1
|
Dahal K, Li XQ, Tai H, Creelman A, Bizimungu B. Improving Potato Stress Tolerance and Tuber Yield Under a Climate Change Scenario - A Current Overview. FRONTIERS IN PLANT SCIENCE 2019; 10:563. [PMID: 31139199 PMCID: PMC6527881 DOI: 10.3389/fpls.2019.00563] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/12/2019] [Indexed: 05/06/2023]
Abstract
Global climate change in the form of extreme heat and drought poses a major challenge to sustainable crop production by negatively affecting plant performance and crop yield. Such negative impact on crop yield is likely to be aggravated in future because continued greenhouse gas emissions will cause further rise in temperature leading to increased evapo-transpiration and drought severity, soil salinity as well as insect and disease threats. This has raised a major challenge for plant scientists on securing global food demand, which urges an immediate need to enhance the current yield of major food crops by two-fold to feed the increasing population. As a fourth major food crop, enhancing potato productivity is important for food security of an increasing population. However, potato plant is highly prone to high temperature, drought, soil salinity, as well as insect and diseases. In order to maintain a sustainable potato production, we must adapt our cultivation practices and develop stress tolerant potato cultivars that are appropriately engineered for changing environment. Yet the lack of data on the underlying mechanisms of potato plant resistance to abiotic and biotic stress and the ability to predict future outcomes constitutes a major knowledge gap. It is a challenge for plant scientists to pinpoint means of improving tuber yield under increasing CO2, high temperature and drought stress including the changing patterns of pest and pathogen infestations. Understanding stress-related physiological, biochemical and molecular processes is crucial to develop screening procedures for selecting crop cultivars that can better adapt to changing growth conditions. Elucidation of such mechanism may offer new insights into the identification of specific characteristics that may be useful in breeding new cultivars aimed at maintaining or even enhancing potato yield under changing climate. This paper discusses the recent progress on the mechanism by which potato plants initially sense the changes in their surrounding CO2, temperature, water status, soil salinity and consequently respond to these changes at the molecular, biochemical and physiological levels. We suggest that future research needs to be concentrated on the identification and characterization of signaling molecules and target genes regulating stress tolerance and crop yield potential.
Collapse
Affiliation(s)
- Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | | | | | | | | |
Collapse
|
2
|
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4433-4453. [PMID: 28981786 DOI: 10.1093/jxb/erx291] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass.
Collapse
Affiliation(s)
- Gregory J MacNeill
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sahar Mehrpouyan
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mark A A Minow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jenelle A Patterson
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
3
|
Guo H, Liu Y, Li X, Yan Z, Xie Y, Xiong H, Zhao L, Gu J, Zhao S, Liu L. Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat. BMC Genomics 2017; 18:358. [PMID: 28482814 DOI: 10.1186/s12864-017-37244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/25/2017] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Transient starch provides carbon and energy for plant growth, and its synthesis is regulated by the joint action of a series of enzymes. Starch synthesis IV (SSIV) is one of the important starch synthase isoforms, but its impact on wheat starch synthesis has not yet been reported due to the lack of mutant lines. RESULTS Using the TILLING approach, we identified 54 mutations in the wheat gene TaSSIVb-D, with a mutation density of 1/165 Kb. Among these, three missense mutations and one nonsense mutation were predicted to have severe impacts on protein function. In the mutants, TaSSIVb-D was significantly down-regulated without compensatory increases in the homoeologous genes TaSSIVb-A and TaSSIVb-B. Altered expression of TaSSIVb-D affected granule number per chloroplast; compared with wild type, the number of chloroplasts containing 0-2 granules was significantly increased, while the number containing 3-4 granules was decreased. Photosynthesis was affected accordingly; the maximum quantum yield and yield of PSII were significantly reduced in the nonsense mutant at the heading stage. CONCLUSIONS These results indicate that TaSSIVb-D plays an important role in the formation of transient starch granules in wheat, which in turn impact the efficiency of photosynthesis. The mutagenized population created in this study allows the efficient identification of novel alleles of target genes and could be used as a resource for wheat functional genomics.
Collapse
Affiliation(s)
- Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Yunchuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Xiao Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Zhihui Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China.
| |
Collapse
|
4
|
Guo H, Liu Y, Li X, Yan Z, Xie Y, Xiong H, Zhao L, Gu J, Zhao S, Liu L. Novel mutant alleles of the starch synthesis gene TaSSIVb-D result in the reduction of starch granule number per chloroplast in wheat. BMC Genomics 2017; 18:358. [PMID: 28482814 PMCID: PMC5422989 DOI: 10.1186/s12864-017-3724-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/25/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Transient starch provides carbon and energy for plant growth, and its synthesis is regulated by the joint action of a series of enzymes. Starch synthesis IV (SSIV) is one of the important starch synthase isoforms, but its impact on wheat starch synthesis has not yet been reported due to the lack of mutant lines. RESULTS Using the TILLING approach, we identified 54 mutations in the wheat gene TaSSIVb-D, with a mutation density of 1/165 Kb. Among these, three missense mutations and one nonsense mutation were predicted to have severe impacts on protein function. In the mutants, TaSSIVb-D was significantly down-regulated without compensatory increases in the homoeologous genes TaSSIVb-A and TaSSIVb-B. Altered expression of TaSSIVb-D affected granule number per chloroplast; compared with wild type, the number of chloroplasts containing 0-2 granules was significantly increased, while the number containing 3-4 granules was decreased. Photosynthesis was affected accordingly; the maximum quantum yield and yield of PSII were significantly reduced in the nonsense mutant at the heading stage. CONCLUSIONS These results indicate that TaSSIVb-D plays an important role in the formation of transient starch granules in wheat, which in turn impact the efficiency of photosynthesis. The mutagenized population created in this study allows the efficient identification of novel alleles of target genes and could be used as a resource for wheat functional genomics.
Collapse
Affiliation(s)
- Huijun Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Yunchuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Xiao Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Zhihui Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Yongdun Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Hongchun Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Linshu Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Jiayu Gu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Shirong Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China
| | - Luxiang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement/National Center of Space Mutagenesis for Crop Improvement, Beijing, 100081, China.
| |
Collapse
|
5
|
Zaghdoud C, Carvajal M, Ferchichi A, Del Carmen Martínez-Ballesta M. Water balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:763-71. [PMID: 27450252 DOI: 10.1016/j.scitotenv.2016.07.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 05/23/2023]
Abstract
Elevated [CO2] and salinity in the soils are considered part of the effects of future environmental conditions in arid and semi-arid areas. While it is known that soil salinization decreases plant growth, an increased atmospheric [CO2] may ameliorate the negative effects of salt stress. However, there is a lack of information about the form in which inorganic nitrogen source may influence plant performance under both conditions. Single factor responses and the interactive effects of two [CO2] (380 and 800ppm), three different NO3(-)/NH4(+) ratios in the nutrient solution (100/0, 50/50 and 0/100, with a total N concentration of 3.5mM) and two NaCl concentrations (0 and 80mM) on growth, leaf gas exchange parameters in relation to root hydraulic conductance and N-assimilating enzymes of broccoli (Brassica oleracea L. var. Italica) plants were determined. The results showed that a reduced NO3(-) or co-provision of NO3(-) and NH4(+) could be an optimal source of inorganic N for broccoli plants. In addition, elevated [CO2] ameliorated the effect of salt exposure on the plant growth through an enhanced rate of photosynthesis, even at low N-concentration. However, NO3(-) or NO3(-)/NH4(+) co-provision display differential plant response to salt stress regarding water balance, which was associated to N metabolism. The results may contribute to our understanding of N-fertilization modes under increasing atmospheric [CO2] to cope with salt stress, where variations in N nutrition significantly influenced plant response.
Collapse
Affiliation(s)
- Chokri Zaghdoud
- Laboratoire Aridoculture et Cultures Oasiennes, Institut des Régions Arides, Route de Djerba Km 22.5, Médenine 4119, Tunisia
| | - Micaela Carvajal
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, Edificio 25, E-Murcia, 30100, Spain
| | - Ali Ferchichi
- Laboratoire Aridoculture et Cultures Oasiennes, Institut des Régions Arides, Route de Djerba Km 22.5, Médenine 4119, Tunisia
| | - María Del Carmen Martínez-Ballesta
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, Edificio 25, E-Murcia, 30100, Spain.
| |
Collapse
|
6
|
Comparing photosynthetic characteristics of Isoetes sinensis Palmer under submerged and terrestrial conditions. Sci Rep 2015; 5:17783. [PMID: 26634994 PMCID: PMC4669503 DOI: 10.1038/srep17783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/04/2015] [Indexed: 01/29/2023] Open
Abstract
Crassulacean acid metabolism (CAM) is widespread in terrestrial and aquatic species, plastic in response to environmental changes. Isoetes L. is one of the earliest basal vascular plants and CAM is popular in this genus. Isoetes sinensis Palmer is an amphibious species, alternating frequently between terrestrial and aquatic environments. Given this, we investigated and compared photosynthetic characteristics over a diurnal cycle under submerged condition (SC) and terrestrial condition (TC). The results suggest that I. sinensis possesses a stronger CAM capacity under SC. Compared with under TC, titratable acidity levels and organic acid concentrations were more enriched under SC, whereas soluble sugar or starch and protein levels were lower under SC. Transcript analyses for nine photosynthetic genes revealed that CAM-associated genes possessed high transcripts under SC, but C3-related transcripts were highly expressed under TC. In addition, the enzyme activity measurements demonstrated that PEPC activity over a diurnal cycle was slightly higher under SC, whereas Rubisco activity during the daytime was greater under TC. This comprehensive study probably facilitates general understandings about the CAM photosynthetic characteristics of Isoetes in response to the environmental changes.
Collapse
|
7
|
Yang J, Fleisher DH, Sicher RC, Kim J, Baligar VC, Reddy VR. Effects of CO2 enrichment and drought pretreatment on metabolite responses to water stress and subsequent rehydration using potato tubers from plants grown in sunlit chambers. JOURNAL OF PLANT PHYSIOLOGY 2015; 189:126-136. [PMID: 26600557 DOI: 10.1016/j.jplph.2015.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/17/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Experiments were performed using naturally sunlit Soil-Plant-Atmosphere Research chambers that provided ambient or twice ambient CO2. Potato plants were grown in pots that were water sufficient (W), water insufficient for 12-18 days during both vegetative and tuber development stages (VR), or water insufficient solely during tuber development (R). In the ambient CO2 treatment, a total of 17 and 20 out of 31 tuber metabolites differed when comparing the W to the R and VR treatments, respectively. Hexoses, raffinose, mannitol, branched chain amino acids, phenylalanine and proline increased, although most organic acids remained unchanged or decreased in response to drought. Osmolytes, including glucose, branched chain amino acids and proline, remained elevated following 2 weeks of rehydration in both the ambient and elevated CO2 treatments, whereas fructose, raffinose, mannitol and some organic acids reverted to control levels. Failure of desiccated plant tissues to mobilize specific osmolytes after rehydration was unexpected and was likely because tubers function as terminal sinks. Tuber metabolite responses to single or double drought treatments were similar under the same CO2 levels but important differences were noted when CO2 level was varied. We also found that metabolite changes to water insufficiency and/or CO2 enrichment were very distinct between sink and source tissues, and total metabolite changes to stress were generally greater in leaflets than tubers.
Collapse
Affiliation(s)
- Jinyoung Yang
- U.S.D.A., Agricultural Research Service, Crop Systems and Global Change Laboratory, Room 342, Bldg. 001, Beltsville Agricultural Research Center-west, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | - David H Fleisher
- U.S.D.A., Agricultural Research Service, Crop Systems and Global Change Laboratory, Room 342, Bldg. 001, Beltsville Agricultural Research Center-west, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Richard C Sicher
- U.S.D.A., Agricultural Research Service, Crop Systems and Global Change Laboratory, Room 342, Bldg. 001, Beltsville Agricultural Research Center-west, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Joonyup Kim
- U.S.D.A., Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Room 207, Bldg. 006, Beltsville Agricultural Research Center-west, 10300 Baltimore Avenue, Beltsville 20705 MD, USA
| | - Virupax C Baligar
- U.S.D.A., Agricultural Research Service, Sustainable Perennial Crops Laboratory, Room 223, Bldg. 001, Beltsville Agricultural Research Center-west, 10300 Baltimore Avenue, Beltsville, 20705 MD, USA
| | - Vangimalla R Reddy
- U.S.D.A., Agricultural Research Service, Crop Systems and Global Change Laboratory, Room 342, Bldg. 001, Beltsville Agricultural Research Center-west, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| |
Collapse
|
8
|
Krishnan A, Kumaraswamy GK, Vinyard DJ, Gu H, Ananyev G, Posewitz MC, Dismukes GC. Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:947-60. [PMID: 25645872 DOI: 10.1111/tpj.12783] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 05/20/2023]
Abstract
Upon nutrient deprivation, microalgae partition photosynthate into starch and lipids at the expense of protein synthesis and growth. We investigated the role of starch biosynthesis with respect to photosynthetic growth and carbon partitioning in the Chlamydomonas reinhardtii starchless mutant, sta6, which lacks ADP-glucose pyrophosphorylase. This mutant is unable to convert glucose-1-phosphate to ADP-glucose, the precursor of starch biosynthesis. During nutrient-replete culturing, sta6 does not re-direct metabolism to make more proteins or lipids, and accumulates 20% less biomass. The underlying molecular basis for the decreased biomass phenotype was identified using LC-MS metabolomics studies and flux methods. Above a threshold light intensity, photosynthetic electron transport rates (water → CO2) decrease in sta6 due to attenuated rates of NADPH re-oxidation, without affecting photosystems I or II (no change in isolated photosynthetic electron transport). We observed large accumulations of carbon metabolites that are precursors for the biosynthesis of lipids, amino acids and sugars/starch, indicating system-wide consequences of slower NADPH re-oxidation. Attenuated carbon fixation resulted in imbalances in both redox and adenylate energy. The pool sizes of both pyridine and adenylate nucleotides in sta6 increased substantially to compensate for the slower rate of turnover. Mitochondrial respiration partially relieved the reductant stress; however, prolonged high-light exposure caused accelerated photoinhibition. Thus, starch biosynthesis in Chlamydomonas plays a critical role as a principal carbon sink influencing cellular energy balance however, disrupting starch biosynthesis does not redirect resources to other bioproducts (lipids or proteins) during nutrient-replete culturing, resulting in cells that are susceptible to photochemical damage caused by redox stress.
Collapse
Affiliation(s)
- Anagha Krishnan
- Waksman Institute of Microbiology, Rutgers: The State University of New Jersey, Piscataway, NJ, 08854, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Nikinmaa E, Hölttä T, Hari P, Kolari P, Mäkelä A, Sevanto S, Vesala T. Assimilate transport in phloem sets conditions for leaf gas exchange. PLANT, CELL & ENVIRONMENT 2013; 36:655-69. [PMID: 22934921 DOI: 10.1111/pce.12004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Carbon uptake and transpiration in plant leaves occurs through stomata that open and close. Stomatal action is usually considered a response to environmental driving factors. Here we show that leaf gas exchange is more strongly related to whole tree level transport of assimilates than previously thought, and that transport of assimilates is a restriction of stomatal opening comparable with hydraulic limitation. Assimilate transport in the phloem requires that osmotic pressure at phloem loading sites in leaves exceeds the drop in hydrostatic pressure that is due to transpiration. Assimilate transport thus competes with transpiration for water. Excess sugar loading, however, may block the assimilate transport because of viscosity build-up in phloem sap. Therefore, for given conditions, there is a stomatal opening that maximizes phloem transport if we assume that sugar loading is proportional to photosynthetic rate. Here we show that such opening produces the observed behaviour of leaf gas exchange. Our approach connects stomatal regulation directly with sink activity, plant structure and soil water availability as they all influence assimilate transport. It produces similar behaviour as the optimal stomatal control approach, but does not require determination of marginal cost of water parameter.
Collapse
Affiliation(s)
- Eero Nikinmaa
- Departments of Forest Sciences, University of Helsinki, Helsinki FI-00014, Finland.
| | | | | | | | | | | | | |
Collapse
|
10
|
Jonik C, Sonnewald U, Hajirezaei MR, Flügge UI, Ludewig F. Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1088-98. [PMID: 22931170 DOI: 10.1111/j.1467-7652.2012.00736.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 05/22/2023]
Abstract
An important goal in biotechnological research is to improve the yield of crop plants. Here, we genetically modified simultaneously source and sink capacities in potato (Solanum tuberosum cv. Desirée) plants to improve starch yield. Source capacity was increased by mesophyll-specific overexpression of a pyrophosphatase or, alternatively, by antisense expression of the ADP-glucose pyrophosphorylase in leaves. Both approaches make use of re-routing photoassimilates to sink organs at the expense of leaf starch accumulation. Simultaneous increase in sink capacity was accomplished by overexpression of two plastidic metabolite translocators, that is, a glucose 6-phosphate/phosphate translocator and an adenylate translocator in tubers. Employing such a 'pull' approach, we have previously shown that potato starch content and yield can be increased when sink strength is elevated. In the current biotechnological approach, we successfully enhanced source and sink capacities by a combination of 'pull' and 'push' approaches using two different attempts. A doubling in tuber starch yield was achieved. This successful approach might be transferable to other crop plants in the future.
Collapse
Affiliation(s)
- Claudia Jonik
- Cologne Biocenter, Botanical Institute II, University of Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
11
|
Kaplan F, Zhao W, Richards JT, Wheeler RM, Guy CL, Levine LH. Transcriptional and metabolic insights into the differential physiological responses of arabidopsis to optimal and supraoptimal atmospheric CO2. PLoS One 2012; 7:e43583. [PMID: 22916280 PMCID: PMC3423350 DOI: 10.1371/journal.pone.0043583] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In tightly closed human habitats such as space stations, locations near volcano vents and closed culture vessels, atmospheric CO(2) concentration may be 10 to 20 times greater than Earth's current ambient levels. It is known that super-elevated (SE) CO(2) (>1,200 µmol mol(-1)) induces physiological responses different from that of moderately elevated CO(2) (up to 1,200 µmol mol(-1)), but little is known about the molecular responses of plants to supra-optimal [CO(2)]. METHODOLOGY/PRINCIPAL FINDINGS To understand the underlying molecular causes for differential physiological responses, metabolite and transcript profiles were analyzed in aerial tissue of Arabidopsis plants, which were grown under ambient atmospheric CO(2) (400 µmol mol(-1)), elevated CO(2) (1,200 µmol mol(-1)) and SE CO(2) (4,000 µmol mol(-1)), at two developmental stages early and late vegetative stage. Transcript and metabolite profiling revealed very different responses to elevated versus SE [CO(2)]. The transcript profiles of SE CO(2) treated plants were closer to that of the control. Development stage had a clear effect on plant molecular response to elevated and SE [CO(2)]. Photosynthetic acclimation in terms of down-regulation of photosynthetic gene expression was observed in response to elevated [CO(2)], but not that of SE [CO(2)] providing the first molecular evidence that there appears to be a fundamental disparity in the way plants respond to elevated and SE [CO(2)]. Although starch accumulation was induced by both elevated and SE [CO(2)], the increase was less at the late vegetative stage and accompanied by higher soluble sugar content suggesting an increased starch breakdown to meet sink strength resulting from the rapid growth demand. Furthermore, many of the elevated and SE CO(2)-responsive genes found in the present study are also regulated by plant hormone and stress. CONCLUSIONS/SIGNIFICANCE This study provides new insights into plant acclimation to elevated and SE [CO(2)] during development and how this relates to stress, sugar and hormone signaling.
Collapse
Affiliation(s)
- Fatma Kaplan
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture (USDA-ARS), Gainesville, Florida, United States of America
| | - Wei Zhao
- MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Jeffrey T. Richards
- Enterprise Advisory Services Inc., QinetiQ North America for Engineering Services Contract (ESC), Sustainable Systems Applied Research, Kennedy Space Center, Florida, United States of America
| | - Raymond M. Wheeler
- NASA Engineering Directorate, Kennedy Space Center, Florida, United States of America
| | - Charles L. Guy
- Plant Molecular and Cellular Biology Program, Department of Environmental Horticulture, University of Florida, Gainesville, Florida, United States of America
| | - Lanfang H. Levine
- Enterprise Advisory Services Inc., QinetiQ North America for Engineering Services Contract (ESC), Sustainable Systems Applied Research, Kennedy Space Center, Florida, United States of America
| |
Collapse
|
12
|
Weise SE, van Wijk KJ, Sharkey TD. The role of transitory starch in C(3), CAM, and C(4) metabolism and opportunities for engineering leaf starch accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3109-18. [PMID: 21430293 DOI: 10.1093/jxb/err035] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Essentially all plants store starch in their leaves during the day and break it down the following night. This transitory starch accumulation acts as an overflow mechanism when the sucrose synthesis capacity is limiting, and transitory starch also acts as a carbon store to provide sugar at night. Transitory starch breakdown can occur by either of two pathways; significant progress has been made in understanding these pathways in C(3) plants. The hydrolytic (amylolytic) pathway generating maltose appears to be the primary source of sugar for export from C(3) chloroplasts at night, whereas the phosphorolytic pathway supplies carbon for chloroplast reactions, in particular in the light. In crassulacean acid metabolism (CAM) plants, the hydrolytic pathway predominates when plants operate in C(3) mode, but the phosphorolytic pathway predominates when they operate in CAM mode. Information on transitory starch metabolism in C(4) plants has now become available as a result of combined microscopy and proteome studies. Starch accumulates in all cell types in immature maize leaf tissue, but in mature leaf tissues starch accumulation ceases in mesophyll cells except when sugar export from leaves is blocked. Proper regulation of the amount of carbon that goes into starch, the pathway of starch breakdown, and the location of starch accumulation could help ensure that engineering of C(4) metabolism is coordinated with the downstream reactions required for efficient photosynthesis.
Collapse
Affiliation(s)
- Sean E Weise
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
13
|
Flügge UI, Häusler RE, Ludewig F, Gierth M. The role of transporters in supplying energy to plant plastids. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2381-92. [PMID: 21511915 DOI: 10.1093/jxb/erq361] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green plastids lack the ability to generate PEP via a complete glycolytic pathway. Hence, PEP import mediated by the plastidic PEP/phosphate translocator or PEP provided by the plastidic enolase are vital for plant growth and development. In contrast to chloroplasts, metabolism in non-green plastids (amyloplasts) of starch-storing tissues strongly depends on both the import of ATP mediated by the plastidic nucleotide transporter NTT and of carbon (glucose 6-phosphate, Glc6P) mediated by the plastidic Glc6P/phosphate translocator (GPT). Both transporters have been shown to co-limit starch biosynthesis in potato plants. In addition, non-photosynthetic plastids as well as chloroplasts during the night rely on the import of energy in the form of ATP via the NTT. During energy starvation such as prolonged darkness, chloroplasts strongly depend on the supply of ATP which can be provided by lipid respiration, a process involving chloroplasts, peroxisomes, and mitochondria and the transport of intermediates, i.e. fatty acids, ATP, citrate, and oxaloacetate across their membranes. The role of transporters involved in the provision of energy-rich metabolites and in pathways supplying plastids with metabolic energy is summarized here.
Collapse
Affiliation(s)
- Ulf-Ingo Flügge
- Botanical Institute, Biocenter Cologne, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
| | | | | | | |
Collapse
|
14
|
Kanani H, Dutta B, Klapa MI. Individual vs. combinatorial effect of elevated CO2 conditions and salinity stress on Arabidopsis thaliana liquid cultures: comparing the early molecular response using time-series transcriptomic and metabolomic analyses. BMC SYSTEMS BIOLOGY 2010; 4:177. [PMID: 21190570 PMCID: PMC3027597 DOI: 10.1186/1752-0509-4-177] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 12/29/2010] [Indexed: 10/26/2022]
Abstract
BACKGROUND In this study, we investigated the individual and combinatorial effect of elevated CO2 conditions and salinity stress on the dynamics of both the transcriptional and metabolic physiology of Arabidopsis thaliana liquid hydroponic cultures over the first 30 hours of continuous treatment. Both perturbations are of particular interest in plant and agro-biotechnological applications. Moreover, within the timeframe of this experiment, they are expected to affect plant growth to opposite directions. Thus, a major objective was to investigate whether this expected "divergence" was valid for the individual perturbations and to study how it is manifested under the combined stress at two molecular levels of cellular function, using high-throughput analyses. RESULTS We observed that a) high salinity has stronger effect than elevated CO2 at both the transcriptional and metabolic levels, b) the transcriptional responses to the salinity and combined stresses exhibit strong similarity, implying a robust transcriptional machinery acting to the salinity stress independent of the co-occurrence of elevated CO2, c) the combinatorial effect of the two perturbations on the metabolic physiology is milder than of the salinity stress alone. Metabolomic analysis suggested that the beneficial role of elevated CO2 on salt-stressed plants within the timeframe of this study should be attributed to the provided additional resources; these allow the plants to respond to high salinity without having to forfeit other major metabolic functions, and d) 9 h-12 h and 24 h of treatment coincide with significant changes in the metabolic physiology under any of the investigated stresses. Significant differences between the acute and longer term responses were observed at both molecular levels. CONCLUSIONS This study contributes large-scale dynamic omic data from two levels of cellular function for a plant system under various stresses. It provides an additional example of the power of integrated omic analyses for the comprehensive study of the molecular physiology of complex biological systems. Moreover, taking into consideration the particular interest of the two investigated perturbations in plant biotechnology, enhanced understanding of the molecular physiology of the plants under these conditions could lead to the design of novel metabolic engineering strategies to increase the resistance of commercial crops to salinity stress.
Collapse
Affiliation(s)
- Harin Kanani
- Metabolic Engineering and Systems Biology Laboratory, Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
15
|
del Amor FM, Cuadra-Crespo P, Walker DJ, Cámara JM, Madrid R. Effect of foliar application of antitranspirant on photosynthesis and water relations of pepper plants under different levels of CO2 and water stress. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1232-8. [PMID: 20542351 DOI: 10.1016/j.jplph.2010.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/11/2010] [Accepted: 04/12/2010] [Indexed: 05/23/2023]
Abstract
Strategies such as foliar application of antitranspirants have the potential to regulate transpiration, but often, the limitation of CO(2) exchange as a result of reduced stomatal conductance can impair this beneficial effect. Elevated ambient [CO(2)] could significantly improve CO(2) diffusion while effectively reducing transpiration. In this experiment, we examined the response of sweet pepper (Capsicum annuum L.) to the foliar application of antitranspirant (AT) under two [CO(2)] (380 and 2000 micromol mol(-1)) and two drought intensities (4 or 8d without irrigation). The results showed that stomatal conductance and transpiration were reduced, while AT impaired photosynthesis at standard, but not at elevated [CO(2)] of fully irrigated plants. This effect was already apparent after 4d of drought. Drought had a minor impact on chlorophyll fluorescence (F(v)/F(m)). Additionally, root respiration was increased at elevated [CO(2)] but, after 8d of drought, it was higher for plants treated with AT than for non-sprayed plants. Leaf water potential was affected more by drought at ambient compared to elevated [CO(2)], and, especially after 8d of drought, AT minimized the reductions in leaf water potential. Leaf concentrations of proline and starch were affected by both [CO(2)] and AT, especially after 8d of drought. Moreover, increasing [CO(2)] promoted the accumulation of starch, but led to decreases in the tissue concentrations of the soluble organic osmolytes, and hence diminished osmotic adjustment after 8d of water withholding, relative to ambient [CO(2)]. This study indicates that, in addition to the reported beneficial effect of elevated [CO(2)] on drought stress, AT could significantly improve drought tolerance in sweet pepper plants.
Collapse
Affiliation(s)
- Francisco M del Amor
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, 30150 Murcia, Spain.
| | | | | | | | | |
Collapse
|
16
|
Li P, Ainsworth EA, Leakey ADB, Ulanov A, Lozovaya V, Ort DR, Bohnert HJ. Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. PLANT, CELL & ENVIRONMENT 2008; 31:1673-87. [PMID: 18721265 DOI: 10.1111/j.1365-3040.2008.01874.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A Free-Air CO(2) Enrichment (FACE) experiment compared the physiological parameters, transcript and metabolite profiles of Arabidopsis thaliana Columbia-0 (Col-0) and Cape Verde Island (Cvi-0) at ambient (approximately 0.375 mg g(-1)) and elevated (approximately 0.550 mg g(-1)) CO(2) ([CO(2)]). Photoassimilate pool sizes were enhanced in high [CO(2)] in an ecotype-specific manner. Short-term growth at elevated [CO(2)] stimulated carbon gain irrespective of down-regulation of plastid functions and altered expression of genes involved in nitrogen metabolism resembling patterns observed under N-deficiency. The study confirmed well-known characteristics, but the use of a time course, ecotypic genetic differences, metabolite analysis and the focus on clusters of functional categories provided new aspects about responses to elevated [CO(2)]. Longer-term Cvi-0 responded by down-regulating functions favouring carbon accumulation, and both ecotypes showed altered expression of genes for defence, redox control, transport, signalling, transcription and chromatin remodelling. Overall, carbon fixation with a smaller commitment of resources in elevated [CO(2)] appeared beneficial, with the extra C only partially utilized possibly due to disturbance of the C : N ratio. To different degrees, both ecotypes perceived elevated [CO(2)] as a metabolic perturbation that necessitated increased functions consuming or storing photoassimilate, with Cvi-0 emerging as more capable of acclimating. Elevated [CO(2)] in Arabidopsis favoured adjustments in reactive oxygen species (ROS) homeostasis and signalling that defined genotypic markers.
Collapse
Affiliation(s)
- Pinghua Li
- Department of Plant Biology, University of Illinois at Urbana - Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kukushkin AK, Kuznetsova SA, Dolgopolova AA. Physicochemical examinations of the mechanisms and regulation of photosynthesis in higher plants: II. Luminescence induction in examination of photosynthesis regulation. RUSS J GEN CHEM+ 2007. [DOI: 10.1134/s1070363207110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Li P, Sioson A, Mane SP, Ulanov A, Grothaus G, Heath LS, Murali TM, Bohnert HJ, Grene R. Response diversity of Arabidopsis thaliana ecotypes in elevated [CO2] in the field. PLANT MOLECULAR BIOLOGY 2006; 62:593-609. [PMID: 16941220 DOI: 10.1007/s11103-006-9041-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/27/2006] [Indexed: 05/02/2023]
Abstract
Free Air [CO(2)] Enrichment (FACE) allows for plant growth under fully open-air conditions of elevated [CO(2)] at concentrations expected to be reached by mid-century. We used Arabidopsis thaliana ecotypes Col-0, Cvi-0, and WS to analyze changes in gene expression and metabolite profiles of plants grown in "SoyFACE" (http://www.soyface.uiuc.edu/), a system of open-air rings within which [CO(2)] is elevated to approximately 550 ppm. Data from multiple rings, comparing plants in ambient air and elevated [CO(2)], were analyzed by mixed model ANOVA, linear discriminant analysis (LDA) and data-mining tools. In elevated [CO(2)], decreases in the expression of genes related to chloroplast functions characterized all lines but individual members of distinct multi-gene families were regulated differently between lines. Also, different strategies distinguished the lines with respect to the regulation of genes related to carbohydrate biosynthesis and partitioning, N-allocation and amino acid metabolism, cell wall biosynthesis, and hormone responses, irrespective of the plants' developmental status. Metabolite results paralleled reactions seen at the level of transcript expression. Evolutionary adaptation of species to their habitat and intrinsic genetic plasticity seem to determine the nature of responses to elevated [CO(2)]. Irrespective of their underlying genetic diversity, and evolutionary adaptation to different habitats, a small number of common, predominantly stress-responsive, signature transcripts appear to characterize responses of the Arabidopsis ecotypes in FACE.
Collapse
Affiliation(s)
- Pinghua Li
- Department of Plant Biology, University of Illinois, 1201 W Gregory Drive, Urbana, IL 61801, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Davey PA, Olcer H, Zakhleniuk O, Bernacchi CJ, Calfapietra C, Long SP, Raines CA. Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? PLANT, CELL & ENVIRONMENT 2006; 29:1235-44. [PMID: 17080946 DOI: 10.1111/j.1365-3040.2006.01503.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Poplar trees sustain close to the predicted increase in leaf photosynthesis when grown under long-term elevated CO2 concentration ([CO2]). To investigate the mechanisms underlying this response, carbohydrate accumulation and protein expression were determined over four seasons of growth. No increase in the levels of soluble carbohydrates was observed in the young expanding or mature sun leaves of the three poplar genotypes during this period. However, substantial increases in starch levels were observed in the mature leaves of all three poplar genotypes grown in elevated [CO2]. Despite the very high starch levels, no changes in the expression of photosynthetic Calvin cycle proteins, or in the starch biosynthetic enzyme ADP-glucose pyrophosphorylase (AGPase), were observed. This suggested that no long-term photosynthetic acclimation to CO2 occurred in these plants. Our data indicate that poplar trees are able to 'escape' from long-term, acclimatory down-regulation of photosynthesis through a high capacity for starch synthesis and carbon export. These findings show that these poplar genotypes are well suited to the elevated [CO2] conditions forecast for the middle of this century and may be particularly suited for planting for the long-term carbon sequestration into wood.
Collapse
Affiliation(s)
- P A Davey
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Rasse DP, Tocquin P. Leaf carbohydrate controls over Arabidopsis growth and response to elevated CO2: an experimentally based model. THE NEW PHYTOLOGIST 2006; 172:500-13. [PMID: 17083680 DOI: 10.1111/j.1469-8137.2006.01848.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transient starch production is thought to strongly control plant growth and response to elevated CO2. We tested this hypothesis with an experimentally based mechanistic model in Arabidopsis thaliana. Experiments were conducted on wild-type (WT) A. thaliana, starch-excess (sex1) and starchless (pgm) mutants under ambient and elevated CO2 conditions to determine parameters and validate the model. The model correctly predicted that mutant growth is approx. 20% of that in WT, and the absolute response of both mutants to elevated CO2 is an order of magnitude lower than in WT. For sex1, direct starch unavailability explained the growth responses. For pgm, we demonstrated experimentally that maintenance respiration is proportional to leaf soluble sugar concentration, which gave the necessary feedback mechanism on modelled growth. Our study suggests that the effects of sugar-starch cycling on growth can be explained by simple allocation processes, and the maximum rate of leaf growth (sink capacity) exerts a strong control over the response to elevated CO2 of herbaceous plants such as A. thaliana.
Collapse
Affiliation(s)
- Daniel P Rasse
- Bioforsk, Norwegian Institute for Agricultural and Environmental Research, Soil and Environment Division, 1432 As Norway.
| | | |
Collapse
|
21
|
Matros A, Amme S, Kettig B, Buck-Sorlin GH, Sonnewald U, Mock HP. Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. PLANT, CELL & ENVIRONMENT 2006; 29:126-37. [PMID: 17086759 DOI: 10.1111/j.1365-3040.2005.01406.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The effect of elevated CO2 concentrations on the levels of secondary metabolites was investigated in tobacco plants grown under two nitrogen supply (5 and 8 mM NH4NO3) and CO2 conditions (350 and 1000 p.p.m.) each. High CO2 resulted in a dramatic increase of phenylpropanoids in the leaves, including the major carbon-rich compound chlorogenic acid (CGA) and the coumarins scopolin and scopoletin at both nitrogen fertilizations. This was accompanied by increased PAL activity in leaves and roots, which was even higher at the lower nitrogen supply. Hardly any change was observed for the structural phenolic polymer lignin and the sesquiterpenoid capsidiol. In contrast, elevated CO2 led to clearly decreased levels of the main nitrogen-rich constituent nicotine at the lower N-supply (5 mM NH4NO3) but not when plants were grown at the higher N-supply (8 mM NH4NO3). Inoculation experiments with potato virus Y (PVY) were used to evaluate possible ecological consequences of elevated CO2. The titre of viral coat-protein was markedly reduced in leaves under these conditions at both nitrogen levels. Since PR-gene expression and free salicylic acid (SA) levels remained unchanged at elevated CO2, we suggest that the accumulation of phenylpropanoids, for example, the major compound CGA and the coumarins scopolin and scopoletin may result in an earlier confinement of the virus at high CO2. Based on our results two final conclusions emerge. First, elevated CO2 leads to a shift in secondary metabolite composition that is dependent on the availability of nitrogen. Second, changes in the pool of secondary metabolites have important consequences for plant-pathogen interactions as shown for PVY as a test organism.
Collapse
Affiliation(s)
- Andrea Matros
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Zhou R, Cheng L. Binding of 3-phosphoglycerate leads to both activation and stabilisation of ADP-glucose pyrophosphorylase from apple leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:839-848. [PMID: 32689181 DOI: 10.1071/fp05055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 05/04/2005] [Indexed: 06/11/2023]
Abstract
Apple leaf ADP-glucose pyrophosphorylase was purified 1436-fold to apparent homogeneity with a specific activity of 58.9 units mg-1. The enzyme was activated by 3-phosphoglycerate (PGA) and inhibited by inorganic phosphate (Pi) in the ADPG synthesis direction. In the pyrophosphorolytic direction, however, high concentrations of PGA (> 2.5 mm) inhibited the enzyme activity. The enzyme was resistant to thermal inactivation with a T0.5 (temperature at which 50% of the enzyme activity is lost after 5 min incubation) of 52°C. Incubation with 2 mm PGA or 2 mm Pi increased T0.5 to 68°C. Incubation with 2 mm dithiothreitol (DTT) decreased T0.5 to 42°C, whereas inclusion of 2 mm PGA in the DTT incubation maintained T0.5 at 52°C. DTT-induced decrease in thermal stability was accompanied by monomerisation of the small subunits. Presence of PGA in the DTT incubation did not alter the monomerisation of the small subunits of the enzyme induced by DTT. These findings indicate that binding of PGA renders apple leaf AGPase with a conformation that is not only more efficient in catalysis but also more stable to heat treatment. The physiological significance of the protective effect of PGA on thermal inactivation of AGPase is discussed.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | - Lailiang Cheng
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Katny MAC, Hoffmann-Thoma G, Schrier AA, Fangmeier A, Jäger HJ, van Bel AJE. Increase of photosynthesis and starch in potato under elevated CO2 is dependent on leaf age. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:429-38. [PMID: 15900885 DOI: 10.1016/j.jplph.2004.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Potato plants (Solanum tuberosum cv. Bintje) were grown in open top chambers under ambient (400 microL L(-1)) and elevated CO2 (720 microL L(-1)). After 50 days one half of each group was transferred to the other CO2 concentration and the effects were studied in relation to leaf age (old, middle-aged and young leaves) in each of the four groups. Under long-term exposure to elevated CO2, photosynthesis increased between 10% and 40% compared to ambient CO2. A subsequent shift of the same plants to ambient CO2 caused a 20-40% decline in photosynthetic rate, which was most pronounced in young leaves. After shifting from long-term ambient to elevated CO2, photosynthesis also increased most strongly in young leaves (90%); these experiments show that photosynthesis was downregulated in the upper young fully expanded leaves of potato growing long-term under elevated CO2. Soluble sugar content in all leaf classes under long-term exposure was stable irrespective of the CO2 treatment, however under elevated CO2 young leaves showed a strongly increased starch accumulation (up to 400%). In all leaf classes starch levels dropped in response to the shift from 720 to 400 microL L(-1) approaching ambient CO2 levels. After the shift to 720 microL L(-1), sucrose and starch levels increased, principally in young Leaves. There is clear evidence that leaves of different age vary in their responses to changes in atmospheric CO2 concentration.
Collapse
|
24
|
Weise SE, Kim KS, Stewart RP, Sharkey TD. beta-Maltose is the metabolically active anomer of maltose during transitory starch degradation. PLANT PHYSIOLOGY 2005; 137:756-61. [PMID: 15665241 PMCID: PMC1065375 DOI: 10.1104/pp.104.055996] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 12/09/2004] [Accepted: 12/15/2004] [Indexed: 05/20/2023]
Abstract
Maltose is the major form of carbon exported from the chloroplast at night as a result of transitory starch breakdown. Maltose exists as an alpha- or beta-anomer. We developed an enzymatic technique for distinguishing between the two anomers of maltose and tested the accuracy and specificity of this technique using beta-maltose liberated from maltoheptose by beta-amylase. This technique was used to investigate which form of maltose is present during transitory starch degradation in bean (Phaseolus vulgaris), wild-type Arabidopsis (Arabidopsis thaliana), two starch deficient Arabidopsis lines, and one starch-excess mutant of Arabidopsis. In Phaseolus and wild-type Arabidopsis, beta-maltose levels were low during the day but were much higher at night. In Arabidopsis plants unable to metabolize maltose due to a T-DNA insertion in the gene for the cytosolic amylomaltase, (Y. Lu, T.D. Sharkey [2004] Planta 218: 466-473) levels of alpha- and beta-maltose were high during both the day and night. In starchless mutants of Arabidopsis, total maltose levels were low and almost completely in the alpha-form. We also found that the subcellular concentration of beta-maltose at night was greater in the chloroplast than in the cytosol by 278 microm. We conclude that beta-maltose is the metabolically active anomer of maltose and that a sufficient gradient of beta-maltose exists between the chloroplast and cytosol to allow for passive transport of maltose out of chloroplasts at night.
Collapse
Affiliation(s)
- Sean E Weise
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
25
|
Lloyd JC, Zakhleniuk OV. Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1221-30. [PMID: 15133053 DOI: 10.1093/jxb/erh143] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Arabidopsis mutant pho3 accumulates sucrose and other carbohydrates to high levels, providing a means of investigating the genomic response to sucrose accumulation using microarray analysis. Wild-type and mutant plants were grown in soil to the mature rosette stage for the analysis of gene expression using the Affymetrix ATH1 chip, containing more than 22,500 probe sets. Small, but significant, decreases were observed in the expression of many genes encoding enzymes and regulatory proteins involved in primary carbon assimilation, suggesting that, in mature leaves of Arabidopsis, there is limited feedback regulation on gene expression by sugars. The study revealed a striking increase in the expression of the plastid glucose 6-phosphate/phosphate translocator, characteristically expressed only in heterotrophic tissues. This indicated a change in the nature of metabolite exchange between the plastid and the cytosol in the pho3 mutant. The expression of enzymes of starch synthesis also increased significantly. Very large increases were observed in the expression of transcription factors and enzymes involved in anthocyanin biosynthesis. This finding reinforces the emerging picture of an important role for primary metabolism in regulating secondary metabolism.
Collapse
Affiliation(s)
- Julie C Lloyd
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | | |
Collapse
|
26
|
dos Santos HP, Purgatto E, Mercier H, Buckeridge MS. The control of storage xyloglucan mobilization in cotyledons of Hymenaea courbaril. PLANT PHYSIOLOGY 2004; 135:287-99. [PMID: 15133152 PMCID: PMC429377 DOI: 10.1104/pp.104.040220] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Revised: 03/21/2004] [Accepted: 03/23/2004] [Indexed: 05/21/2023]
Abstract
Hymenaea courbaril is a leguminous tree species from the neotropical rain forests. Its cotyledons are largely enriched with a storage cell wall polysaccharide (xyloglucan). Studies of cell wall storage polymers have been focused mostly on the mechanisms of their disassembly, whereas the control of their mobilization and the relationship between their metabolism and seedling development is not well understood. Here, we show that xyloglucan mobilization is strictly controlled by the development of first leaves of the seedling, with the start of its degradation occurring after the beginning of eophyll (first leaves) expansion. During the period of storage mobilization, an increase in the levels of xyloglucan hydrolases, starch, and free sugars were observed in the cotyledons. Xyloglucan mobilization was inhibited by shoot excision, darkness, and by treatment with the auxin-transport inhibitor N-1-naphthylphthalamic acid. Analyses of endogenous indole-3-acetic acid in the cotyledons revealed that its increase in concentration is followed by the rise in xyloglucan hydrolase activities, indicating that auxin is directly related to xyloglucan mobilization. Cotyledons detached during xyloglucan mobilization and treated with 2,4-dichlorophenoxyacetic acid showed a similar mobilization rate as in attached cotyledons. This hormonal control is probably essential for the ecophysiological performance of this species in their natural environment since it is the main factor responsible for promoting synchronism between shoot growth and reserve degradation. This is likely to increase the efficiency of carbon reserves utilization by the growing seedling in the understorey light conditions of the rain forest.
Collapse
Affiliation(s)
- Henrique Pessoa dos Santos
- Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica, CEP 01061-970, Sao Paulo, SP, Brazil
| | | | | | | |
Collapse
|
27
|
|
28
|
Sun J, Gibson KM, Kiirats O, Okita TW, Edwards GE. Interactions of nitrate and CO2 enrichment on growth, carbohydrates, and rubisco in Arabidopsis starch mutants. Significance of starch and hexose. PLANT PHYSIOLOGY 2002; 130:1573-83. [PMID: 12428022 PMCID: PMC166676 DOI: 10.1104/pp.010058] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 07/29/2002] [Accepted: 08/15/2002] [Indexed: 05/18/2023]
Abstract
Wild-type (wt) Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were grown in hydroponics under two levels of nitrate, 0.2 versus 6 mM, and two levels of CO(2), 35 versus 100 Pa. Growth (fresh weight and leaf area basis) was highest in wt plants, lower in TL46, and much lower in TL25 plants under a given treatment. It is surprising that the inability to synthesize starch restricted leaf area development under both low N (N(L)) and high N (N(H)). For each genotype, the order of greatest growth among the four treatments was high CO(2)/N(H) > low CO(2)/N(H), > high CO(2)/N(L), which was similar to low CO(2)/N(L). Under high CO(2)/N(L), wt and TL46 plants retained considerable starch in leaves at the end of the night period, and TL25 accumulated large amounts of soluble sugars, indicative of N-limited restraints on utilization of photosynthates. The lowest ribulose-1,5-bisphosphate carboxylase/oxygenase per leaf area was in plants grown under high CO(2)/N(L). When N supply is limited, the increase in soluble sugars, particularly in the starch mutants, apparently accentuates the feedback and down-regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase, resulting in greater reduction of growth. With an adequate supply of N, growth is limited in the starch mutants due to insufficient carbohydrate reserves during the dark period. A combination of limited N and a limited capacity to synthesize starch, which restrict the capacity to use photosynthate, and high CO(2), which increases the potential to produce photosynthate, provides conditions for strong down-regulation of photosynthesis.
Collapse
Affiliation(s)
- Jindong Sun
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
29
|
Aidar M, Martinez C, Costa A, Costa P, Dietrich S, Buckeridge M. Effect of atmospheric CO2 enrichment on the establishment of seedlings of Jatobá, Hymenaea Courbaril L. (Leguminosae, Caesalpinioideae). BIOTA NEOTROPICA 2002. [DOI: 10.1590/s1676-06032002000100008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plants grown in elevated CO2 environments may exhibit photosynthetic acclimation or down regulation, which is characterised by reduced rates of photosynthesis. In most cases of CO2-induced photosynthetic acclimation, the reduced rates of photosynthesis were still higher than those detected in plants growing at ambient CO2 concentrations. In this work we present a study on the behaviour of seedlings of Hymenaea courbaril, a late secondary/climax species that is one of the most important trees in mature tropical forests of the Americas. After germination, the seedling of H. courbaril increases its rate of growth due to the mobilisation of massive amounts of a storage cell wall polysaccharide (xyloglucan) from its cotyledons. In our experiments, germinated seeds were incubated in open top chambers with increased concentration of atmospheric CO2 (720 ppm) (control at 360 ppm). To test the effects of the presence of the storage compound on the responses of growing seedlings, cotyledons were detached before the start of polysaccharide mobilisation and parameters such as dry mass, leaf area, CO2 assimilation rates and chlorophyll a fluorescence were measured during 98 days. A comparison between 360 and 720ppm growing seedlings showed a significant increase in leaf area only in metaphylls of seedlings growing under higher CO2. However, a marked and persistent increase (2 fold) in photosynthesis (CO2 assimilation) was observed in all cases (with or without cotyledons). Changes in the levels of sucrose have been suggested to act as a signalling mechanism that switches on/off the storage or development mode in plant tissues. Thus, the explanation for our general observation that the differential response in terms of growth of seedlings ceases to exist when storage mobilisation is functioning, might be related to the fact that higher levels of sucrose are produced as a result of carbon storage compounds degradation. By the results obtained, it appears that plants grown under enriched CO2 did not acclimate and therefore under the climatic conditions forecasted on the basis of the present carbon dioxide emissions, Hymenaea courbaril should establish faster in its natural environment and might also serve as an efficient mechanism of carbon sequestration within the forest.
Collapse
|
30
|
Miyagawa Y, Tamoi M, Shigeoka S. Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol 2001; 19:965-9. [PMID: 11581664 DOI: 10.1038/nbt1001-965] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transgenic tobacco plants expressing a cyanobacterial fructose-1,6/sedoheptulose-1,7-bisphosphatase targeted to chloroplasts show enhanced photosynthetic efficiency and growth characteristics under atmospheric conditions (360 p.p.m. CO2). Compared with wild-type tobacco, final dry matter and photosynthetic CO2 fixation of the transgenic plants were 1.5-fold and 1.24-fold higher, respectively. Transgenic tobacco also showed a 1.2-fold increase in initial activity of ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco) compared with wild-type plants. Levels of intermediates in the Calvin cycle and the accumulation of carbohydrates were also higher than those in wild-type plants. This is the first report in which expression of a single plastid-targeted enzyme has been shown to improve carbon fixation and growth in transgenic plants.
Collapse
Affiliation(s)
- Y Miyagawa
- Graduate School of Advanced Life Science, Kinki University, Nakamachi, Nara 631-8505, Japan
| | | | | |
Collapse
|
31
|
Abstract
The concept that photosynthetic flux is influenced by the accumulation of photo-assimilate persisted for 100 years before receiving any strong experimental support. Precise analysis of the mechanisms of photosynthetic responses to sink activity required the development of a battery of appropriate molecular techniques and has benefited from contemporary interest in the effects of elevated CO2 on photosynthesis. Photosynthesis is one of the most highly integrated and regulated metabolic processes to maximize the use of available light, to minimize the damaging effects of excess light and to optimize the use of limiting carbon and nitrogen resources. Hypotheses of feedback regulation must take account of this integration. In the short term, departure from homeostasis can lead to redox signals, which cause rapid changes in the transcription of genes encoding photosystems I and II. End-product synthesis can exert short-term metabolic feedback control through Pi recycling. Beyond this, carbohydrate accumulation in leaves when there is an imbalance between source and sink at the whole plant level can lead to decreased expression of photosynthetic genes and accelerated leaf senescence. In a high CO2 world this may become a more prevalent feature of photosynthetic regulation. However, sink regulation of photosynthesis is highly dependent on the physiology of the rest of the plant. This physiological state regulates photosynthesis through signal transduction pathways that co-ordinate the plant carbon : nitrogen balance, which match photosynthetic capacity to growth and storage capacity and underpin and can override the direct short-term controls of photosynthesis by light and CO2. Photosynthate supply and phytohormones, particularly cytokinins, interact with nitrogen supply to control the expression of photosynthesis genes, the development of leaves and the whole plant nitrogen distribution, which provides the dominant basis for sink regulation of photosynthesis.
Collapse
Affiliation(s)
- M J Paul
- Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, Herts AL5 2JQ, UK.
| | | |
Collapse
|
32
|
Sicher RC, Bunce JA. Adjustments of net photosynthesis in Solanum tuberosum in response to reciprocal changes in ambient and elevated growth CO2 partial pressures. PHYSIOLOGIA PLANTARUM 2001; 112:55-61. [PMID: 11319015 DOI: 10.1034/j.1399-3054.2001.1120108.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Single leaf photosynthetic rates and various leaf components of potato (Solanum tuberosum L.) were studied 1-3 days after reciprocally transferring plants between the ambient and elevated growth CO2 treatments. Plants were raised from individual tuber sections in controlled environment chambers at either ambient (36 Pa) or elevated (72 Pa) CO2. One half of the plants in each growth CO2 treatment were transferred to the opposite CO2 treatment 34 days after sowing (DAS). Net photosynthesis (Pn) rates and various leaf components were then measured 34, 35 and 37 DAS at both 36 and 72 Pa CO2. Three-day means of single leaf Pn rates, leaf starch, glucose, initial and total Rubisco activity, Rubisco protein, chlorophyll (a+b), chlorophyll (a/b), alpha-amino N, and nitrate levels differed significantly in the continuous ambient and elevated CO2 treatments. Acclimation of single leaf Pn rates was partially to completely reversed 3 days after elevated CO2-grown plants were shifted to ambient CO2, whereas there was little evidence of photosynthetic acclimation 3 days after ambient CO2-grown plants were shifted to elevated CO2. In a four-way comparison of the 36, 72, 36 to 72 (shifted up) and 72 to 36 (shifted down) Pa CO2 treatments 37 DAS, leaf starch, soluble carbohydrates, Rubisco protein and nitrate were the only photosynthetic factors that differed significantly. Simple and multiple regression analyses suggested that negative changes of Pn in response to growth CO2 treatment were most closely correlated with increased leaf starch levels.
Collapse
Affiliation(s)
- Richard C. Sicher
- U.S.D.A., Agricultural Research Service, Climate Stress Laboratory, Bldg. 046-A, 10300 Baltimore Avenue, Beltsville Agricultural Research Center - West, Beltsville, MD 20705-2350, USA
| | | |
Collapse
|
33
|
Ludewig F, Sonnewald U. High CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation. FEBS Lett 2000; 479:19-24. [PMID: 10940381 DOI: 10.1016/s0014-5793(00)01873-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The influence of elevated atmospheric CO2 on transcript levels of photosynthetic genes was investigated in leaves of Nicotiana tabacum cv. SamsunNN and cv. Wisconsin38 plants. Plants were grown under ambient (400 ppm) and elevated (800/1,000 ppm) atmospheric CO2, and transcript levels were determined in leaves of different age. Down-regulation of photosynthetic gene transcripts was apparent in senesing leaves only. A correlation between transcript levels and leaf contents of soluble sugars could not be found. To investigate whether a shift in leaf ontogeny would be involved in the regulation of photosynthetic genes transgenic tobacco plants expressing either the gus or ipt gene under control of the senescence-specific SAG-12 promoter [Gan, S. and Amasino, R.M. (1995) Science 270, 1986-1988] were included in our studies. As expected SAG-12-driven GUS activity increased with leaf age. This increase of GUS activity was stimulated by elevated atmospheric CO2, accompanied by a loss of chlorophyll and the down-regulation of photosynthetic genes, verifying that high CO2 accelerates leaf ontogeny. Senescence as well as down-regulation of photosynthetic genes could be delayed by ipt expression. Levels of soluble sugars were indistinguishable from wild type or even slightly elevated in ipt transgenic plants. Therefore, sugar accumulation as a cause for down-regulation of photosynthetic genes under high CO2 can be excluded. It appears more likely that the high CO2-mediated decline in photosynthetic gene transcripts is due to a temporal shift in leaf ontogeny.
Collapse
Affiliation(s)
- F Ludewig
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany
| | | |
Collapse
|
34
|
Kauder F, Ludewig F, Heineke D. Ontogenetic changes of potato plants during acclimation to elevated carbon dioxide. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51 Spec No:429-437. [PMID: 10938851 DOI: 10.1093/jexbot/51.suppl_1.429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transgenic potato plants (Solanum tuberosum cv. Desirée) with an antisense repression of the chloroplastic triosephosphate translocator were compared with wild-type plants. Plants were grown in chambers with either an atmosphere with ambient (400 mu bar) or elevated (1000 mu bar) CO2. After 7 weeks, the rate of CO2 assimilation between wild-type and transgenic plants in both CO2 concentrations was identical, but the tuber yield of both plant lines was increased by about 30%, when grown in elevated CO2. One explanation is that plants respond to the elevated CO2 only at a certain growth stage. Therefore, growth of wild-type plants was analysed between the second and the seventh week. Relative growth rate and CO2 assimilation were stimulated in elevated CO2 only in the second and the third weeks. During this period, the carbohydrate content of leaves grown with elevated CO2 was lower than that of leaves grown with ambient CO2. In plants grown in elevated CO2, the rate of CO2 assimilation started to decline after 5 weeks, and accumulation of carbohydrates began after 7 weeks. From this observation it was concluded that acclimation of potato plants to elevated CO2 is the result of accelerated development rather than of carbohydrate accumulation causing down-regulation of photosynthesis. For a detailed analysis for the cause of the stimulation of growth after 2 weeks, the contents of phosphorylated intermediates of wild-type plants and transgenics were measured. Stimulation of CO2 assimilation was accompanied by changes in the contents of phosphorylated intermediates, resulting in an increase in the amount of dihydroxyacetone phosphate, the metabolite which is exported from the chloroplast into the cytosol. An increase of dihydroxyacetone phosphate was found in wild-type plants in elevated CO2 when compared with ambient CO2 and in triosephosphate translocator antisense plants in ambient CO2, but not in the transgenic plants when grown in elevated CO2. These plants were not able to increase dihydroxyacetone phosphate further to cope with the increased CO2 supply. From these changes in phosphorylated intermediates in wild-type and transgenic plants it was concluded that starch and sucrose synthesis pathways can replace each other only at moderate carbon flux rates.
Collapse
Affiliation(s)
- F Kauder
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Abteilung Biochemie der Pflanze, Göttingen, Germany
| | | | | |
Collapse
|
35
|
Trethewey RN, Smith AM. Starch Metabolism in Leaves. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/0-306-48137-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|