1
|
Tunkaew K, Liewhiran C, Vaddhanaphuti CS. Functionalized metal oxide nanoparticles: A promising intervention against major health burden of diseases. Life Sci 2024; 358:123154. [PMID: 39433083 DOI: 10.1016/j.lfs.2024.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Metal oxide nanoparticles (MONPs) is one of the most effective materials for medical applications with their substantial surface metallic ions and high surface area-volume ratio. Over decades, MONPs have been considered potential treatments due to their demonstrated ability and reactivity to target diverse cellular signaling pathways implicated in antimicrobial effects, as well as in the amelioration of oxidative stress, inflammation, cancer progression, and glucose together with lipid dysregulation. Based on their unique characteristics, MONPs have shown to be biodegradable and biocompatible vehicles for drugs, which have recently been applied in drug delivery as nanocarriers to enhance their delivery capacity for mechanistic membrane transport. However, little is known about the precise cellular responses, molecular mechanisms, and potential use of MONPs in the medical field. This review emphasizes on elaborating the biochemical reactivities of MONPs on molecular and cellular reactions, highlighting the physiological responses, mechanisms of action, certain drawbacks, and remediation of these functionalized materials. The significant goal of this literature is to shed light on the new perspectives of MONPs in pre-clinical application to pursue for clinical research as alternative-personalized medicines to prevent individuals from drastic diseases.
Collapse
Affiliation(s)
- Kornwalai Tunkaew
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Thailand
| | - Chaikarn Liewhiran
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chutima S Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Thailand.
| |
Collapse
|
2
|
Gorobets O, Gorobets S, Polyakova T, Zablotskii V. Modulation of calcium signaling and metabolic pathways in endothelial cells with magnetic fields. NANOSCALE ADVANCES 2024; 6:1163-1182. [PMID: 38356636 PMCID: PMC10863714 DOI: 10.1039/d3na01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
Calcium signaling plays a crucial role in various physiological processes, including muscle contraction, cell division, and neurotransmitter release. Dysregulation of calcium levels and signaling has been linked to a range of pathological conditions such as neurodegenerative disorders, cardiovascular disease, and cancer. Here, we propose a theoretical model that predicts the modulation of calcium ion channel activity and calcium signaling in the endothelium through the application of either a time-varying or static gradient magnetic field (MF). This modulation is achieved by exerting magnetic forces or torques on either biogenic or non-biogenic magnetic nanoparticles that are bound to endothelial cell membranes. Since calcium signaling in endothelial cells induces neuromodulation and influences blood flow control, treatment with a magnetic field shows promise for regulating neurovascular coupling and treating vascular dysfunctions associated with aging and neurodegenerative disorders. Furthermore, magnetic treatment can enable control over the decoding of Ca signals, ultimately impacting protein synthesis. The ability to modulate calcium wave frequencies using MFs and the MF-controlled decoding of Ca signaling present promising avenues for treating diseases characterized by calcium dysregulation.
Collapse
Affiliation(s)
- Oksana Gorobets
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute" Ukraine
| | - Svitlana Gorobets
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute" Ukraine
| | - Tatyana Polyakova
- Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
| | - Vitalii Zablotskii
- Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
- International Magnetobiology Frontier Research Center (iMFRC), Science Island Hefei China
| |
Collapse
|
3
|
Rahimi Darehbagh R, Mahmoodi M, Amini N, Babahajiani M, Allavaisie A, Moradi Y. The effect of nanomaterials on embryonic stem cell neural differentiation: a systematic review. Eur J Med Res 2023; 28:576. [PMID: 38071365 PMCID: PMC10709835 DOI: 10.1186/s40001-023-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Humans' nervous system has a limited ability to repair nerve cells, which poses substantial challenges in treating injuries and diseases. Stem cells are identified by the potential to renew their selves and develop into several cell types, making them ideal candidates for cell replacement in injured neurons. Neuronal differentiation of embryonic stem cells in modern medicine is significant. Nanomaterials have distinct advantages in directing stem cell function and tissue regeneration in this field. We attempted in this systematic review to collect data, analyze them, and report results on the effect of nanomaterials on neuronal differentiation of embryonic stem cells. METHODS International databases such as PubMed, Scopus, ISI Web of Science, and EMBASE were searched for available articles on the effect of nanomaterials on neuronal differentiation of embryonic stem cells (up to OCTOBER 2023). After that, screening (by title, abstract, and full text), selection, and data extraction were performed. Also, quality assessment was conducted based on the STROBE checklist. RESULTS In total, 1507 articles were identified and assessed, and then only 29 articles were found eligible to be included. Nine studies used 0D nanomaterials, ten used 1D nanomaterials, two reported 2D nanomaterials, and eight demonstrated the application of 3D nanomaterials. The main biomaterial in studies was polymer-based composites. Three studies reported the negative effect of nanomaterials on neural differentiation. CONCLUSION Neural differentiation is crucial in neurological regenerative medicine. Nanomaterials with different characteristics, particularly those cellular regulating activities and stem cell fate, have much potential in neural tissue engineering. These findings indicate a new understanding of potential applications of physicochemical cues in nerve tissue engineering.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanoclub Elites Association, Tehran, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mozaffar Mahmoodi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nader Amini
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Media Babahajiani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Azra Allavaisie
- Department of Anatomical Sciences, School of Medicine, Sanandaj, Iran
| | - Yousef Moradi
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
4
|
Valizadeh A, Asghari S, Abbaspoor S, Jafari A, Raeisi M, Pilehvar Y. Implantable smart hyperthermia nanofibers for cancer therapy: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1909. [PMID: 37258422 DOI: 10.1002/wnan.1909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 06/02/2023]
Abstract
Nanofibers (NFs) with practical drug-loading capacities, high stability, and controllable release have caught the attention of investigators due to their potential applications in on-demand drug delivery devices. Developing novel and efficient multidisciplinary management of locoregional cancer treatment through the design of smart NF-based systems integrated with combined chemotherapy and hyperthermia could provide stronger therapeutic advantages. On the other hand, implanting directly at the tumor area is a remarkable benefit of hyperthermia NF-based drug delivery approaches. Hence, implantable smart hyperthermia NFs might be very hopeful for tumor treatment in the future and provide new avenues for developing highly efficient localized drug delivery systems. Indeed, features of the smart NFs lead to the construction of a reversibly flexible nanostructure that enables hyperthermia and facile switchable release of antitumor agents to eradicate cancer cells. Accordingly, this study covers recent updates on applications of implantable smart hyperthermia NFs regarding their current scope and future outlook. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Amir Valizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Asghari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saleheh Abbaspoor
- Chemical Engineering Department, School of Engineering, Damghan University, Damghan, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Bazala R, Zoppellaro G, Kletetschka G. Iron Level Changes in the Brain with Neurodegenerative Disease. BRAIN MULTIPHYSICS 2023. [DOI: 10.1016/j.brain.2023.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
6
|
Spiridonova A, Gorobets S. Bioinformatics Analysis of Protein Homologues of Magnetotactic Bacteria Magnetosome Island Proteins in Human Proteome. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2022. [DOI: 10.20535/ibb.2022.6.2.253880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background. The number of biogenic magnetic nanoparticles (BMN), present in human organs and tissues in the form of magnetite (ferrimagnetic iron oxide), increases in oncological and neurodegenerative diseases. Therefore, the study of homologues of BMN biomineralization proteins (mam-proteins) of magnetotaxis bacteria (MTB) in human proteome is relevant task. This concern is due primarily to the expediency of establishing patterns of changes in the expression of these proteins and searching for correlations with oncological and neurodegenerative diseases.
Objective. We are aimed to conduct the bioinformatic analysis of homologues of MTB mam-proteins in humans and to determine the patterns of changes in the expression of these proteins, as well as to search for their connections with the specified diseases. This will allow to identify the main candidate proteins (among the known homologues of MTB mam-proteins in humans) for experimental verification of their participation in the genetically programmed mechanism of BMN biosynthesis in humans.
Methods. The methods of comparative genomics were used, in particular the BLAST (Basic Local Alignment Search Tool) program of the NCBI database. Database tools were also used: NCBI Conserved Domain Search, The Cancer Genome Atlas database, Ensembl database.
Results. The bioinformatic analysis of 16 homologues of MTB mam-proteins in humans was carried out, namely: PEX5, ANAPC7, CDC23, CDC27 and SGTA – homologues of MamA in MTB; SLC30A4, SLC30A9, SLC39A3 and SLC39A4 – homologs of MamB and MamM in MTB; HTRA1, HTRA2, HTRA3 and HTRA4 – MamO and MamE homologues in MTB; SCRIB, PDZK1 and PDZD3 – MamE homologues in MTB. Using pairwise alignments, the degree of homology between the mam-proteins of the MTB magnetosome island and the corresponding human proteins was determined, conserved domains and their functions were determined, changes in their expression levels in cancer and normal conditions were determined by analyzing the relevant databases, and the metabolic pathways to which the data proteins are involved were analysed. The analysis of the obtained data allowed to assume the presence of the main homologues of the MTB mam-proteins of the magnetosome island in humans, which cause an increase in the level of BMN in oncological and neurodegenerative diseases, namely: an increase in the expression level of the proteins PEX5, ANAPC7 (homologs of MamA), SLC39A3, SLC39A4 (homologs of MamB and MamM), HTRA4 (MamO and MamE homolog) and SCRIB (MamE homolog).
Conclusions. The obtained data allow us to assume that the proteins PEX5, ANAPC7, SGTA, SLC39A3, SLC39A4, HTRA4 and SCRIB are the main homologues of the MTB mam-proteins in humans and cause an increase in the level of BMN in oncological and neurodegenerative diseases.
Collapse
|
7
|
Shahwan M, Alhumaydhi FA, Sharaf SE, Alghamdi BS, Baeesa S, Tayeb HO, Ashraf GM, Shamsi A. Computational insight into the binding of bryostatin 1 with ferritin: implication of natural compounds in Alzheimer's disease therapeutics. J Biomol Struct Dyn 2022:1-11. [PMID: 35787781 DOI: 10.1080/07391102.2022.2092552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuronal damage in iron-sensitive brain regions occurs as a result of iron dyshomeostasis. Increased iron levels and iron-related pathogenic triggers are associated with neurodegenerative diseases, including Alzheimer's disease (AD). Ferritin is a key player involved in iron homeostasis. Major pathological hallmarks of AD are amyloid plaques, neurofibrillary tangles (NFTs) and synaptic loss that lead to cognitive dysfunction and memory loss. Natural compounds persist in being the most excellent molecules in the area of drug discovery because of their different range of therapeutic applications. Bryostatins are naturally occurring macrocyclic lactones that can be implicated in AD therapeutics. Among them, Bryostatin 1 regulates protein kinase C, a crucial player in AD pathophysiology, thus highlighting the importance of bryostatin 1 in AD management. Thus, this study explores the binding mechanism of Bryotstain 1 with ferritin. In this work, the molecular docking calculations revealed that bryostatin 1 has an appreciable binding potential towards ferritin by forming stable hydrogen bonds (H-bonds). Molecular dynamics simulation studies deciphered the binding mechanism and conformational dynamics of ferrritin-bryostatin 1 system. The analyses of root mean square deviation, root mean square fluctuations, Rg, solvent accessible surface area, H-bonds and principal component analysis revealed the stability of the ferritin-bryostatin 1 docked complex throughout the trajectory of 100 ns. Moreover, the free energy landscape analysis advocated that the ferritin-bryostatin 1 complex stabilized to the global minimum. Altogether, the present work delineated the binding of bryostatin 1 with ferritin that can be implicated in the management of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Moyad Shahwan
- College of Pharmacy & Health sciences, Ajman University, Ajman, United Arab Emirates.,Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Clinical Research Administration, Executive Administration of Research and Innovation, King Abdullah Medical City in Holy Capital, Makkah, Saudi Arabia
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Division of Neurology, Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
8
|
Anjum F, Shahwan M, Alhumaydhi FA, Sharaf SE, Al Abdulmonem W, Shafie A, Bilgrami AL, Shamsi A, Md Ashraf G. Mechanistic insight into the binding between Ferritin and Serotonin: Possible implications in neurodegenerative diseases. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
De Simone U, Croce AC, Pignatti P, Buscaglia E, Caloni F, Coccini T. Three dimensional spheroid cell culture of human MSC‐derived neuron‐like cells: new in vitro model to assess magnetite nanoparticle‐induced neurotoxicity effects. J Appl Toxicol 2022; 42:1230-1252. [DOI: 10.1002/jat.4292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR) Pavia Italy
- Department of Biology & Biotechnology University of Pavia Pavia Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Francesca Caloni
- Department of Health, Animal Science and Food Safety Universitá degli Studi di Milano Milan Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| |
Collapse
|
10
|
Effect of Size on Magnetic Polyelectrolyte Microcapsules Behavior: Biodistribution, Circulation Time, Interactions with Blood Cells and Immune System. Pharmaceutics 2021; 13:pharmaceutics13122147. [PMID: 34959428 PMCID: PMC8703762 DOI: 10.3390/pharmaceutics13122147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022] Open
Abstract
Drug carriers based on polyelectrolyte microcapsules remotely controlled with an external magnetic field are a promising drug delivery system. However, the influence of capsule parameters on microcapsules’ behavior in vivo is still ambiguous and requires additional study. Here, we discuss how the processes occurring in the blood flow influence the circulation time of magnetic polyelectrolyte microcapsules in mouse blood after injection into the blood circulatory system and their interaction with different blood components, such as WBCs and RBCs. The investigation of microcapsules ranging in diameter 1–5.5 μm allowed us to reveal the dynamics of their filtration by vital organs, cytotoxicity, and hemotoxicity, which is dependent on their size, alongside the efficiency of their interaction with the magnetic field. Our results show that small capsules have a long circulation time and do not affect blood cells. In contrast, the injection of large 5.5 μm microcapsules leads to fast filtration from the blood flow, induces the inhibition of macrophage cell line proliferation after 48 h, and causes an increase in hemolysis, depending on the carrier concentration. The obtained results reveal the possible directions of fine-tuning microcapsule parameters, maximizing capsule payload without the side effects for the blood flow or the blood cells.
Collapse
|
11
|
Heller A, Coffman SS, Jarvis K. Potentially Pathogenic Calcium Oxalate Dihydrate and Titanium Dioxide Crystals in the Alzheimer's Disease Entorhinal Cortex. J Alzheimers Dis 2021; 77:547-550. [PMID: 32804151 PMCID: PMC7592648 DOI: 10.3233/jad-200535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Knowing that Alzheimer's disease (AD) nucleates in the entorhinal cortex (EC), samples of 12 EC specimens were probed for crystals by a protocol detecting fewer than 1/5000th of those present. Of the 61 crystals found, 31 were expected and 30 were novel. Twenty-one crystals of iron oxides and 10 atherosclerosis-associated calcium pyrophosphate dihydrate crystals were expected and found. The 30 unexpected crystals were NLRP3-inflammasome activating calcium oxalate dihydrate (12) and titanium dioxide (18). Their unusual distribution raises the possibility that some were of AD origination sites.
Collapse
Affiliation(s)
- Adam Heller
- McKetta Department of Chemical Engineering and University of Texas, Austin, TX, USA
| | - Sheryl S Coffman
- McKetta Department of Chemical Engineering and University of Texas, Austin, TX, USA
| | - Karalee Jarvis
- Texas Materials Institute, University of Texas, Austin, TX, USA
| |
Collapse
|
12
|
Longitudinal and Transverse Relaxivity Analysis of Native Ferritin and Magnetoferritin at 7 T MRI. Int J Mol Sci 2021; 22:ijms22168487. [PMID: 34445190 PMCID: PMC8395175 DOI: 10.3390/ijms22168487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 01/23/2023] Open
Abstract
Magnetite mineralization in human tissue is associated with various pathological processes, especially neurodegenerative disorders. Ferritin’s mineral core is believed to be a precursor of magnetite mineralization. Magnetoferritin (MF) was prepared with different iron loading factors (LFs) as a model system for pathological ferritin to analyze its MRI relaxivity properties compared to those of native ferritin (NF). The results revealed that MF differs statistically significantly from NF, with the same LF, for all studied relaxation parameters at 7 T: r1, r2, r2*, r2/r1, r2*/r1. Distinguishability of MF from NF may be useful in non-invasive MRI diagnosis of pathological processes associated with iron accumulation and magnetite mineralization (e.g., neurodegenerative disorders, cancer, and diseases of the heart, lung and liver). In addition, it was found that MF samples possess very strong correlation and MF’s relaxivity is linearly dependent on the LF, and the transverse and longitudinal ratios r2/r1 and r2*/r1 possess complementary information. This is useful in eliminating false-positive hypointensive artefacts and diagnosis of the different stages of pathology. These findings could contribute to the exploitation of MRI techniques in the non-invasive diagnosis of iron-related pathological processes in human tissue.
Collapse
|
13
|
Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer's disease, from the UK. Sci Rep 2021; 11:9363. [PMID: 33931662 PMCID: PMC8087805 DOI: 10.1038/s41598-021-88725-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
The presence of magnetic nanoparticles (MNPs) in the human brain was attributed until recently to endogenous formation; associated with a putative navigational sense, or with pathological mishandling of brain iron within senile plaques. Conversely, an exogenous, high-temperature source of brain MNPs has been newly identified, based on their variable sizes/concentrations, rounded shapes/surface crystallites, and co-association with non-physiological metals (e.g., platinum, cobalt). Here, we examined the concentration and regional distribution of brain magnetite/maghemite, by magnetic remanence measurements of 147 samples of fresh/frozen tissues, from Alzheimer's disease (AD) and pathologically-unremarkable brains (80-98 years at death) from the Manchester Brain Bank (MBB), UK. The magnetite/maghemite concentrations varied between individual cases, and different brain regions, with no significant difference between the AD and non-AD cases. Similarly, all the elderly MBB brains contain varying concentrations of non-physiological metals (e.g. lead, cerium), suggesting universal incursion of environmentally-sourced particles, likely across the geriatric blood-brain barrier (BBB). Cerebellar Manchester samples contained significantly lower (~ 9×) ferrimagnetic content compared with those from a young (29 years ave.), neurologically-damaged Mexico City cohort. Investigation of younger, variably-exposed cohorts, prior to loss of BBB integrity, seems essential to understand early brain impacts of exposure to exogenous magnetite/maghemite and other metal-rich pollution particles.
Collapse
|
14
|
Vroegindeweij LHP, Bossoni L, Boon AJW, Wilson JHP, Bulk M, Labra-Muñoz J, Huber M, Webb A, van der Weerd L, Langendonk JG. Quantification of different iron forms in the aceruloplasminemia brain to explore iron-related neurodegeneration. NEUROIMAGE-CLINICAL 2021; 30:102657. [PMID: 33839643 PMCID: PMC8055714 DOI: 10.1016/j.nicl.2021.102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022]
Abstract
Ferrihydrite-iron is the most abundant iron form in the aceruloplasminemia brain. Iron concentrations over 1 mg/g are found in deep gray matter structures. The deep gray matter contains over three times more iron than the temporal cortex. Iron-sensitive MRI contrast is primarily driven by the amount of ferrihydrite-iron. R2* is more illustrative of the pattern of iron accumulation than QSM at 7 T.
Aims Aceruloplasminemia is an ultra-rare neurodegenerative disorder associated with massive brain iron deposits, of which the molecular composition is unknown. We aimed to quantitatively determine the molecular iron forms in the aceruloplasminemia brain, and to illustrate their influence on iron-sensitive MRI metrics. Methods The inhomogeneous transverse relaxation rate (R2*) and magnetic susceptibility obtained from 7 T MRI were combined with Electron Paramagnetic Resonance (EPR) and Superconducting Quantum Interference Device (SQUID) magnetometry. The basal ganglia, thalamus, red nucleus, dentate nucleus, superior- and middle temporal gyrus and white matter of a post-mortem aceruloplasminemia brain were studied. MRI, EPR and SQUID results that had been previously obtained from the temporal cortex of healthy controls were included for comparison. Results The brain iron pool in aceruloplasminemia detected in this study consisted of EPR-detectable Fe3+ ions, magnetic Fe3+ embedded in the core of ferritin and hemosiderin (ferrihydrite-iron), and magnetic Fe3+ embedded in oxidized magnetite/maghemite minerals (maghemite-iron). Ferrihydrite-iron represented above 90% of all iron and was the main driver of iron-sensitive MRI contrast. Although deep gray matter structures were three times richer in ferrihydrite-iron than the temporal cortex, ferrihydrite-iron was already six times more abundant in the temporal cortex of the patient with aceruloplasminemia compared to the healthy situation (162 µg/g vs. 27 µg/g), on average. The concentrations of Fe3+ ions and maghemite-iron in the temporal cortex in aceruloplasminemia were within the range of those in the control subjects. Conclusions Iron-related neurodegeneration in aceruloplasminemia is primarily associated with an increase in ferrihydrite-iron, with ferrihydrite-iron being the major determinant of iron-sensitive MRI contrast.
Collapse
Affiliation(s)
- Lena H P Vroegindeweij
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Lucia Bossoni
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Agnita J W Boon
- Department of Neurology, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - J H Paul Wilson
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| | - Marjolein Bulk
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacqueline Labra-Muñoz
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, the Netherlands; Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333CA Leiden, the Netherlands
| | - Andrew Webb
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Janneke G Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
15
|
Coccini T, Pignatti P, Spinillo A, De Simone U. Developmental Neurotoxicity Screening for Nanoparticles Using Neuron-Like Cells of Human Umbilical Cord Mesenchymal Stem Cells: Example with Magnetite Nanoparticles. NANOMATERIALS 2020; 10:nano10081607. [PMID: 32824247 PMCID: PMC7466682 DOI: 10.3390/nano10081607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Metallic nanoparticles (NPs), as iron oxide NPs, accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Human stem cell-derived in vitro models may provide more realistic platforms to study NPs effects on neural cells, and to obtain relevant information on the potential for early or late DNT effects in humans. Primary neuronal-like cells (hNLCs) were generated from mesenchymal stem cells derived from human umbilical cord lining and the effects caused by magnetite (Fe3O4NPs, 1-50 μg/mL) evaluated. Neuronal differentiation process was divided into stages: undifferentiated, early, mid- and fully-differentiated (from day-2 to 8 of induction) based on different neuronal markers and morphological changes over time. Reduction in neuronal differentiation induction after NP exposure was observed associated with NP uptake: β-tubulin III (β-Tub III), microtubule-associated protein 2 (MAP-2), enolase (NSE) and nestin were downregulated (10-40%), starting from 25 μg/mL at the early stage. Effects were exacerbated at higher concentrations and persisted up to 8 days without cell morphology alterations. Adenosine triphosphate (ATP) and caspase-3/7 activity data indicated Fe3O4NPs-induced cell mortality in a concentration-dependent manner and increases of apoptosis: effects appeared early (from day-3), started at low concentrations (≥5 μg/mL) and persisted. This new human cell-based model allows different stages of hNLCs to be cultured, exposed to NPs/chemicals, and analyzed for different endpoints at early or later developmental stage.
Collapse
Affiliation(s)
- Teresa Coccini
- Toxicology Unit, Laboratory of Clinical and Experimental Toxicology, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-592416
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100 Pavia, Italy;
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy;
| | - Uliana De Simone
- Toxicology Unit, Laboratory of Clinical and Experimental Toxicology, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100 Pavia, Italy;
| |
Collapse
|
16
|
Everett J, Brooks J, Lermyte F, O'Connor PB, Sadler PJ, Dobson J, Collingwood JF, Telling ND. Iron stored in ferritin is chemically reduced in the presence of aggregating Aβ(1-42). Sci Rep 2020; 10:10332. [PMID: 32587293 PMCID: PMC7316746 DOI: 10.1038/s41598-020-67117-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Atypical low-oxidation-state iron phases in Alzheimer's disease (AD) pathology are implicated in disease pathogenesis, as they may promote elevated redox activity and convey toxicity. However, the origin of low-oxidation-state iron and the pathways responsible for its formation and evolution remain unresolved. Here we investigate the interaction of the AD peptide β-amyloid (Aβ) with the iron storage protein ferritin, to establish whether interactions between these two species are a potential source of low-oxidation-state iron in AD. Using X-ray spectromicroscopy and electron microscopy we found that the co-aggregation of Aβ and ferritin resulted in the conversion of ferritin's inert ferric core into more reactive low-oxidation-states. Such findings strongly implicate Aβ in the altered iron handling and increased oxidative stress observed in AD pathogenesis. These amyloid-associated iron phases have biomarker potential to assist with disease diagnosis and staging, and may act as targets for therapies designed to lower oxidative stress in AD tissue.
Collapse
Affiliation(s)
- James Everett
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, United Kingdom.
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - Jake Brooks
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Frederik Lermyte
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jon Dobson
- J. Crayton Pruitt Family Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida, 32611, United States
| | | | - Neil D Telling
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, United Kingdom
| |
Collapse
|
17
|
Birkl C, Birkl-Toeglhofer AM, Kames C, Goessler W, Haybaeck J, Fazekas F, Ropele S, Rauscher A. The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain. Neuroimage 2020; 220:117080. [PMID: 32585344 DOI: 10.1016/j.neuroimage.2020.117080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
A variety of Magnetic Resonance Imaging (MRI) techniques are known to be sensitive to brain iron content. In principle, iron sensitive MRI techniques are based on local magnetic field variations caused by iron particles in tissue. The purpose of this study was to investigate the sensitivity of MR relaxation and magnetization transfer parameters to changes in iron oxidation state compared to changes in iron concentration. Therefore, quantitative MRI parameters including R1, R2, R2∗, quantitative susceptibility maps (QSM) and magnetization transfer ratio (MTR) of post mortem human brain tissue were acquired prior and after chemical iron reduction to change the iron oxidation state and chemical iron extraction to decrease the total iron concentration. All assessed parameters were shown to be sensitive to changes in iron concentration whereas only R2, R2∗ and QSM were also sensitive to changes in iron oxidation state. Mass spectrometry confirmed that iron accumulated in the extraction solution but not in the reduction solution. R2∗ and QSM are often used as markers for iron content. Changes in these parameters do not necessarily reflect variations in iron content but may also be a result of changes in the iron's oxygenation state from ferric towards more ferrous iron or vice versa.
Collapse
Affiliation(s)
- Christoph Birkl
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Neuroradiology, Medical University of Innsbruck, Austria; Department of Neurology, Medical University of Graz, Austria.
| | - Anna Maria Birkl-Toeglhofer
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Christian Kames
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry, University of Graz, Austria
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria; Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | - Alexander Rauscher
- UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Pediatrics (Division of Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Saad-El-Din AA, Mazhar A, Khalil W. Role of Spirulina on gamma-irradiated rats using Fourier transform infrared attenuated total reflectance and Electron spin resonance for brain. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1756186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Aisha A. Saad-El-Din
- Radiation Physics Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Aliaa Mazhar
- Radiation Physics Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Wafaa Khalil
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
19
|
Hartmann C, Elsner M, Niessner R, Ivleva NP. Nondestructive Chemical Analysis of the Iron-Containing Protein Ferritin Using Raman Microspectroscopy. APPLIED SPECTROSCOPY 2020; 74:193-203. [PMID: 30556406 DOI: 10.1177/0003702818823203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ferritin is a ubiquitous intracellular iron storage protein of animals, plants, and bacteria. The cavity of this protein acts like a reaction chamber for natural formation and storage of nano-sized particles via biomineralization. Knowledge of the chemical composition and structure of the iron core is highly warranted in the fields of nano technologies as well as biomolecules and medicine. Here, we show that Raman microspectroscopy (RM) is a suitable nondestructive approach for an analysis of proteins containing such nano-sized iron oxides. Our approach addresses: (1) synthesis of suitable reference materials, i.e., ferrihydrite, maghemite and magnetite nanoparticles; (2) optimization of parameters for Raman spectroscopic analysis; (3) comparison of Raman spectra from ferritin with apoferritin and our reference minerals; and (4) validation of Raman analysis by X-ray diffraction and Mössbauer spectroscopy as two independent complementary approaches. Our results reveal that the iron core of natural ferritin is composed of the iron(III) hydroxide ferrihydrite (Fe2O3 ∙ 0.5 H2O).
Collapse
Affiliation(s)
- Carolin Hartmann
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - Martin Elsner
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - Reinhard Niessner
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| | - Natalia P Ivleva
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Munich, Germany
| |
Collapse
|
20
|
Abstract
Iron is critically important and highly regulated trace metal in the human body. However, in its free ion form, it is known to be cytotoxic; therefore, it is bound to iron storing protein, ferritin. Ferritin is a key regulator of body iron homeostasis able to form various types of minerals depending on the tissue environment. Each mineral, e.g. magnetite, maghemite, goethite, akaganeite or hematite, present in the ferritin core carry different characteristics possibly affecting cells in the tissue. In specific cases, it can lead to disease development. Widely studied connection with neurodegenerative conditions is widely studied, including Alzheimer disease. Although the exact ferritin structure and its distribution throughout a human body are still not fully known, many studies have attempted to elucidate the mechanisms involved in its regulation and pathogenesis. In this review, we try to summarize the iron uptake into the body. Next, we discuss the known occurrence of ferritin in human tissues. Lastly, we also examine the formation of iron oxides and their involvement in brain functions.
Collapse
|
21
|
Hybrid Nanostructured Magnetite Nanoparticles: From Bio-Detection and Theragnostics to Regenerative Medicine. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotechnology offers the possibility of operating on the same scale length at which biological processes occur, allowing to interfere, manipulate or study cellular events in disease or healthy conditions. The development of hybrid nanostructured materials with a high degree of chemical control and complex engineered surface including biological targeting moieties, allows to specifically bind to a single type of molecule for specific detection, signaling or inactivation processes. Magnetite nanostructures with designed composition and properties are the ones that gather most of the designs as theragnostic agents for their versatility, biocompatibility, facile production and good magnetic performance for remote in vitro and in vivo for biomedical applications. Their superparamagnetic behavior below a critical size of 30 nm has allowed the development of magnetic resonance imaging contrast agents or magnetic hyperthermia nanoprobes approved for clinical uses, establishing an inflection point in the field of magnetite based theragnostic agents.
Collapse
|
22
|
De Simone U, Spinillo A, Caloni F, Gribaldo L, Coccini T. Neuron-Like Cells Generated from Human Umbilical Cord Lining-Derived Mesenchymal Stem Cells as a New In Vitro Model for Neuronal Toxicity Screening: Using Magnetite Nanoparticles as an Example. Int J Mol Sci 2019; 21:E271. [PMID: 31906090 PMCID: PMC6982086 DOI: 10.3390/ijms21010271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/15/2022] Open
Abstract
The wide employment of iron nanoparticles in environmental and occupational settings underlines their potential to enter the brain. Human cell-based systems are recommended as relevant models to reduce uncertainty and to improve prediction of human toxicity. This study aimed at demonstrating the in vitro differentiation of the human umbilical cord lining-derived-mesenchymal stem cells (hCL-MSCs) into neuron-like cells (hNLCs) and the benefit of using them as an ideal primary cell source of human origin for the neuronal toxicity of Fe3O4NPs (magnetite-nanoparticles). Neuron-like phenotype was confirmed by: live morphology; Nissl body staining; protein expression of different neuronal-specific markers (immunofluorescent staining), at different maturation stages (i.e., day-3-early and day-8-full differentiated), namely β-tubulin III, MAP-2, enolase (NSE), glial protein, and almost no nestin and SOX-2 expression. Synaptic makers (SYN, GAP43, and PSD95) were also expressed. Fe3O4NPs determined a concentration- and time-dependent reduction of hNLCs viability (by ATP and the Trypan Blue test). Cell density decreased (20-50%) and apoptotic effects were detected at ≥10 μg/mL in both types of differentiated hNLCs. Three-day-differentiated hNLCs were more susceptible (toxicity appeared early and lasted for up to 48 h) than 8-day-differentiated cells (delayed effects). The study demonstrated that (i) hCL-MSCs easily differentiated into neuronal-like cells; (ii) the hNCLs susceptibility to Fe3O4NPs; and (iii) human primary cultures of neurons are new in vitro model for NP evaluation.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical & Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-Benefit Corporation, IRCCS Pavia, Via Maugeri 10, 27100 Pavia, Italy;
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy;
| | - Francesca Caloni
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 20133 Milano, Italy;
| | - Laura Gribaldo
- Chemical Safety and Alternative Methods Unit, Directorate F—Health, Consumers and Reference Materials, Directorate General Joint Research Centre, European Commission, 21027 Ispra, Italy;
| | - Teresa Coccini
- Laboratory of Clinical & Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-Benefit Corporation, IRCCS Pavia, Via Maugeri 10, 27100 Pavia, Italy;
| |
Collapse
|
23
|
Van de Walle A, Abou-Hassan A, Luciani N, Wilhelm C. [Human stem cells can neo-biosynthesize magnetic nanoparticles after degrading man-made nanoparticles]. Med Sci (Paris) 2019; 35:725-727. [PMID: 31625889 DOI: 10.1051/medsci/2019157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Aurore Van de Walle
- Laboratoire matière et systèmes complexes, CNRS UMR 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Ali Abou-Hassan
- Sorbonne Université, CNRS, Physico-chimie des électrolytes et nanosystèmes interfaciaux, PHENIX, 75005 Paris, France
| | - Nathalie Luciani
- Laboratoire matière et systèmes complexes, CNRS UMR 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Claire Wilhelm
- Laboratoire matière et systèmes complexes, CNRS UMR 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| |
Collapse
|
24
|
Abstract
Crystals of TiO2 and CaO were detected in electron-beam exposed extracts of four substantia nigra specimens of Parkinson's disease donors. A likely precursor of the CaO crystals is inflammatory calcium oxalate dihydrate, decomposing according to CaC2O4·2H2O → CaO + CO↑ + CO2↑ + 2H2O↑. Crystals of hydrated iron oxide, earlier reported residents of the human brain, were also found.
Collapse
Affiliation(s)
- Adam Heller
- McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, United States
| | - Sheryl S. Coffman
- McKetta Department of Chemical Engineering, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Xue L, Deng D, Sun J. Magnetoferritin: Process, Prospects, and Their Biomedical Applications. Int J Mol Sci 2019; 20:E2426. [PMID: 31100837 PMCID: PMC6567256 DOI: 10.3390/ijms20102426] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Ferritin is a spherical iron storage protein composed of 24 subunits and an iron core. Using biomimetic mineralization, magnetic iron oxide can be synthesized in the cavity of ferritin to form magnetoferritin (MFt). MFt, also known as a superparamagnetic protein, is a novel magnetic nanomaterial with good biocompatibility and flexibility for biomedical applications. Recently, it has been demonstrated that MFt had tumor targetability and a peroxidase-like catalytic activity. Thus, MFt, with its many unique properties, provides a powerful platform for tumor diagnosis and therapy. In this review, we discuss the biomimetic synthesis and biomedical applications of MFt.
Collapse
Affiliation(s)
- Le Xue
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
26
|
Balejčíková L, Kováč J, Garamus VM, Avdeev MV, Petrenko VI, Almásy L, Kopčanský P. Influence of synthesis temperature on structural and magnetic properties of magnetoferritin. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Banerjee S, Omlor A, Wolny JA, Han Y, Lermyte F, Godfrey AE, O'Connor PB, Schünemann V, Danaie M, Sadler PJ. Generation of maghemite nanocrystals from iron–sulfur centres. Dalton Trans 2019; 48:9564-9569. [DOI: 10.1039/c9dt00514e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Electron beam induced generation of maghemite nanocrystals from polymer-encapsulated iron–sulfur centres.
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | - Andreas Omlor
- Department of Physics
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
| | - Juliusz A. Wolny
- Department of Physics
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
| | - Yisong Han
- Department of Physics
- University of Warwick
- Coventry CV4 7Al
- UK
| | - Frederik Lermyte
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- School of Engineering
| | - Amy E. Godfrey
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| | | | - Volker Schünemann
- Department of Physics
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
| | - Mohsen Danaie
- Diamond Light Source Ltd
- electron Physical Science Imaging Centre (ePSIC)
- Harwell Science & Innovation Campus
- Didcot
- Oxfordshire OX11 0DE
| | - Peter J. Sadler
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
| |
Collapse
|
28
|
Svobodová H, Kosnáč D, Balázsiová Z, Tanila H, Miettinen P, Sierra A, Vitovič P, Wagner A, Polák Š, Kopáni M. Elevated age-related cortical iron, ferritin and amyloid plaques in APPswe/PS1ΔE9 transgenic mouse model of Alzheimer’s disease. Physiol Res 2019; 68:S445-S451. [DOI: 10.33549/physiolres.934383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Iron is very important element for functioning of the brain. Its concentration changes with aging the brain or during disease. The aim of our work was the histological examination of content of ferritin and free iron (unbound) in brain cortex in association with Aβ plaques from their earliest stages of accumulation in amyloid plaque forming APP/PS1 transgenic mice. Light microscopy revealed the onset of plaques formation at 8-monthage. Detectable traces of free iron and no ferritin were found around plaques at this age, while the rate of their accumulation in and around Aβ plaques was elevated at 13 months of age. Ferritin accumulated mainly on the edge of Aβ plaques, while the smaller amount of free iron was observed in the plaque-free tissue, as well as in and around Aβ plaques. We conclude that free iron and ferritin accumulation follows the amyloid plaques formation. Quantification of cortical iron and ferritin content can be an important marker in the diagnosis of Alzheimer’s disease.
Collapse
Affiliation(s)
- H. Svobodová
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine and Department of simulation and virtual medical education, Comenius University, Faculty of Medicine, Bratislava, Slovakia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gorobets S, Gorobets O, Kovalchuk I, Yevzhyk L. Determination of Potential Producers of Biogenic Magnetic Nanoparticles Among the Fungi Representatives of Ascomycota and Basidiomycota Divisions. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2018. [DOI: 10.20535/ibb.2018.2.4.147310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
30
|
Khan S, Cohen D. Using the magnetoencephalogram to noninvasively measure magnetite in the living human brain. Hum Brain Mapp 2018; 40:1654-1665. [PMID: 30457688 PMCID: PMC6587731 DOI: 10.1002/hbm.24477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/03/2022] Open
Abstract
During the past several decades there has been much interest in the existence of magnetite particles in the human brain and their accumulation with age. These particles also appear to play an important role in neurodegenerative diseases of the brain. However, up to now the amount and distribution of these particles has been measured only in post‐mortem brain tissue. Although in‐vivo MRI measurements do show iron compounds generally, MRI cannot separate them according to their magnetic phases, which are associated with their chemical interactions. In contrast, we here offer a new noninvasive, in‐vivo method which is selectively sensitive only to particles which can be strongly magnetized. We magnetize these particles with a strong magnetic field through the head, and then measure the resulting magnetic fields, using the dcMagnetoencephalogram (dcMEG). From these data, the mass and locations of the particles can be estimated, using a distributed inverse solution. To test the method, we measured 11 healthy male subjects (ages 19–89 year). Accumulation of magnetite, in the hippocampal formation or nearby structures, was observed in the older men. These in‐vivo findings agree with reports of post‐mortem measurements of their locations, and of their accumulation with age. Thus, our findings allow in‐vivo measurement of magnetite in the human brain, and possibly open the door for new studies of neurodegenerative diseases of the brain.
Collapse
Affiliation(s)
- Sheraz Khan
- Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts
| | - David Cohen
- Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts.,Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
31
|
Gatto F, Bardi G. Metallic Nanoparticles: General Research Approaches to Immunological Characterization. NANOMATERIALS 2018; 8:nano8100753. [PMID: 30248990 PMCID: PMC6215296 DOI: 10.3390/nano8100753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022]
Abstract
Our immunity is guaranteed by a complex system that includes specialized cells and active molecules working in a spatially and temporally coordinated manner. Interaction of nanomaterials with the immune system and their potential immunotoxicity are key aspects for an exhaustive biological characterization. Several assays can be used to unravel the immunological features of nanoparticles, each one giving information on specific pathways leading to immune activation or immune suppression. Size, shape, and surface chemistry determine the surrounding corona, mainly formed by soluble proteins, hence, the biological identity of nanoparticles released in cell culture conditions or in a living organism. Here, we review the main laboratory characterization steps and immunological approaches that can be used to understand and predict the responses of the immune system to frequently utilized metallic or metal-containing nanoparticles, in view of their potential uses in diagnostics and selected therapeutic treatments.
Collapse
Affiliation(s)
- Francesca Gatto
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| | - Giuseppe Bardi
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
32
|
Xiao W, Jones AM, Collins RN, Waite TD. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite. Biochim Biophys Acta Gen Subj 2018; 1862:1760-1769. [DOI: 10.1016/j.bbagen.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 01/04/2023]
|
33
|
De Simone U, Roccio M, Gribaldo L, Spinillo A, Caloni F, Coccini T. Human 3D Cultures as Models for Evaluating Magnetic Nanoparticle CNS Cytotoxicity after Short- and Repeated Long-Term Exposure. Int J Mol Sci 2018; 19:ijms19071993. [PMID: 29986546 PMCID: PMC6073335 DOI: 10.3390/ijms19071993] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 11/20/2022] Open
Abstract
Since nanoparticles (NPs) can translocate to the brain and impact the highly vulnerable central nervous system (CNS), novel in vitro tools for the assessment of NP-induced neurotoxicity are advocated. In this study, two types of CNS spheroids have been developed from human D384 astrocyte- and SH-SY5Y neuronal-like cells, and optimized in combination with standard assays (viability readout and cell morphology) to test neurotoxic effects caused by Fe3O4NPs, as NP-model, after short- (24–48 h; 1–100µg/ml) and long-term repeated exposure (30days; 0.1–25µg/ml). Short-term exposure of 3D-spheroids to Fe3O4NP induced cytotoxicity at 10 µg/mL in astrocytes and 25 µg/mL neurons. After long-term repeated dose regimen, spheroids showed concentration- and time-dependent cell mortality at 10 µg/mL for D384 and 0.5 µg/mL for SH-SY5Y, indicating a higher susceptibility of neurons than astrocytes. Both spheroid types displayed cell disaggregation after the first week of treatment at ≥0.1 µg/mL and becoming considerably evident at higher concentrations and over time. Recreating the 3D-spatial environment of the CNS allows cells to behave in vitro more closely to the in vivo situations, therefore providing a model that can be used as a stand-alone test or as a part of integrated testing strategies. These models could drive an improvement in the species-relevant predictivity of toxicity testing.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-BC, IRCCS Pavia, 27100 Pavia, Italy.
| | - Marianna Roccio
- Department of Obstetrics and Gynecology, IRCCS Foundation Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy.
| | - Laura Gribaldo
- European Commission, Directorate General Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Chemicals Safety and Alternative Methods Unit, 21027 Ispra, Italy.
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, IRCCS Foundation Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy.
| | - Francesca Caloni
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria (DIMEVET), 20133 Milano, Italy.
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-BC, IRCCS Pavia, 27100 Pavia, Italy.
| |
Collapse
|
34
|
Heller A, Jarvis K, Coffman SS. Association of Type 2 Diabetes with Submicron Titanium Dioxide Crystals in the Pancreas. Chem Res Toxicol 2018; 31:506-509. [PMID: 29792697 DOI: 10.1021/acs.chemrestox.8b00047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pigment-grade titanium dioxide (TiO2) of 200-300 nm particle diameter is the most widely used submicron-sized particle material. Inhaled and ingested TiO2 particles enter the bloodstream, are phagocytized by macrophages and neutrophils, are inflammatory, and activate the NLRP3 inflammasome. In this pilot study of 11 pancreatic specimens, 8 of the type 2 diabetic pancreas and 3 of the nondiabetic pancreas, we show that particles comprising 110 ± 70 nm average diameter TiO2 monocrystals abound in the type 2 diabetic pancreas, but not in the nondiabetic pancreas. In the type 2 diabetic pancreas, the count of the crystals is as high as 108-109 per gram.
Collapse
|
35
|
Quantitative comparison of different iron forms in the temporal cortex of Alzheimer patients and control subjects. Sci Rep 2018; 8:6898. [PMID: 29720594 PMCID: PMC5932027 DOI: 10.1038/s41598-018-25021-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/10/2018] [Indexed: 12/25/2022] Open
Abstract
We present a quantitative study of different molecular iron forms found in the temporal cortex of Alzheimer (AD) patients. Applying the methodology we developed in our previous work, we quantify the concentrations of non-heme Fe(III) by Electron Paramagnetic Resonance (EPR), magnetite/maghemite and ferrihydrite by SQUID magnetometry, together with the MRI transverse relaxation rate [Formula: see text], to obtain a systematic view of molecular iron in the temporal cortex. Significantly higher values of [Formula: see text], a larger concentration of ferrihydrite, and a larger magnetic moment of magnetite/maghemite particles are found in the brain of AD patients. Moreover, we found correlations between the concentration of the iron detected by EPR, the concentration of the ferrihydrite mineral and the average iron loading of ferritin. We discuss these findings in the framework of iron dis-homeostasis, which has been proposed to occur in the brain of AD patients.
Collapse
|
36
|
Sub-cellular In-situ Characterization of Ferritin(iron) in a Rodent Model of Spinal Cord Injury. Sci Rep 2018; 8:3567. [PMID: 29476055 PMCID: PMC5824835 DOI: 10.1038/s41598-018-21744-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 01/13/2023] Open
Abstract
Iron (Fe) is an essential metal involved in a wide spectrum of physiological functions. Sub-cellular characterization of the size, composition, and distribution of ferritin(iron) can provide valuable information on iron storage and transport in health and disease. In this study we employ magnetic force microscopy (MFM), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS) to characterize differences in ferritin(iron) distribution and composition across injured and non-injured tissues by employing a rodent model of spinal cord injury (SCI). Our biophysical and ultrastructural analyses provide novel insights into iron distribution which are not obtained by routine biochemical stains. In particular, ferritin(iron) rich lysosomes revealed increased heterogeneity in MFM signal from tissues of SCI animals. Ultrastructural analysis using TEM elucidated that both cytosolic and lysosomal ferritin(iron) density was increased in the injured (spinal cord) and non-injured (spleen) tissues of SCI as compared to naïve animals. In-situ EELs analysis revealed that ferritin(iron) was primarily in Fe3+ oxidation state in both naïve and SCI animal tissues. The insights provided by this study and the approaches utilized here can be applied broadly to other systemic problems involving iron regulation or to understand the fate of exogenously delivered iron-oxide nanoparticles.
Collapse
|
37
|
Nanocomposite biomimetic vesicles based on interfacial complexes of polyelectrolytes and colloid magnetic nanoparticles. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Bossoni L, Grand Moursel L, Bulk M, Simon BG, Webb A, van der Weerd L, Huber M, Carretta P, Lascialfari A, Oosterkamp TH. Human-brain ferritin studied by muon spin rotation: a pilot study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:415801. [PMID: 28872048 DOI: 10.1088/1361-648x/aa80b3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Muon spin rotation is employed to investigate the spin dynamics of ferritin proteins isolated from the brain of an Alzheimer's disease (AD) patient and of a healthy control, using a sample of horse-spleen ferritin as a reference. A model based on the Néel theory of superparamagnetism is developed in order to interpret the spin relaxation rate of the muons stopped by the core of the protein. Using this model, our preliminary observations show that ferritins from the healthy control are filled with a mineral compatible with ferrihydrite, while ferritins from the AD patient contain a crystalline phase with a larger magnetocrystalline anisotropy, possibly compatible with magnetite or maghemite.
Collapse
Affiliation(s)
- Lucia Bossoni
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Iron Biochemistry is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer's Disease. Cell Chem Biol 2017; 24:1205-1215.e3. [PMID: 28890316 DOI: 10.1016/j.chembiol.2017.07.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 01/19/2017] [Accepted: 07/28/2017] [Indexed: 11/21/2022]
Abstract
A signature characteristic of Alzheimer's disease (AD) is aggregation of amyloid-beta (Aβ) fibrils in the brain. Nevertheless, the links between Aβ and AD pathology remain incompletely understood. It has been proposed that neurotoxicity arising from aggregation of the Aβ1-42 peptide can in part be explained by metal ion binding interactions. Using advanced X-ray microscopy techniques at sub-micron resolution, we investigated relationships between iron biochemistry and AD pathology in intact cortex from an established mouse model over-producing Aβ. We found a direct correlation of amyloid plaque morphology with iron, and evidence for the formation of an iron-amyloid complex. We also show that iron biomineral deposits in the cortical tissue contain the mineral magnetite, and provide evidence that Aβ-induced chemical reduction of iron could occur in vivo. Our observations point to the specific role of iron in amyloid deposition and AD pathology, and may impact development of iron-modifying therapeutics for AD.
Collapse
|
40
|
Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans. Int J Nanomedicine 2017; 12:4371-4395. [PMID: 28652739 PMCID: PMC5476634 DOI: 10.2147/ijn.s130565] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The discovery of biogenic magnetic nanoparticles (BMNPs) in the human brain gives a strong impulse to study and understand their origin. Although knowledge of the subject is increasing continuously, much remains to be done for further development to help our society fight a number of pathologies related to BMNPs. This review provides an insight into the puzzle of the physiological origin of BMNPs in organisms of all three domains of life: prokaryotes, archaea, and eukaryotes, including humans. Predictions based on comparative genomic studies are presented along with experimental data obtained by physical methods. State-of-the-art understanding of the genetic control of biomineralization of BMNPs and their properties are discussed in detail. We present data on the differences in BMNP levels in health and disease (cancer, neurodegenerative disorders, and atherosclerosis), and discuss the existing hypotheses on the biological functions of BMNPs, with special attention paid to the role of the ferritin core and apoferritin.
Collapse
Affiliation(s)
- Oksana Gorobets
- National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute)
- Institute of Magnetism, National Academy of Sciences, Kiev, Ukraine
| | - Svitlana Gorobets
- National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute)
| | | |
Collapse
|
41
|
Kumar P, Bulk M, Webb A, van der Weerd L, Oosterkamp TH, Huber M, Bossoni L. A novel approach to quantify different iron forms in ex-vivo human brain tissue. Sci Rep 2016; 6:38916. [PMID: 27941952 PMCID: PMC5150947 DOI: 10.1038/srep38916] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/14/2016] [Indexed: 01/28/2023] Open
Abstract
We propose a novel combination of methods to study the physical properties of ferric ions and iron-oxide nanoparticles in post-mortem human brain, based on the combination of Electron Paramagnetic Resonance (EPR) and SQUID magnetometry. By means of EPR, we derive the concentration of the low molecular weight iron pool, as well as the product of its electron spin relaxation times. Additionally, by SQUID magnetometry we identify iron mineralization products ascribable to a magnetite/maghemite phase and a ferrihydrite (ferritin) phase. We further derive the concentration of magnetite/maghemite and of ferritin nanoparticles. To test out the new combined methodology, we studied brain tissue of an Alzheimer’s patient and a healthy control. Finally, we estimate that the size of the magnetite/maghemite nanoparticles, whose magnetic moments are blocked at room temperature, exceeds 40–50 nm, which is not compatible with the ferritin protein, the core of which is typically 6–8 nm. We believe that this methodology could be beneficial in the study of neurodegenerative diseases such as Alzheimer’s Disease which are characterized by abnormal iron accumulation in the brain.
Collapse
Affiliation(s)
- Pravin Kumar
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Marjolein Bulk
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tjerk H Oosterkamp
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Martina Huber
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Lucia Bossoni
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| |
Collapse
|
42
|
Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol In Vitro 2016; 38:179-192. [PMID: 27816503 DOI: 10.1016/j.tiv.2016.10.012] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/29/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Abstract
Silver nanoparticles (AgNPs) have generated a great deal of interest in the research, consumer product, and medical product communities due to their antimicrobial and anti-biofouling properties. However, in addition to their antimicrobial action, concerns have been expressed about the potential adverse human health effects of AgNPs. In vitro cytotoxicity studies often are used to characterize the biological response to AgNPs and the results of these studies may be used to identify hazards associated with exposure to AgNPs. Various factors, such as nanomaterial size (diameter), surface area, surface charge, redox potential, surface functionalization, and composition play a role in the development of toxicity in in vitro test systems. In addition, the interference of AgNPs with in vitro cytotoxicity assays may result in false negative or false positive results in some in vitro biological tests. The goal of this review is to: 1) summarize the impact of physical-chemical parameters, including size, shape, surface chemistry and aggregate formation on the in vitro cytotoxic effects of AgNPs; and 2) explore the nature of AgNPs interference in in vitro cytotoxicity assays.
Collapse
|
43
|
Coccini T, Caloni F, Ramírez Cando LJ, De Simone U. Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. J Appl Toxicol 2016; 37:361-373. [DOI: 10.1002/jat.3367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Teresa Coccini
- Laboratory of Experimental and Clinical Toxicology, Poison Control Centre and National Toxicology Information Centre, Toxicology Division, IRCCS Maugeri Foundation; Scientific Institute of Pavia; Pavia Italy
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET); Università degli Studi di Milano; Milano Italy
| | - Lenin Javier Ramírez Cando
- Centro de Investigación y Valoración de la Biodiversidad (CIVABI); Universidad Politécnica Salesiana; Quito Ecuador
| | - Uliana De Simone
- Laboratory of Experimental and Clinical Toxicology, Poison Control Centre and National Toxicology Information Centre, Toxicology Division, IRCCS Maugeri Foundation; Scientific Institute of Pavia; Pavia Italy
| |
Collapse
|
44
|
Soltanian A, Khoshnegah J, Heidarpour M. Comparison of serum trace elements and antioxidant levels in terrier dogs with or without behavior problems. Appl Anim Behav Sci 2016. [DOI: 10.1016/j.applanim.2016.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Mutagenic Effects of Iron Oxide Nanoparticles on Biological Cells. Int J Mol Sci 2015; 16:23482-516. [PMID: 26437397 PMCID: PMC4632710 DOI: 10.3390/ijms161023482] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts. This review article describes the impact of IONPs on cellular genetic components. The mutagenic impact of IONPs may damage an organism's ability to develop or reproduce. To date, there has been experimental evidence of IONPs having mutagenic interactions on human cell lines including lymphoblastoids, fibroblasts, microvascular endothelial cells, bone marrow cells, lung epithelial cells, alveolar type II like epithelial cells, bronchial fibroblasts, skin epithelial cells, hepatocytes, cerebral endothelial cells, fibrosarcoma cells, breast carcinoma cells, lung carcinoma cells, and cervix carcinoma cells. Other cell lines including the Chinese hamster ovary cells, mouse fibroblast cells, murine fibroblast cells, Mytilus galloprovincialis sperm cells, mice lung cells, murine alveolar macrophages, mice hepatic and renal tissue cells, and vero cells have also shown mutagenic effects upon exposure to IONPs. We further show the influence of IONPs on microorganisms in the presence and absence of dissolved organic carbon. The results shed light on the OPEN ACCESS Int. J. Mol. Sci. 2015, 16 23483 transformations IONPs undergo in the environment and the nature of the potential mutagenic impact on biological cells.
Collapse
|
46
|
Sant'Ovaia H, Marques G, Santos A, Gomes C, Rocha A. Magnetic susceptibility and isothermal remanent magnetization in human tissues: a study case. Biometals 2015; 28:951-8. [PMID: 26373856 DOI: 10.1007/s10534-015-9879-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
This study evaluated the magnetic properties, magnetic susceptibility and isothermal remanent magnetization (IRM) of tissue samples from the brain, liver, spleen, pancreas, heart and lungs, resected from human corpses, with the aim of identifying the magnetic mineral structures and understanding their possible connection to diseases, professional activity, age and gender of the individual, smoking habits and the environment. The heart was the organ with the highest values of magnetic susceptibility and the pancreas showed the lowest values. No relationship was found between magnetic susceptibility, IRM values and ages of the individuals. However the samples obtained in females showed lower values of magnetic susceptibility than those resected from males. The samples collected from the lungs of smokers have higher values of magnetic susceptibility and IRM indicating the presence of magnetic particles with an anthropic origin. Moreover, the complexity of the magnetic behaviour of these tissues may suggest a contribution of both biogenic and anthropogenic magnetic particles also due to some professional activities. In the brain a heterogeneous distribution of the magnetic susceptibility values was found, which might be related mainly to the diamagnetic behaviour of myelin-rich structures. This study suggests that although the diamagnetic and paramagnetic behaviour is common to all structures, magnetite-type structures are always present in the tissues and hematite-type structures may also contribute to the magnetic signal of the sample. IRM values are only dependent on the presence of magnetite or hematite-type magnetic structures and so this technique seems more suitable to achieve the characterization of biomagnetic structures than magnetic susceptibility.
Collapse
Affiliation(s)
- H Sant'Ovaia
- Earth Sciences Institute, Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of Porto University, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - G Marques
- Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of Porto University, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - A Santos
- Department of Forensic Pathology - North Branch, National Institute of Legal Medicine and Forensic Sciences, Jardim Carrilho Videira, 4050-167, Porto, Portugal.,Department of Legal Medicine and Forensic Sciences, Faculty of Medicine of Porto University, Alameda Professor Hernâni, 4200-319, Porto, Portugal.,School of Health Sciences of Minho University, Campus de Gualtar, 4710-057, Braga, Portugal.,Center of Forensic Sciences, National Institute of Legal Medicine and Forensic Sciences, Largo da Sé Nova, 3000-213, Coimbra, Portugal
| | - C Gomes
- Department of Earth Sciences, Geophysics Centre of University of Coimbra, Faculty of Sciences and Technology of University of Coimbra, Largo Marquês de Pombal, 3000-272, Coimbra, Portugal
| | - A Rocha
- Department of Earth Sciences, Geophysics Centre of University of Coimbra, Faculty of Sciences and Technology of University of Coimbra, Largo Marquês de Pombal, 3000-272, Coimbra, Portugal
| |
Collapse
|
47
|
Ares P, Jaafar M, Gil A, Gómez-Herrero J, Asenjo A. Magnetic Force Microscopy in Liquids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4731-6. [PMID: 26150330 DOI: 10.1002/smll.201500874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Indexed: 05/03/2023]
Abstract
In this work, the use of magnetic force microscopy (MFM) to acquire images of magnetic nanostructures in liquid environments is presented. Optimization of the MFM signal acquisition in liquid media is performed and it is applied to characterize the magnetic signal of magnetite nanoparticles. The ability for detecting magnetic nanostructures along with the well-known capabilities of atomic force microscopy in liquids suggests potential applications in fields such as nanomedicine, nanobiotechnology, or nanocatalysis.
Collapse
Affiliation(s)
- Pablo Ares
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Miriam Jaafar
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049, Madrid, Spain
| | - Adriana Gil
- Nanotec Electrónica S.L, E-28760, Tres Cantos, Madrid, Spain
| | - Julio Gómez-Herrero
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
- INC and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Agustina Asenjo
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049, Madrid, Spain
| |
Collapse
|
48
|
Abstract
Iron is an essential element for fundamental cell functions and a catalyst for chemical reactions. Three samples extracted from the human spleen were investigated by scanning (SEM) and transmission electron microscopy (TEM), Mössbauer spectrometry (MS), and SQUID magnetometry. The sample with diagnosis of hemosiderosis (H) differs from that referring to hereditary spherocytosis and the reference sample. SEM reveals iron-rich micrometer-sized aggregate of various structures-tiny fibrils in hereditary spherocytosis sample and no fibrils in hemochromatosis. Hematite and magnetite particles from 2 to 6 μm in TEM with diffraction in all samples were shown. The SQUID magnetometry shows different amount of diamagnetic, paramagnetic and ferrimagnetic structures in the tissues. The MS results indicate contribution of ferromagnetically split sextets for all investigated samples. Their occurrence indicates that at least part of the sample is magnetically ordered below the critical temperature. The iron accumulation process is different in hereditary spherocytosis and hemosiderosis. This fact may be the reason of different iron crystallization.
Collapse
|
49
|
Glaser T, Bueno VB, Cornejo DR, Petri DFS, Ulrich H. Neuronal adhesion, proliferation and differentiation of embryonic stem cells on hybrid scaffolds made of xanthan and magnetite nanoparticles. ACTA ACUST UNITED AC 2015; 10:045002. [PMID: 26154495 DOI: 10.1088/1748-6041/10/4/045002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hybrid scaffolds made of xanthan and magnetite nanoparticles (XCA/mag) were prepared by dipping xanthan membranes (XCA) into dispersions of magnetic nanoparticles for different periods of time. The resulting hybrid scaffolds presented magnetization values ranging from 0.25 emu g(-1) to 1.80 emu g(-1) at 70 kOe and corresponding iron contents ranging from 0.25% to 2.3%, respectively. They were applied as matrices for in vitro embryoid body adhesion and neuronal differentiation of embryonic stem cells; for comparison, neat XCA and commercial plastic plates were also used. Adhesion rates were more pronounced when cells were seeded on XCA/mag than on neat XCA or plastic dishes; however, proliferation levels were independent from those of the scaffold type. Embryonic stem cells showed similar differentiation rates on XCA/mag scaffolds with magnetization of 0.25 and 0.60 emu g(-1), but did not survive on scaffolds with 1.80 emu g(-1). Differentiation rates, expressed as the number of neurons obtained on the chosen scaffolds, were the largest on neat XCA, which has a high density of negative charge, and were smallest on the commercial plastic dishes. The local magnetic field inherent of magnetite particles present on the surface of XCA/mag facilitates synapse formation, because synaptophysin expression and electrical transmission were increased when compared to the other scaffolds used. We conclude that XCA/mag and XCA hydrogels are scaffolds with distinguishable performance for adhesion and differentiation of ESCs into neurons.
Collapse
Affiliation(s)
- Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
50
|
Xiong P, Chen X, Guo C, Zhang N, Ma B. Baicalin and deferoxamine alleviate iron accumulation in different brain regions of Parkinson's disease rats. Neural Regen Res 2015; 7:2092-8. [PMID: 25558221 PMCID: PMC4281409 DOI: 10.3969/j.issn.1673-5374.2012.27.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/10/2012] [Indexed: 12/25/2022] Open
Abstract
Previous studies found that iron accumulates in the substantia nigra of Parkinson’s disease patients. However, it is still unclear whether other brain regions have iron accumulation as well. In this experiment, rats with rotenone-induced Parkinson’s disease were treated by gastric perfusion of baicalin or intraperitoneal injection of deferoxamine. Immunohistochemical staining demonstrated that iron accumulated not only in the substantia nigra pars compacta, but also significantly in the striatum globus pallidus, the dentate gyrus granular layer of the hippocampus, the dentate-interpositus and the facial nucleus of the cerebellum. Both baicalin and deferoxamine, which are iron chelating agents, significantly inhibited iron deposition in these brain areas, and substantially reduced the loss of tyrosine hydroxylase-positive cells. These chelators also reduced iron content in the substantia nigra. In addition to the substantia nigra, iron deposition was observed in other brain regions as well. Both baicalin and deferoxamine significantly inhibited iron accumulation in different brain regions, and had a protective effect on dopaminergic neurons.
Collapse
Affiliation(s)
- Pei Xiong
- Department of Chinese Materia Medica Pharmacology, Traditional Chinese Medicine School, Capital Medical University, Beijing 100069, China
| | - Xin Chen
- Department of Chinese Materia Medica Pharmacology, Traditional Chinese Medicine School, Capital Medical University, Beijing 100069, China
| | - Chunyan Guo
- Department of Chinese Materia Medica Pharmacology, Traditional Chinese Medicine School, Capital Medical University, Beijing 100069, China
| | - Nan Zhang
- Department of Chinese Materia Medica Pharmacology, Traditional Chinese Medicine School, Capital Medical University, Beijing 100069, China
| | - Baocang Ma
- Department of Chinese Materia Medica Pharmacology, Traditional Chinese Medicine School, Capital Medical University, Beijing 100069, China
| |
Collapse
|