1
|
Fan B, Zhang Y, Luo Q, Hao C, Liao W. Physical and social environmental enrichment alleviate ferroptosis and inflammation with inhibition of TLR4/MyD88/p38MAPK pathway in chronic cerebral hypoperfusion rats. Brain Res Bull 2024; 208:110897. [PMID: 38340777 DOI: 10.1016/j.brainresbull.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
A typical enriched environment (EE), which combines physical activity and social interaction, has been proven to mitigate cognitive impairment caused by chronic cerebral hypoperfusion (CCH). However, it remains unclear how the different components of EE promote cognitive recovery after CCH. This study stripped out the different components of EE into physical environmental enrichment (PE) and social environmental enrichment (SE), and compared the neuroprotective effects of PE, SE and typical EE (PSE) in CCH. The results of novel object recognition and Morris water maze tests showed that PE, SE, and PSE improved cognitive function in CCH rats. Additionally, Nissl and TUNEL staining revealed that three EEs reduced neuronal loss in the hippocampus. PSE exhibited superior neuroprotective and functional improvement effects compared to PE and SE, while there was no significant difference between PE and SE. Furthermore, three EEs reduced lipid peroxidation in the hippocampus with decreasing the levels of MDA and increasing the activities of SOD and GSH. The expression of SLC7A11 and GPX4 was increased, while the level of p53 was reduced in three EEs. This suggested that three EEs inhibited ferroptosis by maintaining the redox homeostasis in the hippocampus. Three EEs reduced the levels of IL-β, TNF-α, and IL-6, thereby inhibiting neuroinflammation. Additionally, Western blotting and immunofluorescence results indicated that three EEs also inhibited the TLR4/MyD88/p38MAPK signaling pathway. These findings collectively demonstrated that the three EEs alleviated hippocampal ferroptosis and neuroinflammation in CCH rats, thereby reducing neuronal loss, which might be associated with the inhibition of the TLR4/MyD88/p38MAPK signaling pathway. Moreover, the study results supported that it is only through the combination of physical exercise and social interaction that the optimal neuroprotective effects can be achieved. These findings provided valuable insights for the prevention and treatment of vascular cognitive impairment.
Collapse
Affiliation(s)
- Bin Fan
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qihang Luo
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chizi Hao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Ding K, Liu C, Li L, Yang M, Jiang N, Luo S, Sun L. Acyl-CoA synthase ACSL4: an essential target in ferroptosis and fatty acid metabolism. Chin Med J (Engl) 2023; 136:2521-2537. [PMID: 37442770 PMCID: PMC10617883 DOI: 10.1097/cm9.0000000000002533] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Long-chain acyl-coenzyme A (CoA) synthase 4 (ACSL4) is an enzyme that esterifies CoA into specific polyunsaturated fatty acids, such as arachidonic acid and adrenic acid. Based on accumulated evidence, the ACSL4-catalyzed biosynthesis of arachidonoyl-CoA contributes to the execution of ferroptosis by triggering phospholipid peroxidation. Ferroptosis is a type of programmed cell death caused by iron-dependent peroxidation of lipids; ACSL4 and glutathione peroxidase 4 positively and negatively regulate ferroptosis, respectively. In addition, ACSL4 is an essential regulator of fatty acid (FA) metabolism. ACSL4 remodels the phospholipid composition of cell membranes, regulates steroidogenesis, and balances eicosanoid biosynthesis. In addition, ACSL4-mediated metabolic reprogramming and antitumor immunity have attracted much attention in cancer biology. Because it facilitates the cross-talk between ferroptosis and FA metabolism, ACSL4 is also a research hotspot in metabolic diseases and ischemia/reperfusion injuries. In this review, we focus on the structure, biological function, and unique role of ASCL4 in various human diseases. Finally, we propose that ACSL4 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410000, China
| |
Collapse
|
3
|
Chen F, Kang R, Liu J, Tang D. The ACSL4 Network Regulates Cell Death and Autophagy in Diseases. BIOLOGY 2023; 12:864. [PMID: 37372148 DOI: 10.3390/biology12060864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Lipid metabolism, cell death, and autophagy are interconnected processes in cells. Dysregulation of lipid metabolism can lead to cell death, such as via ferroptosis and apoptosis, while lipids also play a crucial role in the regulation of autophagosome formation. An increased autophagic response not only promotes cell survival but also causes cell death depending on the context, especially when selectively degrading antioxidant proteins or organelles that promote ferroptosis. ACSL4 is an enzyme that catalyzes the formation of long-chain acyl-CoA molecules, which are important intermediates in the biosynthesis of various types of lipids. ACSL4 is found in many tissues and is particularly abundant in the brain, liver, and adipose tissue. Dysregulation of ACSL4 is linked to a variety of diseases, including cancer, neurodegenerative disorders, cardiovascular disease, acute kidney injury, and metabolic disorders (such as obesity and non-alcoholic fatty liver disease). In this review, we introduce the structure, function, and regulation of ACSL4; discuss its role in apoptosis, ferroptosis, and autophagy; summarize its pathological function; and explore the potential implications of targeting ACSL4 in the treatment of various diseases.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Lai Y, Zeng F, Chen Z, Feng M, Huang Y, Qiu P, Zeng L, Ke Y, Deng G, Gao J. Shikonin Could Be Used to Treat Tubal Pregnancy via Enhancing Ferroptosis Sensitivity. Drug Des Devel Ther 2022; 16:2083-2099. [PMID: 35800255 PMCID: PMC9255906 DOI: 10.2147/dddt.s364441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Albeit oxidative stress has been implied in the pathogenesis of tubal pregnancy (TP), there are scant data to suggest that ferroptosis occurs in TP. Shikonin plays a pivotal role in redox status, but whether it can regulate ferroptosis to treat TP remains unknown. Methods We collected and analyzed ferroptosis-related indices from the villous tissue (VT) of women suffering from TP and from women with a normal pregnancy. In vitro, we used shikonin and/or RAS-selective lethal 3 (RSL3) to intervene HTR-8/SVneo cells and further detected ferroptosis indices and cell functions. Finally, the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) is pharmacologically activated to explore the effect of Nrf2 on shikonin regulating ferroptosis. Results Increased malondialdehyde content, reduced levels of glutathione and glutathione peroxidase (GPx), and upregulated protein expression which promoted ferroptosis were observed in the VT of TP patients, suggesting that ferroptosis occurred during TP. In vitro, shikonin enhanced ferroptosis sensitivity in HTR-8/SVneo cells induced by RSL3 via amplifying lipid peroxidation, which mainly included increasing cellular reactive oxygen species (ROS), lipid ROS and Fe2+ level. RSL3 and/or shikonin inhibited Nrf2 and downregulated protein expression of SLC7A11 and GPx4 caused by RSL3 + shikonin co-treatment, which could be reversed under activation of Nrf2. Hence, shikonin facilitated lipid peroxidation by inhibiting Nrf2 signaling. Additionally, shikonin and/or RSL3 potently inhibited the invasion and migration of HTR-8/SVneo cells. Conclusion This study firstly showed that ferroptosis may be involved in TP pathogenesis and shikonin potentially targeted ferroptosis to treat TP.
Collapse
Affiliation(s)
- Yuling Lai
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, People’s Republic of China
| | - Fuling Zeng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhenyue Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Min Feng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yanxi Huang
- Department of Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Pin Qiu
- Department of Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Lihua Zeng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yan Ke
- Department of Gynaecology, Shenzhen Chinese and Western Medicine Hospital, Shenzhen, People’s Republic of China
| | - Gaopi Deng
- Department of Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jie Gao
- Department of Gynaecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Correspondence: Jie Gao; Gaopi Deng, Email ;
| |
Collapse
|
5
|
Feng Q, Liu M, Cheng Y, Wu X. Comparative Transcriptome Analysis Reveals the Process of Ovarian Development and Nutrition Metabolism in Chinese Mitten Crab, Eriocheir Sinensis. Front Genet 2022; 13:910682. [PMID: 35685440 PMCID: PMC9171014 DOI: 10.3389/fgene.2022.910682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian development is a key physiological process that holds great significance in the reproduction of the Chinese mitten crab (Eriocheir sinensis), which is an economically important crab species for aquaculture. However, there is limited knowledge for the regulatory mechanisms of ovarian development. To study the molecular mechanisms of its ovarian development, transcriptome analysis was performed in the ovary and hepatopancreas of E. sinensis during ovarian stages I (oogonium proliferation), II (endogenous vitellogenesis), and III (exogenous vitellogenesis). The results showed that 5,520 and 226 genes were differentially expressed in the ovary and hepatopancreas, respectively. For KEGG enrichment analysis, the differentially expressed genes in the ovary were significantly clustered in phototransduction-fly, phagosome, and ECM-receptor interaction. Significantly enriched pathways in the hepatopancreas included fatty acid biosynthesis, fatty acid metabolism, and riboflavin metabolism. Further analysis showed that 25 genes and several pathways were mainly involved in oogenesis, including the ubiquitin-proteasome pathway, cyclic AMP-protein kinase A signaling pathway, and mitogen-activated protein kinase signaling pathway. Twenty-five candidate genes involved in vitellogenesis and endocrine regulation were identified, such as vitellogenin, vitellogenin receptor, estrogen sulfotransferase, ecdysone receptor, prostaglandin reductase 1, hematopoietic prostaglandin D synthase and juvenile hormone acid O-methyltransferase. Fifty-six genes related to nutritional metabolism were identified, such as fatty acid synthase, long-chain-fatty-acid-CoA ligase 4, 1-acyl-sn-glycerol-3-phosphate acyltransferase 4, fatty acid-binding protein, and glycerol-3-phosphate acyltransferase 1. These results highlight the genes involved in ovarian development and nutrition deposition, which enhance our understanding of the regulatory pathways and physiological processes of crustacean ovarian development.
Collapse
Affiliation(s)
- Qiangmei Feng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Meimei Liu
- Key Laboratory of Marine Biotechnology of Jiangsu Province, Jiangsu Ocean University, Lianyungang, China
| | - Yongxu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.,National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.,National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Gan J, Gu T, Hong L, Cai G. Ferroptosis-related genes involved in animal reproduction: An Overview. Theriogenology 2022; 184:92-99. [DOI: 10.1016/j.theriogenology.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
|
7
|
Yang Y, Wang Z, Wang J, Lyu F, Xu K, Mu W. Histopathological, hematological, and biochemical changes in high-latitude fish Phoxinus lagowskii exposed to hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:919-938. [PMID: 33860915 DOI: 10.1007/s10695-021-00947-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
Hypoxia is one of the most significant threats to biodiversity in aquatic systems. The ability of high-latitude fish to tolerate hypoxia with histological and physiological responses is mostly unknown. We address this knowledge gap by investigating the effects of exposures to different oxygen levels using Phoxinus lagowskii (a high-latitude, cold-water fish) as a model. Fish were exposed to different oxygen levels (0.5 mg/L and 3 mg/L) for 24 h. The loss of equilibrium (LOE), an indicator of acute hypoxia tolerance, was 0.21 ± 0.01 mg/L, revealing the ability of fish to tolerate low-oxygen conditions. We sought to determine if, in P. lagowskii, the histology of gills and liver, blood indicators, enzyme activities of carbohydrate and lipid metabolism, and antioxidants changed to relieve stress in response to acute hypoxia. Notably, changes in vigorous jumping behavior under low oxygen revealed the exceptional hypoxia acclimation response compared with other low-latitude fish. A decrease in blood parameters, including RBC, WBC, and Hb, as well as an increase in MCV was observed compared to the controls. The increased total area in lamella and decreased ILCM volume in P. lagowskii gills were detected in the present study. Our results also showed the size of vacuoles in the livers of the hypoxic fish shrunk. Interestingly, an increase in the enzyme activity of lipid metabolism but not glucose metabolism was observed in the groups exposed to hypoxia at 6 h and 24 h. After combining histology and physiology results, our findings provide evidence that lipid metabolism plays a crucial role in enhancing hypoxia acclimation in P. lagowskii. Additionally, SOD activity significantly increased during hypoxia, suggesting the presence of an antioxidant response of P. lagowskii during hypoxia. High expression levels of lipogenesis and lipolysis-related genes were detected in the 6 h 3 mg/L and 24 h 3 mg/L hypoxia group. Enhanced expression of lipid-metabolism genes (ALS4, PGC-1, and FASN) was detected during hypoxia exposure. Together, these data suggest that P. lagowskii's ability to tolerate hypoxic events is likely mediated by a comprehensive strategy.
Collapse
Affiliation(s)
- Yuting Yang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Zhen Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Jing Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Fengming Lyu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Kexin Xu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Weijie Mu
- Key Laboratory of Biodiversity of Aquatic Organisms, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
8
|
Dattilo MA, Benzo Y, Herrera LM, Prada JG, Lopez PF, Caruso CM, Lasaga M, García CI, Paz C, Maloberti PM. Regulation and role of Acyl-CoA synthetase 4 in glial cells. J Steroid Biochem Mol Biol 2021; 208:105792. [PMID: 33246155 DOI: 10.1016/j.jsbmb.2020.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
Acyl-CoA synthetase 4 (Acsl4), an enzyme involved in arachidonic acid (AA) metabolism, participates in physiological and pathological processes such as steroidogenesis and cancer. The role of Acsl4 in neurons and in nervous system development has also been documented but little is known regarding its functionality in glial cells. In turn, several processes in glial cells, including neurosteroidogenesis, stellation and AA uptake, are regulated by cyclic adenosine monophosphate (cAMP) signal. In this context, the aim of this work was to analyze the expression and functional role of Acsl4 in primary rat astrocyte cultures and in the C6 glioma cell line by chemical inhibition and stable silencing, respectively. Results show that Acsl4 expression was regulated by cAMP in both models and that cAMP stimulation of steroidogenic acute regulatory protein mRNA levels was reduced by Acsl4 inhibition or silencing. Also, Acsl4 inhibition reduced progesterone synthesis stimulated by cAMP and also affected cAMP-induced astrocyte stellation, decreasing process elongation and increasing branching complexity. Similar effects were observed for Acsl4 silencing on cAMP-induced C6 cell morphological shift. Moreover, Acsl4 inhibition and silencing reduced proliferation and migration of both cell types. Acsl4 silencing in C6 cells reduced the capacity for colony proliferation and neurosphere formation, the latter ability also being abolished by Acsl4 inhibition. In sum, this work presents novel evidence of Acsl4 involvement in neurosteroidogenesis and the morphological changes of glial cells promoted by cAMP. Furthermore, Acsl4 participates in migration and proliferation, also affecting cell self-renewal. Altogether, these findings provide insights into Acsl4 functions in glial cells.
Collapse
Affiliation(s)
- Melina A Dattilo
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Yanina Benzo
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Lucia M Herrera
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Jesica G Prada
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Paula F Lopez
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Carla M Caruso
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología, Buenos Aires, Argentina
| | - Mercedes Lasaga
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología, Buenos Aires, Argentina
| | - Corina I García
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina; Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cristina Paz
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina
| | - Paula M Maloberti
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Ferroptosis, trophoblast lipotoxic damage, and adverse pregnancy outcome. Placenta 2021; 108:32-38. [PMID: 33812183 DOI: 10.1016/j.placenta.2021.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023]
Abstract
Programmed cell death is a central process in the control of tissue development, organismal physiology, and disease. Ferroptosis is a recently identified form of programmed cell death that is uniquely defined by redox-active iron-dependent hydroxy-peroxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids and a loss of lipid peroxidation repair capacity. This distinctive form of lipotoxic cell death has been recently implicated in multiple human diseases, spanning ischemia-reperfusion heart injury, brain damage, acute kidney injury, cancer, and asthma. Intriguingly, settings that have been associated with ferroptosis are linked to placental physiology and trophoblast injury. Such circumstances include hypoxia-reperfusion during placental development, physiological uterine contractions or pathological changes in placental bed perfusion, the abundance of trophoblastic iron, evidence for lipotoxicity during the pathophysiology of major placental disorders such as preeclampsia, fetal growth restriction, and preterm birth, and reduced glutathione peroxidation capacity and lipid peroxidation repair during placental injury. We recently interrogated placental ferroptosis in placental dysfunction in human and mouse pregnancy, dissected its relevance to placental injury, and validated the role of glutathione peroxidase-4 in guarding placental trophoblasts against ferroptotic injury. We also uncovered a role for the phospholipase PLA2G6 (PNPLA9) in attenuating trophoblast ferroptosis. Here, we summarize current data on trophoblast ferroptosis, and the role of several proteins and microRNAs as regulators of this process. Our text offers insights into new opportunities for regulating ferroptosis as a means for protecting placental trophoblasts against lipotoxic injury.
Collapse
|
10
|
Ansarey SH. Inflammation and JNK's Role in Niacin-GPR109A Diminished Flushed Effect in Microglial and Neuronal Cells With Relevance to Schizophrenia. Front Psychiatry 2021; 12:771144. [PMID: 34916973 PMCID: PMC8668869 DOI: 10.3389/fpsyt.2021.771144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is a neuropsychiatric illness with no single definitive aetiology, making its treatment difficult. Antipsychotics are not fully effective because they treat psychosis rather than the cognitive or negative symptoms. Antipsychotics fail to alleviate symptoms when patients enter the chronic stage of illness. Topical application of niacin showed diminished skin flush in the majority of patients with schizophrenia compared to the general population who showed flushing. The niacin skin flush test is useful for identifying patients with schizophrenia at their ultra-high-risk stage, and understanding this pathology may introduce an effective treatment. This review aims to understand the pathology behind the diminished skin flush response, while linking it back to neurons and microglia. First, it suggests that there are altered proteins in the GPR109A-COX-prostaglandin pathway, inflammatory imbalance, and kinase signalling pathway, c-Jun N-terminal kinase (JNK), which are associated with diminished flush. Second, genes from the GPR109A-COX-prostaglandin pathway were matched against the 128-loci genome wide association study (GWAS) for schizophrenia using GeneCards, suggesting that G-coupled receptor-109A (GPR109A) may have a genetic mutation, resulting in diminished flush. This review also suggests that there may be increased pro-inflammatory mediators in the GPR109A-COX-prostaglandin pathway, which contributes to the diminished flush pathology. Increased levels of pro-inflammatory markers may induce microglial-activated neuronal death. Lastly, this review explores the role of JNK on pro-inflammatory mediators, proteins in the GPR109A-COX-prostaglandin pathway, microglial activation, and neuronal death. Inhibiting JNK may reverse the changes observed in the diminished flush response, which might make it a good therapeutic target.
Collapse
Affiliation(s)
- Sabrina H Ansarey
- Department of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Sen P, Kan CFK, Singh AB, Rius M, Kraemer FB, Sztul E, Liu J. Identification of p115 as a novel ACSL4 interacting protein and its role in regulating ACSL4 degradation. J Proteomics 2020; 229:103926. [PMID: 32736139 DOI: 10.1016/j.jprot.2020.103926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Long-chain acyl-CoA synthetase 4 (ACSL4) is an ACSL family member that exhibits unique substrate preference for arachidonic acid. ACSL4 has a functional role in hepatic lipid metabolism, and is dysregulated in non-alcoholic fatty liver disease. Our previous studies demonstrated AA-induced ACSL4 degradation via the ubiquitin-proteasomal pathway (UPP). To characterize this unique mechanism, we applied proteomic approaches coupled with LC-MS/MS and identified the intracellular general vesicular trafficking protein p115 as the prominent ACSL4 interacting protein in HepG2 cells. Importantly, we found that AA greatly enhanced p115-ACSL4 association. Combined AA treatment with p115 knockdown suggested an additive role for p115 in AA-driven ACSL4 degradation. Furthermore, in vivo studies revealed a significant upregulation of p115 protein in the liver of mice fed a high fat diet that has been previously reported to induce downregulation of ACSL4 protein expression. This new finding has revealed a novel inverse correlation between ACSL4 and p115 proteins in the liver. p115 is crucial for ER-Golgi trafficking and Golgi biogenesis. Thus far, p115 has not been reported to interact with UPP proteins nor with FA metabolism enzymes. Overall, our current study provides a novel insight into the connection between ER-Golgi trafficking and UPP machinery with p115 as a critical mediator. SIGNIFICANCE: ACSL4 is uniquely regulated by its own substrate AA, and in this study, we have found that AA leads to an enhanced interaction of ACSL4 with a novel interacting partner, the intracellular vesicle trafficking protein p115. The latter is crucial for Golgi biogenesis and ER-Golgi transport and is not known to be associated with the ubiquitin-proteasome machinery or protein stability regulation until now. This study is the first report of a possible coordination of the protein secretion pathway and the UPP in regulating a key metabolic enzyme. Our study lays the foundation to this unique crosstalk between the two major cellular pathways- secretion and protein degradation and opens up a new avenue to explore this partnership in controlling hepatic lipid metabolism. Overall, the complete elucidation of the AA-mediated ACSL4 regulation will help identify key targets in participating pathways that can be further studied for the development of therapeutics against diseases such as NAFLD, NASH and hepatocarcinoma, which are associated with dysregulated ACSL4 function.
Collapse
Affiliation(s)
- Progga Sen
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Chin Fung Kelvin Kan
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Amar B Singh
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Monica Rius
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Fredric B Kraemer
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America; Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America; Stanford Diabetes Research Center, United States of America.
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jingwen Liu
- Department of Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, United States of America.
| |
Collapse
|
12
|
Chang CA, Lauzon J, Kirton A, Argiropoulos B. An ACSL4 Hemizygous Intragenic Deletion in a Patient With Childhood Stroke. Pediatr Neurol 2019; 100:100-101. [PMID: 31481330 DOI: 10.1016/j.pediatrneurol.2019.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Caitlin A Chang
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Julie Lauzon
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute for Child and Maternal Health, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Adam Kirton
- Alberta Children's Hospital Research Institute for Child and Maternal Health, Alberta Children's Hospital, Calgary, Alberta, Canada; Department of Pediatrics and Clinical Neurosciences, Pediatric Neurology, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Bob Argiropoulos
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute for Child and Maternal Health, Alberta Children's Hospital, Calgary, Alberta, Canada; Genetic Laboratory Services, Cytogenetics Laboratory, Alberta Children's Hospital, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
Role of acyl-CoA synthetase ACSL4 in arachidonic acid metabolism. Prostaglandins Other Lipid Mediat 2019; 144:106363. [DOI: 10.1016/j.prostaglandins.2019.106363] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
|
14
|
Yan N, Zhang JJ. The Emerging Roles of Ferroptosis in Vascular Cognitive Impairment. Front Neurosci 2019; 13:811. [PMID: 31447633 PMCID: PMC6691122 DOI: 10.3389/fnins.2019.00811] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular cognitive impairment (VCI) is a clinical syndrome that encompasses all forms of cognitive deficits caused by cerebrovascular disease, from mild cognitive impairment to dementia. Vascular dementia, the second most common type of dementia after Alzheimer’s disease (AD), accounts for approximately 20% of dementia patients. Ferroptosis is a recently defined iron-dependent form of cell death, which is distinct from apoptosis, necrosis, autophagy, and other forms of cell death. Emerging evidence suggests that ferroptosis has significant implications in neurological diseases such as stroke, traumatic brain injury, and AD. Additionally, ferroptosis inhibition has an obvious neuroprotective effect and ameliorates cognitive impairment in various animal models. Here, we summarize the underlying mechanisms of ferroptosis and review the close relationship between ferroptosis and VCI.
Collapse
Affiliation(s)
- Nao Yan
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun-Jian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Singh AB, Kan CFK, Kraemer FB, Sobel RA, Liu J. Liver-specific knockdown of long-chain acyl-CoA synthetase 4 reveals its key role in VLDL-TG metabolism and phospholipid synthesis in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2019; 316:E880-E894. [PMID: 30721098 PMCID: PMC6580179 DOI: 10.1152/ajpendo.00503.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-chain acyl-CoA synthetase 4 (ACSL4) has a unique substrate specificity for arachidonic acid. Hepatic ACSL4 is coregulated with the phospholipid (PL)-remodeling enzyme lysophosphatidylcholine (LPC) acyltransferase 3 by peroxisome proliferator-activated receptor δ to modulate the plasma triglyceride (TG) metabolism. In this study, we investigated the acute effects of hepatic ACSL4 deficiency on lipid metabolism in adult mice fed a high-fat diet (HFD). Adenovirus-mediated expression of a mouse ACSL4 shRNA (Ad-shAcsl4) in the liver of HFD-fed mice led to a 43% reduction of hepatic arachidonoyl-CoA synthetase activity and a 53% decrease in ACSL4 protein levels compared with mice receiving control adenovirus (Ad-shLacZ). Attenuated ACSL4 expression resulted in a substantial decrease in circulating VLDL-TG levels without affecting plasma cholesterol. Lipidomics profiling revealed that knocking down ACSL4 altered liver PL compositions, with the greatest impact on accumulation of abundant LPC species (LPC 16:0 and LPC 18:0) and lysophosphatidylethanolamine (LPE) species (LPE 16:0 and LPE 18:0). In addition, fasting glucose and insulin levels were higher in Ad-shAcsl4-transduced mice versus control (Ad-shLacZ). Glucose tolerance testing further indicated an insulin-resistant phenotype upon knockdown of ACSL4. These results provide the first in vivo evidence that ACSL4 plays a role in plasma TG and glucose metabolism and hepatic PL synthesis of hyperlipidemic mice.
Collapse
Affiliation(s)
- Amar B Singh
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Chin Fung K Kan
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Ochsner Clinical School, University of Queensland School of Medicine , New Orleans, Louisiana
| | - Fredric B Kraemer
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Medicine, Stanford University School of Medicine , Stanford, California
- Stanford Diabetes Research Center, Stanford University School of Medicine , Stanford, California
| | - Raymond A Sobel
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Department of Pathology, Stanford University School of Medicine , Stanford, California
| | - Jingwen Liu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
16
|
Jia M, Meng D, Chen M, Li T, Zhang YQ, Yao A. Drosophila homolog of the intellectual disability-related long-chain acyl-CoA synthetase 4 is required for neuroblast proliferation. J Genet Genomics 2019; 46:5-17. [DOI: 10.1016/j.jgg.2018.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 11/27/2022]
|
17
|
Orlando UD, Castillo AF, Medrano MAR, Solano AR, Maloberti PM, Podesta EJ. Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression. Biochem Pharmacol 2019; 159:52-63. [DOI: 10.1016/j.bcp.2018.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
|
18
|
Cruz-Gil S, Sanchez-Martinez R, Gomez de Cedron M, Martin-Hernandez R, Vargas T, Molina S, Herranz J, Davalos A, Reglero G, Ramirez de Molina A. Targeting the lipid metabolic axis ACSL/SCD in colorectal cancer progression by therapeutic miRNAs: miR-19b-1 role. J Lipid Res 2018; 59:14-24. [PMID: 29074607 PMCID: PMC5748493 DOI: 10.1194/jlr.m076752] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
An abnormal acyl-CoA synthetase/stearoyl-CoA desaturase (ACSL/SCD) lipid network fuels colon cancer progression, endowing cells with invasive and migratory properties. Therapies against this metabolic network may be useful to improve clinical outcomes. Because micro-RNAs (miRNAs/miRs) are important epigenetic regulators, we investigated novel miRNAs targeting this pro-tumorigenic axis; hence to be used as therapeutic or prognostic miRNAs. Thirty-one putative common miRNAs were predicted to simultaneously target the three enzymes comprising the ACSL/SCD network. Target validation by quantitative RT-PCR, Western blotting, and luciferase assays showed miR-544a, miR-142, and miR-19b-1 as major regulators of the metabolic axis, ACSL/SCD Importantly, lower miR-19b-1 expression was associated with a decreased survival rate in colorectal cancer (CRC) patients, accordingly with ACSL/SCD involvement in patient relapse. Finally, miR-19b-1 regulated the pro-tumorigenic axis, ACSL/SCD, being able to inhibit invasion in colon cancer cells. Because its expression correlated with an increased survival rate in CRC patients, we propose miR-19b-1 as a potential noninvasive biomarker of disease-free survival and a promising therapeutic miRNA in CRC.
Collapse
Affiliation(s)
- Silvia Cruz-Gil
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Ruth Sanchez-Martinez
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Marta Gomez de Cedron
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Roberto Martin-Hernandez
- Bioinformatics Unit, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Teodoro Vargas
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Susana Molina
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Jesús Herranz
- Biostatistics Unit, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Davalos
- Disorders of Lipid Metabolism and Molecular Nutrition Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Ana Ramirez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer Group, Instituto Madrileño de Estudios Avanzados (IMDEA) Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
19
|
Complementary ACSL isoforms contribute to a non-Warburg advantageous energetic status characterizing invasive colon cancer cells. Sci Rep 2017; 7:11143. [PMID: 28894242 PMCID: PMC5593891 DOI: 10.1038/s41598-017-11612-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/25/2017] [Indexed: 01/07/2023] Open
Abstract
Metabolic reprogramming is one of cancer hallmarks. Here, we focus on functional differences and individual contribution of acyl coA synthetases (ACSL) isoforms to the previously described ACSL/stearoyl-CoA desaturase (ACSL1/ACSL4/SCD) metabolic network causing invasion and poor prognosis in colorectal cancer (CRC). ACSL4 fuels proliferation and migration accompanied by a more glycolytic phenotype. Conversely, ACSL1 stimulates invasion displaying a lower basal respiratory rate. Acylcarnitines elevation, polyunsaturated fatty acids (PUFA) lower levels, and monounsaturated fatty acids (MUFA) upregulation characterize the individual overexpression of ACSL1, ACSL4 and SCD, respectively. However, the three enzymes simultaneous overexpression results in upregulated phospholipids and urea cycle derived metabolites. Thus, the metabolic effects caused by the network are far from being caused by the individual contributions of each enzyme. Furthermore, ACSL/SCD network produces more energetically efficient cells with lower basal respiration levels and upregulated creatine pathway. These features characterize other invasive CRC cells, thus, ACSL/SCD network exemplifies specific metabolic adaptations for invasive cancer cells.
Collapse
|
20
|
Sánchez-Martínez R, Cruz-Gil S, Gómez de Cedrón M, Álvarez-Fernández M, Vargas T, Molina S, García B, Herranz J, Moreno-Rubio J, Reglero G, Pérez-Moreno M, Feliu J, Malumbres M, Ramírez de Molina A. A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy. Oncotarget 2016; 6:38719-36. [PMID: 26451612 PMCID: PMC4770732 DOI: 10.18632/oncotarget.5340] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
The alterations in carbohydrate metabolism that fuel tumor growth have been extensively studied. However, other metabolic pathways involved in malignant progression, demand further understanding. Here we describe a metabolic acyl-CoA synthetase/stearoyl-CoA desaturase ACSL/SCD network causing an epithelial-mesenchymal transition (EMT) program that promotes migration and invasion of colon cancer cells. The mesenchymal phenotype produced upon overexpression of these enzymes is reverted through reactivation of AMPK signaling. Furthermore, this network expression correlates with poorer clinical outcome of stage-II colon cancer patients. Finally, combined treatment with chemical inhibitors of ACSL/SCD selectively decreases cancer cell viability without reducing normal cells viability. Thus, ACSL/SCD network stimulates colon cancer progression through conferring increased energetic capacity and invasive and migratory properties to cancer cells, and might represent a new therapeutic opportunity for colon cancer treatment.
Collapse
Affiliation(s)
- Ruth Sánchez-Martínez
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Silvia Cruz-Gil
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | | | - Teodoro Vargas
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Susana Molina
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Belén García
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Jesús Herranz
- Biostatistics Unit, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Juan Moreno-Rubio
- Medical Oncology, La Paz University Hospital (IdiPAZ-UAM), Madrid, Spain.,Precision Oncology Laboratory (POL), Infanta Sofía University Hospital, Madrid, Spain
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Mirna Pérez-Moreno
- Epithelial Cell Biology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jaime Feliu
- Medical Oncology, La Paz University Hospital (IdiPAZ-UAM), Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
21
|
Seeger DR, Murphy CC, Murphy EJ. Astrocyte arachidonate and palmitate uptake and metabolism is differentially modulated by dibutyryl-cAMP treatment. Prostaglandins Leukot Essent Fatty Acids 2016; 110:16-26. [PMID: 27255639 DOI: 10.1016/j.plefa.2016.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022]
Abstract
Astrocytes play a vital role in brain lipid metabolism; however the impact of the phenotypic shift in astrocytes to a reactive state on arachidonic acid metabolism is unknown. Therefore, we determined the impact of dibutyryl-cAMP (dBcAMP) treatment on radiolabeled arachidonic acid ([1-(14)C]20:4n-6) and palmitic acid ([1-(14)C]16:0) uptake and metabolism in primary cultured murine cortical astrocytes. In dBcAMP treated astrocytes, total [1-(14)C]20:4n-6 uptake was increased 1.9-fold compared to control, while total [1-(14)C]16:0 uptake was unaffected. Gene expression of long-chain acyl-CoA synthetases (Acsl), acyl-CoA hydrolase (Acot7), fatty acid binding protein(s) (Fabp) and alpha-synuclein (Snca) were determined using qRT-PCR. dBcAMP treatment increased expression of Acsl3 (4.8-fold) and Acsl4 (1.3-fold), which preferentially use [1-(14)C]20:4n-6 and are highly expressed in astrocytes, consistent with the increase in [1-(14)C]20:4n-6 uptake. However, expression of Fabp5 and Fabp7 were significantly reduced by 25% and 45%, respectively. Acot7 (20%) was also reduced, suggesting dBcAMP treatment favors acyl-CoA formation. dBcAMP treatment enhanced [1-(14)C]20:4n-6 (2.2-fold) and [1-(14)C]16:0 (1.6-fold) esterification into total phospholipids, but the greater esterification of [1-(14)C]20:4n-6 is consistent with the observed uptake through increased Acsl, but not Fabp expression. Although total [1-(14)C]16:0 uptake was not affected, there was a dramatic decrease in [1-(14)C]16:0 in the free fatty acid pool as esterification into the phospholipid pool was increased, which is consistent with the increase in Acsl3 and Acsl4 expression. In summary, our data demonstrates that dBcAMP treatment increases [1-(14)C]20:4n-6 uptake in astrocytes and this increase appears to be due to increased expression of Acsl3 and Acsl4 coupled with a reduction in Acot7 expression.
Collapse
Affiliation(s)
- D R Seeger
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - C C Murphy
- Department of Nutrition, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - E J Murphy
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
22
|
Kan CFK, Singh AB, Dong B, Shende VR, Liu J. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:577-87. [PMID: 25645621 DOI: 10.1016/j.bbalip.2015.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 12/29/2022]
Abstract
The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals. Examination of transcriptional activators of the ACSL family revealed an increased hepatic expression of PPARδ but not PPARα in HCHFD fed hamsters. To explore a role of PPARδ in dietary cholesterol-mediated upregulation of ACSL4, we administered a PPARδ specific agonist L165041 to normolipidemic and dyslipidemic hamsters. We observed significant increases of hepatic ACSL4 mRNA and protein levels in all L165041-treated hamsters as compared to control animals. The induction of ACSL4 expression by L165041 in liver tissue in vivo was recapitulated in human primary hepatocytes and hepatocytes isolated from hamster and mouse. Moreover, employing the approach of adenovirus-mediated gene knockdown, we showed that depletion of PPARδ in hamster hepatocytes specifically reduced ACSL4 expression. Finally, utilizing HepG2 as a model system, we demonstrate that PPARδ activation leads to increased ACSL4 promoter activity, mRNA and protein expression, and consequently higher arachidonoyl-CoA synthetase activity. Taken together, we have discovered a novel PPARδ-mediated regulatory mechanism for ACSL4 expression in liver tissue and cultured hepatic cells.
Collapse
Affiliation(s)
- Chin Fung Kelvin Kan
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Amar Bahadur Singh
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Bin Dong
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Vikram Ravindra Shende
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States; Department of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Jingwen Liu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States.
| |
Collapse
|
23
|
Modi HR, Basselin M, Rapoport SI. Valnoctamide, a non-teratogenic amide derivative of valproic acid, inhibits arachidonic acid activation in vitro by recombinant acyl-CoA synthetase-4. Bipolar Disord 2014; 16:875-80. [PMID: 25041123 PMCID: PMC4554599 DOI: 10.1111/bdi.12220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/08/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Valproic acid (VPA), a mood stabilizer used for treating bipolar disorder (BD), uncompetitively inhibits acylation of arachidonic acid (AA) by recombinant AA-selective acyl-CoA synthetase 4 (Acsl4) at an enzyme inhibition constant (Ki ) of 25 mM. Inhibition may account for VPA's ability to reduce AA turnover in brain phospholipids of unanesthetized rats and to be therapeutic in BD. However, VPA is teratogenic. We tested whether valnoctamide (VCD), a non-teratogenic amide derivative of a VPA chiral isomer, which had antimanic potency in a phase III BD trial, also inhibits recombinant Acsl4. METHODS Rat Acsl4-flag protein was expressed in Escherichia coli. We used Michaelis-Menten kinetics to characterize and quantify the ability of VCD to inhibit conversion of AA to AA-CoA by recombinant Acsl4 in vitro. RESULTS Acsl4-mediated activation of AA to AA-CoA by Acsl4 was inhibited uncompetitively by VCD, with a Ki of 6.38 mM. CONCLUSIONS VCD's ability to uncompetitively inhibit AA activation to AA-CoA by Acsl4, at a lower Ki than VPA, suggests that, like VPA, VCD may reduce AA turnover in rat brain phospholipids. If so, VCD and other non-teratogenic Acsl4 inhibitors might be considered further for treating BD.
Collapse
Affiliation(s)
- Hiren R Modi
- Brain Physiology and Metabolism Section; Laboratory of Neurosciences; National Institute on Aging; National Institutes of Health; Bethesda MD USA
| | - Mireille Basselin
- Brain Physiology and Metabolism Section; Laboratory of Neurosciences; National Institute on Aging; National Institutes of Health; Bethesda MD USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section; Laboratory of Neurosciences; National Institute on Aging; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
24
|
Kan CFK, Singh AB, Stafforini DM, Azhar S, Liu J. Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation. J Lipid Res 2014; 55:1657-67. [PMID: 24879802 PMCID: PMC4109760 DOI: 10.1194/jlr.m045971] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Indexed: 01/16/2023] Open
Abstract
ACSL4 is a member of the long-chain acyl-CoA synthetase (ACSL) family with a marked preference for arachidonic acid (AA) as its substrate. Although an association between elevated levels of ACSL4 and hepatosteatosis has been reported, the function of ACSL4 in hepatic FA metabolism and the regulation of its functional expression in the liver remain poorly defined. Here we provide evidence that AA selectively downregulates ACSL4 protein expression in hepatic cells. AA treatment decreased the half-life of ACSL4 protein in HepG2 cells by approximately 4-fold (from 17.3 ± 1.8 h to 4.2 ± 0.4 h) without causing apoptosis. The inhibitory action of AA on ACSL4 protein stability could not be prevented by rosiglitazone or inhibitors that interfere with the cellular pathways involved in AA metabolism to biologically active compounds. In contrast, treatment of cells with inhibitors specific for the proteasomal degradation pathway largely prevented the AA-induced ACSL4 degradation. We further show that ACSL4 is intrinsically ubiquitinated and that AA treatment can enhance its ubiquitination. Collectively, our studies have identified a novel substrate-induced posttranslational regulatory mechanism by which AA downregulates ACSL4 protein expression in hepatic cells.
Collapse
Affiliation(s)
- Chin Fung Kelvin Kan
- Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Amar Bahadur Singh
- Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | | | - Salman Azhar
- Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Jingwen Liu
- Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| |
Collapse
|
25
|
Küch EM, Vellaramkalayil R, Zhang I, Lehnen D, Brügger B, Sreemmel W, Ehehalt R, Poppelreuther M, Füllekrug J. Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fatty acids towards phosphatidylinositol. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:227-39. [PMID: 24201376 DOI: 10.1016/j.bbalip.2013.10.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/20/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023]
Abstract
The acyl-CoA synthetase 4 (ACSL4) has been implicated in carcinogenesis and neuronal development. Acyl-CoA synthetases are essential enzymes of lipid metabolism, and ACSL4 is distinguished by its preference for arachidonic acid. Two human ACSL4 isoforms arising from differential splicing were analyzed by ectopic expression in COS cells. We found that the ACSL4_v1 variant localized to the inner side of the plasma membrane including microvilli, and was also present in the cytosol. ACSL4_v2 contains an additional N-terminal hydrophobic region; this isoform was located at the endoplasmic reticulum and on lipid droplets. A third isoform was designed de novo by appending a mitochondrial targeting signal. All three ACSL4 variants showed the same specific enzyme activity. Overexpression of the isoenzymes increased cellular uptake of arachidonate to the same degree, indicating that the metabolic trapping of fatty acids is independent of the subcellular localization. Remarkably, phospholipid metabolism was changed by ACSL4 expression. Labeling with arachidonate showed that the amount of newly synthesized phosphatidylinositol was increased by all three ACSL4 isoenzymes but not by ACSL1. This was dependent on the expression level and the localization of the ACSL4 isoform. We conclude that in our model system exogenous fatty acids are channeled preferentially towards phosphatidylinositol by ACSL4 overexpression. The differential localization of the endogenous isoenzymes may provide compartment specific precursors of this anionic phospholipid important for many signaling processes.
Collapse
|
26
|
dAcsl, the Drosophila ortholog of acyl-CoA synthetase long-chain family member 3 and 4, inhibits synapse growth by attenuating bone morphogenetic protein signaling via endocytic recycling. J Neurosci 2014; 34:2785-96. [PMID: 24553921 DOI: 10.1523/jneurosci.3547-13.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fatty acid metabolism plays an important role in brain development and function. Mutations in acyl-CoA synthetase long-chain family member 4 (ACSL4), which converts long-chain fatty acids to acyl-CoAs, result in nonsyndromic X-linked mental retardation. ACSL4 is highly expressed in the hippocampus, a structure critical for learning and memory. However, the underlying mechanism by which mutations of ACSL4 lead to mental retardation remains poorly understood. We report here that dAcsl, the Drosophila ortholog of ACSL4 and ACSL3, inhibits synaptic growth by attenuating BMP signaling, a major growth-promoting pathway at neuromuscular junction (NMJ) synapses. Specifically, dAcsl mutants exhibited NMJ overgrowth that was suppressed by reducing the doses of the BMP pathway components, accompanied by increased levels of activated BMP receptor Thickveins (Tkv) and phosphorylated mothers against decapentaplegic (Mad), the effector of the BMP signaling at NMJ terminals. In addition, Rab11, a small GTPase involved in endosomal recycling, was mislocalized in dAcsl mutant NMJs, and the membrane association of Rab11 was reduced in dAcsl mutant brains. Consistently, the BMP receptor Tkv accumulated in early endosomes but reduced in recycling endosomes in dAcsl mutant NMJs. dAcsl was also required for the recycling of photoreceptor rhodopsin in the eyes, implying a general role for dAcsl in regulating endocytic recycling of membrane receptors. Importantly, expression of human ACSL4 rescued the endocytic trafficking and NMJ phenotypes of dAcsl mutants. Together, our results reveal a novel mechanism whereby dAcsl facilitates Rab11-dependent receptor recycling and provide insights into the pathogenesis of ACSL4-related mental retardation.
Collapse
|
27
|
Gubern C, Camós S, Ballesteros I, Rodríguez R, Romera VG, Cañadas R, Lizasoain I, Moro MA, Serena J, Mallolas J, Castellanos M. miRNA expression is modulated over time after focal ischaemia: up-regulation of miR-347 promotes neuronal apoptosis. FEBS J 2013; 280:6233-46. [PMID: 24112606 DOI: 10.1111/febs.12546] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023]
Abstract
Despite the large number of molecules reported as being over-expressed after ischaemia, little is known regarding their regulation. miRNAs are potent post-transcriptional regulators of gene expression, and reports have shown differentially miRNA expression in response to focal cerebral ischaemia. The present study analysed miRNA expression from acute to late phases of ischaemia to identify specific ischaemia-related miRNAs, elucidate their role, and identify potential targets involved in stroke pathophysiology. Of 112 miRNAs, 32 showed significant changes and different expression profiles. In addition to the previously reported differentially expressed miRNAs, new ischaemia-regulated miRNAs have been found, including miR-347. Forty-seven genes involved in brain functions or related to ischaemia are predicted to be potential targets of the differentially expressed miRNAs after middle cerebral artery occlusion. Analysis of four of these targets (Acsl4, Arf3, Btg2 and Dpysl5) showed them to be differentially regulated by ischaemia at the transcriptional or post-transcriptional level. Acsl4, Bnip3l and Phyhip, potential targets of miR-347, were up-regulated after miR-347 over-expression, inducing neuronal apoptotic death. Our findings suggest that miR-347 plays an important role in regulating neuronal cell death, identify Acsl4 as a new protein requiring study in ischaemia, and provide an important resource for future functional studies of miRNAs after ischaemia.
Collapse
Affiliation(s)
- Carme Gubern
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona Dr Josep Trueta, Hospital Universitari de Girona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Modi HR, Basselin M, Taha AY, Li LO, Coleman RA, Bialer M, Rapoport SI. Propylisopropylacetic acid (PIA), a constitutional isomer of valproic acid, uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: a potential drug for bipolar disorder. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:880-6. [PMID: 23354024 PMCID: PMC3593989 DOI: 10.1016/j.bbalip.2013.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/21/2012] [Accepted: 01/13/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mood stabilizers used for treating bipolar disorder (BD) selectively downregulate arachidonic acid (AA) turnover (deacylation-reacylation) in brain phospholipids, when given chronically to rats. In vitro studies suggest that one of these, valproic acid (VPA), which is teratogenic, reduces AA turnover by inhibiting the brain long-chain acyl-CoA synthetase (Acsl)4 mediated acylation of AA to AA-CoA. We tested whether non-teratogenic VPA analogues might also inhibit Acsl4 catalyzed acylation, and thus have a potential anti-BD action. METHODS Rat Acsl4-flag protein was expressed in Escherichia coli, and the ability of three VPA analogues, propylisopropylacetic acid (PIA), propylisopropylacetamide (PID) and N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD), and of sodium butyrate, to inhibit conversion of AA to AA-CoA by Acsl4 was quantified using Michaelis-Menten kinetics. RESULTS Acsl4-mediated conversion of AA to AA-CoA in vitro was inhibited uncompetitively by PIA, with a Ki of 11.4mM compared to a published Ki of 25mM for VPA, while PID, MTMCD and sodium butyrate had no inhibitory effect. CONCLUSIONS PIA's ability to inhibit conversion of AA to AA-CoA by Acsl4 in vitro suggests that, like VPA, PIA may reduce AA turnover in brain phospholipids in unanesthetized rats, and if so, may be effective as a non-teratogenic mood stabilizer in BD patients.
Collapse
Affiliation(s)
- Hiren R Modi
- Brain Physiology and Metabolism Section, National Institute on Aging, Laboratory of Neurosciences, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Niacin subsensitivity is associated with functional impairment in schizophrenia. Schizophr Res 2012; 137:180-4. [PMID: 22445461 DOI: 10.1016/j.schres.2012.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Sensitivity to the skin flush effect of niacin is reduced in a portion of patients with schizophrenia. Though this peripheral physiological abnormality has been widely replicated, its relevance to neuropsychiatric manifestations of the illness has been unclear. The goal of this study was to determine if the niacin response abnormality in schizophrenia is associated with functional impairment. METHODS Following psychiatric assessment, a Global Assessment of Functioning (GAF) score was assigned to each of 40 volunteers with schizophrenia. For each subject, the blood flow responses to several concentrations of topical methylnicotinate were recorded. Blood flow was measured objectively, using laser Doppler flowmetry. From the dose-response data, EC(50) values were derived. GAF scores were assigned without knowledge of the participants' niacin response data. RESULTS There was a significant negative correlation between GAF scores and EC(50) values for methylnicotinate (Pearson r=-0.42; p=0.007). CONCLUSIONS Reduced niacin sensitivity is associated with greater functional impairment among patients with schizophrenia. These findings raise the possibility that a subset of schizophrenia patients possesses a biochemical abnormality that reduces niacin sensitivity in the skin and contributes to functional impairment from the disease.
Collapse
|
30
|
Cooke M, Orlando U, Maloberti P, Podestá EJ, Cornejo Maciel F. Tyrosine phosphatase SHP2 regulates the expression of acyl-CoA synthetase ACSL4. J Lipid Res 2011; 52:1936-48. [PMID: 21903867 DOI: 10.1194/jlr.m015552] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acyl-CoA synthetase 4 (ACSL4) is implicated in fatty acid metabolism with marked preference for arachidonic acid (AA). ACSL4 plays crucial roles in physiological functions such as steroid synthesis and in pathological processes such as tumorigenesis. However, factors regulating ACSL4 mRNA and/or protein levels are not fully described. Because ACSL4 protein expression requires tyrosine phosphatase activity, in this study we aimed to identify the tyrosine phosphatase involved in ACSL4 expression. NSC87877, a specific inhibitor of the tyrosine phosphatase SHP2, reduced ACSL4 protein levels in ACSL4-rich breast cancer cells and steroidogenic cells. Indeed, overexpression of an active form of SHP2 increased ACSL4 protein levels in MA-10 Leydig steroidogenic cells. SHP2 has to be activated through a cAMP-dependent pathway to exert its effect on ACSL4. The effects could be specifically attributed to SHP2 because knockdown of the phosphatase reduced ACSL4 mRNA and protein levels. Through the action on ACSL4 protein levels, SHP2 affected AA-CoA production and metabolism and, finally, the steroidogenic capacity of MA-10 cells: overexpression (or knockdown) of SHP2 led to increased (or decreased) steroid production. We describe for the first time the involvement of SHP2 activity in the regulation of the expression of the fatty acid-metabolizing enzyme ACSL4.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
31
|
Liu Z, Huang Y, Zhang Y, Chen D, Zhang YQ. Drosophila Acyl-CoA synthetase long-chain family member 4 regulates axonal transport of synaptic vesicles and is required for synaptic development and transmission. J Neurosci 2011; 31:2052-63. [PMID: 21307243 PMCID: PMC6633061 DOI: 10.1523/jneurosci.3278-10.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 11/22/2010] [Accepted: 12/02/2010] [Indexed: 11/21/2022] Open
Abstract
Acyl-CoA synthetase long-chain family member 4 (ACSL4) converts long-chain fatty acids to acyl-CoAs that are indispensable for lipid metabolism and cell signaling. Mutations in ACSL4 cause nonsyndromic X-linked mental retardation. We previously demonstrated that Drosophila dAcsl is functionally homologous to human ACSL4, and is required for axonal targeting in the brain. Here, we report that Drosophila dAcsl mutants exhibited distally biased axonal aggregates that were immunopositive for the synaptic-vesicle proteins synaptotagmin (Syt) and cysteine-string protein, the late endosome/lysosome marker lysosome-associated membrane protein 1, the autophagosomal marker Atg8, and the multivesicular body marker Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate). In contrast, the axonal distribution of mitochondria and the cell adhesion molecule Fas II (fasciclin II) was normal. Electron microscopy revealed accumulation of prelysomes and multivesicle bodies. These aggregates appear as retrograde instead of anterograde cargos. Live imaging analysis revealed that dAcsl mutations increased the velocity of anterograde transport but reduced the flux, velocity, and processivity of retrograde transport of Syt-enhanced green fluorescent protein-labeled vesicles. Immunohistochemical and electrophysiological analyses showed significantly reduced growth and stability of neuromuscular synapses, and impaired glutamatergic neurotransmission in dAcsl mutants. The axonal aggregates and synaptic defects in dAcsl mutants were fully rescued by neuronal expression of human ACSL4, supporting a functional conservation of ACSL4 across species in the nervous system. Together, our findings demonstrate that dAcsl regulates axonal transport of synaptic vesicles and is required for synaptic development and function. Defects in axonal transport and synaptic function may account, at least in part, for the pathogenesis of ACSL4-related mental retardation.
Collapse
Affiliation(s)
- Zhihua Liu
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Huang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Chen
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Q. Zhang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
32
|
Qiao S, Tuohimaa P. Expression and vitamin D3 regulation of long-chain fatty-acid-CoA ligase 3 in human prostate cancer cells. Prostaglandins Leukot Essent Fatty Acids 2011; 84:19-23. [PMID: 21041072 DOI: 10.1016/j.plefa.2010.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 12/27/2008] [Accepted: 10/18/2010] [Indexed: 11/15/2022]
Abstract
We found previously that long-chain fatty-acid-CoA ligase 3 (FACL3), a critical enzyme for activation of long-chain fatty acids, was upregulated by 1α, 25(OH)(2)D(3) at an mRNA and enzyme activity levels in prostate cancer cells. Our further study indicated that the FACL3 mediated 1α,25(OH)(2)D(3) inhibition of fatty acid synthase (FAS), which is associated with many cancers, including prostate cancer. In the current study, we investigated an FACL3 protein expression and its regulation by 1α, 25(OH)(2)D(3) and its synthetic analogs EB1089 and CB1093 in prostate cancer cells. The results showed that the expression of an FACL3 protein was upregulated by 1α, 25(OH)(2)D(3), EB1089 and CB1093 in LNCaP cells, consistent with their upregulation of an FACL3 mRNA expression. In addition, the FACL3 expression was found to be markedly low at both mRNA and protein levels in more transformed prostate cancer PC-3 and DU145 cells compared with less transformed LNCaP cells. The data suggest that decreased FACL3 expression might be associated with a more malignant phenotype of prostate cancer.
Collapse
Affiliation(s)
- Shengjun Qiao
- Department of Anatomy, Medical School, University of Tampere, 33014 Tampere, Finland
| | | |
Collapse
|
33
|
Shimshoni JA, Basselin M, Li LO, Coleman RA, Rapoport SI, Modi HR. Valproate uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: relevance to valproate's efficacy against bipolar disorder. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:163-9. [PMID: 21184843 DOI: 10.1016/j.bbalip.2010.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/10/2010] [Accepted: 12/15/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND The ability of chronic valproate (VPA) to reduce arachidonic acid (AA) turnover in brain phospholipids of unanesthetized rats has been ascribed to its inhibition of acyl-CoA synthetase (Acsl)-mediated activation of AA to AA-CoA. Our aim was to identify a rat Acsl isoenzyme that could be inhibited by VPA in vitro. METHODS Rat Acsl3-, Acsl6v1- and Acsl6v2-, and Acsl4-flag proteins were expressed in E. coli, and the ability of VPA to inhibit their activation of long-chain fatty acids to acyl-CoA was estimated using Michaelis-Menten kinetics. RESULTS VPA uncompetitively inhibited Acsl4-mediated conversion of AA and of docosahexaenoic (DHA) but not of palmitic acid to acyl-CoA, but did not affect AA conversion by Acsl3, Acsl6v1 or Acsl6v2. Acsl4-mediated conversion of AA to AA-CoA showed substrate inhibition and had a 10-times higher catalytic efficiency than did conversion of DHA to DHA-CoA. Butyrate, octanoate, or lithium did not inhibit AA activation by Acsl4. CONCLUSIONS VPA's ability to inhibit Acsl4 activation of AA and of DHA to their respective acyl-CoAs, when related to the higher catalytic efficiency of AA than DHA conversion, may account for VPA's selective reduction of AA turnover in rat brain phospholipids, and contribute to VPA's efficacy against bipolar disorder.
Collapse
Affiliation(s)
- Jakob A Shimshoni
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
34
|
Maloberti PM, Duarte AB, Orlando UD, Pasqualini ME, Solano ÁR, López-Otín C, Podestá EJ. Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells. PLoS One 2010; 5:e15540. [PMID: 21085606 PMCID: PMC2978721 DOI: 10.1371/journal.pone.0015540] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/22/2010] [Indexed: 12/13/2022] Open
Abstract
The acyl-CoA synthetase 4 (ACSL4) is increased in breast cancer, colon and hepatocellular carcinoma. ACSL4 mainly esterifies arachidonic acid (AA) into arachidonoyl-CoA, reducing free AA intracellular levels, which is in contradiction with the need for AA metabolites in tumorigenesis. Therefore, the causal role of ACSL4 is still not established. This study was undertaken to determine the role of ACSL4 in AA metabolic pathway in breast cancer cells. The first novel finding is that ACSL4 regulates the expression of cyclooxygenase-2 (COX-2) and the production of prostaglandin in MDA-MB-231 cells. We also found that ACSL4 is significantly up-regulated in the highly aggressive MDA-MB-231 breast cancer cells. In terms of its overexpression and inhibition, ACSL4 plays a causal role in the control of the aggressive phenotype. These results were confirmed by the increase in the aggressive behaviour of MCF-7 cells stably transfected with a Tet-off ACSL4 vector. Concomitantly, another significant finding was that intramitochondrial AA levels are significantly higher in the aggressive cells. Thus, the esterification of AA by ACSL4 compartmentalizes the release of AA in mitochondria, a mechanism that serves to drive the specific lipooxygenase metabolization of the fatty acid. To our knowledge, this is the first report that ACSL4 expression controls both lipooxygenase and cyclooxygenase metabolism of AA. Thus, this functional interaction represents an integrated system that regulates the proliferating and metastatic potential of cancer cells. Therefore, the development of combinatory therapies that profit from the ACSL4, lipooxygenase and COX-2 synergistic action may allow for lower medication doses and avoidance of side effects.
Collapse
Affiliation(s)
- Paula M. Maloberti
- Instituto de Investigaciones Moleculares de Enfermedades Hormonales Neurodegenerativas y Oncológicas (IIMHNO), Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Alejandra B. Duarte
- Instituto de Investigaciones Moleculares de Enfermedades Hormonales Neurodegenerativas y Oncológicas (IIMHNO), Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Ulises D. Orlando
- Instituto de Investigaciones Moleculares de Enfermedades Hormonales Neurodegenerativas y Oncológicas (IIMHNO), Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - María E. Pasqualini
- Instituto de Biología Celular, School of Medicine, Córdoba National University, Córdoba, Argentina
| | - Ángela R. Solano
- Instituto de Investigaciones Moleculares de Enfermedades Hormonales Neurodegenerativas y Oncológicas (IIMHNO), Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Carlos López-Otín
- Instituto Universitario de Oncología, Department of Biochemistry and Molecular Biology, Oviedo University, Oviedo, España
| | - Ernesto J. Podestá
- Instituto de Investigaciones Moleculares de Enfermedades Hormonales Neurodegenerativas y Oncológicas (IIMHNO), Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
35
|
Li LO, Klett EL, Coleman RA. Acyl-CoA synthesis, lipid metabolism and lipotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:246-51. [PMID: 19818872 PMCID: PMC2824076 DOI: 10.1016/j.bbalip.2009.09.024] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/22/2009] [Accepted: 09/25/2009] [Indexed: 12/14/2022]
Abstract
Although the underlying causes of insulin resistance have not been completely delineated, in most analyses, a recurring theme is dysfunctional metabolism of fatty acids. Because the conversion of fatty acids to activated acyl-CoAs is the first and essential step in the metabolism of long-chain fatty acid metabolism, interest has grown in the synthesis of acyl-CoAs, their contribution to the formation of signaling molecules like ceramide and diacylglycerol, and their direct effects on cell function. In this review, we cover the evidence for the involvement of acyl-CoAs in what has been termed lipotoxicity, the regulation of the acyl-CoA synthetases, and the emerging functional roles of acyl-CoAs in the major tissues that contribute to insulin resistance and lipotoxicity, adipose, liver, heart and pancreas.
Collapse
Affiliation(s)
- Lei O. Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Eric L. Klett
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rosalind A. Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
36
|
Zhang Y, Chen D, Wang Z. Analyses of mental dysfunction-related ACSl4 in Drosophila reveal its requirement for Dpp/BMP production and visual wiring in the brain. Hum Mol Genet 2009; 18:3894-905. [PMID: 19617635 DOI: 10.1093/hmg/ddp332] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Long-chain acyl-CoA synthetases (ACSLs) convert long-chain fatty acids to acyl-CoAs, the activated substrates essential in various metabolic and signaling pathways. Mutations in ACSL4 are associated with non-syndromic X-linked mental retardation (MRX). However, the developmental functions of ACSL4 and how it is involved in the pathogenesis of MRX remain largely unknown. The Drosophila ACSL-like protein is highly homologous to human ACSL3 and ACSL4, and we designate it as dAcsl. In this study, we demonstrate that dAcsl and ACSL4 are highly conserved in terms of ACSL4's ability to substitute the functions of dAcsl in organismal viability, lipid storage and the neural wiring in visual center. In neurodevelopment, decapentaplegic (Dpp, a BMP-like molecule) production diminished specifically in the larval brain of dAcsl mutants. Consistent with the Dpp reduction, the number of glial cells and neurons dramatically decreased and the retinal axons mis-targeted in the visual cortex. All these defects in Drosophila brain were rescued by the wild-type ACSL4 but not by the mutant products found in MRX patients. Interestingly, expression of an MRX-associated ACSL4 mutant form in a wild-type background led to the lesions in visual center, suggesting a dominant negative effect. These findings validate Drosophila as a model system to reveal the connection between ACSL4 and BMP pathway in neurodevelopment, and to infer the pathogenesis of ACSL4-related MRX.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | |
Collapse
|
37
|
Golovko MY, Barceló-Coblijn G, Castagnet PI, Austin S, Combs CK, Murphy EJ. The role of α-synuclein in brain lipid metabolism: a downstream impact on brain inflammatory response. Mol Cell Biochem 2008; 326:55-66. [DOI: 10.1007/s11010-008-0008-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 06/26/2008] [Indexed: 11/28/2022]
|
38
|
Meloni I, Parri V, De Filippis R, Ariani F, Artuso R, Bruttini M, Katzaki E, Longo I, Mari F, Bellan C, Dotti CG, Renieri A. The XLMR gene ACSL4 plays a role in dendritic spine architecture. Neuroscience 2008; 159:657-69. [PMID: 19166906 DOI: 10.1016/j.neuroscience.2008.11.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 11/21/2008] [Accepted: 11/22/2008] [Indexed: 12/13/2022]
Abstract
ACSL4 is a gene involved in non-syndromic X-linked mental retardation. It encodes for a ubiquitous protein that adds coenzyme A to long-chain fatty acids, with a high substrate preference for arachidonic acid. It presents also a brain-specific isoform deriving from an alternative splicing and containing 41 additional N-terminal amino acids. To start to unravelling the link between ACSL4 and mental retardation, we have performed molecular and cell biological studies. By retro-transcription polymerase chain reaction analyses we identified a new transcript with a shorter 5'-UTR region. By immunofluorescence microscopy in embryonic rat hippocampal neurons we report that ACSL4 is associated preferentially to endoplasmic reticulum tubules. ACSL4 knockdown by siRNAs in hippocampal neurons indicated that this protein is largely dispensable for these cells' gross architectural features (i.e. axonal and dendritic formation and final length) yet it is required for the presence of normal spines. In fact, reduced levels of ACSL4 led to a significant reduction in dendritic spine density and an alteration in spine/filopodia distribution. The possible mechanisms behind this phenotype are discussed.
Collapse
Affiliation(s)
- I Meloni
- Medical Genetics Unit, Department of Molecular Biology, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
An C, Zhang K, Gao X, Zheng Z, Shi Z, Gong P, Guo Y, Huang S, Zhang F. No association between polymorphisms in the FACL4 (fatty acid-CoA ligase 4) gene and nonspecific mental retardation in Qin-Ba mountain region of China. Neurosci Lett 2008; 441:197-200. [DOI: 10.1016/j.neulet.2008.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
|
40
|
Miyazaki Y, Bunting M, Stafforini DM, Harris ES, McIntyre TM, Prescott SM, Frutuoso VS, Amendoeira FC, de Oliveira Nascimento D, Vieira-de-Abreu A, Weyrich AS, Castro-Faria-Neto HC, Zimmerman GA. Integrin alphaDbeta2 is dynamically expressed by inflamed macrophages and alters the natural history of lethal systemic infections. THE JOURNAL OF IMMUNOLOGY 2008; 180:590-600. [PMID: 18097061 DOI: 10.4049/jimmunol.180.1.590] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The leukocyte integrins have critical roles in host defense and inflammatory tissue injury. We found that integrin alphaDbeta2, a novel but largely uncharacterized member of this family, is restricted to subsets of macrophages and a small population of circulating leukocytes in wild-type mice in the absence of inflammatory challenge and is expressed in regulated fashion during cytokine-induced macrophage differentiation in vitro. alphaDbeta2 is highly displayed on splenic red pulp macrophages and mediates their adhesion to local targets, identifying key functional activity. In response to challenge with Plasmodium berghei, a malarial pathogen that models systemic infection and inflammatory injury, new populations of alphaD+ macrophages evolved in the spleen and liver. Unexpectedly, targeted deletion of alphaD conferred a survival advantage in P. berghei infection over a 30-day observation period. Mechanistic studies demonstrated that the increased survival of alphaD-/- animals at these time points is not attributed to differences in magnitude of anemia or parasitemia or to alterations in splenic microanatomy, each of which is a key variable in the natural history of P. berghei infection, and indicated that an altered pattern of inflammatory cytokines may contribute to the difference in mortality. In contrast to the outcome in malarial challenge, death of alphaD-/- animals was accelerated in a model of Salmonella sepsis, demonstrating differential rather than stereotyped roles for alphaDbeta2 in systemic infection. These studies identify previously unrecognized and unique activities of alphaDbeta2, and macrophages that express it, in host defense and injury.
Collapse
Affiliation(s)
- Yasunari Miyazaki
- Program in Human Molecular Biology and Genetics, Huntsman Cancer Institute, Department of Internal Medicine, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Zhang H, Ju G, Zhang X, Xu Q, Liu S, Yu Y, Shi J, Boyle S, Wang Z, Shen Y, Wei J. A study of the PEMT gene in schizophrenia. Neurosci Lett 2007; 424:203-6. [PMID: 17720317 DOI: 10.1016/j.neulet.2007.07.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/10/2007] [Accepted: 07/29/2007] [Indexed: 11/21/2022]
Abstract
The phospholipid hypothesis of schizophrenia is becoming popular because of the findings from the niacin flush test, the treatment with polyunsaturated fatty acids (PUFAs), biochemical studies for the phospholipid metabolism pathway and genetic studies of phospholipase A2. The present study attempted to investigate the gene coding for phosphatidylethanolamine N-methyltransferase (PEMT), which is an important enzyme for the synthesis of membrane phospholipids. We recruited 271 Chinese parent-offspring trios of Han descent and detected 3 single nucleotide polymorphisms (SNPs) at the PEMT locus. The transmission disequilibrium test (TDT) showed allelic association for rs464396 (X2=9.4, P=0.002), but not for the other two. The 2-SNP haplotype analysis showed haplotypic association for both the rs936108-rs464396 haplotypes (X2=25.7, d.f.=3, P=0.00001) and the rs464396-rs4244593 haplotypes (X2=17.3, d.f.=3, P=0.0006). The 3-SNP haplotype analysis also showed a haplotypic association (X2=24.4, d.f.=7, P=0.0006). The present results suggest that the PEMT gene may contribute to the etiology of schizophrenia.
Collapse
Affiliation(s)
- Yang Liu
- Research Center for Neuroscience and MH Radiobiology Research Unit, Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Thomas J, Liu T, Cotter MA, Florell SR, Robinette K, Hanks AN, Grossman D. Melanocyte expression of survivin promotes development and metastasis of UV-induced melanoma in HGF-transgenic mice. Cancer Res 2007; 67:5172-8. [PMID: 17545596 PMCID: PMC2292453 DOI: 10.1158/0008-5472.can-06-3669] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously found the apoptosis inhibitor Survivin to be expressed in melanocytic nevi and melanoma but not in normal melanocytes. To investigate the role of Survivin in melanoma development and progression, we examined the consequences of forced Survivin expression in melanocytes in vivo. Transgenic (Tg) mouse lines (Dct-Survivin) were generated with melanocyte-specific expression of Survivin, and melanocytes grown from Dct-Survivin mice expressed Survivin. Dct-Survivin melanocytes exhibited decreased susceptibility to UV-induced apoptosis but no difference in proliferative capacity compared with melanocytes derived from non-Tg littermates. Induction of nevi in Dct-Survivin and non-Tg mice by topical application of 7,12-dimethylbenz(a)anthracene did not reveal significant differences in lesion onset (median, 10 weeks) or density (4 lesions per mouse after 15 weeks). Dct-Survivin mice were bred with melanoma-prone MH19/HGF-B6 Tg mice, and all progeny expressing either individual, neither, or both (Survivin/HGF) transgenes were UV-treated as neonates and then monitored for 43 weeks. Melanocytes in neonatal Survivin+/HGF+ mouse skin were less susceptible to UV-induced apoptosis than those from Survivin-/HGF+ mice. Onset of melanocytic tumors was earlier (median, 18 versus 24 weeks; P = 0.01, log-rank test), and overall tumor density was greater (7.7 versus 5.2 tumors per mouse; P = 0.04) in Survivin+/HGF+ compared with Survivin-/HGF+ mice. Strikingly, melanomas arising in Survivin+/HGF+ mice showed a greater tendency for lymph node (35% versus 0%; P = 0.04) and lung (53% versus 22%) metastasis and lower rates of spontaneous apoptosis than those in Survivin-/HGF+ mice. These studies show a role for Survivin in promoting both early and late events of UV-induced melanoma development in vivo.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Apoptosis/physiology
- Apoptosis/radiation effects
- Cell Growth Processes/physiology
- Female
- Hepatocyte Growth Factor/genetics
- Inhibitor of Apoptosis Proteins
- Melanocytes/cytology
- Melanocytes/metabolism
- Melanocytes/pathology
- Melanoma, Experimental/etiology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Microtubule-Associated Proteins/biosynthesis
- Microtubule-Associated Proteins/genetics
- Nevus, Pigmented/chemically induced
- Nevus, Pigmented/metabolism
- Repressor Proteins
- Skin Pigmentation
- Survivin
- Tetradecanoylphorbol Acetate
- Ultraviolet Rays
Collapse
Affiliation(s)
- Joshua Thomas
- Huntsman Cancer Institute, Melanoma Program, University of Utah Health Science Center, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
de Jong H, Neal AC, Coleman RA, Lewin TM. Ontogeny of mRNA expression and activity of long-chain acyl-CoA synthetase (ACSL) isoforms in Mus musculus heart. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:75-82. [PMID: 17197235 PMCID: PMC1797059 DOI: 10.1016/j.bbalip.2006.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 11/01/2006] [Accepted: 11/24/2006] [Indexed: 02/02/2023]
Abstract
Long-chain acyl-CoA synthetases (ACSL) activate fatty acids (FA) and provide substrates for virtually every metabolic pathway that catabolizes FA or synthesizes complex lipids. We have hypothesized that each of the five cloned ACSL isoforms partitions FA towards specific downstream pathways. Adult heart expresses all five cloned ACSL isoforms, but their independent functional roles have not been elucidated. Studies implicate ACSL1 in both oxidative and lipid synthetic pathways. To clarify the functional role of ACSL1 and the other ACSL isoforms (3-6), we examined ACS specific activity and Acsl mRNA expression in the developing mouse heart which increases FA oxidative pathways for energy production after birth. Compared to the embryonic heart, ACS specific activity was 14-fold higher on post-natal day 1 (P1). On P1, as compared to the fetus, only Acsl1 mRNA increased, whereas transcripts for the other Acsl isoforms remained the same, suggesting that ACSL1 is the major isoform responsible for activating long-chain FA for myocardial oxidation after birth. In contrast, the mRNA abundance of Acsl3 was highest on E16, and decreased dramatically by P7, suggesting that ACSL3 may play a critical role during the development of the fetal heart. Our data support the hypothesis that each ACSL has a specific role in the channeling of FA towards distinct metabolic fates.
Collapse
Affiliation(s)
- Hendrik de Jong
- Department of Nutrition, University of North Carolina at Chapel Hill, CB# 7461, NC 27599, USA
| | | | | | | |
Collapse
|
44
|
Adriani W, Leo D, Guarino M, Natoli A, Di Consiglio E, De Angelis G, Traina E, Testai E, Perrone-Capano C, Laviola G. Short-Term Effects of Adolescent Methylphenidate Exposure on Brain Striatal Gene Expression and Sexual/Endocrine Parameters in Male Rats. Ann N Y Acad Sci 2006; 1074:52-73. [PMID: 17105903 DOI: 10.1196/annals.1369.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Exposure to methylphenidate (MPH) during adolescence is the elective therapy for attention deficit/hyperactivity disorder (ADHD) children, but raises major concerns for public health, due to possibly persistent neurobehavioral changes. Rats (30- to 44-days old) were administered MPH (2 mg/kg, i.p once daily) or saline (SAL). At the end of the treatment we collected plasma, testicular, liver, and brain (striatum) samples. The testes and liver were used to evaluate conventional reproductive and metabolic endpoints. Testes of MPH-exposed rats weighed more and contained an increased quantity of sperm, whereas testicular levels of testosterone (TST) were markedly decreased. The MPH treatment exerted an inductive effect on enzymatic activity of TST hydroxylases, resulting in increased hepatic TST catabolism. These findings suggest that subchronic MPH exposure in adolescent rats could have a trophic action on testis growth and a negative impact on TST metabolism. We have analyzed striatal gene expression profiles as a consequence of MPH exposure during adolescence, using microarray technology. More than 700 genes were upregulated in the striatum of MPH-treated rats (foldchange >1.5). A first group of genes were apparently involved in migration of immature neural/glial cells and/or growth of novel axons. These genes include matrix proteases (ADAM-1, MMP14), their inhibitors (TIMP-2, TIMP-3), the hyaluronan-mediated motility receptor (RHAMM), and growth factors (transforming growth factor-beta3 [TGF-beta3] and fibroblast growth factor 14 [FGF14]). A second group of genes were suggestive of active axonal myelination. These genes mediate survival of immature cells after contact with newly produced axonal matrix (laminin B1, collagens, integrin alpha 6) and stabilization of myelinating glia-axon contacts (RAB13, contactins 3 and 4). A third group indicated the appearance and/or upregulation of mature processes. The latter included genes for: K+ channels (TASK-1, TASK-5), intercellular junctions (connexin30), neurotransmitter receptors (adrenergic alpha 1B, kainate 2, serotonin 7, GABA-A), as well as major proteins responsible for their transport and/or anchoring (Homer 1, MAGUK MPP3, Shank2). All these genes were possibly involved in synaptic plasticity, namely the formation, maturation, and stabilization of new neural connections within the striatum. MPH treatment seems to potentiate synaptic plasticity, which is an age-dependent developmental phenomenon that adolescent rats are very likely to show, compared to adults. Our observations suggest that adolescent MPH exposure causes only transient changes in reproductive and hormonal parameters, and a more enduring enhancement of neurobehavioral plasticity.
Collapse
Affiliation(s)
- Walter Adriani
- Department of Cell Biology & Neurosciences, Behavioural Neuroscience Section, Istituto Superiore di Sanità, viale Regina Elena 299, I-00161 Roma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mercadé A, Estellé J, Pérez-Enciso M, Varona L, Silió L, Noguera JL, Sánchez A, Folch JM. Characterization of the porcine acyl-CoA synthetase long-chain 4 gene and its association with growth and meat quality traits. Anim Genet 2006; 37:219-24. [PMID: 16734680 DOI: 10.1111/j.1365-2052.2006.01436.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Summary Long-chain acyl-CoA synthetase (ACSL) catalyses the formation of long-chain acyl-CoA from fatty acid, ATP and CoA, activating fatty acids for subsequent reactions. Long-chain acyl-CoA synthetase thus plays an essential role in both lipid biosynthesis and fatty acid degradation. The ACSL4 gene was evaluated as a positional candidate gene for the quantitative trait loci (QTL) located between SW2456 and SW1943 on chromosome X. We have sequenced 4906 bp of the pig ACSL4 mRNA. Sequence analysis allowed us to identify 10 polymorphisms located in the 3'-UTR region and to elucidate two ACSL4 haplotypes. Furthermore, a QTL and an association study between polymorphisms of the ACSL4 gene and traits of interest were carried out in an Iberian x Landrace cross. We report QTL that have not been previously identified, and we describe an association of the ACSL4 polymorphisms with growth and percentage of oleic fatty acid. Finally, we have determined allelic frequencies in 140 pigs belonging to the Iberian, Landrace, Large White, Meishan, Pietrain, Duroc, Vietnamese, Peccary and Babirusa populations.
Collapse
Affiliation(s)
- A Mercadé
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Arachidonic acid metabolism plays an important role in acute ischemic syndromes affecting the coronary or cerebrovascular territory, as reflected by biochemical measurements of eicosanoid biosynthesis and the results of inhibitor trials in these settings. Two cyclooxygenase (COX)-isozymes have been characterized, COX-1 and COX-2, that differ in terms of regulatory mechanisms of expression, tissue distribution, substrate specificity, preferential coupling to upstream and downstream enzymes and susceptibility to inhibition by the extremely heterogeneous class of COX-inhibitors. While the role of platelet COX-1 in acute coronary syndromes and ischemic stroke is firmly established through approximately 20 years of thromboxane metabolite measurements and aspirin trials, the role of COX-2 expression and inhibition in atherothrombosis is substantially uncertain, because the enzyme was first characterized in 1991 and selective COX-2 inhibitors became commercially available only in 1998. In this review, we discuss the pattern of expression of COX-2 in the cellular players of atherothrombosis, its role as a determinant of plaque 'vulnerability,' and the clinical consequences of COX-2 inhibition. Recent studies from our group suggest that variable expression of upstream and downstream enzymes in the prostanoid biosynthetic cascade may represent important determinants of the functional consequences of COX-2 expression and inhibition in different clinical settings.
Collapse
Affiliation(s)
- F Cipollone
- Atherosclerosis Prevention Center and Clinical Research Center, 'G. d'Annunzio' University Foundation, 'G. d'Annunzio' University of Chieti, Chieti, Italy.
| | | | | |
Collapse
|
47
|
Abstract
Forward genetics is an unbiased methodology to discover new genes or functions of genes. At the present, the zebrafish is one of the few vertebrate systems where large-scale forward genetic studies are practical. Fluorescent lipid labeling of zebrafish larvae derived from families created from ENU-mutagenized fish enabled us to perform a large scale in vivo screen to identify mutants with perturbed lipid processing. With the aid of the zebrafish genome project, positional cloning of mutated genes with abnormal lipid metabolism can be accelerated. MO- and gripNA-based transient gene silencing is feasible in zebrafish embryos and provides a reverse genetic screening strategy to search for important lipid regulators. The advantages of using zebrafish as a vertebrate model to study lipid metabolism include its rapid external development and its optical clarity that enables the monitoring of biological processes. Large scale, high-throughput drug screening in vivo, especially for drugs that inhibit lipid absorption, can be easily achieved in this model. These zebrafish-based assays are important tools to understand aspects of lipid biology with significant clinical implications.
Collapse
Affiliation(s)
- Shiu-Ying Ho
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
48
|
Carlson ML, Wilson ET, Prescott SM. Regulation of COX-2 transcription in a colon cancer cell line by Pontin52/TIP49a. Mol Cancer 2003; 2:42. [PMID: 14675489 PMCID: PMC317356 DOI: 10.1186/1476-4598-2-42] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 12/15/2003] [Indexed: 11/24/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is expressed early in colon carcinogenesis and is known to play a crucial role in the progress of the disease. Here we show that the regulation of the expression of this enzyme in a colon cancer cell line, and in patients, is associated with overexpression of the Wnt pathway-associated proteins, Pontin52/TIP49a and LEF-1. Recently shown to be essential for transformation via the c-Myc pathway, Pontin52/TIP49a promotes COX-2 expression in tissue culture and is overexpressed in colon cancer tissue, co-localizing with COX-2 expression in transformed tissue, relative to paired normal tissue.
Collapse
Affiliation(s)
- Mary L Carlson
- Huntsman Cancer Institute and the Departments of Oncological Sciences and Internal Medicine, University of Utah, USA
- Current Address: 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112-5550, USA
| | - Ellen T Wilson
- Huntsman Cancer Institute and the Departments of Oncological Sciences and Internal Medicine, University of Utah, USA
- Current Address: 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112-5550, USA
| | - Stephen M Prescott
- Huntsman Cancer Institute and the Departments of Oncological Sciences and Internal Medicine, University of Utah, USA
- Current Address: 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112-5550, USA
| |
Collapse
|
49
|
Sung YK, Hwang SY, Park MK, Bae HI, Kim WH, Kim JC, Kim M. Fatty acid-CoA ligase 4 is overexpressed in human hepatocellular carcinoma. Cancer Sci 2003; 94:421-4. [PMID: 12824887 PMCID: PMC11160225 DOI: 10.1111/j.1349-7006.2003.tb01458.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 02/24/2003] [Accepted: 02/26/2003] [Indexed: 12/15/2022] Open
Abstract
Fatty acid-CoA ligase 4 (FACL4) is a central enzyme controlling the unesterified arachidonic acid (AA) level in cells. It has been shown that FACL4 blocks apoptosis and promotes colon carcinogenesis by lowering the cellular level of unesterified AA. Consistent with this, FACL4 is upregulated in colon adenocarcinoma. The status of FACL4 in other tumors including hepatocellular carcinoma (HCC) is not known. Here, we report that FACL4 is overexpressed in human HCC compared with adjacent normal liver tissues. FACL4 mRNA and protein were overexpressed in 5 out of 12 (41.7%) and 3 out of 8 (37.5%) cases of HCC, respectively. Immunohistochemical staining showed strong fine granular intracytoplasmic staining in tumor cells, whereas we observed occasional weak staining in normal liver tissues surrounding the tumors. We found that 14 out of 37 (37.8%) HCC expressed moderate to strong FACL4 immunostaining. Both normal adult and fetal liver tissues showed very weak to no detectable staining, whereas 3 out of 10 (30%) cirrhotic livers expressed weak staining. In addition, we found that 4 out of 8 (50%) human hepatoma cell lines expressed high levels of FACL4 by northern blot analysis. Our results show that FACL4 is a new molecular marker for HCC and suggest that the FACL4 pathway may be involved in liver carcinogenesis.
Collapse
Affiliation(s)
- Young Kwan Sung
- Department of Immunology, Kyungpook National University Medical School and Hospital, Daegu, 700-422, Korea
| | | | | | | | | | | | | |
Collapse
|
50
|
Lewin TM, Van Horn CG, Krisans SK, Coleman RA. Rat liver acyl-CoA synthetase 4 is a peripheral-membrane protein located in two distinct subcellular organelles, peroxisomes, and mitochondrial-associated membrane. Arch Biochem Biophys 2002; 404:263-70. [PMID: 12147264 DOI: 10.1016/s0003-9861(02)00247-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesity and non-insulin-dependent diabetes favor storage of fatty acids in triacylglycerol over oxidation. Recently, individual acyl-CoA synthetase (ACS) isoforms have been implicated in the channeling of fatty acids either toward lipid synthesis or toward oxidation. Although ACS1 had been localized to three different subcellular regions in rat liver, endoplasmic reticulum, mitochondria, and peroxisomes, the study had used an antibody raised against the full-length ACS1 protein which cross-reacts with other isoforms, probably because all ACS family members contain highly conserved amino acid sequences. Therefore, we examined the subcellular location of ACS1, ACS4, and ACS5 in rat liver to determine which isoform was present in peroxisomes, whether the ACSs were intrinsic membrane proteins, and which ACS isoforms were up-regulated by PPAR alpha ligands. Non-cross-reacting ACS1, ACS4, and ACS5 peptide antibodies showed that ACS4 was the only ACS isoform present in peroxisomes isolated from livers of gemfibrozil-treated rats. ACS4 was also present in fractions identified as mitochondria-associated membrane (MAM). ACS1 was present in endoplasmic reticulum fractions and ACS5 was present in mitochondrial fractions. Incubation with troglitazone, a specific inhibitor of ACS4, decreased ACS activity in the MAM fractions 30-45% and in the peroxisomal fractions about 30%. Because the signal for ACS4 protein in peroxisomes was so strong compared to the MAM fraction, we examined ACS4 mRNA abundance in livers of rats treated with the PPAR alpha agonist GW9578. Treatment with GW9578 increased ACS4 mRNA abundance 40% and ACS1 mRNA 25%. Although we had originally proposed that ACS4 is linked to triacylglycerol synthesis, it now appears that ACS4 may also be important in activating fatty acids destined for peroxisomal oxidation. We also determined that, unlike ACS1 and 5, ACS4 is not an intrinsic membrane protein. This suggests that ACS4 is probably targeted and linked to MAM and peroxisomes by interactions with other proteins.
Collapse
Affiliation(s)
- Tal M Lewin
- Department of Nutrition and Pediatrics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|