 112 Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lu Z, Su J, Li Z, Zhan Y, Ye D. Hyaluronic acid-coated, prodrug-based nanostructured lipid carriers for enhanced pancreatic cancer therapy. Drug Dev Ind Pharm 2016; 43:160-170. [PMID: 27553814 DOI: 10.1080/03639045.2016.1226337] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT Gemcitabine (GEM) and Baicalein (BCL) are reported to have anti-tumor effects including pancreatic cancer. Hyaluronic acid (HA) can bind to over-expressed receptors in various kinds of cancer cells. OBJECTIVE The aim of this study is to develop prodrugs containing HA, BCL and GEM, and construct nanomedicine incorporate GEM and BCL in the core and HA on the surface. This system could target the cancer cells and co-deliver the drugs. METHODS GEM-stearic acid lipid prodrug (GEM-SA) and hyaluronic acid-amino acid-baicalein prodrug (HA-AA-BCL) were synthesized. Then, GEM and BCL prodrug-based targeted nanostructured lipid carriers (HA-GEM-BCL NLCs) were prepared by the nanoprecipitation technique. The in vitro cytotoxicity studies of the NLCs were evaluated on AsPC1 pancreatic cancer cell line. In vivo anti-tumor effects were observed on the murine-bearing pancreatic cancer model. RESULTS HA-GEM-BCL NLCs were effective in entering pancreatic cancer cells over-expressing HA receptors, and showed cytotoxicity of tumor cells in vitro. In vivo study revealed significant tumor growth inhibition ability of HA-GEM-BCL NLCs in murine pancreatic cancer model. CONCLUSION It could be concluded that HA-GEM-BCL NLCs could be featured as promising co-delivery, tumor-targeted nanomedicine for the treatment of cancers.
Collapse
Affiliation(s)
- Zhihe Lu
- a Department of Pharmacy , Linyi People's Hospital , Linyi , Shandong , China
| | - Jingrong Su
- b Department of Science and Education , Linyi People's Hospital , Linyi , Shandong , China
| | - Zhengrong Li
- a Department of Pharmacy , Linyi People's Hospital , Linyi , Shandong , China
| | - Yuzhu Zhan
- c Department of Pediatric Nephrologist , Linyi People's Hospital , Linyi , Shandong , China
| | - Decai Ye
- d Department of Neurology , Linyi People's Hospital , Linyi , Shandong , China
| |
Collapse
|
23
|
Patwardhan RS, Sharma D, Thoh M, Checker R, Sandur SK. Baicalein exhibits anti-inflammatory effects via inhibition of NF-κB transactivation. Biochem Pharmacol 2016; 108:75-89. [PMID: 27019135 DOI: 10.1016/j.bcp.2016.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/16/2016] [Indexed: 12/22/2022]
Abstract
NF-κB is a crucial mediator of inflammatory and immune responses and a number of phytochemicals that can suppress this immune-regulatory transcription factor are known to have promising anti-inflammatory potential. However, we report that inducer of pro-inflammatory transcription factor NF-κB functions as an anti-inflammatory agent. Our findings reveal that a plant derived flavonoid baicalein could suppress mitogen induced T cell activation, proliferation and cytokine secretion. Treatment of CD4+ T cells with baicalein prior to transfer in to lymphopenic allogenic host significantly suppressed graft versus host disease. Interestingly, addition of baicalein to murine splenic lymphocytes induced DNA binding of NF-κB but did not suppress Concanavalin A induced NF-κB. Since baicalein did not inhibit NF-κB binding to DNA, we hypothesized that baicalein may be suppressing NF-κB trans-activation. Thioredoxin system is implicated in the regulation of NF-κB trans-activation potential and therefore inhibition of thioredoxin system may be responsible for suppression of NF-κB dependent genes. Baicalein not only inhibited TrxR activity in cell free system but also suppressed mitogen induced thioredoxin activity in the nuclear compartment of lymphocytes. Similar to baicalein, pharmacological inhibitors of thioredoxin system also could suppress mitogen induced T cell proliferation without inhibiting DNA binding of NF-κB. Further, activation of cellular thioredoxin system by the use of pharmacological activator or over-expression of thioredoxin could abrogate the anti-inflammatory action of baicalein. We propose a novel strategy using baicalein to limit NF-κB dependent inflammatory responses via inhibition of thioredoxin system.
Collapse
Affiliation(s)
- Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Maikho Thoh
- Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| |
Collapse
|
24
|
Li J, Wu Y, Zhang S, Zhang J, Ji F, Bo W, Guo X, Li Z. Baicalein protect pancreatic injury in rats with severe acute pancreatitis by inhibiting pro-inflammatory cytokines expression. Biochem Biophys Res Commun 2015; 466:664-9. [PMID: 26393905 DOI: 10.1016/j.bbrc.2015.09.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Inflammatory cytokines is a key point in the development of pathogenesis of SAP. Inflammatory mediators TNF-α and IL-6 are up-regulated in serum of patients with SAP and become good discriminators of SAP severity. MATERIALS AND METHODS In this study, we investigated the treatment effectiveness of Baicalein on SAP rat model. Baicalein was intravenously injected immediately after SAP induction in rats. The mortality, histopathology score, ascites fluid volume, and pro-inflammatory cytokine production were evaluated at 12 h after SAP induction. RESULTS Baicalein decreased the pancreatic histopathology score, reduced ascites fluid production, protected against pancreatic injury, and improved survival in rats with SAP. The serum IL-6 and TNF-α concentrations were also down-regulated by Baicalein. CONCLUSION Baicalein demonstrated a well curative capability on rats with SAP. The mechanism may be alleviateing pancreatic injury and inhibiting pro-inflammatory cytokines expression.
Collapse
Affiliation(s)
- Jun Li
- National-local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 157 West 5th Road, Xi'an 710004, Shaanxi Province, PR China.
| | - Yongtao Wu
- Department of General Surgery, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, 555 East Friendship Road, Xi'an 710054, Shaanxi Province, PR China.
| | - Shu Zhang
- National-local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 157 West 5th Road, Xi'an 710004, Shaanxi Province, PR China; Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 157 West 5th Road, Xi'an 710004, Shaanxi Province, PR China.
| | - Jian Zhang
- National-local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 157 West 5th Road, Xi'an 710004, Shaanxi Province, PR China; Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 157 West 5th Road, Xi'an 710004, Shaanxi Province, PR China.
| | - Fanpu Ji
- National-local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 157 West 5th Road, Xi'an 710004, Shaanxi Province, PR China.
| | - Wangjun Bo
- National-local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 157 West 5th Road, Xi'an 710004, Shaanxi Province, PR China.
| | - Xiaoyan Guo
- National-local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 157 West 5th Road, Xi'an 710004, Shaanxi Province, PR China.
| | - Zongfang Li
- National-local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 157 West 5th Road, Xi'an 710004, Shaanxi Province, PR China; Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University College of Medicine, 157 West 5th Road, Xi'an 710004, Shaanxi Province, PR China.
| |
Collapse
|
25
|
Wang W, Xi M, Duan X, Wang Y, Kong F. Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo. Int J Nanomedicine 2015; 10:3737-50. [PMID: 26045664 PMCID: PMC4447173 DOI: 10.2147/ijn.s80297] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Combination anticancer therapy is promising to generate synergistic anticancer effects to maximize the treatment effect and overcome multidrug resistance. The aim of the study reported here was to develop multifunctional, dual-ligand, modified, self-assembled nanoparticles (NPs) for the combination delivery of baicalein (BCL) and paclitaxel (PTX) prodrugs. Methods Prodrug of PTX and prodrug of BCL, containing dual-targeted ligands of folate (FA) and hyaluronic acid (HA), were synthesized. Multifunctional self-assembled NPs for combination delivery of PTX prodrug and BCL prodrug (PTX-BCL) were prepared and the synergistic antitumor effect was evaluated in vitro and in vivo. The in vitro transfection efficiency of the novel modified vectors was evaluated in human lung cancer A549 cells and drug-resistant lung cancer A549/PTX cells. The in vivo antitumor efficiency and systemic toxicity of different formulations were further investigated in mice bearing A549/PTX drug-resistant human lung cancer xenografts. Results The size of the PTX-BCL NPs was approximately 90 nm, with a positive zeta potential of +3.3. The PTX-BCL NPs displayed remarkably better antitumor activity over a wide range of drug concentrations, and showed an obvious synergism effect with CI50 values of 0.707 and 0.513, indicating that double-ligand modification and the co-delivery of PTX and BCL prodrugs with self-assembled NPs had remarkable superiority over other formulations. Conclusion The prepared PTX-BCL NP drug-delivery system was proven efficient by its targeting of drug-resistant human lung cancer cells and delivering of BCL and PTX prodrugs. Enhanced synergistic anticancer effects were achieved by PTX-BCL NPs, and multidrug resistance of PTX was overcome by this promising targeted nanomedicine.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chinese Medicine Integrated Traditional Chinese Medicine and Western Medicine, General Hospital of Ji'nan Command, People's Liberation Army, Ji'nan, People's Republic of China
| | - Mei Xi
- Emergency Department, The Fourth People's Hospital of Ji'nan, Medical School, Tai Shan Medical College, People's Liberation Army, Ji'nan, People's Republic of China
| | - Xuezhong Duan
- Department of Chinese Medicine Integrated Traditional Chinese Medicine and Western Medicine, General Hospital of Ji'nan Command, People's Liberation Army, Ji'nan, People's Republic of China
| | - Yong Wang
- Department of Rehabilitation and Physiotherapy, General Hospital of Ji'nan Command, People's Liberation Army, Ji'nan, People's Republic of China
| | - Fansheng Kong
- Department of Hematology, General Hospital of Ji'nan Command, People's Liberation Army, Ji'nan, People's Republic of China
| |
Collapse
|
26
|
Dinda B, SilSarma I, Dinda M, Rudrapaul P. Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: from traditional uses to scientific data for its commercial exploitation. JOURNAL OF ETHNOPHARMACOLOGY 2015; 161:255-78. [PMID: 25543018 DOI: 10.1016/j.jep.2014.12.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oroxylum indicum\ (L.) Kurz has been used for centuries as a traditional medicine in Asia in ethnomedicinal systems for the prevention and treatment of several diseases, such as jaundice, arthritic and rheumatic problems, gastric ulcers, tumors, respiratory diseases, diabetes, and diarrhea and dysentery, among others. The present review provides scientific evidence supporting the therapeutic potency of the plant for ethnomedicinal uses and identifies gaps for future research to facilitate commercial exploitation. METHODS This review is based on available information on traditional uses and phytochemical, pharmacological, clinical and toxicity data for Oroxylum indicum that was collected from electronic (SciFinder, PubMed, Science Direct, and ACS, among others) and library searches. KEY FINDING A variety of traditional medicinal uses of Oroxylum indicum in different Southeast and South Asian countries have been reported in books describing the uses of these plants. Phytochemical investigations of the different parts of the plant resulted in identification of approximately 111 compounds, among which flavonoids, naphthalenoids and cyclohexylethanoids are the predominant groups. The crude extracts and their isolates exhibit a wide spectrum of in vitro and in vivo pharmacological activities involving antimicrobial, anti-inflammatory, anti-arthritic, anticancer, anti-ulcer, hepatoprotective, antidiabetic, antidiarrheal and antioxidant activities. Flavonoids are the major constituents of all parts of the plant. From a toxicity perspective, only aqueous and ethanolic extracts of stem bark, root bark and fruits have been assessed and found to be safe. The major flavonoids of the stem bark, such as baicalein, chrysin and oroxylin A, were reported for the first time as natural flavonoids with potent inhibitory activity against endoprotease enzymes and proprotein convertases, which play a key role in the growth of cancer and in viral and bacterial infections. Flavonoids are the active components of bioactive extracts. Several Ayurvedic medicines have been formulated either singly using this plant or along with other herbs for the treatment of different diseases. CONCLUSIONS Pharmacological results have supported some traditional medicinal uses of Oroxylum indicum. Several extracts and their isolates have been reported to exhibit interesting pharmacological properties. These components could be useful as sources of modern medicines following future detailed studies to elucidate their underlying mechanisms, toxicity, synergistic effects and clinical trials. Attention should also be focused on pharmacological studies investigating the traditional uses of the plant, which have not been yet addressed, as well as clinical studies investigating commercial Ayurvedic medicines and other ethnomedicinal preparations in human subjects based on this plant to confirm the safety and quality of the preparations.
Collapse
Affiliation(s)
- B Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala-799022, Tripura, India.
| | - I SilSarma
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala-799022, Tripura, India
| | - M Dinda
- Department of Life Science and Biotechnology, Jadavpur University, Jadavpur, Kolkata-700032, India
| | - P Rudrapaul
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala-799022, Tripura, India
| |
Collapse
|
27
|
Zhang H, Yang X, Zhao L, Jiao Y, Liu J, Zhai G. In vitro and in vivo study of Baicalin-loaded mixed micelles for oral delivery. Drug Deliv 2015; 23:1933-9. [PMID: 25693642 DOI: 10.3109/10717544.2015.1008705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this work was to research the potential functions and the mechanism of absorption of the baicalin (BC)-loaded micelle system that contained Pluronic P123 copolymer (P123) and sodium taurocholate (ST) as carrier materials via oral delivery. Based on the numerous advantages of oral administration, such as cost-effectiveness, flexible and accommodated dosing regimen, and improved compliance for patients, the ST-P123-MMs system would be evaluated as oral delivery vehicle of BC. In this study, X-ray powder diffractometer analysis confirmed the phase change of BC after being incorporated in mixed micelles. The release study in simulated gastric fluid/simulated intestinal fluid exhibited that BC-loaded ST-P123-MMs presented a sustained drug release behavior. Compared with coumarin-6 solution, higher cellar uptake efficiency was achieved for coumarin-6 loaded ST-P123-MMs towards Caco-2 cell lines. The in situ perfusion test in rat indicated that the absorption of BC-loaded ST-P123-MMs in intestinal tract was stronger than BC solution. After oral administration, the Cmax and AUC of BC-loaded ST-P123-MMs were 1.77 times and 1.54 times as high as those of BC suspension in rat, respectively. Promisingly, the formulated BC exhibited a prolonged circulation time with the oral bioavailability increased to 1.54-fold compared with the control group. These results all suggested that P123 and ST mixed micelles could serve as a promising approach to oral administration of BC.
Collapse
Affiliation(s)
- Haiqun Zhang
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Shandong University , Jinan , China and
| | - Xiaoye Yang
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Shandong University , Jinan , China and
| | - Lili Zhao
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Shandong University , Jinan , China and
| | - Yan Jiao
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Shandong University , Jinan , China and
| | - Jiyong Liu
- b Department of Pharmacy , Changhai Hospital, Second Military Medical University , Shanghai , China
| | - Guangxi Zhai
- a Department of Pharmaceutics , School of Pharmaceutical Sciences, Shandong University , Jinan , China and
| |
Collapse
|
28
|
Tran TVA, Malainer C, Schwaiger S, Hung T, Atanasov AG, Heiss EH, Dirsch VM, Stuppner H. Screening of Vietnamese medicinal plants for NF-κB signaling inhibitors: assessing the activity of flavonoids from the stem bark of Oroxylum indicum. JOURNAL OF ETHNOPHARMACOLOGY 2015; 159:36-42. [PMID: 25456439 PMCID: PMC4292993 DOI: 10.1016/j.jep.2014.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Seventeen plants used in Vietnamese traditional medicine for the treatment of inflammatory disorders were screened for NF-κB inhibitory activity. Oroxylum indicum, which exhibited activity, was investigated in detail. MATERIALS AND METHODS Forty plant extracts from 17 species were prepared by maceration using dichloromethane and methanol and were tested (10µg/mL) to evaluate their ability to inhibit NF-κB activation using TNF-α-stimulated HEK-293 cells stably transfected with a NF-κB-driven luciferase reporter. The active extract of Oroxylum indicum was subsequently fractionated by different chromatographic techniques. After isolation, all single compounds were identified by spectroscopic methods and assessed for NF-κB inhibitory effects. RESULTS The dichloromethane extracts obtained from Chromolaena odorata leaves and the stem bark of Oroxylum indicum showed distinct inhibitory effects on NF-κB activation at a concentration of 10µg/mL. The active extract of Oroxylum indicum was subjected to further phytochemical studies resulting in identification of four flavonoid aglyca and six flavonoid glycosides. Pharmacological evaluation of the obtained compounds identified oroxylin A as the most active substance (IC50=3.9 µM, 95% CI: 3.5-4.4 µM), while chrysin and hispidulin showed lower activity with IC50=7.2µM (95% CI: 6.0-8.8 µM) and 9.0 µM (95% CI: 7.9-10.2 µM), respectively. Interestingly, in this study the activity of baicalein (IC50=28.1 µM, 95% CI: 24.6-32.0 µM) was weak. The isolated glycosides showed no inhibitory activity when tested at a concentration of 30 µM. Quantification of the four active flavonoids in extracts and plant materials suggested that oroxylin A contributes to the NF-κB inhibitory activity of the stem barks of Oroxylum indicum to a greater extent than baicalein which was thought to be responsible for the anti-inflammatory activity of this plant. CONCLUSIONS The screening presented in this study identified the dichloromethane extracts of Chromolaena odorata and Oroxylum indicum as promising sources for NF-κB inhibitors. Hispidulin, baicalein, chrysin and oroxylin A, isolated from Oroxylum indicum, were identified as inhibitors of NF- κB activation.
Collapse
Affiliation(s)
- Thi Van Anh Tran
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria; Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy of Ho Chi Minh City, 41 DinhTienHoang Street, Ho Chi Minh City, Vietnam
| | - Clemens Malainer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria.
| | - Tran Hung
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy of Ho Chi Minh City, 41 DinhTienHoang Street, Ho Chi Minh City, Vietnam
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| |
Collapse
|
29
|
Chen F, Wu R, Zhu Z, Yin W, Xiong M, Sun J, Ni M, Cai G, Zhang X. Wogonin protects rat dorsal root ganglion neurons against tunicamycin-induced ER stress through the PERK-eIF2α-ATF4 signaling pathway. J Mol Neurosci 2014; 55:995-1005. [PMID: 25417142 DOI: 10.1007/s12031-014-0456-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/08/2014] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) stress has been demonstrated to contribute to neurodegeneration in multiple nervous system diseases. Wogonin is a flavonoid isolated from Scutellaria baicalensis root and has multiple pharmacological effects, including anti-inflammatory, antioxidant, and anticancer effects. It has a protective role in nervous system diseases; however, the pharmacological function of wogonin in the spinal cord is still with limited acquaintance. In the present study, rat dorsal root ganglion (DRG) neurons were pretreated with different concentrations of wogonin (0-100 μM) before inducing ER stress using tunicamycin (TUN) (0.75 μg/ml). Wogonin pretreatment at 75 and 100 μM had a cytoprotective effect on cells against TUN-induced toxicity. Wogonin also decreased the number of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive DRG neurons and increased expression of superoxide dismutase (SOD), which was accompanied by decreased malondialdehyde (MDA) level. The induction of apoptosis was prevented with reduction in expression level of Bax and concomitant increase in B cell lymphoma 2 (Bcl-2) level. Furthermore, wogonin downregulated expression level of ER stress genes coding for glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), active caspase 12, transcription factor 4 (ATF4), and phosphorylation of pancreatic ER stress kinase (PERK) and eukaryotic initiation factor 2 alpha (eIF2α). The current study indicated that wogonin modulated stress-responsive genes, helping DRG neurons prevent TUN-induced ER stress through the PERK-eIF2α-ATF4 signaling pathway.
Collapse
Affiliation(s)
- Fangyi Chen
- Department of Orthopedics, Affiliated Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Xiao JR, Do CW, To CH. Potential Therapeutic Effects of Baicalein, Baicalin, and Wogonin in Ocular Disorders. J Ocul Pharmacol Ther 2014; 30:605-14. [DOI: 10.1089/jop.2014.0074] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jing-Ru Xiao
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Hong Kong
| | - Chi-Ho To
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Hong Kong
- State Key Laboratory of Ophthalmology, Department of Ophthalmology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
31
|
Baicalin attenuates TNBS-induced colitis in rats by modulating the Th17/Treg paradigm. Arch Pharm Res 2014; 38:1873-87. [PMID: 25269538 DOI: 10.1007/s12272-014-0486-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 09/23/2014] [Indexed: 12/12/2022]
Abstract
Baicalin, a flavonoid, has a wide range of pharmacological properties, including immunomodulation. The objective of this study was to investigate the effect of baicalin on the balance of T helper 17 (Th17) and regulatory T (Treg) cells in a colitis model. The rat colitis model was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Baicalin (10 ml/kg, each) or mesalazine (positive control) was then administered orally for 7 days. Inflammatory and immunological responses were evaluated by pathology, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, western blot analysis, and flow cytometry. Our study showed that baicalin not only significantly attenuated TNBS-induced colitis by reducing the disease activity index as well as macroscopic and microscopic scores, but it also improved the weight loss and shortening of the colon. Baicalin treatment also induced a significant decrease in the levels of inflammatory mediators, including the myeloperoxidase activity, the levels of tumor necrosis factor α, IL-1β, and Th1-related cytokines IL-12 and IFN-γ. Furthermore, the beneficial effects of baicalin seem to be associated with regulation of the Th17 and Treg paradigm. We found that administration of baicalin significantly downregulated the number of Th17 cells and the levels of Th17-related cytokines (IL-17 and IL-6) and retinoic acid receptor-related orphan receptor γt. In contrast, there was an increase in Treg cells numbers, Treg-related cytokines transforming growth factor-β and IL-10, and forkhead box P3. Our results suggest that the anti-inflammatory effect of baicalin may be linked to modulation of the balance between Th17 and Treg cells in TNBS-induced ulcerative colitis.
Collapse
|
32
|
Abstract
PURPOSE To determine whether intravitreally-injected baicalin inhibits the growth of choroidal neovascularization (CNV) experimentally induced via laser photocoagulation through analysis of angiogenic factors. MATERIALS AND METHODS Six CNVs were induced in the left eyes of 8-week-old male Brown Norway rats. Immediately after the induction of CNV, 4 μl of baicalin solution (0.1, 1 or 5 nmol) and 4 μl of a solution containing 100 μg of bevacizumab were slowly injected into the vitreous cavity under direct observation with an operating microscope. At 14 days after CNV induction, fluorescein angiography (FA) was performed, and choroidal flat mounts were produced for quantitative assessment of CNV. The levels of the anti-angiogenic proteins vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and matrix metalloproteinase-2 (MMP-2) were determined via Western blot analysis. RESULTS FA of bevacizumab- and baicalin-treated rats showed significantly reduced CNV and leakage from the CNV lesions compared to control rats at day 14. Choroidal flat mounts revealed that baicalin inhibited the growth of CNV lesions in a dose-dependent manner. Western blot analysis demonstrated that baicalin significantly attenuated the up-regulation of VEGF, PDGF and MMP-2. CONCLUSION Baicalin suppressed laser-induced CNV formation in rats. These results suggest that baicalin should be considered as a candidate drug for treating exudative age-related macular degeneration.
Collapse
Affiliation(s)
- Sung Jae Yang
- Department of Ophthalmology, University of Ulsan, Gangneung Asan Hospital , Gangneung , Korea
| | | | | | | |
Collapse
|
33
|
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are the leading causes of blindness in adults. The impact of these conditions on the quality of life is increasing in significance with a rise in life expectancy. The role of hyperglycemia, oxidative stress and inflammatory responses in the development and/or progression of DR and AMD, and several other sight threatening ocular diseases, is well established. In proliferative retinopathy, signals sent by the retina for nourishment, triggers the growth of fragile and abnormal blood vessels. Changes in ocular pressure may lead to rupture of these blood vessels causing severe vision problems. Recent in vitro and preclinical studies demonstrate that certain phytochemicals possessing potent antioxidant and anti-inflammatory activity and ocular blood flow enhancing properties may be very useful in the treatment of, or as a prophylactic measure for, DR and AMD. Apart from these properties they have also been investigated for their anti-bacterial, hormonal, enzyme stimulation, and anti-angiogenic activities. The attractive aspect of these potential therapeutic candidates is that they can act on multiple pathways identified in the etiology of DR, AMD, cataract and other ocular diseases. However, results from clinical trials have been somewhat ambiguous, raising questions about the concentrations of these bioflavonoids achieved in the neural retina following oral administration. Unfortunately, as of date, an efficient noninvasive means to deliver therapeutic agents/candidates to the back-of-the eye is still not available. This review examines some of these promising natural agents and discusses the challenges encountered in delivering them to the posterior segment ocular tissues through the oral route.
Collapse
|
34
|
Bellik Y, Boukraâ L, Alzahrani HA, Bakhotmah BA, Abdellah F, Hammoudi SM, Iguer-Ouada M. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules 2012; 18:322-53. [PMID: 23271469 PMCID: PMC6269762 DOI: 10.3390/molecules18010322] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/06/2012] [Accepted: 12/14/2012] [Indexed: 12/18/2022] Open
Abstract
The resort worldwide to edible medicinal plants for medical care has increased significantly during the last few years. Currently, there is a renewed interest in the search for new phytochemicals that could be developed as useful anti-inflammatory and anti-allergic agents to reduce the risk of many diseases. The activation of nuclear transcription factor-kappa B (NF-κB) has now been linked to a variety of inflammatory diseases, while data from numerous studies underline the importance of phytochemicals in inhibiting the pathway that activates this transcription factor. Moreover, the incidence of type I allergic disorders has been increasing worldwide, particularly, the hypersensitivity to food. Thus, a good number of plant products with anti-inflammatory and anti-allergic activity have been documented, but very few of these compounds have reached clinical use and there is scant scientific evidence that could explain their mode of action. Therefore, this paper intends to review the most salient recent reports on the anti-inflammatory and anti-allergic properties of phytochemicals and the molecular mechanisms underlying these properties.
Collapse
Affiliation(s)
- Yuva Bellik
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
- Faculty of Nature and Life Sciences, Abderrahmane Mira University, Béjaia 06000, Algeria; E-Mail:
| | - Laïd Boukraâ
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +213-795-306-930
| | - Hasan A. Alzahrani
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Balkees A. Bakhotmah
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Department of Nutrition Food Sciences, Arts and Design College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatiha Abdellah
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
| | - Si M. Hammoudi
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
| | - Mokrane Iguer-Ouada
- Faculty of Nature and Life Sciences, Abderrahmane Mira University, Béjaia 06000, Algeria; E-Mail:
| |
Collapse
|
35
|
Hayasaka S, Kodama T, Ohira A. Traditional Japanese Herbal (Kampo) Medicines and Treatment of Ocular Diseases: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:887-904. [DOI: 10.1142/s0192415x12500668] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Herbal medicines have been used clinically in Eastern Asia, and traditional Japanese herbal (Kampo) formulas are approved as ethical drugs. The Kampo formulas are mixtures of the crude extracts of several herbs, each of which contains multiple components. Numerous investigators have reported that some herbal medicines are efficacious for treating several human diseases. We reviewed the literature on traditional herbal medicines and treatment of ocular diseases. Oral Orengedoku-to and Kakkon-to inhibit postoperative uveitis in humans. Oral Goshajinki-gan improved ocular surface disorders in patients with type 1 diabetes mellitus. Oral Hachimijio-gan increased retinal blood flow. Keishi-bukuryo-gan Sho might be associated with vitreoretinopathy in patients with type 2 diabetes mellitus. Oral Hachimijio-gan and Goshajinki-gan delayed lens opacification in rats and mice. Oral Sairei-to, Orengedoku-to, Senkanmeimoku-to, Scutellariae radix extract, Gardeniae fructus extract, topical Liguisticum wallichii rhizoma extract, and intravenous injection of tetramethylpyrazine, baicalin, baicalein, wogonin, and crocetin inhibited some forms of experimental uveitis in rabbits. Topical glycyrrhizinate improved allergic conjunctivitis in humans and rats. Oral crocetin improved eyestrain in humans. Oral berberine diminished experimental uveitis in rats. Baicalein, wogonin, berberine, and berberrubine inhibited in vitro expression of several cytokines in cultured retinal pigment epithelial cells. Some Kampo formulas are efficacious for treating several ocular diseases in humans and animals. Some herbal extracts and their components inhibit some forms of experimental uveitis.
Collapse
Affiliation(s)
| | - Tatsuo Kodama
- Department of Ophthalmology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Akihiro Ohira
- Department of Ophthalmology, Shimane University School of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
36
|
Chen FH, Lu N, Zhang HW, Zhao L, He LC, Sun HP, You QD, Li ZY, Guo QL. LYG-202 Augments Tumor Necrosis Factor-α-Induced Apoptosis via Attenuating Casein Kinase 2-Dependent Nuclear Factor-κB Pathway in HepG2 Cells. Mol Pharmacol 2012; 82:958-71. [DOI: 10.1124/mol.112.079848] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
37
|
Wogonin suppresses arrhythmias, inflammatory responses, and apoptosis induced by myocardial ischemia/reperfusion in rats. J Cardiovasc Pharmacol 2011; 58:133-42. [PMID: 21436723 DOI: 10.1097/fjc.0b013e31821a5078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Wogonin is a flavonoid isolated from Scutellaria baicalensis Georgi, a traditional Chinese medicine, and it possesses antioxidant and anti-inflammatory effects. The aim of this study is to investigate the in vivo effect of wogonin on myocardial ischemia/reperfusion injury in an open-chest anesthetized rat model, which was induced by 45-minute left coronary artery occlusion and 2-hour reperfusion. Rats were treated with wogonin (5, 10, and 20 mg/kg, intraperitoneal) 40 minutes before ischemia or treatment with 10 mg/kg of wogonin 15 minutes after occlusion. Pretreatment with 10 mg/kg of wogonin significantly delayed the occurrence of ventricular premature contractions and tachycardia, and it suppressed the incidence of ventricular tachycardia and ventricular fibrillation, and mortality elicited by ischemia when compared with that in the control group, accompanied by reducing the arrhythmia scores. After 2-hour reperfusion, pretreatment and posttreatment with wogonin significantly reduced the infarct size and plasma levels of creatine kinase muscle-brain fraction and lactate dehydrogenase. Wogonin also significantly reduced the elevation of plasma tissue necrosis factor-α and superoxide anion production in the myocardium with ischemia/reperfusion. The expression of monocyte chemoattractant protein-1, phosphorylated p38 mitogen-activated protein kinase, p65 and IκBα, and active caspase-3 in ischemic myocardium pronouncedly increased in the control group; these were significantly attenuated by treatment with wogonin. In conclusion, wogonin demonstrated in vivo cardioprotective effects by the attenuation of the severity of ischemia-induced arrhythmias and irreversible ischemia/reperfusion injury, which is associated with its antioxidant capacity and anti-inflammatory effects. The suppression of nuclear factor-κB and p38 mitogen-activated protein kinase activation and the inhibition of monocyte chemoattractant protein-1 expression contribute to the beneficial effects of wogonin.
Collapse
|
38
|
Wu H, Liu Z, Peng J, Li L, Li N, Li J, Pan H. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int J Pharm 2011; 410:31-40. [DOI: 10.1016/j.ijpharm.2011.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
|
39
|
Yang L, Zheng XL, Sun H, Zhong YJ, Wang Q, He HN, Shi XW, Zhou B, Li JK, Lin Y, Zhang L, Wang X. Catalase suppression-mediated H(2)O(2) accumulation in cancer cells by wogonin effectively blocks tumor necrosis factor-induced NF-κB activation and sensitizes apoptosis. Cancer Sci 2011; 102:870-6. [PMID: 21244577 DOI: 10.1111/j.1349-7006.2011.01874.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tremendous effort has been made to improve the anticancer value of tumor necrosis factor (TNF). In this study, we show that wogonin, a flavonoid isolated from Huang-Qin (Scutellaria baicalensis), synergistically sensitizes cancer cells derived from the cervix, ovary and lung to TNF-induced apoptosis, which was associated with inhibition of catalase activity and an increase of cellular hydrogen peroxide (H(2)O(2)). Wogonin-induced reactive oxygen species block TNF-induced NF-κB activation through inhibiting phosphorylation on the NF-κB p65 subunit and consequently the DNA binding of NF-κB. In addition, wogonin suppressed the expression of the antiapoptotic factor c-FLIP, which is accompanied with potentiation of TNF-induced caspase 8 activation that initiates apoptosis. Importantly, wogonin did not sensitize normal bronchial epithelial cells to TNF-induced cell death, which was associated with the defect in induction of H(2)O(2). Thus, wogonin specifically sensitizes cancer cells to TNF-induced cytotoxicity through H(2)O(2)-mediated NF-κB suppression and apoptosis activation. Our data provide important insights into the molecular mechanism underlying wogonin's anticancer activity, and suggest this common flavonoid could be used as a TNF adjuvant for cancer therapy.
Collapse
Affiliation(s)
- Lan Yang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Majumdar S, Srirangam R. Potential of the bioflavonoids in the prevention/treatment of ocular disorders. J Pharm Pharmacol 2010; 62:951-65. [PMID: 20663029 DOI: 10.1211/jpp.62.08.0001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Flavonoids are a common group of plant polyphenols that give colour and flavour to fruits and vegetables. In recent years, flavonoids have gained importance in the pharmaceutical field through their beneficial effects on human health and are widely available as nutritional supplements. Several pharmacological actions of the bioflavonoids may be useful in the prevention or treatment of ocular diseases responsible for vision loss such as diabetic retinopathy, macular degeneration and cataract. This review aims to summarize the potential therapeutic applications of various bioflavonoids in different ocular diseases and also discusses delivery of these agents to the ocular tissues. KEY FINDINGS It is apparent that the flavonoids are capable of acting on various mechanisms or aetiological factors responsible for the development of different sight threatening ocular diseases. From a drug delivery perspective, ocular bioavailability depends on the physicochemical and biopharmaceutical characteristics of the selected flavonoids and very importantly the route of administration. SUMMARY The potential therapeutic applications of various bioflavonoids in ocular diseases is reviewed and the delivery of these agents to the ocular tissues is discussed. Whereas oral administration of bioflavonoids may demonstrate some pharmacological activity in the outer sections of the posterior ocular segment, protection of the retinal ganglionic cells in vivo may be limited by this delivery route. Systemic or local administration of these agents may yield much higher and effective concentrations of the parent bioflavonoids in the ocular tissues and at much lower doses.
Collapse
Affiliation(s)
- Soumyajit Majumdar
- Department of Pharmaceutics, The University of Mississippi, MS 38677, USA.
| | | |
Collapse
|
41
|
Siriwatanametanon N, Fiebich BL, Efferth T, Prieto JM, Heinrich M. Traditionally used Thai medicinal plants: in vitro anti-inflammatory, anticancer and antioxidant activities. JOURNAL OF ETHNOPHARMACOLOGY 2010; 130:196-207. [PMID: 20435130 DOI: 10.1016/j.jep.2010.04.036] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/15/2010] [Accepted: 04/24/2010] [Indexed: 05/29/2023]
Abstract
AIMS OF THE STUDY In order to assess traditional Thai claims about the therapeutic potential of medicinal plants and to select plants for future phytochemical research, nine plant species with anti-inflammatory uses were selected from Thai textbooks and assessed for their in vitro anti-inflammatory, antiproliferative and antioxidant activities. METHODS Nuclear factor-kappaB (NF-kappaB) inhibitory effects in stably transfected HeLa cells were determined by luciferase assay, and effects on LPS-induced pro-inflammatory mediators prostaglandin E2 (PGE2), interleukin (IL)-6, IL-1beta, and tumour necrosis factor (TNF)alpha in primary monocytes were assessed by ELISA. Cytotoxic activities were examined against HeLa cells, human leukaemia CCRF-CEM cells and the multidrug-resistant CEM/ADR5000 subline using the MTT and XTT tests. However, a redox status has been linked with both inflammation and cancer, antioxidant effects were also assessed using the DPPH, lipid-peroxidation, and Folin-Ciocalteau methods. RESULTS Among all the nine species, Gynura pseudochina var. hispida and Oroxylum indicum showed the most promising NF-kappaB inhibitory effects with the lowest IC(50) values (41.96 and 47.45 microg/ml, respectively). Muehlenbeckia platyclada did not inhibit the NF-kappaB activation but effectively inhibited the release of IL-6, IL-1beta and TNF-alpha with IC(50) values ranging between 0.28 and 8.67 microg/ml. Pouzolzia indica was the most cytotoxic against CCRF-CEM cells and the multidrug-resistant CEM/ADR5000 cells (9.75% and 10.48% viability, at 10 microg/ml, respectively). Rhinacanthus nasutus was the most potent cytotoxicity against HeLa cells (IC(50) 3.63 microg/ml) and showed specific cytotoxicity against the multidrug-resistant CEM/ADR5000 cells (18.72% viability at 10 microg/ml, p<0.0001 when compared to its cytotoxicity against CCRF-CEM cells). Moreover, Oroxylum indicum showed a high level of antioxidant activity by inhibiting lipid-peroxidation (IC(50) 0.08 microg/ml). CONCLUSIONS This study provides in vitro evidence for the use of the Thai plants, most importantly Gynura pseudochina var. hispida, Oroxylum indicum and Muehlenbeckia platyclada as Thai anti-inflammatory remedies and these plants are now a priority for further phytochemical research.
Collapse
Affiliation(s)
- Nisarat Siriwatanametanon
- Centre for Pharmacognosy and Phytotherapy, The School of Pharmacy, University of London, London, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
Iriti M, Vitalini S, Fico G, Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 2010; 15:3517-55. [PMID: 20657497 PMCID: PMC6263339 DOI: 10.3390/molecules15053517] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/31/2010] [Accepted: 05/06/2010] [Indexed: 12/31/2022] Open
Abstract
Plant secondary metabolites include an array of bioactive constituents form both medicinal and food plants able to improve human health. The exposure to these phytochemicals, including phenylpropanoids, isoprenoids and alkaloids, through correct dietary habits, may promote health benefits, protecting against the chronic degenerative disorders mainly seen in Western industrialized countries, such as cancer, cardiovascular and neurodegenerative diseases. In this review, we briefly deal with some plant foods and herbs of traditional medicines and diets, focusing on their neuroprotective active components. Because oxidative stress and neuroinflammation resulting from neuroglial activation, at the level of neurons, microglial cells and astrocytes, are key factors in the etiopathogenesis of both neurodegenerative and neurological diseases, emphasis will be placed on the antioxidant and anti-inflammatory activity exerted by specific molecules present in food plants or in remedies prescribed by herbal medicines.
Collapse
Affiliation(s)
- Marcello Iriti
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy
- Dipartimento Agroalimentare, CNR-IVV, Milano, Italy; E-Mail (F.F.)
| | - Sara Vitalini
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy
- Orto Botanico ‘GE Ghirardi’, Università degli Studi di Milano, Toscolano Maderno, Brescia, Italy; E-Mail: (S.V.)
| | - Gelsomina Fico
- Orto Botanico ‘GE Ghirardi’, Università degli Studi di Milano, Toscolano Maderno, Brescia, Italy; E-Mail: (S.V.)
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy; E-Mail: (G.F.)
| | - Franco Faoro
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy
- Dipartimento Agroalimentare, CNR-IVV, Milano, Italy; E-Mail (F.F.)
| |
Collapse
|
43
|
Erratum: Neural protection by naturopathic compounds-an example of tetramethylpyrazine from retina to brain. J Ocul Biol Dis Infor 2009; 2:137-144. [PMID: 20046848 PMCID: PMC2798986 DOI: 10.1007/s12177-009-9033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Given the advantages of being stable in the ambient environment, being permeable to the blood-brain and/or blood-eye barriers and being convenient for administration, naturopathic compounds have growingly become promising therapeutic candidates for neural protection. Extracted from one of the most common Chinese herbal medicines, tetramethylpyrazine (TMP), also designated as ligustrazine, has been suggested to be neuroprotective in the central nervous system as well as the peripheral nerve network. Although the detailed molecular mechanisms of its efficacy for neural protection are understood limitedly, accumulating evidence suggests that antioxidative stress, antagonism for calcium, and suppression of pro-inflammatory factors contribute significantly to its neuroprotection. In animal studies, systemic administration of TMP (subcutaneous injection, 50 mg/kg) significantly blocked neuronal degeneration in hippocampus as well as the other vulnerable regions in brains of Sprague-Dawley rats following kainate-induced prolonged seizures. Results from us and others also demonstrated potent neuroprotective efficacy of TMP for retinal cells and robust benefits for brain in Alzheimer's disease or other brain injury. These results suggest a promising prospect for TMP to be used as a treatment of specific neurodegenerative diseases. Given the assessment of the distribution, metabolism, excretion, and toxicity information that is already available on most neuroprotective naturopathic compounds such as TMP, preclinical data to justify bringing such therapeutic compounds to clinical trials in humans is feasible.[This corrects the article on p. in vol. .].
Collapse
|
44
|
Peng J, Qi Q, You Q, Hu R, Liu W, Feng F, Wang G, Guo Q. Subchronic toxicity and plasma pharmacokinetic studies on wogonin, a natural flavonoid, in Beagle dogs. JOURNAL OF ETHNOPHARMACOLOGY 2009; 124:257-262. [PMID: 19397969 DOI: 10.1016/j.jep.2009.04.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 03/27/2009] [Accepted: 04/20/2009] [Indexed: 05/27/2023]
Abstract
AIM OF THE STUDY To investigate subchronic toxicity and pharmacokinetic of wogonin using Beagle dog and to provide foundation for clinical applications of this promising anticancer agent. MATERIALS AND METHODS Wogonin was administered via intravenous infusion at dosages of 60, 30 and 15 mg/kg per day for 90 days followed by subchronic toxicity studies including general body parameters, hematological, plasma biochemical, histopathological, and viscera examinations. Dogs were given single intravenous injection of 20mg/kg wogonin followed by pharmacokinetic parameters estimating. RESULTS Dogs treated with wogonin showed no significant changes in organs compared with controls in the toxicological study. An innocuous dose was established to be 60 mg/kg, which was approximately 38.5 (body surface area) times higher than the dose (50mg/60 kg) used for human trials. The area under concentration-time curve (AUC(infinity)) was estimated to be 2137.9+/-231.4 ngh/ml, while the elimination half-life (t(1/2)) was 1.51+/-0.43 h in dogs treated with 20mg/kg wogonin. CONCLUSIONS Wogonin offered a wide margin of safety and had no organ toxicity for a long time intravenous administration in dogs.
Collapse
Affiliation(s)
- Jian Peng
- Key Laboratory for Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tan Z. Neural protection by naturopathic compounds-an example of tetramethylpyrazine from retina to brain. J Ocul Biol Dis Infor 2009; 2:57-64. [PMID: 19672463 PMCID: PMC2723671 DOI: 10.1007/s12177-009-9024-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 06/02/2009] [Indexed: 01/06/2023] Open
Abstract
Given the advantages of being stable in the ambient environment, being permeable to the blood–brain and/or blood–eye barriers and being convenient for administration, naturopathic compounds have growingly become promising therapeutic candidates for neural protection. Extracted from one of the most common Chinese herbal medicines, tetramethylpyrazine (TMP), also designated as ligustrazine, has been suggested to be neuroprotective in the central nervous system as well as the peripheral nerve network. Although the detailed molecular mechanisms of its efficacy for neural protection are understood limitedly, accumulating evidence suggests that antioxidative stress, antagonism for calcium, and suppression of pro-inflammatory factors contribute significantly to its neuroprotection. In animal studies, systemic administration of TMP (subcutaneous injection, 50 mg/kg) significantly blocked neuronal degeneration in hippocampus as well as the other vulnerable regions in brains of Sprague–Dawley rats following kainate-induced prolonged seizures. Results from us and others also demonstrated potent neuroprotective efficacy of TMP for retinal cells and robust benefits for brain in Alzheimer’s disease or other brain injury. These results suggest a promising prospect for TMP to be used as a treatment of specific neurodegenerative diseases. Given the assessment of the distribution, metabolism, excretion, and toxicity information that is already available on most neuroprotective naturopathic compounds such as TMP, it would not take much preclinical data to justify bringing such therapeutic compounds to clinical trials in humans.
Collapse
Affiliation(s)
- Zhiqun Tan
- Department of Neurology, University of California Irvine School of Medicine, ZOT 4275, 100 Irvine Hall, Irvine, CA 92697 USA
| |
Collapse
|
46
|
Zhang XY, Hayasaka S, Chi ZL, Cui HS, Hayasaka Y. Effect of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) on IL-6, IL-8, and MCP-1 Expression in Human Retinal Pigment Epithelial Cell Line. Curr Eye Res 2009; 30:1105-11. [PMID: 16354624 DOI: 10.1080/02713680500421444] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To examine pituitary adenylate cyclase-activating polypeptide (PACAP) receptors (PAC1, VPAC1, and VPAC2) mRNA and the effect of PACAP on interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein-1 (MCP-1) expression in human retinal pigment epithelial cell line (ARPE-19) stimulated with interleukin-1beta (IL-1beta). METHODS Expression of PACAP receptor mRNA was examined by reverse transcription polymerase chain reaction (RT-PCR). PACAP and IL-1beta were added to serum-free medium. IL-6, IL-8, and MCP-1 mRNA were measured by real-time PCR. IL-6, IL-8, and MCP-1 protein concentrations were measured using enzyme-linked immunosorbent assay. Nuclear factor kappaB (NF-kappaB) translocation was examined by immunofluorescence. RESULTS PAC1 and VCAP1 receptors mRNA were expressed in unstimulated cells. VCAP2 mRNA was expressed in cells stimulated with IL-1beta. IL-1beta stimulated IL-6, IL-8, and MCP-1 mRNA expression and protein levels. PACAP (10(- 7) to 10(- 6) M) inhibited IL-1beta -stimulated IL-6, IL-8, and MCP-1 mRNA and protein levels. Immunofluorescence of NF-kappaB in the nucleus was dense 30 min after stimulation with IL-1beta, and it was decreased by PACAP. CONCLUSIONS ARPE-19 cells had PACAP receptors mRNA. PACAP inhibited IL-6, IL-8, and MCP-1 expression and protein secretion. Possibly, the effect on cytokines may be via suppression of NF-kappaB translocation.
Collapse
Affiliation(s)
- Xue-Yun Zhang
- Department of Ophthalmology, Toyama Medical and Pharmaceutical University, Toyama, Japan.
| | | | | | | | | |
Collapse
|
47
|
Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury. Br J Pharmacol 2008; 155:1279-96. [PMID: 18776918 DOI: 10.1038/bjp.2008.345] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) triggers a complex series of inflammatory responses that contribute to secondary tissue damage. The aim of this study was to investigate the effect of baicalein, a flavonoid possessing potent anti-inflammatory properties, on functional and histological outcomes and inflammatory cytokine expression, following TBI in rats. EXPERIMENTAL APPROACH Rats subjected to controlled cortical impact injury were injected with baicalein (30 mg kg(-1)) or vehicle immediately after injury or daily for 4 days. Neurological status was evaluated using the rotarod, adhesive removal, modified neurological severity scores and beam walk tests. Contusion volume and neuronal degeneration were measured using cresyl violet and FluoroJade B (FJB) histochemistry. Levels of tumour necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta) and interleukin-6 (IL-6) mRNA and protein were assessed by real-time quantitative reverse transcriptase-PCR, enzyme-linked immunosorbent assay and immunohistochemistry. KEY RESULTS Single-dose and multiple-dose treatment with baicalein significantly improved functional recovery and reduced contusion volumes up to day 28 post-injury, although multiple-dose baicalein was the more effective treatment. Single-dose baicalein also significantly reduced the number of degenerating neurons (31%) on post-injury day 1 as indicated by FJB staining. These changes were associated with significantly decreased levels, at the contusion site, of TNF-alpha, IL-1 beta and IL-6 mRNA at 6 h, and cytokine protein on day 1 post-injury. CONCLUSIONS AND IMPLICATIONS Post-injury treatment with baicalein improved functional and histological outcomes and reduced induction of proinflammatory cytokines in rat TBI. The neuroprotective effect of baicalein may be related to a decreased inflammatory response following the injury.
Collapse
|
48
|
Piao HZ, Choi IY, Park JS, Kim HS, Cheong JH, Son KH, Jeon SJ, Ko KH, Kim WK. Wogonin inhibits microglial cell migration via suppression of nuclear factor-kappa B activity. Int Immunopharmacol 2008; 8:1658-62. [PMID: 18725324 DOI: 10.1016/j.intimp.2008.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/29/2008] [Indexed: 01/06/2023]
Abstract
Previously, we and others have demonstrated that wogonin, an active component from the root of Scutellaria baicalensis Georgi, has a neuroprotective effect in cerebral ischemic insult. The neuroprotective effect of wogonin may at least in part be due to its anti-inflammatory properties. Microglial cells, well-known residential macrophages in the central nervous system, migrate to the ischemic lesion and play a pivotal role in the development of chronic inflammation. In the present study, we observed that wogonin potently inhibited microglial migration toward a chemokine, monocyte chemoattractant protein-1 (MCP-1). The anti-migratory effect of wogonin was provoked at nanomolar concentrations, at which wogonin did not significantly inhibit the production of cytokines and chemokines. NF-kappaB has previously shown to regulate microglial cell migration, and activation of cAMP-signaling pathway has also been associated with inhibition of microglial cell motility. In the present study, wogonin at low micromolar concentrations completely suppressed the activity of NF-kappaB in MCP-1-stimulated microglia, and NF-kappaB inhibitors such as N-acetyl cysteine and pyrrolidinedithiocarbamate inhibited the MCP-1-induced migration of microglial cells. However, wogonin did not stimulate the production of cAMP in microglial cells. Our results indicate that the anti-inflammatory activity of wogonin is exerted at least in part by suppressing microglial cell motility via inhibition of NF-kappaB activity.
Collapse
Affiliation(s)
- Hua Zi Piao
- Department of Pharmacology, College of Medicine, Yanbian University, Yanji, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sandur SK, Ahn KS, Ichikawa H, Sethi G, Shishodia S, Newman RA, Aggarwal BB. Zyflamend, a polyherbal preparation, inhibits invasion, suppresses osteoclastogenesis, and potentiates apoptosis through down-regulation of NF-kappa B activation and NF-kappa B-regulated gene products. Nutr Cancer 2007; 57:78-87. [PMID: 17516865 DOI: 10.1080/01635580701268295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Zyflamend, a polyherbal preparation, was designed based on constituents that exhibit antiproliferative, antiinflammatory, antioxidant, antiangiogenic, and apoptotic activities through a mechanism that is not well defined. Because the nuclear factor (NF)-kappaB has been shown to regulate proliferation, invasion, and metastasis of tumor cells, we postulated that Zyflamend modulates the activity of NF-kappa B. To test this hypothesis, we examined the effect of this preparation on NF-kappaB and NF-kappaB-regulated gene products. We found that Zyflamend inhibited receptor activator of NF-kappa B ligand-induced osteoclastogenesis, suppressed tumor necrosis factor (TNF)-induced invasion, and potentiated the cytotoxicity induced by TNF and chemotherapeutic agents, all of which are known to require NF-kappa B activation. Zyflamend suppressed NF-kappa B activation induced by both TNF and cigarette smoke condensate. The expression of NF-kappa B-regulated gene products involved in antiapoptosis (inhibitor-of-apoptosis protein 1/2, Bcl-2, Bcl-xL, FADD-like interleukin-1betaconverting enzyme/caspase-8 inhibitory protein, TNF receptor-associated factor-1, and survivin) and angiogenesis (vascular endothelial growth factor, cyclooxygenase-2, intercellular adhesion molecule, and matrix metalloproteinase-9) was also down-regulated by Zyflamend. This correlated with potentiation of cell death induced by TNF and chemotherapeutic agents. Overall, our results indicate that Zyflamend suppresses osteoclastogenesis, inhibits invasion, and potentiates cytotoxicity through down-regulation of NF-kappa B activation and NF-kappa B-regulated gene products.
Collapse
Affiliation(s)
- Santosh K Sandur
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang HW, Lin CP, Chiu JH, Chow KC, Kuo KT, Lin CS, Wang LS. Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. Int J Cancer 2007; 120:2019-27. [PMID: 17266043 DOI: 10.1002/ijc.22402] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dihydrodiol dehydrogenase (DDH) is a member of the aldo-keto reductases superfamily (AKR1C1-AKR1C4), which plays central roles in the metabolism of steroid hormone, prostaglandin and xenobiotics. We have previously detected overexpression of DDH as an indicator of poor prognosis and chemoresistance in human non-small lung cancer (NSCLC). We also found DDH expression to be closely related to chronic inflammatory conditions. The aim of this study was to investigate the links between inflammation, DDH expression and drug resistance in NSCLC cells. We showed that pro-inflammatory mediators including interleukin-6 (IL-6) could induce AKR1C1/1C2 expression in NSCLC cells and increase cellular resistance to cisplatin and adriamycin. This effect was nullified by Safingol, a protein kinase C inhibitor. Moreover, the expression of AKR1C1/1C2 was inversely correlated to NBS1 and apoptosis-inducing factor (AIF). We also showed that IL-6-induced AKR1C1/1C2 expression and drug resistance were inhibited by wogonin and chrysin, which are major flavonoids in Scutellaria baicalensis, a widely used traditional Chinese and Japanese medicine. In conclusion, this study demonstrated novel links of pro-inflammatory signals, AKR1C1/1C2 expression and drug resistance in NSCLC. The protein kinase C pathway may play an important role in this process. Overexpression of AKR1C1/1C2 may serve as a marker of chemoresistance. Further studies are warranted to evaluate wogonin and chrysin as a potential adjuvant therapy for drug-resistant NSCLC, especially for those with AKR1C1/1C2 overexpression.
Collapse
Affiliation(s)
- Hao-Wei Wang
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|