1
|
Senthilkumar N, Sarveswari S, Choudhari P, Chaudhari S, Islam I, Tamboli Y, Vijayakumar V. Novel benzimidazole-1, 3, 4-thiadiazole derivatives as casein kinase-2 inhibitors: synthesis, in vitro and in silico investigations. BMC Chem 2025; 19:161. [PMID: 40490806 DOI: 10.1186/s13065-025-01532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/27/2025] [Indexed: 06/11/2025] Open
Abstract
A new set of benzimidazole-thiadiazole derivatives has been designed and synthesized using 2-(chloromethyl)-1H-benzo[d]imidazole (1). Compounds 4a-m were achieved by amide bond formation using acid chlorides and pyridine in 1, 2-dichloroethane. The newly synthesized compounds were characterized and subjected to cytotoxicity studies against HeLa cells. Compounds 4c, 4 d, and 4e exhibited good inhibitory activity with IC50 values of 15, 25, and 25 µM, respectively. Molecular docking studies were performed to elucidate the binding interactions of compounds 4c and 4e with human Casein kinase-2 (CK2). Compound 4c exhibited maximum cytotoxicity against HeLa cells with the lowest binding energy values of -8.61 kcal/mol towards CK2. Compound 4c underwent molecular dynamics (MD) simulations to assess their stability and interactions within the active site. Density functional theory (DFT) calculations also provided insights into the synthesised compounds' electronic structure, reactivity, and charge distribution.
Collapse
Affiliation(s)
- N Senthilkumar
- Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - S Sarveswari
- Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Prafulla Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Somdatta Chaudhari
- Department of Pharmaceutical Chemistry, PES's Modern College of Pharmacy, Pune, Maharashtra, 411 044, India
| | - Imadul Islam
- King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, 14811, Riyadh, Saudi Arabia
| | - Yasinalli Tamboli
- King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, 14811, Riyadh, Saudi Arabia
| | - V Vijayakumar
- Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
2
|
Karmakar S, Chatterjee M, Basu M, Ghosh MK. CK2: The master regulator in tumor immune-microenvironment - A crucial target in oncotherapy. Eur J Pharmacol 2025; 994:177376. [PMID: 39952582 DOI: 10.1016/j.ejphar.2025.177376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
A constitutively active serine/threonine kinase, casein kinase 2 (CK2) is involved in several physiological functions, such as DNA repair, apoptosis, and cell cycle control. New research emphasizes how critical CK2 is to the immune system's dysregulation in the tumor immune-microenvironment (TIME). The inhibition of immunological responses, including the downregulation of immune effector cells and the elevation of immunosuppressive proteins that aid in the development of tumor and immune evasion, has been linked to CK2 overexpression. CK2 maintains an immunosuppressive milieu that impedes anti-tumor immunity by encouraging the expressions and activities of immune checkpoint markers, regulating cytokines release, and boosting immune-suppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) to maintain immune evasion. It is a promising target for cancer treatment due to its complex role in immune regulation and oncogenic pathways. In this study, we address the therapeutic perspectives of targeting CK2 in oncotherapy and investigate the mechanisms by which it controls immunological responses in the TME. This review, comprehending the function of CK2 in immune suppression can facilitate the creation of innovative treatment approaches aimed at augmenting anti-tumor immunity and enhancing immunotherapy effectiveness.
Collapse
Affiliation(s)
- Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Mouli Chatterjee
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Dakshin Barasat, WB, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
3
|
Marminon C, Werner C, Gast A, Herfindal L, Charles J, Lindenblatt D, Aichele D, Mularoni A, Døskeland SO, Jose J, Niefind K, Le Borgne M. Exploring the biological potential of the brominated indenoindole MC11 and its interaction with protein kinase CK2. Biol Chem 2025:hsz-2024-0160. [PMID: 40116007 DOI: 10.1515/hsz-2024-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/05/2025] [Indexed: 03/23/2025]
Abstract
Protein kinase CK2 is a promising therapeutic target, especially in oncology. Over the years, various inhibitors have been developed, with polyhalogenated scaffolds emerging as a particularly effective class. Halogens like bromine and chlorine enhance inhibitor stability by forming additional interactions within the ATP pocket. Among halogenated scaffolds, benzotriazole and benzimidazole have led to potent molecules such as 4,5,6,7-tetrabromo-1H-benzotriazole (IC50 = 300 nM) and 4,5,6,7-tetrabromo-2-(dimethylamino)benzimidazole (IC50 = 140 nM). Modifications, including 4,5,6-tribromo-7-ethyl-1H-benzotriazole (IC50 = 160 nM), further improved activity. Changing scaffolds while retaining halogens has enabled design of new inhibitors. Flavonols, dibenzofuranones, and the indeno[1,2-b]indole scaffold are key examples. Halogenation of the reference molecule 5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4b, IC50 = 360 nM) significantly boosted potency. The study focused on introducing four halogens, yielding to the compound 1,2,3,4-tetrabromo-5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (MC11), with an IC50 of 16 nM. Co-crystallography revealed how bromine atoms enhance binding, and MC11 demonstrated strong in cellulo activity, particularly against leukemic cell lines like IPC-Bcl2.
Collapse
Affiliation(s)
- Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | - Christian Werner
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Lars Herfindal
- Department of Clinical Science, University of Bergen, N-5009 Bergen, Norway
| | - Johana Charles
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | - Dirk Lindenblatt
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Dagmar Aichele
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Angélique Mularoni
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| | | | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, PharmaCampus, Corrensstraße 48, D-48149 Münster, Germany
| | - Karsten Niefind
- Department of Chemistry and Biochemistry, Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, D-50674 Köln, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, University of Lyon, F-69373 Lyon, France
| |
Collapse
|
4
|
Li R, Wu X, Cheng J, Zhu Z, Guo M, Hou G, Li T, Zheng Y, Ma H, Lu H, Chen X, Zhang T, Zeng W. Polyamines protect porcine sperm from lipopolysaccharide-induced mitochondrial dysfunction and apoptosis via casein kinase 2 activation. J Anim Sci 2025; 103:skae383. [PMID: 39704338 PMCID: PMC11773192 DOI: 10.1093/jas/skae383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024] Open
Abstract
Bacterial contamination is an inevitable issue during the processing of semen preservation in pigs. As a prototypical endotoxin from Gram-negative bacteria in semen, lipopolysaccharide (LPS) undermines sperm function during liquid preservation. Spermine and spermidine could protect cells against LPS-induced injury, and the content of spermine and spermidine in seminal plasma is positively correlated with sperm quality. Thus, the present study aimed to clarify whether addition of spermine or spermidine is beneficial to porcine semen preservation and able to prevent LPS-induced sperm damage. The supplementation of spermine and spermidine in the diluent resulted in higher sperm motility, viability, acrosome integrity, and mitochondrial membrane potential (ΔΨm) after preservation in vitro at 17 °C for 7 d (P < 0.05). LPS-induced sperm quality deterioration, ΔΨm decline, cellular adenosine-triphosphate depletion, mitochondrial ultrastructure abnormality, mitochondrial permeability transition pore opening, phosphatidylserine (PS) translocation, and caspase-3 activation (P < 0.05). Interestingly, spermine and spermidine alleviated the LPS-induced changes of the aforementioned parameters and mitigated the decrease in the microtubule-associated protein light chain 3-II (LC3-II) to LC3-I ratio. Meanwhile, the α and β subunits of casein kinase 2 (CK2) were detected at the connecting piece and the tail. Significantly, addition of 4,5,6,7-tetrabromobenzotriazole, a specific CK2 inhibitor, counteracted the beneficial effects of spermine and spermidine on sperm quality, mitochondrial activity, and apoptosis. Together, these results suggest that spermine and spermidine improve sperm quality and the efficiency of liquid preservation of porcine semen. Furthermore, spermine and spermidine alleviate LPS-induced sperm mitochondrial dysfunction and apoptosis in a CK2-dependent manner.
Collapse
Affiliation(s)
- Rongnan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Xiaodong Wu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Cheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Zhendong Zhu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming Guo
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guochao Hou
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tianjiao Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haidong Ma
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Xiaoxu Chen
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Łukowska-Chojnacka E, Fedorov E, Kowalkowska A, Wielechowska M, Sobiepanek A, Koronkiewicz M, Wińska P. Synthesis and evaluation of anticancer activity of new 4,5,6,7-tetrabromo-1H-benzimidazole derivatives. Bioorg Chem 2024; 153:107880. [PMID: 39476601 DOI: 10.1016/j.bioorg.2024.107880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 10/05/2024] [Indexed: 12/10/2024]
Abstract
An efficient method for the synthesis of new 4,5,6,7-tetrabromo-1H-benzimidazole derivatives has been developed. New ketones were obtained by N-alkylation of TBBi or 2-Me-TBBi with various phenacyl halides and then reduced to the corresponding alcohols. All compounds were obtained with satisfactory yields in the range of 40-91 %. The synthesized compounds appeared a weak CK2 and PIM-1 inhibitors but exhibit an interesting cytotoxic activity against cancer cell lines, i.e. MCF-7, PC-3, CCRF-CEM, K-562. 1-Phenyl-2-(4,5,6,7-tetrabromo-1H-benzimidazol-1-yl)ethanone 3aA exhibits the highest cytotoxic activity with IC50 value of 5.30 µM for MCF-7 and 6.80 µM for CCRF-CEM. Moreover, this compound shows the highest selectivity against both MCF-7 and CCRF-CEM with SI selectivity coefficients (against MRC-5 and Vero cells) equal 5.45 and 4.30 for MCF-7 and 4.25 and 3.35 for CCRF-CEM, respectively. Furthermore, it was shown that compound 3aA exhibits very good pro-apoptotic properties, through induction of the mitochondrial apoptotic pathway in CCRF-CEM cells. These results correlate with data showing the effect of 3aA on intracellular level of CK2α protein and CK2-mediated phosphorylation of Ser529 in NF-κBp65. Study of the effect of compound 3aA on mRNA levels of CK2α and CK2α' showed no significant differences in gene expression levels in control CCRF-CEM and cells treated with 3aA, indicating 3aA action at the protein level.
Collapse
Affiliation(s)
- Edyta Łukowska-Chojnacka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
| | - Egor Fedorov
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Anna Kowalkowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Mirosława Koronkiewicz
- Department of Biomedical Research, National Medicines Institute, Chełmska St. 30/34, 00-725 Warsaw, Poland
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
6
|
Latosińska M, Latosińska JN. Serine/Threonine Protein Kinases as Attractive Targets for Anti-Cancer Drugs-An Innovative Approach to Ligand Tuning Using Combined Quantum Chemical Calculations, Molecular Docking, Molecular Dynamic Simulations, and Network-like Similarity Graphs. Molecules 2024; 29:3199. [PMID: 38999151 PMCID: PMC11243552 DOI: 10.3390/molecules29133199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Serine/threonine protein kinases (CK2, PIM-1, RIO1) are constitutively active, highly conserved, pleiotropic, and multifunctional kinases, which control several signaling pathways and regulate many cellular functions, such as cell activity, survival, proliferation, and apoptosis. Over the past decades, they have gained increasing attention as potential therapeutic targets, ranging from various cancers and neurological, inflammation, and autoimmune disorders to viral diseases, including COVID-19. Despite the accumulation of a vast amount of experimental data, there is still no "recipe" that would facilitate the search for new effective kinase inhibitors. The aim of our study was to develop an effective screening method that would be useful for this purpose. A combination of Density Functional Theory calculations and molecular docking, supplemented with newly developed quantitative methods for the comparison of the binding modes, provided deep insight into the set of desirable properties responsible for their inhibition. The mathematical metrics helped assess the distance between the binding modes, while heatmaps revealed the locations in the ligand that should be modified according to binding site requirements. The Structure-Binding Affinity Index and Structural-Binding Affinity Landscape proposed in this paper helped to measure the extent to which binding affinity is gained or lost in response to a relatively small change in the ligand's structure. The combination of the physico-chemical profile with the aforementioned factors enabled the identification of both "dead" and "promising" search directions. Tests carried out on experimental data have validated and demonstrated the high efficiency of the proposed innovative approach. Our method for quantifying differences between the ligands and their binding capabilities holds promise for guiding future research on new anti-cancer agents.
Collapse
Affiliation(s)
- Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-814 Poznań, Poland
| | | |
Collapse
|
7
|
Zhang J, Sun P, Wu Z, Wu J, Jia J, Zou H, Mo Y, Zhou Z, Liu B, Ao Y, Wang Z. Targeting CK2 eliminates senescent cells and prolongs lifespan in Zmpste24-deficient mice. Cell Death Dis 2024; 15:380. [PMID: 38816370 PMCID: PMC11139886 DOI: 10.1038/s41419-024-06760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Senescent cell clearance is emerging as a promising strategy for treating age-related diseases. Senolytics are small molecules that promote the clearance of senescent cells; however, senolytics are uncommon and their underlying mechanisms remain largely unknown. Here, we investigated whether genomic instability is a potential target for senolytic. We screened small-molecule kinase inhibitors involved in the DNA damage response (DDR) in Zmpste24-/- mouse embryonic fibroblasts, a progeroid model characterized with impaired DDR and DNA repair. 4,5,6,7-tetrabromo-2-azabenzamidazole (TBB), which specifically inhibits casein kinase 2 (CK2), was selected and discovered to preferentially trigger apoptosis in Zmpste24-/- cells. Mechanistically, inhibition of CK2 abolished the phosphorylation of heterochromatin protein 1α (HP1α), which retarded the dynamic HP1α dissociation from repressive histone mark H3K9me3 and its relocalization with γH2AX to DNA damage sites, suggesting that disrupting heterochromatin remodeling in the initiation of DDR accelerates apoptosis in senescent cells. Furthermore, feeding Zmpste24-deficient mice with TBB alleviated progeroid features and extended their lifespan. Our study identified TBB as a new class senolytic compound that can reduce age-related symptoms and prolong lifespan in progeroid mice.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China
| | - Pengfei Sun
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Zhuping Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Jie Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Jiali Jia
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Haoman Zou
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Yanzhen Mo
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China
| | - Ying Ao
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China.
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China.
| | - Zimei Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China.
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Li X, Yang Q, Jiang P, Wen J, Chen Y, Huang J, Tian M, Ren J, Yang Q. Inhibition of CK2 Diminishes Fibrotic Scar Formation and Improves Outcomes After Ischemic Stroke via Reducing BRD4 Phosphorylation. Neurochem Res 2024; 49:1254-1267. [PMID: 38381246 PMCID: PMC10991067 DOI: 10.1007/s11064-024-04112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/09/2024] [Accepted: 01/20/2024] [Indexed: 02/22/2024]
Abstract
Fibrotic scars play important roles in tissue reconstruction and functional recovery in the late stage of nervous system injury. However, the mechanisms underlying fibrotic scar formation and regulation remain unclear. Casein kinase II (CK2) is a protein kinase that regulates a variety of cellular functions through the phosphorylation of proteins, including bromodomain-containing protein 4 (BRD4). CK2 and BRD4 participate in fibrosis formation in a variety of tissues. However, whether CK2 affects fibrotic scar formation remains unclear, as do the mechanisms of signal regulation after cerebral ischemic injury. In this study, we assessed whether CK2 could modulate fibrotic scar formation after cerebral ischemic injury through BRD4. Primary meningeal fibroblasts were isolated from neonatal rats and treated with transforming growth factor-β1 (TGF-β1), SB431542 (a TGF-β1 receptor kinase inhibitor) or TBB (a highly potent CK2 inhibitor). Adult SD rats were intraperitoneally injected with TBB to inhibit CK2 after MCAO/R. We found that CK2 expression was increased in vitro in the TGF-β1-induced fibrosis model and in vivo in the MCAO/R injury model. The TGF-β1 receptor kinase inhibitor SB431542 decreased CK2 expression in fibroblasts. The CK2 inhibitor TBB reduced the increases in proliferation, migration and activation of fibroblasts caused by TGF-β1 in vitro, and it inhibited fibrotic scar formation, ameliorated histopathological damage, protected Nissl bodies, decreased infarct volume and alleviated neurological deficits after MCAO/R injury in vivo. Furthermore, CK2 inhibition decreased BRD4 phosphorylation both in vitro and in vivo. The findings of the present study suggested that CK2 may control BRD4 phosphorylation to regulate fibrotic scar formation, to affecting outcomes after ischemic stroke.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Neurology, The Second People's Hospital of Chongqing Banan District, Chongqing, China
| | - Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Peiran Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Mingfen Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiangxia Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
9
|
Hermosilla VE, Gyenis L, Rabalski AJ, Armijo ME, Sepúlveda P, Duprat F, Benítez-Riquelme D, Fuentes-Villalobos F, Quiroz A, Hepp MI, Farkas C, Mastel M, González-Chavarría I, Jackstadt R, Litchfield DW, Castro AF, Pincheira R. Casein kinase 2 phosphorylates and induces the SALL2 tumor suppressor degradation in colon cancer cells. Cell Death Dis 2024; 15:223. [PMID: 38493149 PMCID: PMC10944491 DOI: 10.1038/s41419-024-06591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Spalt-like proteins are Zinc finger transcription factors from Caenorhabditis elegans to vertebrates, with critical roles in development. In vertebrates, four paralogues have been identified (SALL1-4), and SALL2 is the family's most dissimilar member. SALL2 is required during brain and eye development. It is downregulated in cancer and acts as a tumor suppressor, promoting cell cycle arrest and cell death. Despite its critical functions, information about SALL2 regulation is scarce. Public data indicate that SALL2 is ubiquitinated and phosphorylated in several residues along the protein, but the mechanisms, biological consequences, and enzymes responsible for these modifications remain unknown. Bioinformatic analyses identified several putative phosphorylation sites for Casein Kinase II (CK2) located within a highly conserved C-terminal PEST degradation motif of SALL2. CK2 is a serine/threonine kinase that promotes cell proliferation and survival and is often hyperactivated in cancer. We demonstrated that CK2 phosphorylates SALL2 residues S763, T778, S802, and S806 and promotes SALL2 degradation by the proteasome. Accordingly, pharmacological inhibition of CK2 with Silmitasertib (CX-4945) restored endogenous SALL2 protein levels in SALL2-deficient breast MDA-MB-231, lung H1299, and colon SW480 cancer cells. Silmitasertib induced a methuosis-like phenotype and cell death in SW480 cells. However, the phenotype was significantly attenuated in CRISPr/Cas9-mediated SALL2 knockout SW480 cells. Similarly, Sall2-deficient tumor organoids were more resistant to Silmitasertib-induced cell death, confirming that SALL2 sensitizes cancer cells to CK2 inhibition. We identified a novel CK2-dependent mechanism for SALL2 regulation and provided new insights into the interplay between these two proteins and their role in cell survival and proliferation.
Collapse
Affiliation(s)
- V E Hermosilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Dept of Orofacial Sciences and Dept of Anatomy, University of California-San Francisco, San Francisco, CA, USA
| | - L Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - A J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- Odyssey Therapeutics, Boston, MA, USA
| | - M E Armijo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - P Sepúlveda
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Duprat
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - D Benítez-Riquelme
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Fuentes-Villalobos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Inmunovirología. Departamento de Microbiologia. Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - A Quiroz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - M I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - C Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - M Mastel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg. Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - I González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - R Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg. Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - D W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - A F Castro
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - R Pincheira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
10
|
de Oliveira Souza JE, Gomes SMR, Lima AKC, de Souza Brito AC, Da-Silva SAG, de Carvalho Santos Lopes AH, Silva-Neto MAC, Atella GC, Dutra PML. Influence of CK2 protein kinase activity on the interaction between Trypanosoma cruzi and its vertebrate and invertebrate hosts. Parasitol Res 2024; 123:80. [PMID: 38163833 DOI: 10.1007/s00436-023-08085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Chagas disease, endemic from Latin America, is caused by Trypanosoma cruzi and is transmitted by triatomine feces. This parasite undergoes complex morphological changes through its life cycle, promoted by significant changes in signal transduction pathways. The activity of protein kinase CK2 has been described in trypanosomatids. Using a specific peptide and radioactive ATP, we identified CK2 activity on the cellular surface and the cytoplasmic content in Trypanosoma cruzi, apart from the secreted form. Dephosphorylated casein promoted an increase of 48% in the secreted CK2 activity. Total extract of peritoneal macrophages from BALB/c and inactivated human serum promoted an increase of 67% and 36%, respectively, in this activity. The protein secreted by parasites was purified by HPLC and had shown compatibility with the catalytic subunit of mammalian CK2. Incubation of the parasites with CK2 inhibitors, added to the culture medium, prevented their growth. The opposite was observed when CK2 activators were used. Results of interaction between Trypanosoma cruzi and the gut of the vector have revealed that, in the presence of CK2 inhibitors, there is a reduction in the association rate. A similar inhibition profile was seen in the Trypanosoma cruzi-macrophages interaction, confirming the importance of this enzyme in the life cycle of this protozoan.
Collapse
Affiliation(s)
- Joyce Eliza de Oliveira Souza
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shayane Martins Rodrigues Gomes
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Karina Castro Lima
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréia Carolinne de Souza Brito
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia Amaral Gonçalves Da-Silva
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Geórgia Correa Atella
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Maria Lourenço Dutra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology (FCM), State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Wang KH, Chang JY, Li FA, Wu KY, Hsu SH, Chen YJ, Chu TL, Lin J, Hsu HM. An Atypical F-Actin Capping Protein Modulates Cytoskeleton Behaviors Crucial for Trichomonas vaginalis Colonization. Microbiol Spectr 2023; 11:e0059623. [PMID: 37310229 PMCID: PMC10434240 DOI: 10.1128/spectrum.00596-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
Cytoadherence and migration are crucial for pathogens to establish colonization in the host. In contrast to a nonadherent isolate of Trichomonas vaginalis, an adherent one expresses more actin-related machinery proteins with more active flagellate-amoeboid morphogenesis, amoeba migration, and cytoadherence, activities that were abrogated by an actin assembly blocker. By immunoprecipitation coupled with label-free quantitative proteomics, an F-actin capping protein (T. vaginalis F-actin capping protein subunit α [TvFACPα]) was identified from the actin-centric interactome. His-TvFACPα was detected at the barbed end of a growing F-actin filament, which inhibited elongation and possessed atypical activity in binding G-actin in in vitro assays. TvFACPα partially colocalized with F-actin at the parasite pseudopod protrusion and formed a protein complex with α-actin through its C-terminal domain. Meanwhile, TvFACPα overexpression suppressed F-actin polymerization, amoeboid morphogenesis, and cytoadherence in this parasite. Ser2 phosphorylation of TvFACPα enriched in the amoeboid stage of adhered trophozoites was reduced by a casein kinase II (CKII) inhibitor. Site-directed mutagenesis and CKII inhibitor treatment revealed that Ser2 phosphorylation acts as a switching signal to alter TvFACPα actin-binding activity and the consequent actin cytoskeleton behaviors. Through CKII signaling, TvFACPα also controls the conversion of adherent trophozoites from amoeboid migration to the flagellate form with axonemal motility. Together, CKII-dependent Ser2 phosphorylation regulates TvFACPα binding to actin to fine-tune cytoskeleton dynamics and drive crucial behaviors underlying host colonization by T. vaginalis. IMPORTANCE Trichomoniasis is one of the most prevalent nonviral sexually transmitted diseases. T. vaginalis cytoadherence to urogenital epithelium cells is the first step in the colonization of the host. However, studies on the mechanisms of cytoadherence have focused mainly on the role of adhesion molecules, and their effects are limited when analyzed by loss- or gain-of-function assays. This study proposes an extra pathway in which the actin cytoskeleton mediated by a capping protein α-subunit may play roles in parasite morphogenesis, cytoadherence, and motility, which are crucial for colonization. Once the origin of the cytoskeleton dynamics could be manipulated, the consequent activities would be controlled as well. This mechanism may provide new potential therapeutic targets to impair this parasite infection and relieve the increasing impact of drug resistance on clinical and public health.
Collapse
Affiliation(s)
- Kai-Hsuan Wang
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Yang Chang
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-An Li
- The Proteomic Core, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Hao Hsu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ju Chen
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Jessica Lin
- Taipei First Girls High School, Taipei, Taiwan
| | - Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Patel S, Vyas VK, Sharma M, Ghate M. Structure-guided discovery of adenosine triphosphate-competitive casein kinase 2 inhibitors. Future Med Chem 2023; 15:987-1014. [PMID: 37307219 DOI: 10.4155/fmc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous, highly pleiotropic serine-threonine kinase. CK2 has been identified as a potential drug target for the treatment of cancer and related disorders. Several adenosine triphosphate-competitive CK2 inhibitors have been identified and have progressed at different levels of clinical trials. This review presents details of CK2 protein, structural insights into adenosine triphosphate binding pocket, current clinical trial candidates and their analogues. Further, it includes the emerging structure-based drug design approaches, chemistry, structure-activity relationship and biological screening of potent and selective CK2 inhibitors. The authors tabulated the details of CK2 co-crystal structures because these co-crystal structures facilitated the structure-guided discovery of CK2 inhibitors. The narrow hinge pocket compared with related kinases provides useful insights into the discovery of CK2 inhibitors.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manjunath Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
13
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
14
|
Koronkiewicz M, Kazimierczuk Z, Orzeszko A. Antitumor activity of the protein kinase inhibitor 1-(β-D-2'-deoxyribofuranosyl)-4,5,6,7-tetrabromo- 1H-benzimidazole in breast cancer cell lines. BMC Cancer 2022; 22:1069. [PMID: 36243702 PMCID: PMC9571492 DOI: 10.1186/s12885-022-10156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background The protein kinases CK2 and PIM-1 are involved in cell proliferation and survival, the cell cycle, and drug resistance, and they are found overexpressed in virtually all types of human cancer, including breast cancer. In this study, we investigated the antitumor activity of a deoxynucleoside derivative, the protein kinase inhibitor compound 1-(β-D-2′-deoxyribofuranosyl)-4,5,6,7-tetrabromo-1H-benzimidazole (K164, also termed TDB), inter alia CK2 and PIM-1, on breast cancer cell lines (MDA-MB-231, MCF-7, and SK-BR-3). Methods An evaluation of the cytotoxic and proapoptotic effects, mitochondrial membrane potential (ΔΨm), and cell cycle progression was performed using an MTT assay, flow cytometry, and microscopic analysis. The Western blotting method was used to analyze the level of proteins important for the survival of breast cancer cells and proteins phosphorylated by the CK2 and PIM-1 kinases. Results The examined compound demonstrated the inhibition of cell viability in all the tested cell lines and apoptotic activity, especially in the MCF-7 and SK-BR-3 cells. Changes in the mitochondrial membrane potential (ΔΨm), cell cycle progression, and the level of the proteins studied were also observed. Conclusions The investigated CK2 and PIM-1 kinase inhibitor K164 is a promising compound that can be considered a potential agent in targeted therapy in selected types of breast cancer; therefore, further research is necessary. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10156-8.
Collapse
Affiliation(s)
- Mirosława Koronkiewicz
- Department of Biomedical Research, National Medicines Institute, Chełmska St. 30/34, 00-725, Warsaw, Poland.
| | - Zygmunt Kazimierczuk
- Institute of Chemistry, Warsaw University of Life Sciences, Nowoursynowska St. 159C, 02-787, Warsaw, Poland
| | - Andrzej Orzeszko
- Institute of Chemistry, Warsaw University of Life Sciences, Nowoursynowska St. 159C, 02-787, Warsaw, Poland
| |
Collapse
|
15
|
Baier A, Szyszka R. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Front Mol Biosci 2022; 9:916063. [PMID: 36275622 PMCID: PMC9582958 DOI: 10.3389/fmolb.2022.916063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Casein kinases are involved in a variety of signaling pathways, and also in inflammation, cancer, and neurological diseases. Therefore, they are regarded as potential therapeutic targets for drug design. Recent studies have highlighted the importance of the casein kinase 1 superfamily as well as protein kinase CK2 in the development of several neurodegenerative pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. CK1 kinases and their closely related tau tubulin kinases as well as CK2 are found to be overexpressed in the mammalian brain. Numerous substrates have been detected which play crucial roles in neuronal and synaptic network functions and activities. The development of new substances for the treatment of these pathologies is in high demand. The impact of these kinases in the progress of neurodegenerative disorders, their bona fide substrates, and numerous natural and synthetic compounds which are able to inhibit CK1, TTBK, and CK2 are discussed in this review.
Collapse
Affiliation(s)
- Andrea Baier
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ryszard Szyszka
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
16
|
Huang Y, Winklbauer R. Cell cortex regulation by the planar cell polarity protein Prickle1. J Cell Biol 2022; 221:e202008116. [PMID: 35512799 PMCID: PMC9082893 DOI: 10.1083/jcb.202008116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/18/2022] [Accepted: 04/09/2022] [Indexed: 01/07/2023] Open
Abstract
The planar cell polarity pathway regulates cell polarity, adhesion, and rearrangement. Its cytoplasmic core components Prickle (Pk) and Dishevelled (Dvl) often localize as dense puncta at cell membranes to form antagonizing complexes and establish cell asymmetry. In vertebrates, Pk and Dvl have been implicated in actomyosin cortex regulation, but the mechanism of how these proteins control cell mechanics is unclear. Here we demonstrate that in Xenopus prechordal mesoderm cells, diffusely distributed, cytoplasmic Pk1 up-regulates the F-actin content of the cortex. This counteracts cortex down-regulation by Dvl2. Both factors act upstream of casein kinase II to increase or decrease cortical tension. Thus, cortex modulation by Pk1 and Dvl2 is translated into mechanical force and affects cell migration and rearrangement during radial intercalation in the prechordal mesoderm. Pk1 also forms puncta and plaques, which are associated with localized depletion of cortical F-actin, suggesting opposite roles for diffuse and punctate Pk1.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Gyenis L, Menyhart D, Cruise ES, Jurcic K, Roffey SE, Chai DB, Trifoi F, Fess SR, Desormeaux PJ, Núñez de Villavicencio Díaz T, Rabalski AJ, Zukowski SA, Turowec JP, Pittock P, Lajoie G, Litchfield DW. Chemical Genetic Validation of CSNK2 Substrates Using an Inhibitor-Resistant Mutant in Combination with Triple SILAC Quantitative Phosphoproteomics. Front Mol Biosci 2022; 9:909711. [PMID: 35755813 PMCID: PMC9225150 DOI: 10.3389/fmolb.2022.909711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Casein Kinase 2 (CSNK2) is an extremely pleiotropic, ubiquitously expressed protein kinase involved in the regulation of numerous key biological processes. Mapping the CSNK2-dependent phosphoproteome is necessary for better characterization of its fundamental role in cellular signalling. While ATP-competitive inhibitors have enabled the identification of many putative kinase substrates, compounds targeting the highly conserved ATP-binding pocket often exhibit off-target effects limiting their utility for definitive kinase-substrate assignment. To overcome this limitation, we devised a strategy combining chemical genetics and quantitative phosphoproteomics to identify and validate CSNK2 substrates. We engineered U2OS cells expressing exogenous wild type CSNK2A1 (WT) or a triple mutant (TM, V66A/H160D/I174A) with substitutions at residues important for inhibitor binding. These cells were treated with CX-4945, a clinical-stage inhibitor of CSNK2, and analyzed using large-scale triple SILAC (Stable Isotope Labelling of Amino Acids in Cell Culture) quantitative phosphoproteomics. In contrast to wild-type CSNK2A1, CSNK2A1-TM retained activity in the presence of CX-4945 enabling identification and validation of several CSNK2 substrates on the basis of their increased phosphorylation in cells expressing CSNK2A1-TM. Based on high conservation within the kinase family, we expect that this strategy can be broadly adapted for identification of other kinase-substrate relationships.
Collapse
Affiliation(s)
- Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Edward S Cruise
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Kristina Jurcic
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Scott E Roffey
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Darren B Chai
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Flaviu Trifoi
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Sam R Fess
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paul J Desormeaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Stephanie A Zukowski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Jacob P Turowec
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paula Pittock
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Gilles Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
18
|
Lassozé S, de Guilhem de Lataillade A, Oullier T, Neunslist M, Leclair-Visonneau L, Derkinderen P, Paillusson S. Comparison of commercially available antibodies for the detection of phosphorylated alpha-synuclein in primary culture of ENS. Neurogastroenterol Motil 2022; 34:e14354. [PMID: 35279896 DOI: 10.1111/nmo.14354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND It is now well established that phosphorylated alpha-synuclein histopathology, the pathologic hallmark of Parkinson's disease (PD) is not limited to the brain but also extends to the enteric nervous system (ENS). This observation led to the hypothesis that the ENS could play a pivotal role in the development of PD. Research on the enteric synucleinopathy has, however, been hampered by difficulties in detecting phosphorylated alpha-synuclein in the ENS by Western blotting, even when the transferred membrane is fixed with an optimized protocol. This suggests that the available antibodies used in previous studies lacked of sensitivity for the detection of phosphorylated alpha-synuclein at Ser129 in enteric neurons. Here, we evaluated three recent commercially available phospho-alpha-synuclein antibodies and compared them to two antibodies used in previous research. METHODS The specificity and sensitivity of the 5 antibodies were evaluated by Western blot performed with recombinant alpha-synuclein and with protein lysates from rat primary cultures of ENS. In primary culture of ENS, additional experiments were performed with the most specific antibody in order to modulate alpha-synuclein phosphorylation and to validate its utilization in immunofluorescence experiments. RESULTS The rabbit monoclonal antibody D1R1R uniquely and robustly detected endogenous phosphorylated alpha-synuclein at Ser129 in rat primary culture of ENS without any non-specific bands, allowing for a reliable analysis of phosphorylated alpha-synuclein regulation by pharmacologic means. CONCLUSIONS AND INFERENCES Using D1R1R antibody together with the optimized protocol for membrane fixation may help deciphering the signaling pathways involved in enteric alpha-synuclein post-translational regulation in PD.
Collapse
Affiliation(s)
- Simon Lassozé
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Adrien de Guilhem de Lataillade
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Thibauld Oullier
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Michel Neunslist
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Laurène Leclair-Visonneau
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Pascal Derkinderen
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France.,Department of Neurology, CHU Nantes, Nantes, France
| | - Sébastien Paillusson
- Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
19
|
Snell HD, Vitenzon A, Tara E, Chen C, Tindi J, Jordan BA, Khodakhah K. Mechanism of stress-induced attacks in an episodic neurologic disorder. SCIENCE ADVANCES 2022; 8:eabh2675. [PMID: 35442745 PMCID: PMC9020779 DOI: 10.1126/sciadv.abh2675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/02/2022] [Indexed: 05/21/2023]
Abstract
Stress is the most common trigger among episodic neurologic disorders. In episodic ataxia type 2 (EA2), physical or emotional stress causes episodes of severe motor dysfunction that manifest as ataxia and dystonia. We used the tottering (tg/tg) mouse, a faithful animal model of EA2, to dissect the mechanisms underlying stress-induced motor attacks. We find that in response to acute stress, activation of α1-adrenergic receptors (α1-Rs) on Purkinje cells by norepinephrine leads to their erratic firing and consequently motor attacks. We show that norepinephrine induces erratic firing of Purkinje cells by disrupting their spontaneous intrinsic pacemaking via a casein kinase 2 (CK2)-dependent signaling pathway, which likely reduces the activity of calcium-dependent potassium channels. Moreover, we report that disruption of this signaling cascade at a number of nodes prevents stress-induced attacks in the tottering mouse. Together, our results suggest that norepinephrine and CK2 are required for the initiation of stress-induced attacks in EA2 and provide previously unidentified targets for therapeutic intervention.
Collapse
Affiliation(s)
- Heather D. Snell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariel Vitenzon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Esra Tara
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chris Chen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jaafar Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
20
|
Barak-Broner N, Singer-Lahat D, Chikvashvili D, Lotan I. CK2 Phosphorylation Is Required for Regulation of Syntaxin 1A Activity in Ca 2+-Triggered Release in Neuroendocrine Cells. Int J Mol Sci 2021; 22:ijms222413556. [PMID: 34948351 PMCID: PMC8708312 DOI: 10.3390/ijms222413556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
The polybasic juxtamembrane region (5RK) of the plasma membrane neuronal SNARE, syntaxin1A (Syx), was previously shown by us to act as a fusion clamp in PC12 cells, as charge neutralization of 5RK promotes spontaneous and inhibits Ca2+-triggered release. Using a Syx-based FRET probe (CSYS), we demonstrated that 5RK is required for a depolarization-induced Ca+2-dependent opening (close-to-open transition; CDO) of Syx, which involves the vesicular SNARE synaptobrevin2 and occurs concomitantly with Ca2+-triggered release. Here, we investigated the mechanism underlying the CDO requirement for 5RK and identified phosphorylation of Syx at Ser-14 (S14) by casein kinase 2 (CK2) as a crucial molecular determinant. Thus, following biochemical verification that both endogenous Syx and CSYS are constitutively S14 phosphorylated in PC12 cells, dynamic FRET analysis of phospho-null and phospho-mimetic mutants of CSYS and the use of a CK2 inhibitor revealed that the S14 phosphorylation confers the CDO requirement for 5RK. In accord, amperometric analysis of catecholamine release revealed that the phospho-null mutant does not support Ca2+-triggered release. These results identify a functionally important CK2 phosphorylation of Syx that is required for the 5RK-regulation of CDO and for concomitant Ca2+-triggered release. Further, also spontaneous release, conferred by charge neutralization of 5RK, was abolished in the phospho-null mutant.
Collapse
Affiliation(s)
- Noa Barak-Broner
- Department of Neurobiology Biochemistry & Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel;
| | - Dafna Singer-Lahat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel; (D.S.-L.); (D.C.)
| | - Dodo Chikvashvili
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel; (D.S.-L.); (D.C.)
| | - Ilana Lotan
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel; (D.S.-L.); (D.C.)
- Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv-Yafo 69978, Israel
- Correspondence:
| |
Collapse
|
21
|
Liu C, Han Y, Gu X, Li M, Du Y, Feng N, Li J, Zhang S, Maslov LN, Wang G, Pei J, Fu F, Ding M. Paeonol promotes Opa1-mediated mitochondrial fusion via activating the CK2α-Stat3 pathway in diabetic cardiomyopathy. Redox Biol 2021; 46:102098. [PMID: 34418601 PMCID: PMC8385203 DOI: 10.1016/j.redox.2021.102098] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 12/02/2022] Open
Abstract
Diabetes disrupts mitochondrial function and often results in diabetic cardiomyopathy (DCM). Paeonol is a bioactive compound that has been reported to have pharmacological potential for cardiac and mitochondrial protection. This study aims to explore the effects of paeonol on mitochondrial disorderes in DCM and the underlying mechanisms. We showed that paeonol promoted Opa1-mediated mitochondrial fusion, inhibited mitochondrial oxidative stress, and preserved mitochondrial respiratory capacity and cardiac performance in DCM in vivo and in vitro. Knockdown of Opa1 blunted the above protective effects of paeonol in both diabetic hearts and high glucose-treated cardiomyocytes. Mechanistically, inhibitor screening, siRNA knockdown and chromatin immunoprecipitation experiments showed that paeonol-promoted Opa1-mediated mitochondrial fusion required the activation of Stat3, which directly bound to the promoter of Opa1 to upregulate its transcriptional expression. Moreover, pharmmapper screening and molecular docking studies revealed that CK2α served as a direct target of paeonol that interacted with Jak2 and induced the phosphorylation and activation of Jak2-Stat3. Knockdown of CK2α blunted the promoting effect of paeonol on Jak2-Stat3 phosphorylation and Opa1-mediated mitochondrial fusion. Collectively, we have demonstrated for the first time that paeonol is a novel mitochondrial fusion promoter in protecting against hyperglycemia-induced mitochondrial oxidative injury and DCM at least partially via an Opa1-mediated mechanism, a process in which paeonol interacts with CK2α and restores its kinase activity that subsequently increasing Jak2-Stat3 phosphorylation and enhancing the transcriptional level of Opa1. These findings suggest that paeonol or the promotion of mitochondrial fusion might be a promising strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Chaoyang Liu
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Man Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yanyan Du
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, 634000, Russia
| | - Guoen Wang
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Mingge Ding
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
22
|
Nickelsen A, Jose J. Label-free flow cytometry-based enzyme inhibitor identification. Anal Chim Acta 2021; 1179:338826. [PMID: 34535248 DOI: 10.1016/j.aca.2021.338826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022]
Abstract
Fluorescence-based methods for the identification of enzyme inhibitors are widespread, but usually require protein or ligand labelling. In this study, we present a label-free displacement assay that takes advantage of the intrinsic fluorescence of a tight binding ligand avoiding any labeling. Autodisplay-based accessibility of the target enzyme on the cell surface of Escherichia coli enabled the quantification of fluorescent ligand binding by flow cytometry. Human protein kinase CK2 was used as proof-of-concept enzyme and its ATP competitive inhibitor (E)-1,3-dichloro-6-[(4-methoxyphenylimino)methyl]dibenzo[b,d]furan-2,7-diol (compound 5) was shown to exhibit intrinsic fluorescence (λmax(ex) = 370 nm, λmax(em) = 585 nm). Binding of compound 5 to CK2 displaying cells was quantified via flow cytometry with linearly increasing relative fluorescence up to a concentration of 1.25 μM. The addition of the non-fluorescent CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) competed for compound 5 binding with a half maximal fluorescence reduction at 15.6 μM TBB. This new and simple binding assay provides a valuable tool for the screening of high affinity enzyme inhibitors, overcoming the limitations of fluorescent ligand labelling.
Collapse
Affiliation(s)
- Anna Nickelsen
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| |
Collapse
|
23
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
24
|
Atkinson EL, Iegre J, Brear PD, Zhabina EA, Hyvönen M, Spring DR. Downfalls of Chemical Probes Acting at the Kinase ATP-Site: CK2 as a Case Study. Molecules 2021; 26:1977. [PMID: 33807474 PMCID: PMC8037657 DOI: 10.3390/molecules26071977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Protein kinases are a large class of enzymes with numerous biological roles and many have been implicated in a vast array of diseases, including cancer and the novel coronavirus infection COVID-19. Thus, the development of chemical probes to selectively target each kinase is of great interest. Inhibition of protein kinases with ATP-competitive inhibitors has historically been the most widely used method. However, due to the highly conserved structures of ATP-sites, the identification of truly selective chemical probes is challenging. In this review, we use the Ser/Thr kinase CK2 as an example to highlight the historical challenges in effective and selective chemical probe development, alongside recent advances in the field and alternative strategies aiming to overcome these problems. The methods utilised for CK2 can be applied to an array of protein kinases to aid in the discovery of chemical probes to further understand each kinase's biology, with wide-reaching implications for drug development.
Collapse
Affiliation(s)
- Eleanor L. Atkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| | - Jessica Iegre
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| | - Paul D. Brear
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - Elizabeth A. Zhabina
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| |
Collapse
|
25
|
Hitz E, Grüninger O, Passecker A, Wyss M, Scheurer C, Wittlin S, Beck HP, Brancucci NMB, Voss TS. The catalytic subunit of Plasmodium falciparum casein kinase 2 is essential for gametocytogenesis. Commun Biol 2021; 4:336. [PMID: 33712726 PMCID: PMC7954856 DOI: 10.1038/s42003-021-01873-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Casein kinase 2 (CK2) is a pleiotropic kinase phosphorylating substrates in different cellular compartments in eukaryotes. In the malaria parasite Plasmodium falciparum, PfCK2 is vital for asexual proliferation of blood-stage parasites. Here, we applied CRISPR/Cas9-based gene editing to investigate the function of the PfCK2α catalytic subunit in gametocytes, the sexual forms of the parasite that are essential for malaria transmission. We show that PfCK2α localizes to the nucleus and cytoplasm in asexual and sexual parasites alike. Conditional knockdown of PfCK2α expression prevented the transition of stage IV into transmission-competent stage V gametocytes, whereas the conditional knockout of pfck2a completely blocked gametocyte maturation already at an earlier stage of sexual differentiation. In summary, our results demonstrate that PfCK2α is not only essential for asexual but also sexual development of P. falciparum blood-stage parasites and encourage studies exploring PfCK2α as a potential target for dual-active antimalarial drugs.
Collapse
Affiliation(s)
- Eva Hitz
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Olivia Grüninger
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Armin Passecker
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Matthias Wyss
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Christian Scheurer
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Sergio Wittlin
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Hans-Peter Beck
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Nicolas M. B. Brancucci
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Till S. Voss
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
26
|
Czapinska H, Winiewska-Szajewska M, Szymaniec-Rutkowska A, Piasecka A, Bochtler M, Poznański J. Halogen Atoms in the Protein-Ligand System. Structural and Thermodynamic Studies of the Binding of Bromobenzotriazoles by the Catalytic Subunit of Human Protein Kinase CK2. J Phys Chem B 2021; 125:2491-2503. [PMID: 33689348 PMCID: PMC8041304 DOI: 10.1021/acs.jpcb.0c10264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Binding of a family
of brominated benzotriazoles to the catalytic
subunit of human protein kinase CK2 (hCK2α) was used as a model
system to assess the contribution of halogen bonding to protein–ligand
interaction. CK2 is a constitutively active pleiotropic serine/threonine
protein kinase that belongs to the CMGC group of eukaryotic protein
kinases (EPKs). Due to the addiction of some cancer cells, CK2 is
an attractive and well-characterized drug target. Halogenated benzotriazoles
act as ATP-competitive inhibitors with unexpectedly good selectivity
for CK2 over other EPKs. We have characterized the interaction of
bromobenzotriazoles with hCK2α by X-ray crystallography, low-volume
differential scanning fluorimetry, and isothermal titration calorimetry.
Properties of free ligands in solution were additionally characterized
by volumetric and RT-HPLC measurements. Thermodynamic data indicate
that the affinity increases with bromo substitution, with greater
contributions from 5- and 6-substituents than 4- and 7-substituents.
Except for 4,7-disubstituted compounds, the bromobenzotriazoles adopt
a canonical pose with the triazole close to lysine 68, which precludes
halogen bonding. More highly substituted benzotriazoles adopt many
additional noncanonical poses, presumably driven by a large hydrophobic
contribution to binding. Some noncanonical ligand orientations allow
the formation of halogen bonds with the hinge region. Consistent with
a predominantly hydrophobic interaction, the isobaric heat capacity
decreases upon ligand binding, the more so the higher the substitution.
Collapse
Affiliation(s)
- Honorata Czapinska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089 Warsaw, Poland
| | | | - Anna Piasecka
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Matthias Bochtler
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
27
|
Nam YW, Kong D, Wang D, Orfali R, Sherpa RT, Totonchy J, Nauli SM, Zhang M. Differential modulation of SK channel subtypes by phosphorylation. Cell Calcium 2021; 94:102346. [PMID: 33422768 PMCID: PMC8415101 DOI: 10.1016/j.ceca.2020.102346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
Small-conductance Ca2+-activated K+ (SK) channels are voltage-independent and are activated by Ca2+ binding to the calmodulin constitutively associated with the channels. Both the pore-forming subunits and the associated calmodulin are subject to phosphorylation. Here, we investigated the modulation of different SK channel subtypes by phosphorylation, using the cultured endothelial cells as a tool. We report that casein kinase 2 (CK2) negatively modulates the apparent Ca2+ sensitivity of SK1 and IK channel subtypes by more than 5-fold, whereas the apparent Ca2+ sensitivity of the SK3 and SK2 subtypes is only reduced by ∼2-fold, when heterologously expressed on the plasma membrane of cultured endothelial cells. The SK2 channel subtype exhibits limited cell surface expression in these cells, partly as a result of the phosphorylation of its C-terminus by cyclic AMP-dependent protein kinase (PKA). SK2 channels expressed on the ER and mitochondria membranes may protect against cell death. This work reveals the subtype-specific modulation of the apparent Ca2+ sensitivity and subcellular localization of SK channels by phosphorylation in cultured endothelial cells.
Collapse
Affiliation(s)
- Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Dezhi Kong
- Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Dong Wang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Rinzhin T Sherpa
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Jennifer Totonchy
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA.
| |
Collapse
|
28
|
Wells CI, Drewry DH, Pickett JE, Tjaden A, Krämer A, Müller S, Gyenis L, Menyhart D, Litchfield DW, Knapp S, Axtman AD. Development of a potent and selective chemical probe for the pleiotropic kinase CK2. Cell Chem Biol 2021; 28:546-558.e10. [PMID: 33484635 DOI: 10.1016/j.chembiol.2020.12.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Building on the pyrazolopyrimidine CK2 (casein kinase 2) inhibitor scaffold, we designed a small targeted library. Through comprehensive evaluation of inhibitor selectivity, we identified inhibitor 24 (SGC-CK2-1) as a highly potent and cell-active CK2 chemical probe with exclusive selectivity for both human CK2 isoforms. Remarkably, despite years of research pointing to CK2 as a key driver in cancer, our chemical probe did not elicit a broad antiproliferative phenotype in >90% of >140 cell lines when tested in dose-response. While many publications have reported CK2 functions, CK2 biology is complex and an available high-quality chemical tool such as SGC-CK2-1 will be indispensable in deciphering the relationships between CK2 function and phenotypes.
Collapse
Affiliation(s)
- Carrow I Wells
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - David H Drewry
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - Julie E Pickett
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA
| | - Amelie Tjaden
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium, Buchman Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Alison D Axtman
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Fuchs O, Bokorova R. Preclinical Studies of PROTACs in Hematological Malignancies. Cardiovasc Hematol Disord Drug Targets 2021; 21:7-22. [PMID: 33687890 DOI: 10.2174/1871529x21666210308111546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Incorrectly expressed or mutated proteins associated with hematologic malignancies have been generally targeted by chemotherapy using small-molecule inhibitors or monoclonal antibodies. But the majority of these intracellular proteins are without active sites and antigens. PROTACs, proteolysis targeting chimeras, are bifunctional molecules designed to polyubiquitinate and degrade specific pathological proteins of interest (POIs) by hijacking the activity of E3-ubiquitin ligases for POI polyubiquitination and subsequent degradation by the proteasome. This strategy utilizes the ubiquitin-proteasome system for the degradation of specific proteins in the cell. In many cases, including hematologic malignancies, inducing protein degradation as a therapeutic strategy offers therapeutic benefits over classical enzyme inhibition connected with resistance to inhibitors. Limitations of small-molecule inhibitors are shown. PROTACs can polyubiquitinate and mark for degradation of "undruggable"proteins, e.g. transcription factor STAT3 and scaffold proteins. Today, this technology is used in preclinical studies in various hematologic malignancies, mainly for targeting drug-resistant bromodomain and extraterminal proteins and Bruton tyrosine kinase. Several mechanisms limiting selectivity and safety of PROTAC molecules function are also discussed.
Collapse
Affiliation(s)
- Ota Fuchs
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Radka Bokorova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
30
|
Husain K, Williamson TT, Nelson N, Ghansah T. Protein kinase 2 (CK2): a potential regulator of immune cell development and function in cancer. Immunol Med 2020; 44:159-174. [PMID: 33164702 DOI: 10.1080/25785826.2020.1843267] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein kinase CK2, formally known as casein kinase II, is ubiquitously expressed and highly conserved serine/threonine or tyrosine kinase enzyme that regulates diverse signaling pathways responsible for cellular processes (i.e., cell proliferation and apoptosis) via interactions with over 500 known substrates. The enzyme's physiological interactions and cellular functions have been widely studied, most notably in the blood and solid malignancies. CK2 has intrinsic role in carcinogenesis as overexpression of CK2 subunits (α, α`, and β) and deregulation of its activity have been linked to various forms of cancers. CK2 also has extrinsic role in cancer stroma or in the tumor microenvironment (TME) including the immune cells. However, very few research studies have focused on extrinsic role of CK2 in regulating immune responses as a therapeutic alternative for cancer. The following review discusses CK2's regulation of key signaling events [Nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activators of transcription (JAK/STAT), Hypoxia inducible factor-1alpha (HIF-1α), Cyclooygenase-2 (COX-2), Extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK), Notch, Protein kinase B/AKT, Ikaros and Wnt] that can influence the development and function of immune cells in cancer. Potential clinical trials using potent CK2 inhibitors will facilitate and improve the treatment of human malignancies.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Tanika T Williamson
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Nadine Nelson
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Tomar Ghansah
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
31
|
Montenarh M, Götz C. Protein kinase CK2 and ion channels (Review). Biomed Rep 2020; 13:55. [PMID: 33082952 PMCID: PMC7560519 DOI: 10.3892/br.2020.1362] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Protein kinase CK2 appears as a tetramer or higher molecular weight oligomer composed of catalytic CK2α, CK2α' subunits and non-catalytic regulatory CK2β subunits or as individual subunits. It is implicated in a variety of different regulatory processes, such as Akt signalling, splicing and DNA repair within eukaryotic cells. The present review evaluates the influence of CK2 on ion channels in the plasma membrane. CK2 phosphorylates platform proteins such as calmodulin and ankyrin G, which bind to channel proteins for a physiological transport to and positioning into the membrane. In addition, CK2 directly phosphorylates a variety of channel proteins directly to regulate opening and closing of the channels. Thus, modulation of CK2 activities by specific inhibitors, by siRNA technology or by CRISPR/Cas technology has an influence on intracellular ion concentrations and thereby on cellular signalling. The physiological regulation of the intracellular ion concentration is important for cell survival and correct intracellular signalling. Disturbance of this regulation results in a variety of different diseases including epilepsy, heart failure, cystic fibrosis and diabetes. Therefore, these effects should be considered when using CK2 inhibition as a treatment option for cancer.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| |
Collapse
|
32
|
Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective. Biochem Pharmacol 2020; 182:114224. [PMID: 32956642 DOI: 10.1016/j.bcp.2020.114224] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic enzymes histone deacetylases (HDACs) are clinically validated anticancer drug targets which have been studied intensively in the past few decades. Although several drugs have been approved in this field, they are still limited to a subset of hematological malignancies (in particular T-cell lymphomas), with therapeutic potential not fully realized and the drug-resistance occurred after a certain period of use. To maximize the therapeutic potential of these classes of anticancer drugs, and to extend their application to solid tumors, numerous combination therapies containing an HDACi and an anticancer agent from other mechanisms are currently ongoing in clinical trials. Recently, dual targeting strategy comprising the HDACs component has emerged as an alternative approach for combination therapies. In this perspective, we intend to gather all HDACs-containing dual inhibitors related to cancer therapy published in literature since 2015, classify them into five categories based on targets' biological functions, and discuss the rationale why dual acting agents should work better than combinatorial therapies using two separate drugs. The article discusses the pharmacological aspects of these dual inhibitors, including in vitro biological activities, pharmacokinetic studies, in vivo efficacy studies, as well as available clinical trials. The review of the current status and advances should provide better analysis for future opportunities and challenges of this field.
Collapse
|
33
|
Khader R, Tharmalingam N, Mishra B, Felix L, Ausubel FM, Kelso MJ, Mylonakis E. Characterization of Five Novel Anti-MRSA Compounds Identified Using a Whole-Animal Caenorhabditis elegans/ Galleria mellonella Sequential-Screening Approach. Antibiotics (Basel) 2020; 9:antibiotics9080449. [PMID: 32726955 PMCID: PMC7459823 DOI: 10.3390/antibiotics9080449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
There is a significant need to combat the growing challenge of antibacterial drug resistance. We have previously developed a whole-animal dual-screening platform that first used the nematode Caenorhabditis elegans, to identify low-toxicity antibacterial hits in a high-throughput format. The hits were then evaluated in the wax moth caterpillar Galleria mellonella infection model to confirm efficacy and low toxicity at a whole animal level. This multi-host approach is a powerful tool for revealing compounds that show antibacterial effects and relatively low toxicity at the whole organism level. This paper reports the use of the multi-host approach to identify and validate five new anti-staphylococcal compounds: (1) 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol(PPT), (2) (1S,2S)-2-[2-[[3-(1H-benzimidazol-2-yl)propyl]methylamino]ethyl]-6-fluoro-1,2,3,4-tetrahydro-1-(1-methylethyl)-2-naphthalenyl cyclopropanecarboxylate dihydrochloride(NNC), (3) 4,5,6,7-tetrabromobenzotriazole (TBB), (4) 3-[2-[2-chloro-4-[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl] benzoic acid(GW4064), and (5) N-(cyclopropylmethoxy)-3,4,5-trifluoro-2-[(4-iodo-2-methylphenyl)amino] benzamide(PD198306). The compounds reduced the severity of methicillin-resistant Staphylococcus aureus (MRSA, strain MW2) infections in both C. elegans and G. mellonella and showed minimal inhibitory concentrations (MICs) in the range of 2–8 µg/mL. Compounds NNC, PPT, and TBB permeabilized MRSA-MW2 cells to SYTOX green, suggesting that they target bacterial membranes. Compound TBB showed synergistic activity with doxycycline and oxacillin against MRSA-MW2, and compounds PPT, NNC, GW4064, and PD198306 synergized with doxycycline, polymyxin-B, gentamicin, and erythromycin, respectively. The study demonstrates the utility of the multi-host approach with follow-up hit characterization for prioritizing anti-MRSA compounds for further evaluation.
Collapse
Affiliation(s)
- Rajamohammed Khader
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (R.K.); (N.T.); (B.M.); (L.F.)
| | - Nagendran Tharmalingam
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (R.K.); (N.T.); (B.M.); (L.F.)
| | - Biswajit Mishra
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (R.K.); (N.T.); (B.M.); (L.F.)
| | - LewisOscar Felix
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (R.K.); (N.T.); (B.M.); (L.F.)
| | - Frederick M. Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J. Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (R.K.); (N.T.); (B.M.); (L.F.)
- Correspondence: ; Tel.: +1-401-444-7856
| |
Collapse
|
34
|
Protein kinase CK2 phosphorylation of SAPS3 subunit increases PP6 phosphatase activity with Aurora A kinase. Biochem J 2020; 477:431-444. [PMID: 31904830 DOI: 10.1042/bcj20190740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/04/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Protein Ser/Thr phosphatase-6 (PP6) regulates pathways for activation of NF-kB, YAP1 and Aurora A kinase (AURKA). PP6 is a heterotrimer comprised of a catalytic subunit, one of three different SAPS subunits and one of three different ankyrin-repeat ANKRD subunits. Here, we show FLAG-PP6C expressed in cells preferentially binds endogenous SAPS3, and the complex is active with the chemical substrate DiFMUP. SAPS3 has multiple acidic sequence motifs recognized by protein kinase CK2 (CK2) and SAPS3 is phosphorylated by purified CK2, without affecting its associated PP6 phosphatase activity. However, HA3-SAPS3-PP6 phosphatase activity using pT288 AURKA as substrate is significantly increased by phosphorylation with CK2. The substitution of Ala in nine putative phosphorylation sites in SAPS3 was required to prevent CK2 activation of the phosphatase. Different CK2 chemical inhibitors equally increased phosphorylation of endogenous AURKA in living cells, consistent with reduction in PP6 activity. CRISPR/Cas9 deletion or siRNA knockdown of SAPS3 resulted in highly activated endogenous AURKA, and a high proportion of cells with abnormal nuclei. Activation of PP6 by CK2 can form a feedback loop with bistable changes in substrates.
Collapse
|
35
|
Pinna LA. IPK2019: David Shugar and the genesis of the IPK conferences. IUBMB Life 2020; 72:1097-1102. [PMID: 32031322 DOI: 10.1002/iub.2245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/24/2020] [Indexed: 11/07/2022]
Abstract
A short biographical sketch of Professor David Shugar, the "father of the IPK conferences," is presented, focusing on the growing interest of this eminent scientist for protein kinases and his farsighted perception of the extraordinary therapeutic potential of protein kinase inhibitors, after his discovery in 1986 that 5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole effects are mediated by inhibition of protein kinase CK2. This led David Shugar to conceive the idea of organizing a periodic international conference on protein kinase inhibitors ("IPK conference"). The first conference was held in 1998 and the 10th one under the auspices of International Union of Biochemistry and Molecular Biology in September 2019. David Shugar died at the age of 100 in 2015, shortly after having organized the eight IPK conference.
Collapse
Affiliation(s)
- Lorenzo A Pinna
- Department of Biomedical Sciences, The University of Padua, and CNR Institute of Neurosciences, Padova, Italy
| |
Collapse
|
36
|
Padilla-Benavides T, Haokip DT, Yoon Y, Reyes-Gutierrez P, Rivera-Pérez JA, Imbalzano AN. CK2-Dependent Phosphorylation of the Brg1 Chromatin Remodeling Enzyme Occurs during Mitosis. Int J Mol Sci 2020; 21:ijms21030923. [PMID: 32019271 PMCID: PMC7036769 DOI: 10.3390/ijms21030923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
Brg1 (Brahma-related gene 1) is one of two mutually exclusive ATPases that can act as the catalytic subunit of mammalian SWI/SNF (mSWI/SfigureNF) chromatin remodeling enzymes that facilitate utilization of the DNA in eukaryotic cells. Brg1 is a phospho-protein, and its activity is regulated by specific kinases and phosphatases. Previously, we showed that Brg1 interacts with and is phosphorylated by casein kinase 2 (CK2) in a manner that regulates myoblast proliferation. Here, we use biochemical and cell and molecular biology approaches to demonstrate that the Brg1-CK2 interaction occurred during mitosis in embryonic mouse somites and in primary myoblasts derived from satellite cells isolated from mouse skeletal muscle tissue. The interaction of CK2 with Brg1 and the incorporation of a number of other subunits into the mSWI/SNF enzyme complex were independent of CK2 enzymatic activity. CK2-mediated hyperphosphorylation of Brg1 was observed in mitotic cells derived from multiple cell types and organisms, suggesting functional conservation across tissues and species. The mitotically hyperphosphorylated form of Brg1 was localized with soluble chromatin, demonstrating that CK2-mediated phosphorylation of Brg1 is associated with specific partitioning of Brg1 within subcellular compartments. Thus, CK2 acts as a mitotic kinase that regulates Brg1 phosphorylation and subcellular localization.
Collapse
Affiliation(s)
- Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; (T.P.-B.); (D.T.H.); (P.R.-G.)
| | - Dominic T. Haokip
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; (T.P.-B.); (D.T.H.); (P.R.-G.)
| | - Yeonsoo Yoon
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical School, Worcester, MA 01655, USA; (Y.Y.); (J.A.R.-P.)
| | - Pablo Reyes-Gutierrez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; (T.P.-B.); (D.T.H.); (P.R.-G.)
| | - Jaime A. Rivera-Pérez
- Department of Pediatrics, Division of Genes and Development, University of Massachusetts Medical School, Worcester, MA 01655, USA; (Y.Y.); (J.A.R.-P.)
| | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA; (T.P.-B.); (D.T.H.); (P.R.-G.)
- Correspondence: ; Tel.: +1-508-856-1029
| |
Collapse
|
37
|
El-Kardocy A, Mostafa YA, Mohamed NG, Abo-Zeid MN, Hassan NA, Hetta HF, Abdel-Aal ABM. CK2 inhibition, lipophilicity and anticancer activity of new N1versus N2-substituted tetrabromobenzotriazole regioisomers. NEW J CHEM 2020. [DOI: 10.1039/d0nj01194k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both the type and position of polar group substitutions in polybrominated benzotriazoles dramatically change their lipophilicity, kinase inhibition and anticancer activity.
Collapse
Affiliation(s)
- Ahmed El-Kardocy
- Student Research Unit
- Faculty of Pharmacy
- Assiut University
- Assiut 71526
- Egypt
| | - Yaser A. Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy
- Assiut University
- Assiut 71526
- Egypt
| | - Noha G. Mohamed
- Student Research Unit
- Faculty of Pharmacy
- Assiut University
- Assiut 71526
- Egypt
| | - Mohammad Nabil Abo-Zeid
- Department of Pharmaceutical Analytical Chemistry
- Faculty of Pharmacy
- Assiut University
- Assiut 71526
- Egypt
| | - Nivin A. Hassan
- Cancer Biology Department
- South Egypt Cancer Institute, Assiut University
- Assiut
- Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology
- Faculty of Medicine
- Assiut University
- Assiut
- Egypt
| | | |
Collapse
|
38
|
Li Q, Liu G, Wang N, Yin H, Li Z. Synthesis and anticancer activity of benzotriazole derivatives. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiujing Li
- Department of PharmacyZhangzhou Health Vocational College Zhangzhou China
| | - Guijun Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthChinese Academy of Science (CAS) Shanghai China
- Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences Beijing China
| | - Ningning Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthChinese Academy of Science (CAS) Shanghai China
- Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences Beijing China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthChinese Academy of Science (CAS) Shanghai China
- Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences Beijing China
| | - Zhulai Li
- College of Pharmacy, Fujian Medical University Fuzhou China
| |
Collapse
|
39
|
Ageshina AA, Chesnokov GA, Topchiy MA, Alabugin IV, Nechaev MS, Asachenko AF. Making endo-cyclizations favorable again: a conceptually new synthetic approach to benzotriazoles via azide group directed lithiation/cyclization of 2-azidoaryl bromides. Org Biomol Chem 2019; 17:4523-4534. [PMID: 30994147 DOI: 10.1039/c9ob00615j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although benzotriazoles are important and ubiquitous, currently there is only one conceptual approach to their synthesis: bridging the two ortho-amino groups with an electrophilic nitrogen atom. Herein, we disclose a new practical alternative - the endo-cyclization of 2-azidoaryl lithiums obtained in situ from 2-azido-aryl bromides. The scope of the reaction is illustrated using twenty-four examples with a variety of alkyl, alkoxy, perfluoroalkyl, and halogen substituents. We found that the directing effect of the azide group allows selective metal-halogen exchange in aryl azides containing several bromine atoms. Furthermore, (2-bromophenyl)diazomethane undergoes similar cyclization to give an indazole. Thus, cyclizations of aryl lithiums containing an ortho-X = Y = Z group emerge as a new general approach for the synthesis of aromatic heterocycles. DFT computations suggested that the observed endo-selectivity applies to the anionic cyclizations of other functionalities that undergo "1,1-additions" (i.e., azides, diazo compounds, and isonitriles). In contrast, cyclizations with the heteroatomic functionalities that follow the "1,2-addition" pattern (cyanates, thiocyanates, isocyanates, isothiocyanates, and nitriles) prefer the exo-cyclization path. Hence, such reactions expand the current understanding of stereoelectronic factors in anionic cyclizations.
Collapse
Affiliation(s)
- Alexandra A Ageshina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Leninskiy prospect 29, Russian Federation.
| | | | | | | | | | | |
Collapse
|
40
|
Han F, Zhang L, Chen C, Wang Y, Zhang Y, Qian L, Sun W, Zhou D, Yang B, Zhang H, Lai M. GLTSCR1 Negatively Regulates BRD4-Dependent Transcription Elongation and Inhibits CRC Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901114. [PMID: 31832310 PMCID: PMC6891902 DOI: 10.1002/advs.201901114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/30/2019] [Indexed: 05/08/2023]
Abstract
Frameshift mutations frequently occur in colorectal cancer (CRC) with microsatellite instability (MSI), but the nature and biological function of many MSI-associated mutations remain elusive. Here, an MSI frameshift mutation is identified in glioma tumor suppressor candidate region gene 1 (GLTSCR1) that produces two C-terminal-truncated proteins. Additionally, GLTSCR1 is verified as a tumor suppressor that inhibits CRC metastasis. Through binding to bromodomains and the phosphorylation-dependent interaction domain of bromodomain protein 4 (BRD4) via the C-terminus, GLTSCR1 blocks oncogenic transcriptional elongation. However, truncated GLTSCR1 translocates into the cytoplasm and loses BRD4 binding domain, which induces the phosphorylation of RNA Pol II at Ser2 and dephosphorylation at Ser5, then increases oncogenic transcriptional elongation. Importantly, GLTSCR1 deficiency decreases sensitivity to bromodomain and extra terminal domain inhibitors. This study highlights the molecular mechanism of the GLTSCR1-BRD4 interaction, which is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Fengyan Han
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Lei Zhang
- Department of PharmacologyChina Pharmaceutical UniversityNanjing210009China
| | - Chaoyi Chen
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Yan Wang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Yi Zhang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Lili Qian
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Wenjie Sun
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Dan Zhou
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Beibei Yang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Honghe Zhang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Maode Lai
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
- Department of PharmacologyChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
41
|
Mapping and functional analysis of heterochromatin protein 1 phosphorylation in the malaria parasite Plasmodium falciparum. Sci Rep 2019; 9:16720. [PMID: 31723180 PMCID: PMC6853920 DOI: 10.1038/s41598-019-53325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
Previous studies in model eukaryotes have demonstrated that phosphorylation of heterochromatin protein 1 (HP1) is important for dynamically regulating its various functions. However, in the malaria parasite Plasmodium falciparum both the function of HP1 phosphorylation and the identity of the protein kinases targeting HP1 are still elusive. In order to functionally analyze phosphorylation of P. falciparum HP1 (PfHP1), we first mapped PfHP1 phosphorylation sites by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of native PfHP1, which identified motifs from which potential kinases could be predicted; in particular, several phosphorylated residues were embedded in motifs rich in acidic residues, reminiscent of targets for P. falciparum casein kinase 2 (PfCK2). Secondly, we tested recombinant PfCK2 and a number of additional protein kinases for their ability to phosphorylate PfHP1 in in vitro kinase assays. These experiments validated our prediction that PfHP1 acts as a substrate for PfCK2. Furthermore, LC-MS/MS analysis showed that PfCK2 phosphorylates three clustered serine residues in an acidic motif within the central hinge region of PfHP1. To study the role of PfHP1 phosphorylation in live parasites we used CRISPR/Cas9-mediated genome editing to generate a number of conditional PfHP1 phosphomutants based on the DiCre/LoxP system. Our studies revealed that neither PfCK2-dependent phosphorylation of PfHP1, nor phosphorylation of the hinge domain in general, affect PfHP1's ability to localize to heterochromatin, and that PfHP1 phosphorylation in this region is dispensable for the proliferation of P. falciparum blood stage parasites.
Collapse
|
42
|
The protein kinase CK2 contributes to the malignant phenotype of cholangiocarcinoma cells. Oncogenesis 2019; 8:61. [PMID: 31641101 PMCID: PMC6805921 DOI: 10.1038/s41389-019-0171-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a particularly aggressive hepatobiliary malignancy, for which the molecular mechanisms underlying the malignant phenotype are still poorly understood, and novel and effective therapeutic strategies are limited. The pro-survival protein kinase CK2 is frequently overexpressed in cancer and is receiving increasing interest as an anti-tumor drug target. Its precise role in CCA biology is still largely unknown. Here we show that expression of the CK2α and α' catalytic subunits and of the β regulatory subunit is increased in human CCA samples. Increased expression of CK2 subunits was shown in CCA cell lines compared to non-transformed cholangiocytes. We used chemical inhibition of CK2 and genetic modification by CRISPR/Cas9 to explore the contribution of CK2 to the malignant phenotype of CCA cells. Disruption of CK2 activity results in cell death through apoptosis, reduced invasion and migration potential, and G0/G1 cell cycle arrest. Importantly, CCA cells with a reduced CK2 activity are more sensitive to chemotherapy. Altogether, our results demonstrate that CK2 significantly contributes to increased proliferative potential and augmented growth of CCA cells and indicate the rationale for its targeting as a promising pharmacologic strategy for cholangiocarcinoma.
Collapse
|
43
|
Phosphorylation of p23-1 cochaperone by protein kinase CK2 affects root development in Arabidopsis. Sci Rep 2019; 9:9846. [PMID: 31285503 PMCID: PMC6614504 DOI: 10.1038/s41598-019-46327-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/25/2019] [Indexed: 12/27/2022] Open
Abstract
Root growth is a fundamental process in plants and assures nutrient and water uptake required for efficient photosynthesis and metabolism. Postembryonic development of roots is controlled by the functionality of the meristem. Several hormones and signaling molecules regulate the size of the meristem, and among them, auxins play a major role. Protein kinase CK2, along with the chaperone protein HSP90, has been found to be involved in the regulation of auxin transport. Here, we show that p23-1, a cochaperone of HSP90, is phosphorylated by CK2 in Arabidopsis. We identified Ser201 as the major CK2 target site in p23-1 and demonstrated that phosphorylation of this site is necessary for normal root development. Moreover, we shed light on the nature of CK2 in Arabidopsis, showing that the three catalytic isoforms, CK2 αA, αB and αC, are proteins of approximately 40 kDa. Our results increase knowledge of the connection among HSP90, p23-1 and CK2 in Arabidopsis, suggesting the existence of a possible common root development mechanism controlled by these signaling molecules.
Collapse
|
44
|
Ao Y, Zhang J, Liu Z, Qian M, Li Y, Wu Z, Sun P, Wu J, Bei W, Wen J, Wu X, Li F, Zhou Z, Zhu WG, Liu B, Wang Z. Lamin A buffers CK2 kinase activity to modulate aging in a progeria mouse model. SCIENCE ADVANCES 2019; 5:eaav5078. [PMID: 30906869 PMCID: PMC6426468 DOI: 10.1126/sciadv.aav5078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/31/2019] [Indexed: 05/15/2023]
Abstract
Defective nuclear lamina protein lamin A is associated with premature aging. Casein kinase 2 (CK2) binds the nuclear lamina, and inhibiting CK2 activity induces cellular senescence in cancer cells. Thus, it is feasible that lamin A and CK2 may cooperate in the aging process. Nuclear CK2 localization relies on lamin A and the lamin A carboxyl terminus physically interacts with the CK2α catalytic core and inhibits its kinase activity. Loss of lamin A in Lmna-knockout mouse embryonic fibroblasts (MEFs) confers increased CK2 activity. Conversely, prelamin A that accumulates in Zmpste24-deficent MEFs exhibits a high CK2α binding affinity and concomitantly reduces CK2 kinase activity. Permidine treatment activates CK2 by releasing the interaction between lamin A and CK2, promoting DNA damage repair and ameliorating progeroid features. These data reveal a previously unidentified function for nuclear lamin A and highlight an essential role for CK2 in regulating senescence and aging.
Collapse
Affiliation(s)
- Ying Ao
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
- Department of Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Jie Zhang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Zuojun Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Minxian Qian
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Yao Li
- School of Public Health, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhuping Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Pengfei Sun
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Jie Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Weixin Bei
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Junqu Wen
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Xuli Wu
- School of Public Health, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Feng Li
- Department of Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
- Corresponding author. (Z.W.); (B.L.)
| | - Zimei Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen 518060, China
- Corresponding author. (Z.W.); (B.L.)
| |
Collapse
|
45
|
Lian H, Su M, Zhu Y, Zhou Y, Soomro SH, Fu H. Protein Kinase CK2, a Potential Therapeutic Target in Carcinoma Management. Asian Pac J Cancer Prev 2019; 20:23-32. [PMID: 30677865 PMCID: PMC6485562 DOI: 10.31557/apjcp.2019.20.1.23] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Protein kinase CK2 (formerly known as casein kinase 2) is a highly conserved serine/ threonine kinase
overexpressed in various human carcinomas and its high expression often correlates with poor prognosis. CK2 protein
is localized in the nucleus of many tumor cells and correlates with clinical features in many cases. Increased expression
of CK2 in mice results in the development of various types of carcinomas (both solids and blood related tumors, such
as (breast carcinoma, lymphoma, etc), which reveals its carcinogenic properties. CK2 plays essential roles in many key
biological processes related to carcinoma, including cell apoptosis, DNA damage responses and cell cycle regulation.
CK2 has become a potential anti-carcinoma target. Various CK2 inhibitors have been developed with anti-neoplastic
properties against a variety of carcinomas. Some CK2 inhibitors have showed good results in in vitro and pre-clinical
models, and have even entered in clinical trials. This article will review effects of CK2 and its inhibitors on common
carcinomas in in vitro and pre-clinical studies.
Collapse
Affiliation(s)
- Haiwei Lian
- Department of Human Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, P.R, China.
| | | | | | | | | | | |
Collapse
|
46
|
Nakazawa N, Arakawa O, Ebe M, Yanagida M. Casein kinase II-dependent phosphorylation of DNA topoisomerase II suppresses the effect of a catalytic topo II inhibitor, ICRF-193, in fission yeast. J Biol Chem 2019; 294:3772-3782. [PMID: 30635402 PMCID: PMC6416453 DOI: 10.1074/jbc.ra118.004955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/04/2019] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase II (topo II) regulates the topological state of DNA and is necessary for DNA replication, transcription, and chromosome segregation. Topo II has essential functions in cell proliferation and therefore is a critical target of anticancer drugs. In this study, using Phos-tag SDS-PAGE analysis in fission yeast (Schizosaccharomyces pombe), we identified casein kinase II (Cka1/CKII)-dependent phosphorylation at the C-terminal residues Ser1363 and Ser1364 in topo II. We found that this phosphorylation decreases the inhibitory effect of an anticancer catalytic inhibitor of topo II, ICRF-193, on mitosis. Consistent with the constitutive activity of Cka1/CKII, Ser1363 and Ser1364 phosphorylation of topo II was stably maintained throughout the cell cycle. We demonstrate that ICRF-193-induced chromosomal mis-segregation is further exacerbated in two temperature-sensitive mutants, cka1-372 and cka1/orb5-19, of the catalytic subunit of CKII or in the topo II nonphosphorylatable alanine double mutant top2-S1363A,S1364A but not in cells of the phosphomimetic glutamate double mutant top2-S1363E,S1364E Our results suggest that Ser1363 and Ser1364 in topo II are targeted by Cka1/CKII kinase and that their phosphorylation facilitates topo II ATPase activity in the N-terminal region, which regulates protein turnover on chromosome DNA. Because CKII-mediated phosphorylation of the topo II C-terminal domain appears to be evolutionarily conserved, including in humans, we propose that attenuation of CKII-controlled topo II phosphorylation along with catalytic topo II inhibition may promote anticancer effects.
Collapse
Affiliation(s)
- Norihiko Nakazawa
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Orie Arakawa
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masahiro Ebe
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- From the G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
47
|
Purzner T, Purzner J, Buckstaff T, Cozza G, Gholamin S, Rusert JM, Hartl TA, Sanders J, Conley N, Ge X, Langan M, Ramaswamy V, Ellis L, Litzenburger U, Bolin S, Theruvath J, Nitta R, Qi L, Li XN, Li G, Taylor MD, Wechsler-Reya RJ, Pinna LA, Cho YJ, Fuller MT, Elias JE, Scott MP. Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Sci Signal 2018; 11:11/547/eaau5147. [PMID: 30206138 DOI: 10.1126/scisignal.aau5147] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A major limitation of targeted cancer therapy is the rapid emergence of drug resistance, which often arises through mutations at or downstream of the drug target or through intrinsic resistance of subpopulations of tumor cells. Medulloblastoma (MB), the most common pediatric brain tumor, is no exception, and MBs that are driven by sonic hedgehog (SHH) signaling are particularly aggressive and drug-resistant. To find new drug targets and therapeutics for MB that may be less susceptible to common resistance mechanisms, we used a developmental phosphoproteomics approach in murine granule neuron precursors (GNPs), the developmental cell of origin of MB. The protein kinase CK2 emerged as a driver of hundreds of phosphorylation events during the proliferative, MB-like stage of GNP growth, including the phosphorylation of three of the eight proteins commonly amplified in MB. CK2 was critical to the stabilization and activity of the transcription factor GLI2, a late downstream effector in SHH signaling. CK2 inhibitors decreased the viability of primary SHH-type MB patient cells in culture and blocked the growth of murine MB tumors that were resistant to currently available Hh inhibitors, thereby extending the survival of tumor-bearing mice. Because of structural interactions, one CK2 inhibitor (CX-4945) inhibited both wild-type and mutant CK2, indicating that this drug may avoid at least one common mode of acquired resistance. These findings suggest that CK2 inhibitors may be effective for treating patients with MB and show how phosphoproteomics may be used to gain insight into developmental biology and pathology.
Collapse
Affiliation(s)
- Teresa Purzner
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S1A1, Canada
| | - James Purzner
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Division of Neurosurgery, University of Toronto, Toronto, Ontario M5S1A1, Canada
| | - Taylor Buckstaff
- Department of Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padua, Padova, PD 35122, Italy
| | - Sharareh Gholamin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessica M Rusert
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tom A Hartl
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John Sanders
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Conley
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuecai Ge
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95340, USA
| | | | - Vijay Ramaswamy
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Lauren Ellis
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ulrike Litzenburger
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Sara Bolin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johanna Theruvath
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ryan Nitta
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lin Qi
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao-Nan Li
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA 92123, USA
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padua, Padova, PD 35122, Italy.,National Research Council Neuroscience Institute, Padova, PD 35122, Italy
| | - Yoon-Jae Cho
- Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew P Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
Schmidt JA, Danielson KG, Duffner ER, Radecki SG, Walker GT, Shelton A, Wang T, Knepper JE. Regulation of the oncogenic phenotype by the nuclear body protein ZC3H8. BMC Cancer 2018; 18:759. [PMID: 30041613 PMCID: PMC6057032 DOI: 10.1186/s12885-018-4674-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The Zc3h8 gene encodes a protein with three zinc finger motifs in the C-terminal region. The protein has been identified as a component of the Little Elongation Complex, involved in transcription of small nuclear RNAs. ZC3H8 is overexpressed in a number of human and mouse breast cancer cell lines, and elevated mRNA levels are associated with a poorer prognosis for women with breast cancer. METHODS We used RNA silencing to decrease levels of expression in mouse mammary tumor cells and overexpression of ZC3H8 in cells derived from the normal mouse mammary gland. We measured characteristics of cell behavior in vitro, including proliferation, migration, invasion, growth in soft agar, and spheroid growth. We assessed the ability of these cells to form tumors in syngeneic BALB/c mice. ZC3H8 protein was visualized in cells using confocal microscopy. RESULTS Tumor cells with lower ZC3H8 expression exhibited decreased proliferation rates, slower migration, reduced ability to invade through a basement membrane, and decreased anchorage independent growth in vitro. Cells with lower ZC3H8 levels formed fewer and smaller tumors in animals. Overexpression of ZC3H8 in non-tumorigenic COMMA-D cells led to an opposite effect. ZC3H8 protein localized to both PML bodies and Cajal bodies within the nucleus. ZC3H8 has a casein kinase 2 (CK2) phosphorylation site near the N-terminus, and a CK2 inhibitor caused the numerous PML bodies and ZC3H8 to coalesce to a few larger bodies. Removal of the inhibitor restored PML bodies to their original state. A mutant ZC3H8 lacking the predicted CK2 phosphorylation site showed localization and numbers of ZC3H8/PML bodies similar to wild type. In contrast, a mutant constructed with a glutamic acid in place of the phosphorylatable threonine showed dramatically increased numbers of smaller nuclear foci. CONCLUSIONS These experiments demonstrate that Zc3h8 expression contributes to aggressive tumor cell behavior in vitro and in vivo. Our studies show that ZC3H8 integrity is key to maintenance of PML bodies. The work provides a link between the Little Elongation Complex, PML bodies, and the cancer cell phenotype.
Collapse
Affiliation(s)
- John A. Schmidt
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Keith G. Danielson
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Emily R. Duffner
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Sara G. Radecki
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Gerard T. Walker
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Amber Shelton
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Tianjiao Wang
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Janice E. Knepper
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| |
Collapse
|
49
|
Sharma S, Čermáková K, De Rijck J, Demeulemeester J, Fábry M, El Ashkar S, Van Belle S, Lepšík M, Tesina P, Duchoslav V, Novák P, Hubálek M, Srb P, Christ F, Řezáčová P, Hodges HC, Debyser Z, Veverka V. Affinity switching of the LEDGF/p75 IBD interactome is governed by kinase-dependent phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E7053-E7062. [PMID: 29997176 PMCID: PMC6065015 DOI: 10.1073/pnas.1803909115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lens epithelium-derived growth factor/p75 (LEDGF/p75, or PSIP1) is a transcriptional coactivator that tethers other proteins to gene bodies. The chromatin tethering function of LEDGF/p75 is hijacked by HIV integrase to ensure viral integration at sites of active transcription. LEDGF/p75 is also important for the development of mixed-lineage leukemia (MLL), where it tethers the MLL1 fusion complex at aberrant MLL targets, inducing malignant transformation. However, little is known about how the LEDGF/p75 protein interaction network is regulated. Here, we obtained solution structures of the complete interfaces between the LEDGF/p75 integrase binding domain (IBD) and its cellular binding partners and validated another binding partner, Mediator subunit 1 (MED1). We reveal that structurally conserved IBD-binding motifs (IBMs) on known LEDGF/p75 binding partners can be regulated by phosphorylation, permitting switching between low- and high-affinity states. Finally, we show that elimination of IBM phosphorylation sites on MLL1 disrupts the oncogenic potential of primary MLL1-rearranged leukemic cells. Our results demonstrate that kinase-dependent phosphorylation of MLL1 represents a previously unknown oncogenic dependency that may be harnessed in the treatment of MLL-rearranged leukemia.
Collapse
Affiliation(s)
| | - Kateřina Čermáková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Jan De Rijck
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium;
| | | | - Milan Fábry
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Sara El Ashkar
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Siska Van Belle
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Vojtěch Duchoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Petr Novák
- Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Frauke Christ
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - H Courtney Hodges
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium;
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague 6, Czech Republic;
- Department of Cell Biology, Faculty of Science, Charles University, 116 36 Prague 1, Czech Republic
| |
Collapse
|
50
|
Fukumoto Y, Takahashi K, Suzuki N, Ogra Y, Nakayama Y, Yamaguchi N. Casein kinase 2 promotes interaction between Rad17 and the 9-1-1 complex through constitutive phosphorylation of the C-terminal tail of human Rad17. Biochem Biophys Res Commun 2018; 504:380-386. [PMID: 29902452 DOI: 10.1016/j.bbrc.2018.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/09/2018] [Indexed: 12/23/2022]
Abstract
An interaction between the Rad17-RFC2-5 and 9-1-1 complexes is essential for ATR-Chk1 signaling, which is one of the major DNA damage checkpoints. Recently, we showed that the polyanionic C-terminal tail of human Rad17 and the embedded conserved sequence iVERGE are important for the interaction with 9-1-1 complex. Here, we show that Rad17-S667 in the C-terminal tail is constitutively phosphorylated in vivo in a casein kinase 2-dependent manner, and the phosphorylation is important for 9-1-1 interaction. The serine phosphorylation of Rad17 could be seen in the absence of exogenous genotoxic stress, and was mostly abolished by S667A substitution. Rad17-S667 was also phosphorylated when the C-terminal tail was fused with EGFP, but the phosphorylation was inhibited by two casein kinase 2 inhibitors. Furthermore, interaction between Rad17 and the 9-1-1 complex was inhibited by the casein kinase 2 inhibitor CX-4945/Silmitasertib, and the effect was dependent on the Rad17-S667 residue, indicating that S667 phosphorylation is the only role of casein kinase 2 in the 9-1-1 interaction. Our data raise the possibility that the C-terminal tail of vertebrate Rad17 regulates ATR-Chk1 signaling through multi-site phosphorylation in the iVERGE.
Collapse
Affiliation(s)
- Yasunori Fukumoto
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| | - Kazuaki Takahashi
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|