1
|
Mufson EJ, Perez SE. The cholinotrophic system in Down syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:185-213. [PMID: 40340061 DOI: 10.1016/b978-0-443-19088-9.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Cholinergic basal forebrain (CBF) projection neurons within the nucleus basalis and striatal cholinergic interneurons degenerate in individuals with Down syndrome (DS). However, the neuropathobiology of these diverse cholinergic phenotypes remains underinvestigated. This review summarizes the alterations of cholinergic, neurotrophic survival and cell death factors as well as tau pathology and amyloidopathy, and their effects upon these cell types in DS. In trisomy, the developing cholinergic system remains stable, whereas the neurotrophic receptors are compromised between control and DS cases. Both cholinergic neuronal phenotypes display severe cellular degeneration in both adult and the aged people with DS. Although developing cholinergic striatal neurons display a similar morphology between phenotypes, cholinergic striatal neurons appear dystrophic in adults with DS. Both cholinergic cell types display tau tangle pathology in elders with DS. Novel findings suggest that alterations in plasma and cerebral spinal fluid levels of proNGF, NGF metabolites, and select classes of neuronal genes are potential biomarkers to distinguish nondemented from demented people with DS. Compounds that target cholinergic pathways, TrkA agonists, p75NTR/proNGF small molecular antagonists, NGF metabolites, and select gene ontology classes are potential targets to slow degeneration of the CBF memory connectome in DS with translation to AD.
Collapse
Affiliation(s)
- Elliott J Mufson
- Department of Translational Neuroscience, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States; Department of Neurology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States.
| | - Sylvia E Perez
- Department of Translational Neuroscience, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
2
|
Iwata N, Tsubuki S, Sekiguchi M, Watanabe-Iwata K, Matsuba Y, Kamano N, Fujioka R, Takamura R, Watamura N, Kakiya N, Mihira N, Morito T, Shirotani K, Mann DM, Robinson AC, Hashimoto S, Sasaguri H, Saito T, Higuchi M, Saido TC. Metabolic resistance of Aβ3pE-42, a target epitope of the anti-Alzheimer therapeutic antibody, donanemab. Life Sci Alliance 2024; 7:e202402650. [PMID: 39348937 PMCID: PMC11443169 DOI: 10.26508/lsa.202402650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024] Open
Abstract
The amyloid β peptide (Aβ), starting with pyroglutamate (pE) at position 3 and ending at position 42 (Aβ3pE-42), predominantly accumulates in the brains of Alzheimer's disease. Consistently, donanemab, a therapeutic antibody raised against Aβ3pE-42, has been shown to be effective in recent clinical trials. Although the primary Aβ produced physiologically is Aβ1-40/42, an explanation for how and why this physiological Aβ is converted to the pathological form remains elusive. Here, we present experimental evidence that accounts for the aging-associated Aβ3pE-42 deposition: Aβ3pE-42 was metabolically more stable than other Aβx-42 variants; deficiency of neprilysin, the major Aβ-degrading enzyme, induced a relatively selective deposition of Aβ3pE-42 in both APP transgenic and App knock-in mouse brains; Aβ3pE-42 deposition always colocalized with Pittsburgh compound B-positive cored plaques in APP transgenic mouse brains; and under aberrant conditions, such as a significant reduction in neprilysin activity, aminopeptidases, dipeptidyl peptidases, and glutaminyl-peptide cyclotransferase-like were up-regulated in the progression of aging, and a proportion of Aβ1-42 may be processed to Aβ3pE-42. Our findings suggest that anti-Aβ therapies are more effective if given before Aβ3pE-42 deposition.
Collapse
Affiliation(s)
- Nobuhisa Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Satoshi Tsubuki
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Kaori Watanabe-Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Risa Takamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomasa Kakiya
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takahiro Morito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Keiro Shirotani
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - David Ma Mann
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
3
|
Saternos H, Hamlett ED, Guzman S, Head E, Granholm AC, Ledreux A. Unique Pathology in the Locus Coeruleus of Individuals with Down Syndrome. J Alzheimers Dis 2024; 101:541-561. [PMID: 39213062 PMCID: PMC12101226 DOI: 10.3233/jad-240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Down syndrome (DS) is one of the most commonly occurring chromosomal conditions. Most individuals with DS develop Alzheimer's disease (AD) by 50 years of age. Recent evidence suggests that AD pathology in the locus coeruleus (LC) is an early event in sporadic AD. It is likely that the widespread axonal network of LC neurons contributes to the spread of tau pathology in the AD brain, although this has not been investigated in DS-AD. Objective The main purpose of this study was to profile AD pathology and neuroinflammation in the LC, comparing AD and DS-AD in postmortem human tissues. Methods We utilized immunofluorescence and semi-quantitative analyses of pTau (4 different forms), amyloid-β (Aβ), glial, and neuronal markers in the LC across 36 cases (control, DS-AD, and AD) to compare the different pathological profiles. Results Oligomeric tau was highly elevated in DS-AD cases compared to LOAD or EOAD cases. The distribution of staining for pT231 was elevated in DS-AD and EOAD compared to the LOAD group. The DS-AD group exhibited increased Aβ immunostaining compared to AD cases. The number of tau-bearing neurons was also significantly different between the EOAD and DS-AD cases compared to the LOAD cases. Conclusions While inflammation, pTau, and Aβ are all involved in AD pathology, their contribution to disease progression may differ depending on the diagnosis. Our results suggest that DS-AD and EOAD may be more similar in pathology than LOAD. Our study highlights unique avenues to further our understanding of the mechanisms governing AD neuropathology.
Collapse
Affiliation(s)
- Hannah Saternos
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora,CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Samuel Guzman
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California at Irvine, Irvine, CA, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora,CO, USA
| | - Aurélie Ledreux
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora,CO, USA
| |
Collapse
|
4
|
Wiloch MZ, Baran N, Jonsson-Niedziolka M. The Influence of Coordination Mode on the Redox Properties of Copper Complexes with Aβ(3‐16) and its Pyroglutamate Counterpart pAβ(3‐16). ChemElectroChem 2022. [DOI: 10.1002/celc.202200623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Magdalena Z. Wiloch
- Institute of Physical Chemistry PAS: Polska Akademia Nauk Instytut Chemii Fizycznej Department of Electrode Processes POLAND
| | - Natalia Baran
- Institute of Physical Chemistry PAS: Polska Akademia Nauk Instytut Chemii Fizycznej Department of Electrode Processes POLAND
| | - Martin Jonsson-Niedziolka
- Institute of Physical Chemistry, PAS Department of electrode processes Kasprzaka 44/52 01-224 Warsaw POLAND
| |
Collapse
|
5
|
Sawa M, Overk C, Becker A, Derse D, Albay R, Weldy K, Salehi A, Beach TG, Doran E, Head E, Yu YE, Mobley WC. Impact of increased APP gene dose in Down syndrome and the Dp16 mouse model. Alzheimers Dement 2022; 18:1203-1234. [PMID: 34757693 PMCID: PMC9085977 DOI: 10.1002/alz.12463] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION People with Down syndrome (DS) are predisposed to Alzheimer's disease (AD). The amyloid hypothesis informs studies of AD. In AD-DS, but not sporadic AD, increased APP copy number is necessary, defining the APP gene dose hypothesis. Which amyloid precursor protein (APP) products contribute needs to be determined. METHODS Brain levels of full-length protein (fl-hAPP), C-terminal fragments (hCTFs), and amyloid beta (Aβ) peptides were measured in DS, AD-DS, non-demented controls (ND), and sporadic AD cases. The APP gene-dose hypothesis was evaluated in the Dp16 model. RESULTS DS and AD-DS differed from ND and AD for all APP products. In AD-DS, Aβ42 and Aβ40 levels exceeded AD. APP products were increased in the Dp16 model; increased APP gene dose was necessary for loss of vulnerable neurons, tau pathology, and activation of astrocytes and microglia. DISCUSSION Increases in APP products other than Aβ distinguished AD-DS from AD. Deciphering AD-DS pathogenesis necessitates deciphering which APP products contribute and how.
Collapse
Affiliation(s)
- Mariko Sawa
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Cassia Overk
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Ann Becker
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Dominique Derse
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Ricardo Albay
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Kim Weldy
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624
| | - Ahmad Salehi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305
| | - Thomas G. Beach
- Brain and Body Donation Program, Banner Sun Health Research Institute, Sun City, AZ 85351
| | - Eric Doran
- Department of Pediatrics, University of California, Irvine, CA, 92697
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, 92697
| | - Y. Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0624,Correspondence to: William Mobley M.D., Department of Neurosciences, UCSD School of Medicine, 9500 Gilman Drive, GPL 355, La Jolla, CA 92093-0624;
| |
Collapse
|
6
|
Pyroglutamate Aβ cascade as drug target in Alzheimer's disease. Mol Psychiatry 2022; 27:1880-1885. [PMID: 34880449 PMCID: PMC9126800 DOI: 10.1038/s41380-021-01409-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
One of the central aims in Alzheimer's disease (AD) research is the identification of clinically relevant drug targets. A plethora of potential molecular targets work very well in preclinical model systems both in vitro and in vivo in AD mouse models. However, the lack of translation into clinical settings in the AD field is a challenging endeavor. Although it is long known that N-terminally truncated and pyroglutamate-modified Abeta (AβpE3) peptides are abundantly present in the brain of AD patients, form stable and soluble low-molecular weight oligomers, and induce neurodegeneration in AD mouse models, their potential as drug target has not been generally accepted in the past. This situation has dramatically changed with the report that passive immunization with donanemab, an AβpE3-specific antibody, cleared aymloid plaques and stabilized cognitive deficits in a group of patients with mild AD in a phase II trial. This review summarizes the current knowledge on the molecular mechanisms of generation of AβpE, its biochemical properties, and the intervention points as a drug target in AD.
Collapse
|
7
|
Mufson EJ, Ginsberg SD, Ma T, Ledreux A, Perez SE. Editorial: Down Syndrome, Neurodegeneration and Dementia. Front Aging Neurosci 2021; 13:791044. [PMID: 34975462 PMCID: PMC8715919 DOI: 10.3389/fnagi.2021.791044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Elliott J. Mufson
- Department of Translational Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sylvia E. Perez
- Department of Translational Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
8
|
Pivtoraiko VN, Racic T, Abrahamson EE, Villemagne VL, Handen BL, Lott IT, Head E, Ikonomovic MD. Postmortem Neocortical 3H-PiB Binding and Levels of Unmodified and Pyroglutamate Aβ in Down Syndrome and Sporadic Alzheimer's Disease. Front Aging Neurosci 2021; 13:728739. [PMID: 34489686 PMCID: PMC8416541 DOI: 10.3389/fnagi.2021.728739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 12/01/2022] Open
Abstract
Individuals with Down syndrome (DS) have a genetic predisposition for amyloid-β (Aβ) overproduction and earlier onset of Aβ deposits compared to patients with sporadic late-onset Alzheimer’s disease (AD). Positron emission tomography (PET) with Pittsburgh Compound-B (PiB) detects fibrillar Aβ pathology in living people with DS and AD, but its relationship with heterogeneous Aβ forms aggregated within amyloid deposits is not well understood. We performed quantitative in vitro3H-PiB binding assays and enzyme-linked immunosorbent assays of fibrillar (insoluble) unmodified Aβ40 and Aβ42 forms and N-terminus truncated and pyroglutamate-modified AβNpE3-40 and AβNpE3-42 forms in postmortem frontal cortex and precuneus samples from 18 DS cases aged 43–63 years and 17 late-onset AD cases aged 62–99 years. Both diagnostic groups had frequent neocortical neuritic plaques, while the DS group had more severe vascular amyloid pathology (cerebral amyloid angiopathy, CAA). Compared to the AD group, the DS group had higher levels of Aβ40 and AβNpE3-40, while the two groups did not differ by Aβ42 and AβNpE3-42 levels. This resulted in lower ratios of Aβ42/Aβ40 and AβNpE3-42/AβNpE3-40 in the DS group compared to the AD group. Correlations of Aβ42/Aβ40 and AβNpE3-42/AβNpE3-40 ratios with CAA severity were strong in DS cases and weak in AD cases. Pyroglutamate-modified Aβ levels were lower than unmodified Aβ levels in both diagnostic groups, but within group proportions of both pyroglutamate-modified Aβ forms relative to both unmodified Aβ forms were lower in the DS group but not in the AD group. The two diagnostic groups did not differ by 3H-PiB binding levels. These results demonstrate that compared to late-onset AD cases, adult DS individuals with similar severity of neocortical neuritic plaques and greater CAA pathology have a preponderance of both pyroglutamate-modified AβNpE3-40 and unmodified Aβ40 forms. Despite the distinct molecular profile of Aβ forms and greater vascular amyloidosis in DS cases, cortical 3H-PiB binding does not distinguish between diagnostic groups that are at an advanced level of amyloid plaque pathology. This underscores the need for the development of CAA-selective PET radiopharmaceuticals to detect and track the progression of cerebral vascular amyloid deposits in relation to Aβ plaques in individuals with DS.
Collapse
Affiliation(s)
- Violetta N Pivtoraiko
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tamara Racic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ira T Lott
- Department of Neurology, UC Irvine School of Medicine, Orange, CA, United States
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, UC Irvine School of Medicine, Orange, CA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Bayer TA. N-Truncated Aβ Starting at Position Four-Biochemical Features, Preclinical Models, and Potential as Drug Target in Alzheimer's Disease. Front Aging Neurosci 2021; 13:710579. [PMID: 34489680 PMCID: PMC8417877 DOI: 10.3389/fnagi.2021.710579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
The discussion of whether amyloid plaque Aβ is a valid drug target to fight Alzheimer’s disease (AD) has been a matter of scientific dispute for decades. This question can only be settled by successful clinical trials and the approval of disease-modifying drugs. However, many clinical trials with antibodies against different regions of the amyloid Aβ peptide have been discontinued, as they did not meet the clinical endpoints required. Recently, passive immunization of AD patients with Donanemab, an antibody directed against the N-terminus of pyroglutamate Aβ, showed beneficial effects in a phase II trial, supporting the concept that N-truncated Aβ is a relevant target for AD therapy. There is long-standing evidence that N-truncated Aβ variants are the main variants found in amyloid plaques besides full-length Aβ1–42, t, therefore their role in triggering AD pathology and as targets for drug development are of interest. While the contribution of pyroglutamate Aβ3–42 to AD pathology has been well studied in the past, the potential role of Aβ4–42 has been largely neglected. The present review will therefore focus on Aβ4–42 as a possible drug target based on human and mouse pathology, in vitro and in vivo toxicity, and anti-Aβ4-X therapeutic effects in preclinical models.
Collapse
Affiliation(s)
- Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
10
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
11
|
Abedin F, Tatulian SA. Mutual structural effects of unmodified and pyroglutamylated amyloid β peptides during aggregation. J Pept Sci 2021; 27:e3312. [PMID: 33631839 DOI: 10.1002/psc.3312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 11/09/2022]
Abstract
Amyloid β (Aβ) peptide aggregates are linked to Alzheimer's disease (AD). Posttranslationally pyroglutamylated Aβ (pEAβ) occurs in AD brains in significant quantities and is hypertoxic, but the underlying structural and aggregation properties remain poorly understood. Here, the structure and aggregation of Aβ1-40 and pEAβ3-40 are analyzed separately and in equimolar combination. Circular dichroism data show that Aβ1-40 , pEAβ3-40 , and their combination assume α-helical structure in dry state and transition to unordered structure in aqueous buffer. Aβ1-40 and the 1:1 combination gradually acquire β-sheet structure while pEAβ3-40 adopts an α-helix/β-sheet conformation. Thioflavin-T fluorescence studies suggest that the two peptides mutually inhibit fibrillogenesis. Fourier transform infrared (FTIR) spectroscopy identifies the presence of β-turn and α-helical structures in addition to β-sheet structure in peptides in aqueous buffer. The kinetics of transitions from the initial α-helical structure to β-sheet structure were resolved by slow hydration of dry peptides by D2 O vapor, coupled with isotope-edited FTIR. These data confirmed the mutual suppression of β-sheet formation by the two peptides. Remarkably, pEAβ3-40 maintained a significant fraction of α-helical structure in the combined sample, implying a reduced β-sheet propensity of pEAβ3-40 . Altogether, the data imply that the combination of unmodified and pyroglutamylated Aβ peptides resists fibrillogenesis and favors the prefibrillar state, which may underlie hypertoxicity of pEAβ.
Collapse
Affiliation(s)
- Faisal Abedin
- Physics Graduate Program, University of Central Florida, Orlando, Florida, USA
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
12
|
Kumar S, Kapadia A, Theil S, Joshi P, Riffel F, Heneka MT, Walter J. Novel Phosphorylation-State Specific Antibodies Reveal Differential Deposition of Ser26 Phosphorylated Aβ Species in a Mouse Model of Alzheimer's Disease. Front Mol Neurosci 2021; 13:619639. [PMID: 33519377 PMCID: PMC7844098 DOI: 10.3389/fnmol.2020.619639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Aggregation and deposition of amyloid-β (Aβ) peptides in extracellular plaques and in the cerebral vasculature are prominent neuropathological features of Alzheimer's disease (AD) and closely associated with the pathogenesis of AD. Amyloid plaques in the brains of most AD patients and transgenic mouse models exhibit heterogeneity in the composition of Aβ deposits, due to the occurrence of elongated, truncated, and post-translationally modified Aβ peptides. Importantly, changes in the deposition of these different Aβ variants are associated with the clinical disease progression and considered to mark sequential phases of plaque and cerebral amyloid angiopathy (CAA) maturation at distinct stages of AD. We recently showed that Aβ phosphorylated at serine residue 26 (pSer26Aβ) has peculiar characteristics in aggregation, deposition, and neurotoxicity. In the current study, we developed and thoroughly validated novel monoclonal and polyclonal antibodies that recognize Aβ depending on the phosphorylation-state of Ser26. Our results demonstrate that selected phosphorylation state-specific antibodies were able to recognize Ser26 phosphorylated and non-phosphorylated Aβ with high specificity in enzyme-linked immunosorbent assay (ELISA) and Western Blotting (WB) assays. Furthermore, immunofluorescence analyses with these antibodies demonstrated the occurrence of pSer26Aβ in transgenic mouse brains that show differential deposition as compared to non-phosphorylated Aβ (npAβ) or other modified Aβ species. Notably, pSer26Aβ species were faintly detected in extracellular Aβ plaques but most prominently found intraneuronally and in cerebral blood vessels. In conclusion, we developed new antibodies to specifically differentiate Aβ peptides depending on the phosphorylation state of Ser26, which are applicable in ELISA, WB, and immunofluorescence staining of mouse brain tissues. These site- and phosphorylation state-specific Aβ antibodies represent novel tools to examine phosphorylated Aβ species to further understand and dissect the complexity in the age-related and spatio-temporal deposition of different Aβ variants in transgenic mouse models and human AD brains.
Collapse
Affiliation(s)
- Sathish Kumar
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Akshay Kapadia
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Sandra Theil
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Pranav Joshi
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Florian Riffel
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Michael T. Heneka
- Department of Neurodegenerative Diseases and Geropsychiatry, Neurology, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
13
|
Scheidt HA, Das A, Korn A, Krueger M, Maiti S, Huster D. Structural characteristics of oligomers formed by pyroglutamate-modified amyloid β peptides studied by solid-state NMR. Phys Chem Chem Phys 2020; 22:16887-16895. [PMID: 32666970 DOI: 10.1039/d0cp02307h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal plaques of amyloid β (Aβ) peptides of varying length carrying different posttranslational modifications represent a molecular hallmark of Alzheimer's disease. It is believed that transient oligomeric Aβ assemblies associating in early fibrillation events represent particularly cytotoxic peptide aggregates. Also, N-terminally truncated (in position 3 or 11) and pyroglutamate modified peptides exhibited an increased toxicity compared to the wildtype. In the current study, the molecular structure of oligomeric species of pGlu3-Aβ(3-40) and pGlu11-Aβ(11-40) was investigated using solid-state NMR spectroscopy. On the secondary structure level, for both modified peptides a large similarity between oligomers and mature fibrils of the modified peptides was found mainly based on 13C NMR chemical shift data. Some smaller structural differences were detected in the vicinity of the respective modification site. Also, the crucial early folding molecular contact between residues Phe19 and Leu34 could be observed for the oligomers of both modified peptide species. Therefore, it has to be concluded that the major secondary structure elements of Aβ are already present in oligomers of pGlu3-Aβ(3-40) and pGlu11-Aβ(11-40). These posttranslationally modified peptides arrange in a similar fashion as observed for wild type Aβ(1-40).
Collapse
Affiliation(s)
- Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Anirban Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Alexander Korn
- Institute for Medical Physics and Biophysics, Leipzig University Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University Härtelstr. 16-18, D-04107 Leipzig, Germany. and Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
14
|
Medoro A, Bartollino S, Mignogna D, Marziliano N, Porcile C, Nizzari M, Florio T, Pagano A, Raimo G, Intrieri M, Russo C. Proteases Upregulation in Sporadic Alzheimer's Disease Brain. J Alzheimers Dis 2020; 68:931-938. [PMID: 30814362 DOI: 10.3233/jad-181284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Certain proteases are involved in Alzheimer's disease (AD) and their erroneous control may contribute to the pathology onset and progression. In this study we evaluated the cerebral expression of eight proteases, involved in both AβPP processing and extracellular matrix remodeling. Among these proteases, ADAM10, ADAMTS1, Cathepsin D, and Meprin β show a significantly higher mRNAs expression in sporadic AD subjects versus controls, while ADAMTS1, Cathepsin D, and Meprin β show an increment also at the protein level. These data indicate that transcriptional events affecting brain proteases are activated in AD patients, suggesting a link between proteolysis and AD.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Nicola Marziliano
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.,Clinical Pathology Laboratory, ASL Taranto, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
15
|
Kumar S, Lemere CA, Walter J. Phosphorylated Aβ peptides in human Down syndrome brain and different Alzheimer's-like mouse models. Acta Neuropathol Commun 2020; 8:118. [PMID: 32727580 PMCID: PMC7388542 DOI: 10.1186/s40478-020-00959-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
The deposition of neurotoxic amyloid-β (Aβ) peptides in extracellular plaques in the brain parenchyma is one of the most prominent neuropathological features of Alzheimer's disease (AD), and considered to be closely related to the pathogenesis of this disease. A number of recent studies demonstrate the heterogeneity in the composition of Aβ deposits in AD brains, due to the occurrence of elongated, truncated and post-translationally modified Aβ peptides that have peculiar characteristics in aggregation behavior and biostability. Importantly, the detection of modified Aβ species has been explored to characterize distinct stages of AD, with phosphorylated Aβ being present in the clinical phase of AD. People with Down syndrome (DS) develop AD pathology by 40 years of age likely due to the overproduction of Aβ caused by the additional copy of the gene encoding the amyloid precursor protein on chromosome 21. In the current study, we analysed the deposition of phosphorylated and non-phosphorylated Aβ species in human DS, AD, and control brains. In addition, deposition of these Aβ species was analysed in brains of a series of established transgenic AD mouse models using phosphorylation-state specific Aβ antibodies. Significant amounts of Aβ phosphorylated at serine residue 8 (pSer8Aβ) and unmodified Aβ were detected in the brains of DS and AD cases. The brains of different transgenic mouse models with either only human mutant amyloid precursor protein (APP), or combinations of human mutant APP, Presenilin (PS), and tau transgenes showed distinct age-dependent and spatiotemporal deposition of pSer8Aβ in extracellular plaques and within the vasculature. Together, these results demonstrate the deposition of phosphorylated Aβ species in DS brains, further supporting the similarity of Aβ deposition in AD and DS. Thus, the detection of phosphorylated and other modified Aβ species could contribute to the understanding and dissection of the complexity in the age-related and spatiotemporal deposition of Aβ variants in AD and DS as well as in distinct mouse models.
Collapse
|
16
|
Dhanavade MJ, Sonawane KD. Amyloid beta peptide-degrading microbial enzymes and its implication in drug design. 3 Biotech 2020; 10:247. [PMID: 32411571 PMCID: PMC7214582 DOI: 10.1007/s13205-020-02240-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurological brain disorder. AD pathophysiology is mainly represented by formation of neuritic plaques and neurofibrillary tangles (NFTs). Neuritic plaques are made up of amyloid beta (Aβ) peptides, which play a central role in AD pathogenesis. In AD brain, Aβ peptide accumulates due to overproduction, insufficient clearance and defective proteolytic degradation. The degradation and cleavage mechanism of Aβ peptides by several human enzymes have been discussed previously. In the mean time, numerous experimental and bioinformatics reports indicated the significance of microbial enzymes having potential to degrade Aβ peptides. Thus, there is a need to shift the focus toward the substrate specificity and structure-function relationship of Aβ peptide-degrading microbial enzymes. Hence, in this review, we discussed in vitro and in silico studies of microbial enzymes viz. cysteine protease and zinc metallopeptidases having ability to degrade Aβ peptides. In silico study showed that cysteine protease can cleave Aβ peptide between Lys16-Cys17; similarly, several other enzymes also showed capability to degrade Aβ peptide at different sites. Thus, this review paves the way to explore the role of microbial enzymes in Aβ peptide degradation and to design new lead compounds for AD treatment.
Collapse
Affiliation(s)
- Maruti J. Dhanavade
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| | - Kailas D. Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra 416004 India
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
17
|
Zammit MD, Laymon CM, Betthauser TJ, Cody KA, Tudorascu DL, Minhas DS, Sabbagh MN, Johnson SC, Zaman SH, Mathis CA, Klunk WE, Handen BL, Cohen AD, Christian BT. Amyloid accumulation in Down syndrome measured with amyloid load. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12020. [PMID: 32435686 PMCID: PMC7233422 DOI: 10.1002/dad2.12020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/03/2022]
Abstract
INTRODUCTION Individuals with Down syndrome (DS) show enhanced amyloid beta (Aβ) deposition in the brain. A new positron emission tomography (PET) index of amyloid load (AβL ) was recently developed as an alternative to standardized uptake value ratios (SUVrs) to quantify Aβ burden with high sensitivity for detecting and tracking Aβ change.1. METHODS AβL was calculated in a DS cohort (N = 169, mean age ± SD = 39.6 ± 8.7 years) using [C-11]Pittsburgh compound B (PiB) PET imaging. DS-specific PiB templates were created for Aβ carrying capacity (K) and non-specific binding (NS). RESULTS The highest values of Aβ carrying capacity were found in the striatum and precuneus. Longitudinal changes in AβL displayed less variability when compared to SUVrs. DISCUSSION These results highlight the utility of AβL for characterizing Aβ deposition in DS. Rates of Aβ accumulation in DS were found to be similar to that observed in late-onset Alzheimer's disease (AD; ≈3% to 4% per year), suggesting that AD progression in DS is of earlier onset but not accelerated.
Collapse
Affiliation(s)
| | - Charles M. Laymon
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvania
| | - Tobey J. Betthauser
- Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Karly A. Cody
- Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Dana L. Tudorascu
- Department of Internal MedicineUniversity of PittsburghPittsburghPennsylvania
| | - Davneet S. Minhas
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvania
| | | | - Sterling C. Johnson
- Alzheimer's Disease Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Shahid H. Zaman
- Cambridge Intellectual Disability Research GroupUniversity of CambridgeCambridgeUK
| | - Chester A. Mathis
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvania
| | - William E. Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| | | | - Ann D. Cohen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| | | |
Collapse
|
18
|
Occurrence, properties and biological significance of pyroglutamyl peptides derived from different food sources. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Vijayan DK, Zhang KY. Human glutaminyl cyclase: Structure, function, inhibitors and involvement in Alzheimer’s disease. Pharmacol Res 2019; 147:104342. [DOI: 10.1016/j.phrs.2019.104342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
|
20
|
Abrahamson EE, Head E, Lott IT, Handen BL, Mufson EJ, Christian BT, Klunk WE, Ikonomovic MD. Neuropathological correlates of amyloid PET imaging in Down syndrome. Dev Neurobiol 2019; 79:750-766. [PMID: 31379087 DOI: 10.1002/dneu.22713] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 11/07/2022]
Abstract
Down syndrome (DS) results in an overproduction of amyloid-β (Aβ) peptide associated with early onset of Alzheimer's disease (AD). DS cases have Aβ deposits detectable histologically as young as 12-30 years of age, primarily in the form of diffuse plaques, the type of early amyloid pathology also seen at pre-clinical (i.e., pathological aging) and prodromal stages of sporadic late onset AD. In DS subjects aged >40 years, levels of cortical Aβ deposition are similar to those observed in late onset AD and in addition to diffuse plaques involve cored plaques associated with dystrophic neurites (neuritic plaques), which are of neuropathological diagnostic significance in AD. The purpose of this review is to summarize and discuss findings from amyloid PET imaging studies of DS in reference to postmortem amyloid-based neuropathology. PET neuroimaging applied to subjects with DS has the potential to (a) track the natural progression of brain pathology, including the earliest stages of amyloid accumulation, and (b) determine whether amyloid PET biomarkers predict the onset of dementia. In addition, the question that is still incompletely understood and relevant to both applications is the ability of amyloid PET to detect Aβ deposits in their earliest form.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, UC Irvine School of Medicine, Orange, California
| | - Ira T Lott
- Department of Neurology, UC Irvine School of Medicine, Orange, California
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Bradley T Christian
- Departments of Medical Physics and Psychiatry, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - William E Klunk
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Schilling S, Rahfeld JU, Lues I, Lemere CA. Passive Aβ Immunotherapy: Current Achievements and Future Perspectives. Molecules 2018; 23:molecules23051068. [PMID: 29751505 PMCID: PMC6099643 DOI: 10.3390/molecules23051068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/28/2022] Open
Abstract
Passive immunotherapy has emerged as a very promising approach for the treatment of Alzheimer’s disease and other neurodegenerative disorders, which are characterized by the misfolding and deposition of amyloid peptides. On the basis of the amyloid hypothesis, the majority of antibodies in clinical development are directed against amyloid β (Aβ), the primary amyloid component in extracellular plaques. This review focuses on the current status of Aβ antibodies in clinical development, including their characteristics and challenges that came up in clinical trials with these new biological entities (NBEs). Emphasis is placed on the current view of common side effects observed with passive immunotherapy, so-called amyloid-related imaging abnormalities (ARIAs), and potential ways to overcome this issue. Among these new ideas, a special focus is placed on molecules that are directed against post-translationally modified variants of the Aβ peptide, an emerging approach for development of new antibody molecules.
Collapse
Affiliation(s)
- Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, 06120 Halle (Saale), Germany.
| | - Jens-Ulrich Rahfeld
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, 06120 Halle (Saale), Germany.
| | - Inge Lues
- Probiodrug AG, 06120 Halle (Saale), Germany.
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Womens's Hospital, Harvard Medical School, Boston, MA 02116, USA.
| |
Collapse
|
22
|
Dietrich K, Bouter Y, Müller M, Bayer TA. Synaptic Alterations in Mouse Models for Alzheimer Disease-A Special Focus on N-Truncated Abeta 4-42. Molecules 2018; 23:E718. [PMID: 29561816 PMCID: PMC6017701 DOI: 10.3390/molecules23040718] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
This commentary reviews the role of the Alzheimer amyloid peptide Aβ on basal synaptic transmission, synaptic short-term plasticity, as well as short- and long-term potentiation in transgenic mice, with a special focus on N-terminal truncated Aβ4-42. Aβ4-42 is highly abundant in the brain of Alzheimer's disease (AD) patients. It demonstrates increased neurotoxicity compared to full length Aβ, suggesting an important role in the pathogenesis of AD. Transgenic Tg4-42 mice, a model for sporadic AD, express human Aβ4-42 in Cornu Ammonis (CA1) neurons, and develop age-dependent hippocampal neuron loss and neurological deficits. In contrast to other transgenic AD mouse models, the Tg4-42 model exhibits synaptic hyperexcitability, altered synaptic short-term plasticity with no alterations in short- and long-term potentiation. The outcomes of this study are discussed in comparison with controversial results from other AD mouse models.
Collapse
Affiliation(s)
- Katharina Dietrich
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| | - Michael Müller
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Humboldtallee 23, 37073 Göttingen, Germany.
- Center for Physiology and Pathophysiology, Institute for Neuro- and Sense Physiology, University Medical Center (UMG), Georg-August-University, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany.
| |
Collapse
|
23
|
Yano Y, Takeno A, Matsuzaki K. Trace amounts of pyroglutaminated Aβ-(3-42) enhance aggregation of Aβ-(1-42) on neuronal membranes at physiological concentrations: FCS analysis of cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1603-1608. [PMID: 29410161 DOI: 10.1016/j.bbamem.2018.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
Minor species of amyloid β-peptide (Aβ), such as Aβ-(1-43) and pyroglutaminated Aβ-(3-42) (Aβ-(3pE-42)), have been suggested to be involved in the initiation of the Aβ aggregation process, which is closely associated with the etiology of Alzheimer's disease. They can play important roles in aggregation not only in the aqueous phase but also on neuroral membranes; however, the latter behaviors remain mostly unexplored. Here, initial aggregation processes of Aβ on living cells were monitored at physiological nanomolar concentrations by fluorescence correlation spectroscopy. Membrane-bound Aβ-(1-42) and Aβ-(1-40) formed oligomers composed of ~4 Aβ molecules during 48-h incubation, whereas the peptides remained monomeric in the culture medium, indicating that the membranes facilitated Aβ aggregation. The presence of 5 mol% Aβ-(3pE-42), but not Aβ-(1-43), significantly enhanced the aggregation of Aβ-(1-42) up to ~10-mers. On the other hand, neither trace amounts of Aβ-(1-42) nor Aβ-(3pE-42) enhanced the aggregation of Aβ-(1-40). The observed small Aβ oligomers are expected to act as pathogenic seeds for amyloid fibrils responsible for neurotoxicity. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - An Takeno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
24
|
Head E, Helman AM, Powell D, Schmitt FA. Down syndrome, beta-amyloid and neuroimaging. Free Radic Biol Med 2018; 114:102-109. [PMID: 28935420 PMCID: PMC5748259 DOI: 10.1016/j.freeradbiomed.2017.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022]
Abstract
This review focuses on the role of Aβ in AD pathogenesis in Down syndrome and current approaches for imaging Aβ in vivo. We will describe how Aβ deposits with age, the posttranslational modifications that can occur, and detection in biofluids. Three unique case studies describing partial trisomy 21 cases without APP triplication, and the occurrences of low level mosaic trisomy 21 in an early onset AD patient are presented. Brain imaging for Aβ includes those by positron emission tomography and ligands (Pittsburgh Compound B, Florbetapir, and FDDNP) that bind Aβ have been published and are summarized here. In combination, we have learned a great deal about Aβ in DS in terms of characterizing age of onset of this pathology and it is exciting to note that there is a clinical trial in DS targeting Aβ that may lead to clinical benefits.
Collapse
Affiliation(s)
- Elizabeth Head
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Pharmacology & Nutritional Sciences, Lexington, KY 40536, United States.
| | - Alex M Helman
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Pharmacology & Nutritional Sciences, Lexington, KY 40536, United States; University of Kentucky, Magnetic Resonance Imaging and Spectroscopy Center, Lexington, KY 40536, United States; University of Kentucky, Department of Neurology, Lexington, KY 40536, United States
| | - David Powell
- University of Kentucky, Magnetic Resonance Imaging and Spectroscopy Center, Lexington, KY 40536, United States
| | - Frederick A Schmitt
- University of Kentucky, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, United States; University of Kentucky, Department of Neurology, Lexington, KY 40536, United States
| |
Collapse
|
25
|
Roher AE, Kokjohn TA, Clarke SG, Sierks MR, Maarouf CL, Serrano GE, Sabbagh MS, Beach TG. APP/Aβ structural diversity and Alzheimer's disease pathogenesis. Neurochem Int 2017; 110:1-13. [PMID: 28811267 PMCID: PMC5688956 DOI: 10.1016/j.neuint.2017.08.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/11/2017] [Indexed: 02/01/2023]
Abstract
The amyloid cascade hypothesis of Alzheimer's disease (AD) proposes amyloid- β (Aβ) is a chief pathological element of dementia. AD therapies have targeted monomeric and oligomeric Aβ 1-40 and 1-42 peptides. However, alternative APP proteolytic processing produces a complex roster of Aβ species. In addition, Aβ peptides are subject to extensive posttranslational modification (PTM). We propose that amplified production of some APP/Aβ species, perhaps exacerbated by differential gene expression and reduced peptide degradation, creates a diverse spectrum of modified species which disrupt brain homeostasis and accelerate AD neurodegeneration. We surveyed the literature to catalog Aβ PTM including species with isoAsp at positions 7 and 23 which may phenocopy the Tottori and Iowa Aβ mutations that result in early onset AD. We speculate that accumulation of these alterations induce changes in secondary and tertiary structure of Aβ that favor increased toxicity, and seeding and propagation in sporadic AD. Additionally, amyloid-β peptides with a pyroglutamate modification at position 3 and oxidation of Met35 make up a substantial portion of sporadic AD amyloid deposits. The intrinsic physical properties of these species, including resistance to degradation, an enhanced aggregation rate, increased neurotoxicity, and association with behavioral deficits, suggest their emergence is linked to dementia. The generation of specific 3D-molecular conformations of Aβ impart unique biophysical properties and a capacity to seed the prion-like global transmission of amyloid through the brain. The accumulation of rogue Aβ ultimately contributes to the destruction of vascular walls, neurons and glial cells culminating in dementia. A systematic examination of Aβ PTM and the analysis of the toxicity that they induced may help create essential biomarkers to more precisely stage AD pathology, design countermeasures and gauge the impacts of interventions.
Collapse
Affiliation(s)
- Alex E Roher
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; Division of Clinical Education, Midwestern University, Glendale, AZ 85308, USA.
| | - Tyler A Kokjohn
- Department of Microbiology, Midwestern University, Glendale, AZ 85308, USA
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles CA 90095-1569, USA
| | - Michael R Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Chera L Maarouf
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Geidy E Serrano
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Marwan S Sabbagh
- Alzheimer's and Memory Disorders Division, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Thomas G Beach
- Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| |
Collapse
|
26
|
Scheidt HA, Adler J, Zeitschel U, Höfling C, Korn A, Krueger M, Roßner S, Huster D. Pyroglutamate-Modified Amyloid β (11- 40) Fibrils Are More Toxic than Wildtype Fibrils but Structurally Very Similar. Chemistry 2017; 23:15834-15838. [DOI: 10.1002/chem.201703909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Holger A. Scheidt
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| | - Juliane Adler
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain Research; Leipzig University; Liebigstr. 19 04103 Leipzig Germany
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research; Leipzig University; Liebigstr. 19 04103 Leipzig Germany
| | - Alexander Korn
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| | - Martin Krueger
- Institute of Anatomy; Leipzig University; Eilenburger Str. 14-15 04317 Leipzig Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research; Leipzig University; Liebigstr. 19 04103 Leipzig Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics; Leipzig University; Härtelstr. 16-18 04107 Leipzig Germany
| |
Collapse
|
27
|
Urbanc B. Flexible N‐Termini of Amyloid β‐Protein Oligomers: A Link between Structure and Activity? Isr J Chem 2017. [DOI: 10.1002/ijch.201600097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brigita Urbanc
- Department of Physics Drexel University Philadelphia, PA 19104 USA
- Faculty of Mathematics and Physics Jadranska ulica 19 1000 Ljubljana Slovenia
| |
Collapse
|
28
|
Sofola-Adesakin O, Khericha M, Snoeren I, Tsuda L, Partridge L. pGluAβ increases accumulation of Aβ in vivo and exacerbates its toxicity. Acta Neuropathol Commun 2016; 4:109. [PMID: 27717375 PMCID: PMC5055666 DOI: 10.1186/s40478-016-0380-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
Several species of β-amyloid peptides (Aβ) exist as a result of differential cleavage from amyloid precursor protein (APP) to yield various C-terminal Aβ peptides. Several N-terminal modified Aβ peptides have also been identified in Alzheimer’s disease (AD) brains, the most common of which is pyroglutamate-modified Aβ (AβpE3-42). AβpE3-42 peptide has an increased propensity to aggregate, appears to accumulate in the brain before the appearance of clinical symptoms of AD, and precedes Aβ1-42 deposition. Moreover, in vitro studies have shown that AβpE3-42 can act as a seed for full length Aβ1-42. In this study, we characterized the Drosophila model of AβpE3-42 toxicity by expressing the peptide in specific sets of neurons using the GAL4-UAS system, and measuring different phenotypic outcomes. We found that AβpE3-42 peptide had an increased propensity to aggregate. Expression of AβpE3-42 in the neurons of adult flies led to behavioural dysfunction and shortened lifespan. Expression of AβpE3-42 constitutively in the eyes led to disorganised ommatidia, and activation of the c-Jun N-terminal kinase (JNK) signaling pathway. The eye disruption was almost completely rescued by co-expressing a candidate Aβ degrading enzyme, neprilysin2. Furthermore, we found that neprilysin2 was capable of degrading AβpE3-42. Also, we tested the seeding hypothesis for AβpE3-42 in vivo, and measured its effect on Aβ1-42 levels. We found that Aβ1-42 levels were significantly increased when Aβ1-42 and AβpE3-42 peptides were co-expressed. Furthermore, we found that AβpE3-42 enhanced Aβ1-42 toxicity in vivo. Our findings implicate AβpE3-42 as an important source of toxicity in AD, and suggest that its specific degradation could be therapeutic.
Collapse
|
29
|
Catania M, Di Fede G, Tonoli E, Benussi L, Pasquali C, Giaccone G, Maderna E, Ghidoni R, Tagliavini F. Mirror Image of the Amyloid-β Species in Cerebrospinal Fluid and Cerebral Amyloid in Alzheimer's Disease. J Alzheimers Dis 2016; 47:877-81. [PMID: 26401767 DOI: 10.3233/jad-150179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) accumulation in brain that is paralleled by Aβ(1-42) reduction in cerebrospinal fluid (CSF). We analyzed the pattern of Aβ peptides, including the N- and C-terminal truncated fragments, in brain and CSF from two familial and one sporadic AD cases. We found that (i) each patient is characterized by a distinct Aβ profile in CSF and brain deposits and (ii) the CSF Aβ pattern mirrors the Aβ profile of cerebral amyloid. These results suggest the existence of different molecular AD subtypes which can be recognized by CSF analysis, enabling patient stratification.
Collapse
Affiliation(s)
- Marcella Catania
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Giuseppe Di Fede
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Elisa Tonoli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Claudio Pasquali
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Emanuela Maderna
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Fabrizio Tagliavini
- Division of Neurology 5 and Neuropathology, IRCCS Foundation - Carlo Besta Neurological Institute, Milan, Italy
| |
Collapse
|
30
|
Immunotherapy Against N-Truncated Amyloid-β Oligomers. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3560-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
31
|
Extracellular vesicles in Alzheimer's disease: friends or foes? Focus on aβ-vesicle interaction. Int J Mol Sci 2015; 16:4800-13. [PMID: 25741766 PMCID: PMC4394450 DOI: 10.3390/ijms16034800] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
The intercellular transfer of amyloid-β (Aβ) and tau proteins has received increasing attention in Alzheimer’s disease (AD). Among other transfer modes, Aβ and tau dissemination has been suggested to occur through release of Extracellular Vesicles (EVs), which may facilitate delivery of pathogenic proteins over large distances. Recent evidence indicates that EVs carry on their surface, specific molecules which bind to extracellular Aβ, opening the possibility that EVs may also influence Aβ assembly and synaptotoxicity. In this review we focus on studies which investigated the impact of EVs in Aβ-mediated neurodegeneration and showed either detrimental or protective role for EVs in the pathology.
Collapse
|
32
|
Brooks AF, Jackson IM, Shao X, Kropog GW, Sherman P, Quesada CA, Scott PJH. Synthesis and evaluation of [ 11C]PBD150, a radiolabeled glutaminyl cyclase inhibitor for the potential detection of Alzheimer's disease prior to amyloid β aggregation. MEDCHEMCOMM 2015; 6:1065-1068. [PMID: 26101580 DOI: 10.1039/c5md00148j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phenol of 1-(3-(1H-imidazol-1-yl)propyl)-3-(4-hydroxy-3-methoxyphenyl)thiourea was selectively carbon-11 labelled to generate [11C]PBD150 in 7.3% yield from [11C]methyl triflate (non-decay corrected; radiochemical purity ≥95%, specific activity = 5.7 Ci/µmol, n=5). Evaluation of [11C]PBD150 by small animal PET imaging (mouse and rat) determined it does not permeate the blood brain barrier, indicating previously described therapeutic effect in transgenic mice was likely not the result of inhibiting central nervous system glutaminyl cyclase.
Collapse
Affiliation(s)
- Allen F Brooks
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - Isaac M Jackson
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - Xia Shao
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - George W Kropog
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - Phillip Sherman
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - Carole A Quesada
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA
| | - Peter J H Scott
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, 2276 Medical Science I Building, Ann Arbor, Michigan 48109, USA ; The Interdepartmental Program in Medicinal Chemistry, The University of Michigan, 428 Church St., Ann Arbor, Michigan 48109, USA
| |
Collapse
|
33
|
Alzheimer's disease--a panorama glimpse. Int J Mol Sci 2014; 15:12631-50. [PMID: 25032844 PMCID: PMC4139864 DOI: 10.3390/ijms150712631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 01/05/2023] Open
Abstract
The single-mutation of genes associated with Alzheimer's disease (AD) increases the production of Aβ peptides. An elevated concentration of Aβ peptides is prone to aggregation into oligomers and further deposition as plaque. Aβ plaques and neurofibrillary tangles are two hallmarks of AD. In this review, we provide a broad overview of the diverses sources that could lead to AD, which include genetic origins, Aβ peptides and tau protein. We shall discuss on tau protein and tau accumulation, which result in neurofibrillary tangles. We detail the mechanisms of Aβ aggregation, fibril formation and its polymorphism. We then show the possible links between Aβ and tau pathology. Furthermore, we summarize the structural data of Aβ and its precursor protein obtained via Nuclear Magnetic Resonance (NMR) or X-ray crystallography. At the end, we go through the C-terminal and N-terminal truncated Aβ variants. We wish to draw reader's attention to two predominant and toxic Aβ species, namely Aβ4-42 and pyroglutamate amyloid-beta peptides, which have been neglected for more than a decade and may be crucial in Aβ pathogenesis due to their dominant presence in the AD brain.
Collapse
|
34
|
Höfling C, Indrischek H, Höpcke T, Waniek A, Cynis H, Koch B, Schilling S, Morawski M, Demuth HU, Roßner S, Hartlage-Rübsamen M. Mouse strain and brain region-specific expression of the glutaminyl cyclases QC and isoQC. Int J Dev Neurosci 2014; 36:64-73. [PMID: 24886834 DOI: 10.1016/j.ijdevneu.2014.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/20/2014] [Indexed: 11/25/2022] Open
Abstract
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamate (pGlu) from glutamine precursors at the N-terminus of a number of peptide hormones, neuropeptides and chemokines. This post-translational modification stabilizes these peptides, protects them from proteolytical degradation or is important for their biological activity. However, QC is also involved in a pathogenic pGlu modification of peptides accumulating in protein aggregation disorders such as Alzheimer's disease and familial Danish and familial British dementia. Its isoenzyme (isoQC) was shown to contribute to aspects of inflammation by pGlu-modifying and thereby stabilizing the monocyte chemoattractant protein CCL2. For the generation of respective animal models and for pharmacological treatment studies the characterization of the mouse strain and brain region-specific expression of QC and isoQC is indispensible. In order to address this issue, we used enzymatic activity assays and specific antibodies to detect both QC variants by immunohistochemistry in nine different mouse strains. Comparing different brain regions, the highest enzymatic QC/isoQC activity was detected in ventral brain, followed by cortex and hippocampus. Immunohistochemical stainings revealed that QC/isoQC activity in cortex mostly arises from isoQC expression. For most brain regions, the highest QC/isoQC activity was detected in C3H and FVB mice, whereas low QC/isoQC activity was present in CD1, SJL and C57 mice. Quantification of QC- and isoQC-immunoreactive cells by unbiased stereology revealed a higher abundance of isoQC- than of QC-immunoreactive neurons in Edinger-Westphal nucleus and in substantia nigra. In the locus coeruleus, however, there were comparable densities of QC- and of isoQC-immunoreactive neurons. These observations are of considerable importance with regard to the selection of appropriate mouse strains for the study of QC/isoQC relevance in mouse models of neurodegeneration and neuroinflammation and for the testing of therapeutical interventions in these models.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Henrike Indrischek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Theodor Höpcke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Holger Cynis
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Birgit Koch
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Stephan Schilling
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Department of Drug Design and Target Validation MWT, Halle, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
35
|
Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer's disease. Acta Neuropathol 2014; 127:787-801. [PMID: 24803226 PMCID: PMC4024135 DOI: 10.1007/s00401-014-1287-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
Although N-truncated Aβ variants are known to be the main constituent of amyloid plaques in the brains of patients with Alzheimer’s disease, their potential as targets for pharmacological intervention has only recently been investigated. In the last few years, the Alzheimer field has experienced a paradigm shift with the ever increasing understanding that targeting amyloid plaques has not led to a successful immunotherapy. On the other hand, there can be no doubt that the amyloid cascade hypothesis is central to the etiology of Alzheimer’s disease, raising the question as to why it is apparently failing to translate into the clinic. In this review, we aim to refocus the amyloid hypothesis integrating N-truncated Aβ peptides based on mounting evidence that they may represent better targets than full-length Aβ. In addition to Aβ peptides starting with an Asp at position 1, a variety of different N-truncated Aβ peptides have been identified starting with amino residue Ala-2, pyroglutamylated Glu-3, Phe-4, Arg-5, His-6, Asp-7, Ser-8, Gly-9, Tyr-10 and pyroglutamylated Glu-11. Certain forms of N-truncated species are better correlates for early pathological changes found pre-symptomatically more often than others. There is also evidence that, together with full-length Aβ, they might be physiologically detectable and are naturally secreted by neurons. Others are known to form soluble aggregates, which have neurotoxic properties in transgenic mouse models. It has been clearly demonstrated by several groups that some N-truncated Aβs dominate full-length Aβ in the brains of Alzheimer’s patients. We try to address which of the N-truncated variants may be promising therapeutic targets and which enzymes might be involved in the generation of these peptides
Collapse
|
36
|
Perez-Garmendia R, Gevorkian G. Pyroglutamate-Modified Amyloid Beta Peptides: Emerging Targets for Alzheimer´s Disease Immunotherapy. Curr Neuropharmacol 2014; 11:491-8. [PMID: 24403873 PMCID: PMC3763757 DOI: 10.2174/1570159x11311050004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/16/2013] [Accepted: 03/28/2013] [Indexed: 12/25/2022] Open
Abstract
Extracellular and intraneuronal accumulation of amyloid-beta (Aβ) peptide aggregates in the brain has been hypothesized to play an important role in the neuropathology of Alzheimer’s Disease (AD). The main Aβ variants detected in the human brain are Aβ1-40 and Aβ1-42, however a significant proportion of AD brain Aβ consists also of N-terminal truncated species. Pyroglutamate-modified Aβ peptides have been demonstrated to be the predominant components among all N-terminal truncated Aβ species in AD brains and represent highly desirable and abundant therapeutic targets. The current review describes the properties and localization of two pyroglutamate-modified Aβ peptides, AβN3(pE) and AβN11(pE), in the brain. The role of glutaminyl cyclase (QC) in the formation of these peptides is also addressed. In addition, two potential therapeutic strategies, the inhibition of QC and immunotherapy approaches, and clinical trials aimed to target these important pathological Aβ species are reviewed.
Collapse
Affiliation(s)
- Roxanna Perez-Garmendia
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF, Mexico
| |
Collapse
|
37
|
Wu G, Miller RA, Connolly B, Marcus J, Renger J, Savage MJ. Pyroglutamate-Modified Amyloid-� Protein Demonstrates Similar Properties in an Alzheimer's Disease Familial Mutant Knock-In Mouse and Alzheimer's Disease Brain. NEURODEGENER DIS 2014; 14:53-66. [DOI: 10.1159/000353634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
|
38
|
Frackowiak J, Mazur-Kolecka B, Schanen NC, Brown WT, Wegiel J. The link between intraneuronal N-truncated amyloid-β peptide and oxidatively modified lipids in idiopathic autism and dup(15q11.2-q13)/autism. Acta Neuropathol Commun 2013; 1:61. [PMID: 24252310 PMCID: PMC3893450 DOI: 10.1186/2051-5960-1-61] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autism is a neurodevelopmental disorder of unknown etiopathogenesis associated with structural and functional abnormalities of neurons and increased formation of reactive oxygen species. Our previous study revealed enhanced accumulation of amino-terminally truncated amyloid-β (Aβ) in brain neurons and glia in children and adults with autism. Verification of the hypothesis that intraneuronal Aβ may cause oxidative stress was the aim of this study. RESULTS The relationships between neuronal Aβ and oxidative stress markers-4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA)-were examined in the frontal cortex from individuals aged 7-32 years with idiopathic autism or with chromosome 15q11.2-q13 duplications (dup(15)) with autism, and age-matched controls. Quantification of confocal microscopy images revealed significantly higher levels of neuronal N-truncated Aβ and HNE and MDA in idiopathic autism and dup(15)/autism than in controls. Lipid peroxidation products were detected in all mitochondria and lipofuscin deposits, in numerous autophagic vacuoles and lysosomes, and in less than 5% of synapses. Neuronal Aβ was co-localized with HNE and MDA, and increased Aβ levels correlated with higher levels of HNE and MDA. CONCLUSIONS The results suggest a self-enhancing pathological process in autism that is initiated by intraneuronal deposition of N-truncated Aβ in childhood. The cascade of events includes altered APP metabolism and abnormal intracellular accumulation of N-terminally truncated Aβ which is a source of reactive oxygen species, which in turn increase the formation of lipid peroxidation products. The latter enhance Aβ deposition and sustain the cascade of changes contributing to metabolic and functional impairments of neurons in autism of an unknown etiology and caused by chromosome 15q11.2-q13 duplication.
Collapse
|
39
|
Jung JI, Ladd TB, Kukar T, Price AR, Moore BD, Koo EH, Golde TE, Felsenstein KM. Steroids as γ-secretase modulators. FASEB J 2013; 27:3775-85. [PMID: 23716494 PMCID: PMC3752532 DOI: 10.1096/fj.12-225649] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/14/2013] [Indexed: 11/11/2022]
Abstract
Aggregation and accumulation of Aβ42 play an initiating role in Alzheimer's disease (AD); thus, selective lowering of Aβ42 by γ-secretase modulators (GSMs) remains a promising approach to AD therapy. Based on evidence suggesting that steroids may influence Aβ production, we screened 170 steroids at 10 μM for effects on Aβ42 secreted from human APP-overexpressing Chinese hamster ovary cells. Many acidic steroids lowered Aβ42, whereas many nonacidic steroids actually raised Aβ42. Studies on the more potent compounds showed that Aβ42-lowering steroids were bonafide GSMs and Aβ42-raising steroids were inverse GSMs. The most potent steroid GSM identified was 5β-cholanic acid (EC50=5.7 μM; its endogenous analog lithocholic acid was virtually equipotent), and the most potent inverse GSM identified was 4-androsten-3-one-17β-carboxylic acid ethyl ester (EC50=6.25 μM). In addition, we found that both estrogen and progesterone are weak inverse GSMs with further complex effects on APP processing. These data suggest that certain endogenous steroids may have the potential to act as GSMs and add to the evidence that cholesterol, cholesterol metabolites, and other steroids may play a role in modulating Aβ production and thus risk for AD. They also indicate that acidic steroids might serve as potential therapeutic leads for drug optimization/development.
Collapse
Affiliation(s)
- Joo In Jung
- Center for Translational Research in Neurodegenerative Disease and
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Thomas B. Ladd
- Center for Translational Research in Neurodegenerative Disease and
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Thomas Kukar
- Department of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Ashleigh R. Price
- Center for Translational Research in Neurodegenerative Disease and
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Brenda D. Moore
- Center for Translational Research in Neurodegenerative Disease and
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Edward H. Koo
- Department of Neuroscience, University of California, San Diego, La Jolla, California, USA
| | - Todd E. Golde
- Center for Translational Research in Neurodegenerative Disease and
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kevin M. Felsenstein
- Center for Translational Research in Neurodegenerative Disease and
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
40
|
Bouter Y, Dietrich K, Wittnam JL, Rezaei-Ghaleh N, Pillot T, Papot-Couturier S, Lefebvre T, Sprenger F, Wirths O, Zweckstetter M, Bayer TA. N-truncated amyloid β (Aβ) 4-42 forms stable aggregates and induces acute and long-lasting behavioral deficits. Acta Neuropathol 2013; 126:189-205. [PMID: 23685882 PMCID: PMC3722453 DOI: 10.1007/s00401-013-1129-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/30/2022]
Abstract
N-truncated Aβ4-42 is highly abundant in Alzheimer disease (AD) brain and was the first Aβ peptide discovered in AD plaques. However, a possible role in AD aetiology has largely been neglected. In the present report, we demonstrate that Aβ4-42 rapidly forms aggregates possessing a high aggregation propensity in terms of monomer consumption and oligomer formation. Short-term treatment of primary cortical neurons indicated that Aβ4-42 is as toxic as pyroglutamate Aβ3-42 and Aβ1-42. In line with these findings, treatment of wildtype mice using intraventricular Aβ injection induced significant working memory deficits with Aβ4-42, pyroglutamate Aβ3-42 and Aβ1-42. Transgenic mice expressing Aβ4-42 (Tg4-42 transgenic line) developed a massive CA1 pyramidal neuron loss in the hippocampus. The hippocampus-specific expression of Aβ4-42 correlates well with age-dependent spatial reference memory deficits assessed by the Morris water maze test. Our findings indicate that N-truncated Aβ4-42 triggers acute and long-lasting behavioral deficits comparable to AD typical memory dysfunction.
Collapse
Affiliation(s)
- Yvonne Bouter
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| | - Katharina Dietrich
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| | - Jessica L. Wittnam
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | | | | | | | - Frederick Sprenger
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Thomas A. Bayer
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| |
Collapse
|
41
|
Meral D, Urbanc B. Discrete molecular dynamics study of oligomer formation by N-terminally truncated amyloid β-protein. J Mol Biol 2013; 425:2260-75. [PMID: 23500806 PMCID: PMC3665754 DOI: 10.1016/j.jmb.2013.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/05/2013] [Indexed: 01/09/2023]
Abstract
In Alzheimer's disease (AD), amyloid β-protein (Aβ) self-assembles into toxic oligomers. Of the two predominant Aβ alloforms, Aβ1-40 and Aβ1-42, the latter is particularly strongly linked to AD. N-terminally truncated and pyroglutamated Aβ peptides were recently shown to seed Aβ aggregation and contribute significantly to Aβ-mediated toxicity, yet their folding and assembly were not explored computationally. Discrete molecular dynamics approach previously captured in vitro-derived distinct Aβ1-40 and Aβ1-42 oligomer size distributions and predicted that the more toxic Aβ1-42 oligomers had more flexible and solvent-exposed N-termini than Aβ1-40 oligomers. Here, we examined oligomer formation of Aβ3-40, Aβ3-42, Aβ11-40, and Aβ11-42 by the discrete molecular dynamics approach. The four N-terminally truncated peptides showed increased oligomerization propensity relative to the full-length peptides, consistent with in vitro findings. Conformations formed by Aβ3-40/42 had significantly more flexible and solvent-exposed N-termini than Aβ1-40/42 conformations. In contrast, in Aβ11-40/42 conformations, the N-termini formed more contacts and were less accessible to the solvent. The compactness of the Aβ11-40/42 conformations was in part facilitated by Val12. Two single amino acid substitutions that reduced and abolished hydrophobicity at position 12, respectively, resulted in a proportionally increased structural variability. Our results suggest that Aβ11-40 and Aβ11-42 oligomers might be less toxic than Aβ1-40 and Aβ1-42 oligomers and offer a plausible explanation for the experimentally observed increased toxicity of Aβ3-40 and Aβ3-42 and their pyroglutamated forms.
Collapse
Affiliation(s)
- Derya Meral
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Nisbet RM, Nigro J, Breheney K, Caine J, Hattarki MK, Nuttall SD. Central amyloid-β-specific single chain variable fragment ameliorates Aβ aggregation and neurotoxicity. Protein Eng Des Sel 2013; 26:571-80. [PMID: 23766374 DOI: 10.1093/protein/gzt025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Anti-amyloid-β immunotherapies are a promising therapeutic approach for the treatment and prevention of Alzheimer's disease (AD). Single chain antibody fragments (scFv) are an attractive alternative to whole antibodies due to their small size, single polypeptide format and inability to stimulate potentially undesirable Fc-mediated immune effector functions. We have generated the scFv derivative of anti-Aβ monoclonal antibody, 1E8, known to target residues 17-22 of Aβ. Here we show that the soluble 1E8 scFv binds to the central region of Aβ with an affinity of ~55 nM and significantly reduces fibril formation of Aβ(1-42). Furthermore, 1E8 scFv ameliorates Aβ(1-42)-mediated toxicity in the PC12 cell line and murine primary neuronal cultures. This ability to both target the central region of Aβ and prevent Aβ(1-42) neurotoxicity in vitro makes it a promising therapeutic antibody building block for further functionalization, toward the treatment of AD.
Collapse
Affiliation(s)
- R M Nisbet
- Division of Materials Science and Engineering, CSIRO Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Albertini V, Benussi L, Paterlini A, Glionna M, Prestia A, Bocchio-Chiavetto L, Amicucci G, Galluzzi S, Adorni A, Geroldi C, Binetti G, Frisoni GB, Ghidoni R. Distinct cerebrospinal fluid amyloid-beta peptide signatures in cognitive decline associated with Alzheimer's disease and schizophrenia. Electrophoresis 2012; 33:3738-44. [PMID: 23161113 DOI: 10.1002/elps.201200307] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/09/2012] [Accepted: 07/23/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Valentina Albertini
- Proteomics Unit; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| | - Luisa Benussi
- NeuroBioGen Lab-Memory Clinic; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| | - Anna Paterlini
- Proteomics Unit; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| | - Michela Glionna
- NeuroBioGen Lab-Memory Clinic; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| | - Annapaola Prestia
- Laboratory of Epidemiology and Neuroimaging; LENITEM; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| | - Luisella Bocchio-Chiavetto
- Neuropsychopharmacology Unit; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| | - Giovanni Amicucci
- U.O. Anestesia - Rianimazione e Terapia del Dolore, Ospedale di Chiari; A.O. Mellino Mellini; Chiari (BS); Italy
| | - Samantha Galluzzi
- Laboratory of Epidemiology and Neuroimaging; LENITEM; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| | - Andrea Adorni
- Psychogeriatric Ward; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| | - Cristina Geroldi
- Psychogeriatric Ward; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| | - Giuliano Binetti
- NeuroBioGen Lab-Memory Clinic; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| | - Giovanni B. Frisoni
- Laboratory of Epidemiology and Neuroimaging; LENITEM; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| | - Roberta Ghidoni
- Proteomics Unit; IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli; Brescia; Italy
| |
Collapse
|
44
|
Wittnam JL, Portelius E, Zetterberg H, Gustavsson MK, Schilling S, Koch B, Demuth HU, Blennow K, Wirths O, Bayer TA. Pyroglutamate amyloid β (Aβ) aggravates behavioral deficits in transgenic amyloid mouse model for Alzheimer disease. J Biol Chem 2012; 287:8154-62. [PMID: 22267726 DOI: 10.1074/jbc.m111.308601] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyroglutamate-modified Aβ peptides at amino acid position three (Aβ(pE3-42)) are gaining considerable attention as potential key players in the pathogenesis of Alzheimer disease (AD). Aβ(pE3-42) is abundant in AD brain and has a high aggregation propensity, stability and cellular toxicity. The aim of the present work was to study the direct effect of elevated Aβ(pE3-42) levels on ongoing AD pathology using transgenic mouse models. To this end, we generated a novel mouse model (TBA42) that produces Aβ(pE3-42). TBA42 mice showed age-dependent behavioral deficits and Aβ(pE3-42) accumulation. The Aβ profile of an established AD mouse model, 5XFAD, was characterized using immunoprecipitation followed by mass spectrometry. Brains from 5XFAD mice demonstrated a heterogeneous mixture of full-length, N-terminal truncated, and modified Aβ peptides: Aβ(1-42), Aβ(1-40), Aβ(pE3-40), Aβ(pE3-42), Aβ(3-42), Aβ(4-42), and Aβ(5-42). 5XFAD and TBA42 mice were then crossed to generate transgenic FAD42 mice. At 6 months of age, FAD42 mice showed an aggravated behavioral phenotype compared with single transgenic 5XFAD or TBA42 mice. ELISA and plaque load measurements revealed that Aβ(pE3) levels were elevated in FAD42 mice. No change in Aβ(x)(-42) or other Aβ isoforms was discovered by ELISA and mass spectrometry. These observations argue for a seeding effect of Aβ(pE-42) in FAD42 mice.
Collapse
Affiliation(s)
- Jessica L Wittnam
- Division of Molecular Psychiatry, Georg August University Göttingen, University Medicine Göttingen, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jawhar S, Wirths O, Bayer TA. Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease. J Biol Chem 2011; 286:38825-32. [PMID: 21965666 DOI: 10.1074/jbc.r111.288308] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pyroglutamate-modified amyloid-β (Aβ(pE3)) peptides are gaining considerable attention as potential key participants in the pathology of Alzheimer disease (AD) due to their abundance in AD brain, high aggregation propensity, stability, and cellular toxicity. Transgenic mice that produce high levels of Aβ(pE3-42) show severe neuron loss. Recent in vitro and in vivo experiments have proven that the enzyme glutaminyl cyclase catalyzes the formation of Aβ(pE3). In this minireview, we summarize the current knowledge on Aβ(pE3), discussing its discovery, biochemical properties, molecular events determining formation, prevalence in the brains of AD patients, Alzheimer mouse models, and potential as a target for therapy and as a diagnostic marker.
Collapse
Affiliation(s)
- Sadim Jawhar
- Department of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075 Göttingen, Germany
| | | | | |
Collapse
|
46
|
A window into the heterogeneity of human cerebrospinal fluid Aβ peptides. J Biomed Biotechnol 2011; 2011:697036. [PMID: 21876644 PMCID: PMC3163146 DOI: 10.1155/2011/697036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022] Open
Abstract
The initiating event in Alzheimer's disease (AD) is an imbalance in the production and clearance of amyloid beta (Aβ) peptides leading to the formation of neurotoxic brain Aβ assemblies. Cerebrospinal Fluid (CSF), which is a continuum of the brain, is an obvious source of markers reflecting central neuropathologic features of brain diseases. In this review, we provide an overview and update on our current understanding of the pathobiology of human CSF Aβ peptides. Specifically, we focused our attention on the heterogeneity of the CSF Aβ world discussing (1) basic research studies and what has been translated to clinical practice, (2) monomers and other soluble circulating Aβ assemblies, and (3) communication modes for Aβ peptides and their microenvironment targets. Finally, we suggest that Aβ peptides as well as other key signals in the central nervous system (CNS), mainly involved in learning and hence plasticity, may have a double-edged sword action on neuron survival and function.
Collapse
|
47
|
Albertini V, Bruno A, Paterlini A, Lista S, Benussi L, Cereda C, Binetti G, Ghidoni R. Optimization protocol for amyloid-β peptides detection in human cerebrospinal fluid using SELDI TOF MS. Proteomics Clin Appl 2011; 4:352-7. [PMID: 21179888 DOI: 10.1002/prca.200900166] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PURPOSE The aim of the present work was to set up an optimized protocol for human cerebrospinal fluid amyloid-β (Aβ) profiling. EXPERIMENTAL DESIGN We devised an immunoproteomic assay that employs monoclonal antibodies (mAbs) on Preactivated Surface (PS20) chip array followed by SELDI TOF MS. A comparison of a number of factors was performed, and the impact of these differences was noted. Each variable was tested using in parallel two different mAbs, 6E10 and 4G8. In addition, we tested whether the combined use of these two mAbs could improve the capture of N and C-terminally truncated Aβ peptides and then the quality of spectra. RESULTS The best results were obtained using a mixture of Aβ mAbs (0.125 μg/μL 6E10+4G8): 15 Aβ peptides (including 3 N-terminally truncated forms) were detected. CONCLUSIONS AND CLINICAL RELEVANCE This approach has many potential advantages in speed, sensitivity and economy of reagents and could be helpful in order to define the role played by specific Aβ truncated forms in cognitive decline.
Collapse
|
48
|
Ghidoni R, Benussi L, Paterlini A, Albertini V, Binetti G, Emanuele E. Cerebrospinal fluid biomarkers for Alzheimer's disease: the present and the future. NEURODEGENER DIS 2011; 8:413-20. [PMID: 21709402 DOI: 10.1159/000327756] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia in the elderly. The biochemical changes that precede AD may be present up to 20 years before the clinical manifestation of the disease. The translational development of AD biomarkers may be theoretically achieved via two different strategies: the first strategy can be defined as 'knowledge-based' (deductive method), while the second one is a hypothesis-generating 'unbiased' approach (inductive strategy). The 'knowledge-based' approach relies on a direct understanding of the neuropathological processes that underlie the development of AD. In contrast, the 'unbiased' approach involves the use of modern techniques including proteomics and bioinformatics that allow unbiased investigations of numerous putative markers that may be informative with regard to AD. Cerebrospinal fluid (CSF) dosage of neuropathological AD-associated proteins has already been incorporated into the neurochemical diagnosis of AD, attesting the relevance of translational research. In the last few years, biomarker discovery research has successfully utilized genomics and proteomics for the identification of several promising molecular markers for AD. In the present article, we discuss the present state of the art and the future challenges in the search of CSF biomarkers for AD.
Collapse
Affiliation(s)
- Roberta Ghidoni
- Proteomics Unit, IRCCS Centro S. Giovanni di Dio-Fatebenefratelli, Brescia, Italy. rghidoni @ fatebenefratelli.it
| | | | | | | | | | | |
Collapse
|
49
|
Chambers JK, Mutsuga M, Uchida K, Nakayama H. Characterization of AβpN3 deposition in the brains of dogs of various ages and other animal species. Amyloid 2011; 18:63-71. [PMID: 21557687 DOI: 10.3109/13506129.2011.570385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Senile plaques (SP) are characteristic histopathological manifestations of Alzheimer's disease (AD), but are also found in normal aging (NA). Recent studies have demonstrated that beta amyloid (Aβ) proteins that have been truncated at the N-terminal position 3 (AβpN3) are the predominant component of SP in AD, but not in NA. The present study revealed that AβpN3 was deposited in an age-dependent manner in canine brains. Moreover, AβpN3 was the main component of the SP that developed in very old dogs. The deposition of AβpN3 increased in accordance with the number of SP, but that of N-terminally intact Aβ (AβN1) did not. In addition, AβpN3 was also deposited in the SP of a Japanese macaque and an American black bear, but not in a feline brain. Focal microvascular cerebral amyloid angiopathy was also observed in the deep cortices and the white matter of the dogs and a woodpecker. Those were always composed of both AβpN3 and AβN1. In conclusion, though non-human animals do not develop full pathology of AD of the human type, AβpN3 is widely deposited in the brains of senescent vertebrates.
Collapse
Affiliation(s)
- James K Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
50
|
Jawhar S, Wirths O, Schilling S, Graubner S, Demuth HU, Bayer TA. Overexpression of glutaminyl cyclase, the enzyme responsible for pyroglutamate A{beta} formation, induces behavioral deficits, and glutaminyl cyclase knock-out rescues the behavioral phenotype in 5XFAD mice. J Biol Chem 2011; 286:4454-60. [PMID: 21148560 PMCID: PMC3039372 DOI: 10.1074/jbc.m110.185819] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/09/2010] [Indexed: 11/06/2022] Open
Abstract
Pyroglutamate-modified Aβ (AβpE3-42) peptides are gaining considerable attention as potential key players in the pathology of Alzheimer disease (AD) due to their abundance in AD brain, high aggregation propensity, stability, and cellular toxicity. Overexpressing AβpE3-42 induced a severe neuron loss and neurological phenotype in TBA2 mice. In vitro and in vivo experiments have recently proven that the enzyme glutaminyl cyclase (QC) catalyzes the formation of AβpE3-42. The aim of the present work was to analyze the role of QC in an AD mouse model with abundant AβpE3-42 formation. 5XFAD mice were crossed with transgenic mice expressing human QC (hQC) under the control of the Thy1 promoter. 5XFAD/hQC bigenic mice showed significant elevation in TBS, SDS, and formic acid-soluble AβpE3-42 peptides and aggregation in plaques. In 6-month-old 5XFAD/hQC mice, a significant motor and working memory impairment developed compared with 5XFAD. The contribution of endogenous QC was studied by generating 5XFAD/QC-KO mice (mouse QC knock-out). 5XFAD/QC-KO mice showed a significant rescue of the wild-type mice behavioral phenotype, demonstrating the important contribution of endogenous mouse QC and transgenic overexpressed QC. These data clearly demonstrate that QC is crucial for modulating AβpE3-42 levels in vivo and prove on a genetic base the concept that reduction of QC activity is a promising new therapeutic approach for AD.
Collapse
Affiliation(s)
- Sadim Jawhar
- From the Department of Molecular Psychiatry and Alzheimer Ph.D. Graduate School, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Oliver Wirths
- From the Department of Molecular Psychiatry and Alzheimer Ph.D. Graduate School, University Medicine Goettingen, 37075 Goettingen, Germany
| | | | | | | | - Thomas A. Bayer
- From the Department of Molecular Psychiatry and Alzheimer Ph.D. Graduate School, University Medicine Goettingen, 37075 Goettingen, Germany
| |
Collapse
|