1
|
Peña A, Sánchez NS, Padilla-Garfias F, Ramiro-Cortés Y, Araiza-Villanueva M, Calahorra M. The Use of Thioflavin T for the Estimation and Measurement of the Plasma Membrane Electric Potential Difference in Different Yeast Strains. J Fungi (Basel) 2023; 9:948. [PMID: 37755056 PMCID: PMC10532974 DOI: 10.3390/jof9090948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
The use of the cationic, dye thioflavin T (ThT), to estimate the electric plasma membrane potential difference (PMP) via the fluorescence changes and to obtain its actual values from the accumulation of the dye, considering important correction factors by its binding to the internal components of the cell, was described previously for baker's yeast. However, it was considered important to explore whether the method developed could be applied to other yeast strains. Alternative ways to estimate the PMP by using flow cytometry and a multi-well plate reader are also presented here. The methods were tested with other strains of Saccharomyces cerevisiae (W303-1A and FY833), as well as with non-conventional yeasts: Debaryomyces hansenii, Candida albicans, Meyerozyma guilliermondii, and Rhodotorula mucilaginosa. Results of the estimation of the PMP via the fluorescence changes under different conditions were adequate with all strains. Consistent results were also obtained with several mutants of the main monovalent transporters, validating ThT as a monitor for PMP estimation.
Collapse
Affiliation(s)
- Antonio Peña
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico; (F.P.-G.); (M.A.-V.); (M.C.)
| | - Norma Silvia Sánchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico; (F.P.-G.); (M.A.-V.); (M.C.)
| | - Francisco Padilla-Garfias
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico; (F.P.-G.); (M.A.-V.); (M.C.)
| | - Yazmín Ramiro-Cortés
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico;
| | - Minerva Araiza-Villanueva
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico; (F.P.-G.); (M.A.-V.); (M.C.)
| | - Martha Calahorra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico; (F.P.-G.); (M.A.-V.); (M.C.)
| |
Collapse
|
2
|
Höler S, Degreif D, Stix F, Yang S, Gao S, Nagel G, Moroni A, Thiel G, Bertl A, Rauh O. Tailoring baker's yeast Saccharomyces cerevisiae for functional testing of channelrhodopsin. PLoS One 2023; 18:e0280711. [PMID: 37053213 PMCID: PMC10101416 DOI: 10.1371/journal.pone.0280711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Channelrhodopsin 2 (ChR2) and its variants are the most frequent tools for remote manipulation of electrical properties in cells via light. Ongoing attempts try to enlarge their functional spectrum with respect to ion selectivity, light sensitivity and protein trafficking by mutations, protein engineering and environmental mining of ChR2 variants. A shortcoming in the required functional testing of large numbers of ChR2 variants is the lack of an easy screening system. Baker's yeast, which was successfully employed for testing ion channels from eukaryotes has not yet been used for screening of ChR2s, because they neither produce the retinal chromophore nor its precursor carotenoids. We found that addition of retinal to the external medium was not sufficient for detecting robust ChR activity in yeast in simple growth assays. This obstacle was overcome by metabolic engineering of a yeast strain, which constitutively produces retinal. In proof of concept experiments we functionally express different ChR variants in these cells and monitor their blue light induced activity in simple growth assays. We find that light activation of ChR augments an influx of Na+ with a consequent inhibition of cell growth. In a K+ uptake deficient yeast strain, growth can be rescued in selective medium by the blue light induced K+ conductance of ChR. This yeast strain can now be used as chassis for screening of new functional ChR variants and mutant libraries in simple yeast growth assays under defined selective conditions.
Collapse
Affiliation(s)
- Sebastian Höler
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Daniel Degreif
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Florentine Stix
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Shang Yang
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Shiqiang Gao
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Georg Nagel
- Institute of Physiology-Neurophysiology, Biocentre, Julius-Maximilians-University, Wuerzburg, Germany
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Adam Bertl
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
3
|
Alqahtani M, Lightfoot DJ, Lemtiri‐Chlieh F, Bukhari E, Pardo JM, Julkowska MM, Tester M. The role of PQL genes in response to salinity tolerance in Arabidopsis and barley. PLANT DIRECT 2021; 5:e00301. [PMID: 33615113 PMCID: PMC7876507 DOI: 10.1002/pld3.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/31/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
While soil salinity is a global problem, how salt enters plant root cells from the soil solution remains underexplored. Non-selective cation channels (NSCCs) are suggested to be the major pathway for the entry of sodium ions (Na+), yet their genetic constituents remain unknown. Yeast PQ loop (PQL) proteins were previously proposed to encode NSCCs, but the role of PQLs in plants is unknown. The hypothesis tested in this research is that PQL proteins constitute NSCCs mediating some of the Na+ influx into the root, contributing to ion accumulation and the inhibition of growth in saline conditions. We identified plant PQL homologues, and studied the role of one clade of PQL genes in Arabidopsis and barley. Using heterologous expression of AtPQL1a and HvPQL1 in HEK293 cells allowed us to resolve sizable inwardly directed currents permeable to monovalent cations such as Na+, K+, or Li+ upon membrane hyperpolarization. We observed that GFP-tagged PQL proteins localized to intracellular membrane structures, both when transiently over-expressed in tobacco leaf epidermis and in stable Arabidopsis transformants. Expression of AtPQL1a, AtPQL1b, and AtPQL1c was increased by salt stress in the shoot tissue compared to non-stressed plants. Mutant lines with altered expression of AtPQL1a, AtPQL1b, and AtPQL1c developed larger rosettes in saline conditions, while altered levels of AtPQL1a severely reduced development of lateral roots in all conditions. This study provides the first step toward understanding the function of PQL proteins in plants and the role of NSCC in salinity tolerance.
Collapse
Affiliation(s)
- Mashael Alqahtani
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
- Biology DepartmentPrincess Nourah Bint Abdul Rahman UniversityRiyadhKingdom of Saudi Arabia
| | - Damien J. Lightfoot
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
| | - Fouad Lemtiri‐Chlieh
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
- Department of NeuroscienceUniversity of Connecticut School of MedicineFarmingtonCTUSA
| | - Ebtihaj Bukhari
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
| | - José M. Pardo
- Instituto de Bioquimica Vegetal y Fotosintesis (IBVF)Consejo Superior de Investigaciones Científicas (CSIC)University of SevilleSevilleSpain
| | - Magdalena M. Julkowska
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
| | - Mark Tester
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
| |
Collapse
|
4
|
de Witt RN, Kroukamp H, Van Zyl WH, Paulsen IT, Volschenk H. QTL analysis of natural Saccharomyces cerevisiae isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance. FEMS Yeast Res 2020; 19:5528620. [PMID: 31276593 DOI: 10.1093/femsyr/foz047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Decoding the genetic basis of lignocellulosic inhibitor tolerance in Saccharomyces cerevisiae is crucial for rational engineering of bioethanol strains with enhanced robustness. The genetic diversity of natural strains present an invaluable resource for the exploration of complex traits of industrial importance from a pan-genomic perspective to complement the limited range of specialised, tolerant industrial strains. Natural S. cerevisiae isolates have lately garnered interest as a promising toolbox for engineering novel, genetically encoded tolerance phenotypes into commercial strains. To this end, we investigated the genetic basis for lignocellulosic inhibitor tolerance of natural S. cerevisiae isolates. A total of 12 quantitative trait loci underpinning tolerance were identified by next-generation sequencing linked bulk-segregant analysis of superior interbred pools. Our findings corroborate the current perspective of lignocellulosic inhibitor tolerance as a multigenic, complex trait. Apart from a core set of genetic variants required for inhibitor tolerance, an additional genetic background-specific response was observed. Functional analyses of the identified genetic loci revealed the uncharacterised ORF, YGL176C and the bud-site selection XRN1/BUD13 as potentially beneficial alleles contributing to tolerance to a complex lignocellulosic inhibitor mixture. We present evidence for the consideration of both regulatory and coding sequence variants for strain improvement.
Collapse
Affiliation(s)
- R N de Witt
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| | - H Kroukamp
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde, NSW 2109, Australia
| | - W H Van Zyl
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| | - I T Paulsen
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde, NSW 2109, Australia
| | - H Volschenk
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| |
Collapse
|
5
|
Calahorra M, Sánchez NS, Peña A. Influence of phenothiazines, phenazines and phenoxazine on cation transport in Candida albicans. J Appl Microbiol 2018; 125:1728-1738. [PMID: 30153370 DOI: 10.1111/jam.14092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 11/26/2022]
Abstract
AIMS (i) To analyse the increase in calcium ion uptake caused by several cationic dyes on Candida albicans, (ii) to postulate a mechanism, (iii) to define the effects of Zn ions on the phenomenon, and (iv) to propose the use of the dyes or their derivatives against C. albicans. METHODS AND RESULTS Cells were grown in yeast peptone dextrose medium and starved. We measured the hydrophobic solvent/water partition coefficients and the dyes uptake by the cells and found no correlation with their hydrophobicity. Most of the dyes caused an increase in K+ efflux (in correlation with a decrease in 86 Rb+ uptake), and a raise in Ca2+ uptake except for those used as Zn salts, but not of their HCl salts. Respiration and acidification of the medium were modified only with few dyes and interestingly, when exposing cultures to nile blue, neutral red and toluidine blue ZnCl2 a decrease in C. albicans growth was observed. CONCLUSIONS We propose a general mechanism for the stimulation of Ca2+ uptake by the dyes used. Some of the dyes tested might be used as agents against C. albicans, probably combined with other agents. Moreover, the effects of Zn ions on Ca2+ uptake and on cell growth open possibilities of further studies, not only of their effects, but also of the mechanism of Ca2+ transport in C. albicans and other yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY This study, in conjunction with previously published results, contribute to the basic research regarding ion transport in C. albicans and the role of zinc in this process. Besides, suggests the additional use of dyes, along with other antifungals agents, as combined therapy against candidiasis. Derived dyes from those used also might be possible therapeutic agents against this disease.
Collapse
Affiliation(s)
- M Calahorra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - N S Sánchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - A Peña
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
6
|
Mackie TD, Brodsky JL. Investigating Potassium Channels in Budding Yeast: A Genetic Sandbox. Genetics 2018; 209:637-650. [PMID: 29967058 PMCID: PMC6028241 DOI: 10.1534/genetics.118.301026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Like all species, the model eukaryote Saccharomyces cerevisiae, or Bakers' yeast, concentrates potassium in the cytosol as an electrogenic osmolyte and enzyme cofactor. Yeast are capable of robust growth on a wide variety of potassium concentrations, ranging from 10 µM to 2.5 M, due to the presence of a high-affinity potassium uptake system and a battery of cation exchange transporters. Genetic perturbation of either of these systems retards yeast growth on low or high potassium, respectively. However, these potassium-sensitized yeast are a powerful genetic tool, which has been leveraged for diverse studies. Notably, the potassium-sensitive cells can be transformed with plasmids encoding potassium channels from bacteria, plants, or mammals, and subsequent changes in growth rate have been found to correlate with the activity of the introduced potassium channel. Discoveries arising from the use of this assay over the past three decades have increased our understanding of the structure-function relationships of various potassium channels, the mechanisms underlying the regulation of potassium channel function and trafficking, and the chemical basis of potassium channel modulation. In this article, we provide an overview of the major genetic tools used to study potassium channels in S. cerevisiae, a survey of seminal studies utilizing these tools, and a prospective for the future use of this elegant genetic approach.
Collapse
Affiliation(s)
- Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| |
Collapse
|
7
|
Felcmanova K, Neveceralova P, Sychrova H, Zimmermannova O. Yeast Kch1 and Kch2 membrane proteins play a pleiotropic role in membrane potential establishment and monovalent cation homeostasis regulation. FEMS Yeast Res 2017; 17:3966712. [DOI: 10.1093/femsyr/fox053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022] Open
|
8
|
Primo C, Ferri-Blázquez A, Loewith R, Yenush L. Reciprocal Regulation of Target of Rapamycin Complex 1 and Potassium Accumulation. J Biol Chem 2016; 292:563-574. [PMID: 27895122 DOI: 10.1074/jbc.m116.746982] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
The proper maintenance of potassium homeostasis is crucial for cell viability. Among the major determinants of potassium uptake in the model organism Saccharomyces cerevisiae are the Trk1 high affinity potassium transporter and the functionally redundant Hal4 (Sat4) and Hal5 protein kinases. These kinases are required for the plasma membrane accumulation of not only Trk1 but also several nutrient permeases. Here, we show that overexpression of the target of rapamycin complex 1 (TORC1) effector NPR1 improves hal4 hal5 growth defects by stabilizing nutrient permeases at the plasma membrane. We subsequently found that internal potassium levels and TORC1 activity are linked. Specifically, growth under limiting potassium alters the activities of Npr1 and another TORC1 effector kinase, Sch9; hal4 hal5 and trk1 trk2 mutants display hypersensitivity to rapamycin, and reciprocally, TORC1 inhibition reduces potassium accumulation. Our results demonstrate that in addition to carbon and nitrogen, TORC1 also responds to and regulates potassium fluxes.
Collapse
Affiliation(s)
- Cecilia Primo
- From the Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, Valencia, Spain 46022 and
| | - Alba Ferri-Blázquez
- From the Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, Valencia, Spain 46022 and
| | - Robbie Loewith
- the Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Swiss National Centre for Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Lynne Yenush
- From the Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, Valencia, Spain 46022 and
| |
Collapse
|
9
|
Elicharová H, Hušeková B, Sychrová H. ThreeCandida albicanspotassium uptake systems differ in their ability to provideSaccharomyces cerevisiae trk1trk2mutants with necessary potassium. FEMS Yeast Res 2016; 16:fow039. [DOI: 10.1093/femsyr/fow039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2016] [Indexed: 12/31/2022] Open
|
10
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Interactions Between Monovalent Cations and Nutrient Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:271-289. [PMID: 26721278 DOI: 10.1007/978-3-319-25304-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maintenance of appropriate fluxes of monovalent cation is a requirement for growth and survival. In the budding yeast Saccharomyces cerevisiae an electrochemical gradient of H(+) is fundamental for the uptake of diverse cations, such as K(+), and of many other nutrients. In spite of early work suggesting that alterations in monovalent cation fluxes impact on the uptake and utilization of nutrients, such as phosphate anions, only recently this important aspect of the yeast physiology has been addressed and characterized in some detail. This chapter provides a historical background and summarizes the latest findings.
Collapse
|
12
|
Mathematical Modelling of Cation Transport and Regulation in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:291-305. [DOI: 10.1007/978-3-319-25304-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Zimmermannova O, Salazar A, Sychrova H, Ramos J. Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance. FEMS Yeast Res 2015; 15:fov029. [DOI: 10.1093/femsyr/fov029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 12/30/2022] Open
|
14
|
Volkov V. Quantitative description of ion transport via plasma membrane of yeast and small cells. FRONTIERS IN PLANT SCIENCE 2015; 6:425. [PMID: 26113853 PMCID: PMC4462678 DOI: 10.3389/fpls.2015.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/26/2015] [Indexed: 05/21/2023]
Abstract
Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions.
Collapse
Affiliation(s)
- Vadim Volkov
- *Correspondence: Vadim Volkov, Faculty of Life Sciences, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| |
Collapse
|
15
|
Ariño J, Aydar E, Drulhe S, Ganser D, Jorrín J, Kahm M, Krause F, Petrezsélyová S, Yenush L, Zimmermannová O, van Heusden GPH, Kschischo M, Ludwig J, Palmer C, Ramos J, Sychrová H. Systems biology of monovalent cation homeostasis in yeast: the translucent contribution. Adv Microb Physiol 2014; 64:1-63. [PMID: 24797924 DOI: 10.1016/b978-0-12-800143-1.00001-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Maintenance of monovalent cation homeostasis (mainly K(+) and Na(+)) is vital for cell survival, and cation toxicity is at the basis of a myriad of relevant phenomena, such as salt stress in crops and diverse human diseases. Full understanding of the importance of monovalent cations in the biology of the cell can only be achieved from a systemic perspective. Translucent is a multinational project developed within the context of the SysMO (System Biology of Microorganisms) initiative and focussed in the study of cation homeostasis using the well-known yeast Saccharomyces cerevisiae as a model. The present review summarize how the combination of biochemical, genetic, genomic and computational approaches has boosted our knowledge in this field, providing the basis for a more comprehensive and coherent vision of the role of monovalent cations in the biology of the cell.
Collapse
Affiliation(s)
- Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Dept. Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - Ebru Aydar
- Faculty of Life Sciences and Computing, London Metropolitan University, London, United Kingdom
| | | | | | - Jesús Jorrín
- Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Matthias Kahm
- RheinAhrCampus, University of Applied Sciences Koblenz, Remagen, Germany
| | | | - Silvia Petrezsélyová
- Institut de Biotecnologia i Biomedicina & Dept. Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Olga Zimmermannová
- Department of Membrane Transport, Institute of Physiology Academy of Sciences CR, Prague, Czech Republic
| | | | - Maik Kschischo
- RheinAhrCampus, University of Applied Sciences Koblenz, Remagen, Germany
| | | | - Chris Palmer
- Faculty of Life Sciences and Computing, London Metropolitan University, London, United Kingdom
| | - José Ramos
- Department of Microbiology, University of Córdoba, Córdoba, Spain
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology Academy of Sciences CR, Prague, Czech Republic
| |
Collapse
|
16
|
Stefan CP, Cunningham KW. Kch1 family proteins mediate essential responses to endoplasmic reticulum stresses in the yeasts Saccharomyces cerevisiae and Candida albicans. J Biol Chem 2013; 288:34861-70. [PMID: 24142703 DOI: 10.1074/jbc.m113.508705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The activation of a high affinity Ca(2+) influx system (HACS) in the plasma membrane is required for survival of yeast cells exposed to natural or synthetic inhibitors of essential processes (secretory protein folding or sterol biosynthesis) in the endoplasmic reticulum (ER). The mechanisms linking ER stress to HACS activation are not known. Here we show that Kch1, a recently identified low affinity K(+) transporter in the plasma membrane of Saccharomyces cerevisiae, is up-regulated in response to several ER stressors and necessary for HACS activation. The activation of HACS required extracellular K(+) and was also dependent on the high affinity K(+) transporters Trk1 and Trk2. However, a paralog of Kch1 termed Kch2 was not expressed and not necessary for HACS activation in these conditions. The pathogenic yeast Candida albicans carries only one homolog of Kch1/Kch2, and homozygous knock-out mutants were similarly deficient in the activation of HACS during the responses to tunicamycin. However, the Kch1 homolog was not necessary for HACS activation or cell survival in response to several clinical antifungals (azoles, allylamines, echinocandins) that target the ER or cell wall. Thus, Kch1 family proteins represent a conserved linkage between HACS and only certain classes of ER stress in these yeasts.
Collapse
Affiliation(s)
- Christopher P Stefan
- From the Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
17
|
Abstract
All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker's yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na(+) and K(+), the divalent cations, Ca(2+) and Mg(2+), and the trace metal ions, Fe(2+), Zn(2+), Cu(2+), and Mn(2+). Signal transduction pathways that are regulated by pH and Ca(2+) are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment.
Collapse
|
18
|
Coordination of K+ transporters in neurospora: TRK1 is scarce and constitutive, while HAK1 is abundant and highly regulated. EUKARYOTIC CELL 2013; 12:684-96. [PMID: 23475706 DOI: 10.1128/ec.00017-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fungi, plants, and bacteria accumulate potassium via two distinct molecular machines not directly coupled to ATP hydrolysis. The first, designated TRK, HKT, or KTR, has eight transmembrane helices and is folded like known potassium channels, while the second, designated HAK, KT, or KUP, has 12 transmembrane helices and resembles MFS class proteins. One of each type functions in the model organism Neurospora crassa, where both are readily accessible for biochemical, genetic, and electrophysiological characterization. We have now determined the operating balance between Trk1p and Hak1p under several important conditions, including potassium limitation and carbon starvation. Growth measurements, epitope tagging, and quantitative Western blotting have shown the gene HAK1 to be much more highly regulated than is TRK1. This conclusion follows from three experimental results: (i) Trk1p is expressed constitutively but at low levels, and it is barely sensitive to extracellular [K(+)] and/or the coexpression of HAK1; (ii) Hak1p is abundant but is markedly depressed by elevated extracellular concentrations of K(+) and by coexpression of TRK1; and (iii) Carbon starvation slowly enhances Hak1p expression and depresses Trk1p expression, yielding steady-state Hak1p:Trk1p ratios of ∼500:1, viz., 10- to 50-fold larger than that in K(+)- and carbon-replete cells. Additionally, it appears that both potassium transporters can adjust kinetically to sustained low-K(+) stress by means of progressively increasing transporter affinity for extracellular K(+). The underlying observations are (iv) that K(+) influx via Trk1p remains nearly constant at ∼9 mM/h when extracellular K(+) is progressively depleted below 0.05 mM and (v) that K(+) influx via Hak1p remains at ∼3 mM/h when extracellular K(+) is depleted below 0.1 mM.
Collapse
|
19
|
Ke R, Ingram PJ, Haynes K. An integrative model of ion regulation in yeast. PLoS Comput Biol 2013; 9:e1002879. [PMID: 23341767 PMCID: PMC3547829 DOI: 10.1371/journal.pcbi.1002879] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/27/2012] [Indexed: 12/03/2022] Open
Abstract
Yeast cells are able to tolerate and adapt to a variety of environmental stresses. An essential aspect of stress adaptation is the regulation of monovalent ion concentrations. Ion regulation determines many fundamental physiological parameters, such as cell volume, membrane potential, and intracellular pH. It is achieved through the concerted activities of multiple cellular components, including ion transporters and signaling molecules, on both short and long time scales. Although each component has been studied in detail previously, it remains unclear how the physiological parameters are maintained and regulated by the concerted action of all components under a diverse range of stress conditions. In this study, we have constructed an integrated mathematical model of ion regulation in Saccharomyces cerevisiae to understand this coordinated adaptation process. Using this model, we first predict that the interaction between phosphorylated Hog1p and Tok1p at the plasma membrane inhibits Tok1p activity and consequently reduces Na+ influx under NaCl stress. We further characterize the impacts of NaCl, sorbitol, KCl and alkaline pH stresses on the cellular physiology and the differences between the cellular responses to these stresses. We predict that the calcineurin pathway is essential for maintaining a non-toxic level of intracellular Na+ in the long-term adaptation to NaCl stress, but that its activation is not required for maintaining a low level of Na+ under other stresses investigated. We provide evidence that, in addition to extrusion of toxic ions, Ena1p plays an important role, in some cases alongside Nha1p, in re-establishing membrane potential after stress perturbation. To conclude, this model serves as a powerful tool for both understanding the complex system-level properties of the highly coordinated adaptation process and generating further hypotheses for experimental investigation. Ion regulation is fundamental to cell physiology. The concentrations of monovalent ions, such as H+, K+ and Na+, determine many physiological parameters such as cell volume, plasma membrane potential and intracellular pH. In yeast cells, these parameters are maintained within a narrow range during the adaptation to external perturbations, including ionic, osmotic and alkaline pH stress. This is achieved by the remarkably coordinated activities of ion transporters, regulatory molecules and signaling pathways. The response characteristics of individual components in adaptation have been studied extensively. However, a coherent understanding of the coordinated adaptation process is lacking. In this study, we address this gap by constructing a mathematical model that integrates the characteristics of the ion transporters, regulatory molecules, signaling pathways and changes in cell volume. Using this model, we characterize the impact of ionic, osmotic and alkaline pH stresses on cellular physiology and analyze the role that individual components play in the cellular adaptation processes. Our results also reveal system level properties achieved by the concerted regulatory responses. Therefore, this integrated model serves as a suitable tool to understand the coordinated processes of ion regulation in response to environmental stresses, and to make predictions that are experimentally testable.
Collapse
Affiliation(s)
- Ruian Ke
- Department of Mathematics, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
20
|
Activation of an essential calcium signaling pathway in Saccharomyces cerevisiae by Kch1 and Kch2, putative low-affinity potassium transporters. EUKARYOTIC CELL 2012. [PMID: 23204190 DOI: 10.1128/ec.00299-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, mating pheromones activate a high-affinity Ca(2+) influx system (HACS) that activates calcineurin and is essential for cell survival. Here we identify extracellular K(+) and a homologous pair of transmembrane proteins, Kch1 and Kch2 (Prm6), as necessary components of the HACS activation mechanism. Expression of Kch1 and especially Kch2 was strongly induced during the response to mating pheromones. When forcibly overexpressed, Kch1 and Kch2 localized to the plasma membrane and activated HACS in a fashion that depended on extracellular K(+) but not pheromones. They also promoted growth of trk1 trk2 mutant cells in low K(+) environments, suggesting they promote K(+) uptake. Voltage-clamp recordings of protoplasts revealed diminished inward K(+) currents in kch1 kch2 double-mutant cells relative to the wild type. Conversely, heterologous expression of Kch1 in HEK293T cells caused the appearance of inwardly rectifying K(+) currents. Collectively, these findings suggest that Kch1 and Kch2 directly promote K(+) influx and that HACS may electrochemically respond to K(+) influx in much the same way as the homologous voltage-gated Ca(2+) channels in most animal cell types.
Collapse
|
21
|
Kahm M, Navarrete C, Llopis-Torregrosa V, Herrera R, Barreto L, Yenush L, Ariño J, Ramos J, Kschischo M. Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLoS Comput Biol 2012; 8:e1002548. [PMID: 22737060 PMCID: PMC3380843 DOI: 10.1371/journal.pcbi.1002548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/23/2012] [Indexed: 11/25/2022] Open
Abstract
The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method (“the reverse tracking algorithm”) we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis. Without potassium, all living cells will die; it has to be present in sufficient amounts for the proper function of most cell types. Disturbances in potassium levels in animal cells result in potentially fatal conditions and it is also an essential nutrient for plants and fungi. Cells have developed effective mechanisms for surviving under adverse environmental conditions of low external potassium. The question is how. Using the eukaryotic model organism, baker's yeast (Saccharomyces cerevisiae), we modeled how potassium homeostasis takes place. This is because, through mathematical modeling and experimentation, we found that the electro-chemical forces regulating potassium concentrations are coupled to proton fluxes, which respond to external conditions in order to maintain a viable potassium level within the cells. Our results challenge the current understanding of potassium homeostasis in baker's yeast, and could potentially be extended to other microorganisms, including non-conventional yeasts such as the pathogenic Candida albicans, and plant cells. In the future, the fundamental bases for this descriptive and predictive model might contribute to the development of new treatments for fungal infections, or developments in crop sciences.
Collapse
Affiliation(s)
- Matthias Kahm
- Department of Mathematics and Technology, RheinAhrCampus, University of Applied Sciences, Koblenz, Remagen, Germany
| | - Clara Navarrete
- Department of Microbiology, Campus de Rabanales, University of Córdoba, Córdoba, Spain
| | - Vicent Llopis-Torregrosa
- Instituto de Biologia Molecular y Celular de Plantas UPV-CSIC, Ciudad Politécnica de la Innovación, Universidad Politécnica de Valencia, Valencia, Spain
| | - Rito Herrera
- Department of Microbiology, Campus de Rabanales, University of Córdoba, Córdoba, Spain
| | - Lina Barreto
- Institut de Biotecnologia I Biomedicina & Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Lynne Yenush
- Instituto de Biologia Molecular y Celular de Plantas UPV-CSIC, Ciudad Politécnica de la Innovación, Universidad Politécnica de Valencia, Valencia, Spain
| | - Joaquin Ariño
- Institut de Biotecnologia I Biomedicina & Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Jose Ramos
- Department of Microbiology, Campus de Rabanales, University of Córdoba, Córdoba, Spain
| | - Maik Kschischo
- Department of Mathematics and Technology, RheinAhrCampus, University of Applied Sciences, Koblenz, Remagen, Germany
- * E-mail:
| |
Collapse
|
22
|
Fu J, Zhang DF, Liu YH, Ying S, Shi YS, Song YC, Li Y, Wang TY. Isolation and characterization of maize PMP3 genes involved in salt stress tolerance. PLoS One 2012; 7:e31101. [PMID: 22348040 PMCID: PMC3278423 DOI: 10.1371/journal.pone.0031101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 01/02/2012] [Indexed: 11/19/2022] Open
Abstract
Plasma membrane protein 3 (PMP3), a class of small hydrophobic polypeptides with high sequence similarity, is responsible for salt, drought, cold, and abscisic acid. These small hydrophobic ploypeptides play important roles in maintenance of ion homeostasis. In this study, eight ZmPMP3 genes were cloned from maize and responsive to salt, drought, cold and abscisic acid. The eight ZmPMP3s were membrane proteins and their sequences in trans-membrane regions were highly conserved. Phylogenetic analysis showed that they were categorized into three groups. All members of group II were responsive to ABA. Functional complementation showed that with the exception of ZmPMP3-6, all were capable of maintaining membrane potential, which in turn allows for regulation of intracellular ion homeostasis. This process was independent of the presence of Ca(2+). Lastly, over-expression of ZmPMP3-1 enhanced growth of transgenic Arabidopsis under salt condition. Through expression analysis of deduced downstream genes in transgenic plants, expression levels of three ion transporter genes and four important antioxidant genes in ROS scavenging system were increased significantly in transgenic plants during salt stress. This tolerance was likely achieved through diminishing oxidative stress due to the possibility of ZmPMP3-1's involvement in regulation of ion homeostasis, and suggests that the modulation of these conserved small hydrophobic polypeptides could be an effective way to improve salt tolerance in plants.
Collapse
Affiliation(s)
- Jing Fu
- College of Biological Sciences, China Agricultural University, Beijing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Deng-Feng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying-Hui Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sheng Ying
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yun-Su Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Chun Song
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian-Yu Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Jung KW, Strain AK, Nielsen K, Jung KH, Bahn YS. Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. Fungal Genet Biol 2012; 49:332-45. [PMID: 22343280 DOI: 10.1016/j.fgb.2012.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/26/2022]
Abstract
Maintenance of cation homeostasis is essential for survival of all living organisms in their biological niches. It is also important for the survival of human pathogenic fungi in the host, where cation concentrations and pH will vary depending on different anatomical sites. However, the exact role of diverse cation transporters and ion channels in virulence of fungal pathogens remains elusive. In this study we functionally characterized ENA1 and NHA1, encoding a putative Na(+)/ATPase and Na(+)/H(+) antiporter, respectively, in Cryptococcus neoformans, a basidiomycete fungal pathogen which causes fatal meningoencephalitis. Expression of NHA1 and ENA1 is induced in response to salt and osmotic shock mainly in a Hog1-dependent manner. Phenotypic analysis of the ena1Δ, nha1Δ, and ena1Δnha1Δ mutants revealed that Ena1 controls cellular levels of toxic cations, such as Na(+) and Li(+) whereas both Ena1 and Nha1 are important for controlling less toxic K(+) ions. Under alkaline conditions, Ena1 was highly induced and required for growth in the presence of low levels of Na(+) or K(+) salt and Nha1 played a role in survival under K(+) stress. In contrast, Nha1, but not Ena1, was essential for survival at acidic conditions (pH 4.5) under high K(+) stress. In addition, Ena1 and Nha1 were required for maintenance of plasma membrane potential and stability, which appeared to modulate antifungal drug susceptibility. Perturbation of ENA1 and NHA1 enhanced capsule production and melanin synthesis. However, Nha1 was dispensable for virulence of C. neoformans although Ena1 was essential. In conclusion, Ena1 and Nha1 play redundant and discrete roles in cation homeostasis, pH regulation, membrane potential, and virulence in C. neoformans, suggesting that these transporters could be novel antifungal drug targets for treatment of cryptococcosis.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Heuck S, Gerstmann UC, Michalke B, Kanter U. Genome-wide analysis of caesium and strontium accumulation in Saccharomyces cerevisiae. Yeast 2011; 27:817-35. [PMID: 20641020 DOI: 10.1002/yea.1780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
(137)Cs and (90)Sr contribute to significant and long-lasting contamination of the environment with radionuclides. Due to their relatively high biological availability, they are transferred rapidly into biotic systems and may enter the food chain. In this study, we analysed 4862 haploid yeast knockout strains of Saccharomyces cerevisiae to identify genes involved in caesium (Cs(+)) and/or strontium (Sr(2+)) accumulation. According to this analysis, 212 mutant strains were associated with reproducible altered Cs(+) and/or Sr(2+) accumulation. These mutants were deficient for a wide range of cellular processes. Among those, the vacuolar function and biogenesis turned out to be crucial for both Cs(+) and Sr(2+) accumulation. Disruption of the vacuole diminished Cs(+) accumulation, whereas Sr(2+) enrichment was enhanced. Further analysis with a subset of the identified candidates were undertaken comparing the accumulation of Cs(+) and Sr(2+) with their essential counterparts potassium (K(+)) and calcium (Ca(2+)). Sr(2+) and Ca(2+) accumulation was highly correlated in yeast excluding the possibility of a differential regulation or uptake mechanisms. In direct contrast, the respective results suggest that Cs(+) uptake is at least partially dependent on mechanisms distinct from K(+) uptake. Single candidates (e.g. KHA1) are presented which might be specifically responsible for Cs(+) homeostasis.
Collapse
Affiliation(s)
- Sabine Heuck
- Helmholtz Zentrum München, Institut für Strahlenschutz, Neuherberg, Germany
| | | | | | | |
Collapse
|
25
|
Abstract
The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K(+) and Na(+), is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K(+) transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na(+) can be tolerated due to the existence of an Na(+), K(+)-ATPase and an Na(+), K(+)/H(+)-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants.
Collapse
|
26
|
Boeckstaens M, André B, Marini AM. The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium. Mol Microbiol 2007; 64:534-46. [PMID: 17493133 DOI: 10.1111/j.1365-2958.2007.05681.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three ammonium transport systems of the Mep/Amt/Rh superfamily contribute to ammonium uptake for use as a nitrogen source in Saccharomyces cerevisiae. A specific sensor role has further been proposed for Mep2 in the stimulation of pseudohyphal development during ammonium limitation. Optimal ammonium transport by the Mep proteins requires the Npr1 kinase, a potential target of the target-of-rapamycin signalling pathway. We show here that the growth impairment of cells lacking Npr1 on many nitrogen sources is shared by cells deprived of the three Mep proteins and is a consequence of deficient ammonium retrieval. Expression of a newly isolated Npr1-independent and hyperactive Mep2 in cells lacking Npr1 and/or the Mep proteins restores growth on low ammonium but also on other nitrogen sources. This hyperactive Mep2 variant efficiently counteracts ammonium excretion. Hence, ammonium uptake activity plays an important role in compensating for leakage of catabolic ammonium. Our data also reveal that the requirement of Npr1 for ammonium-induced pseudohyphal growth is an indirect consequence of its necessity for Mep2-mediated ammonium transport. Finally, we show that Mep2 participates, through ammonium leakage compensation, in pseudohyphal growth induced by amino acid starvation. This argues further in favour of tight coupling of Mep2 transport and sensor functions.
Collapse
Affiliation(s)
- Mélanie Boeckstaens
- Laboratoire de Physiologie Moléculaire de la Cellule, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles CP300, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | |
Collapse
|
27
|
Feller A, Boeckstaens M, Marini AM, Dubois E. Transduction of the nitrogen signal activating Gln3-mediated transcription is independent of Npr1 kinase and Rsp5-Bul1/2 ubiquitin ligase in Saccharomyces cerevisiae. J Biol Chem 2006; 281:28546-54. [PMID: 16864574 DOI: 10.1074/jbc.m605551200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrogen Catabolite Repression (NCR) allows the adaptation of yeast cells to the quality of nitrogen supply by inhibiting the transcription of genes encoding proteins involved in transport and degradation of nonpreferred nitrogen sources. In cells using ammonium or glutamine, the GATA transcription factor Gln3 is sequestered in the cytoplasm by Ure2 whereas it enters the nucleus after a shift to a nonpreferred nitrogen source like proline or upon addition of rapamycin, the TOR complex inhibitor. Recently, the Npr1 kinase and the Rsp5, Bul1/2 ubiquitin ligase complex were reported to have antagonistic roles in the nuclear import and Gln3-mediated activation. The Npr1 kinase controls the activity of various permeases including transporters for nitrogen sources that stimulate NCR such as the Mep ammonium transport systems. Combining data from growth tests, Northern blot analysis and Gln3 immunolocalization, we show that the Npr1 kinase is not a direct negative regulator of Gln3-dependent transcription. The derepression of Gln3-activated genes in ammonium-grown npr1 cells results from the reduced uptake of the nitrogen-repressing compound because NCR could be restored in npr1 cells by repairing ammonium-uptake defects through different means. Finally, we show that the impairment of the ubiquitin ligase complex does not prevent induction of NCR genes under nonpreferred nitrogen conditions. The apparent Rsp5-, Bul1/2-dependent Gln3 activation keeps to the cellular status, as it is only observed in cells having left the balanced phase of exponential growth.
Collapse
Affiliation(s)
- André Feller
- Institut de Recherches Microbiologiques J-M Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | | | | |
Collapse
|
28
|
Manlandro CMA, Haydon DH, Rosenwald AG. Ability of Sit4p to promote K+ efflux via Nha1p is modulated by Sap155p and Sap185p. EUKARYOTIC CELL 2005; 4:1041-9. [PMID: 15947196 PMCID: PMC1151994 DOI: 10.1128/ec.4.6.1041-1049.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We demonstrate here that SAP155 encodes a negative modulator of K+ efflux in the yeast Saccharomyces cerevisiae. Overexpression of SAP155 decreases efflux, whereas deletion increases efflux. In contrast, a homolog of SAP155, called SAP185, encodes a positive modulator of K+ efflux: overexpression of SAP185 increases efflux, whereas deletion decreases efflux. Two other homologs, SAP4 and SAP190, are without effect on K+ homeostasis. Both SAP155 and SAP185 require the presence of SIT4 for function, which encodes a PP2A-like phosphatase important for the G1-S transition through the cell cycle. Overexpression of either the outwardly rectifying K+ channel, Tok1p, or the putative plasma membrane K+/H+ antiporter, Kha1p, increases efflux in both wild-type and sit4Delta strains. However, overexpression of the Na+-K+/H+ antiporter, Nha1p, is without effect in a sit4Delta strain, suggesting that Sit4p signals to Nha1p. In summary, the combined activities of Sap155p and Sap185p appear to control the function of Nha1p in K+ homeostasis via Sit4p.
Collapse
Affiliation(s)
- Cara Marie A Manlandro
- Department of Biology, Georgetown University, 406 Reiss Science Center, Box 571229, Washington, DC 20057-1229, USA.
| | | | | |
Collapse
|
29
|
Kim SY, Craig EA. Broad sensitivity of Saccharomyces cerevisiae lacking ribosome-associated chaperone ssb or zuo1 to cations, including aminoglycosides. EUKARYOTIC CELL 2005; 4:82-9. [PMID: 15643063 PMCID: PMC544168 DOI: 10.1128/ec.4.1.82-89.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Hsp70 Ssb and J protein Zuo1 of Saccharomyces cerevisiae are ribosome-associated molecular chaperones, proposed to be involved in the folding of newly synthesized polypeptide chains. Cells lacking Ssb and/or Zuo1 have been reported to be hypersensitive to cationic aminoglycoside protein synthesis inhibitors that affect translational fidelity and to NaCl. Since we found that Deltassb1 Deltassb2 (Deltassb1,2), Deltazuo1, and wild-type cells have very similar levels of translational misreading in the absence of aminoglycosides, we asked whether the sensitivities to aminoglycosides and NaCl represent a general increase in sensitivity to cations. We found that Deltassb1,2 and Deltazuo1 cells are hypersensitive to a wide range of cations. This broad sensitivity is similar to that of cells having lowered activity of major plasma membrane transporters, such as the major K+ transporters Trk1 and Trk2 or their regulators Hal4 and Hal5. Like Deltahal4,5 cells, Deltassb1,2 and Deltazuo1 cells have increased intracellular levels of Na+ and Li+ upon challenge with higher-than-normal levels of these cations, due to an increased rate of influx. In the presence of aminoglycosides, Deltassb1,2, Deltazuo1, and Deltahal 4,5 cells have similarly increased levels of translational misreading. We conclude that, in vivo, the major cause of the aminoglycoside sensitivity of cells lacking ribosome-associated molecular chaperones is a general increase in cation influx, perhaps due to altered maturation of membrane proteins.
Collapse
Affiliation(s)
- So-Young Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
30
|
Demidchik V, Macpherson N, Davies JM. Potassium transport at the plasma membrane of the food spoilage yeast Zygosaccharomyces bailii. Yeast 2005; 22:21-9. [PMID: 15580608 DOI: 10.1002/yea.1194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Zygosaccharomyces bailii is a commercially important spoilage yeast capable of growth at low pH in the presence of weak organic acid preservatives, such as benzoic acid. A patch-clamp electrophysiological analysis of plasma membrane K+ transport revealed a high conductance pathway for low-affinity K+ uptake. In contrast to the equivalent K+ transporter in Saccharomyces cerevisiae, this system remained operative at low extracellular pH and may therefore facilitate K+ uptake in K(+)-rich and acidic beverages. Benzoate inhibited growth, increased intracellular K+ content, yet decreased the magnitude of the K+ uptake conductance; specifically, the hyperpolarization-activated inwardly-rectifying component was reduced. It is proposed that this adaptation helps maintain a hyperpolarized membrane voltage to effect continued ATPase-mediated H+ extrusion and so combat preservative-induced cytosolic acidosis. Again in contrast to S. cerevisiae, the K+ conductance was relatively insensitive to increased extracellular Ca2+. Paradoxically (and unlike S. cerevisiae) increasing extracellular Ca2+ inhibited growth, suggesting a simple expedient to limit spoilage by Z. bailii.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
31
|
Munson AM, Haydon DH, Love SL, Fell GL, Palanivel VR, Rosenwald AG. Yeast ARL1 encodes a regulator of K+ influx. J Cell Sci 2005; 117:2309-20. [PMID: 15126631 DOI: 10.1242/jcs.01050] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A molecular genetic approach was undertaken in Saccharomyces cerevisiae to examine the functions of ARL1, encoding a G protein of the Ras superfamily. We show here that ARL1 is an important component of the control of intracellular K(+). The arl1 mutant was sensitive to toxic cations, including hygromycin B and other aminoglycoside antibiotics, tetramethylammonium ions, methylammonium ions and protons. The hygromycin-B-sensitive phenotype was suppressed by the inclusion of K(+) and complemented by wild-type ARL1 and an allele of ARL1 predicted to be unbound to nucleotide in vivo. The arl1 mutant strain internalized approximately 25% more [(14)C]-methylammonium ion than did the wild type, consistent with hyperpolarization of the plasma membrane. The arl1 strain took up 30-40% less (86)Rb(+) than did the wild type, showing an inability to regulate K(+) import properly, contributing to membrane hyperpolarity. By contrast, K(+) and H(+) efflux were undisturbed. The loss of ARL1 had no effect on the steady-state level or the localization of a tagged version of Trk1p. High copy suppressors of the hygromycin-B phenotype included SAP155, encoding a protein that interacts with the cell cycle regulator Sit4p, and HAL4 and HAL5, encoding Ser/Thr kinases that regulate the K(+)-influx mediators Trk1p and Trk2p. These results are consistent with a model in which ARL1, via regulation of HAL4/HAL5, governs K(+) homeostasis in cells.
Collapse
Affiliation(s)
- Amanda M Munson
- Department of Biology, 406 Reiss Science Center, Box 571229, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kolacna L, Zimmermannova O, Hasenbrink G, Schwarzer S, Ludwig J, Lichtenberg-Fraté H, Sychrova H. New phenotypes of functional expression of the mKir2.1 channel in potassium efflux-deficientSaccharomyces cerevisiae strains. Yeast 2005; 22:1315-23. [PMID: 16358319 DOI: 10.1002/yea.1333] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The functional expression of the mouse Kir2.1 potassium channel in yeast cells lacking transport systems for potassium and sodium efflux (ena1-4delta nha1delta) resulted in increased cell sensitivity to high external concentrations of potassium. The phenotype depended on the level of Kir2.1 expression and on the external pH. The activity of Kir2.1p in the yeast cells was almost negligible at pH 3.0 and the highest at pH 7.0. Kir2.1p was permeable for both potassium and rubidium cations, but neither sodium nor lithium were transported via the channel. Measurements of the cation contents in cells confirmed the higher concentration of potassium in cells with Kir2.1p. Specific inhibition of the mKir2.1 channel activity by Ba2+ cations was observed. The use of a mutant strain lacking both potassium efflux and uptake transporters (ena1-4delta nha1delta trk1delta trk2delta) enabled the monitoring of channel activity on two levels--the provision of the necessary amount of intracellular K+ in media with low potassium concentrations, and simultaneously, the channel's contribution to cell potassium sensitivity in the presence of high external K+. This combination of mutations proved to be a new, sensitive and practical tool for characterizing the properties of heterologously expressed transporters mediating both the efflux and influx of alkali-metal-cations.
Collapse
Affiliation(s)
- Lucie Kolacna
- Department of Membrane Transport, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
33
|
Maresova L, Sychrova H. Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Mol Microbiol 2004; 55:588-600. [PMID: 15659172 DOI: 10.1111/j.1365-2958.2004.04410.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maintenance of intracellular K+ homeostasis is one of the crucial requisites for the survival of yeast cells. In Saccharomyces cerevisiae, the high K+ content corresponds to a steady state between simultaneous influx and efflux across the plasma membrane. One of the transporters formerly believed to extrude K+ from the yeast cells (besides Ena1-4p and Nha1p) was named Kha1p and presumed as a putative plasma membrane K+/H+ antiporter. We prepared kha1 and tok1-kha1 deletion strains in the B31 and MAB 2d background. Both the strains contain the ena1-4 and nha1 deletions; that means they lack the main active sodium and potassium efflux systems. MAB 2d has additional trk1 and trk2 deletions, i.e. is impaired in active K+ uptake as well. We performed a large physiological study with these strains to specify the phenotype of kha1 deletion. In our experiments, no difference in K+ content or efflux was observed in strains lacking the KHA1 gene compared with control strains. Two main phenotype manifestations of the kha1 deletion were growth defect on high external pH and hygromycin sensitivity. The correlation between these phenotypes and the kha1 deletion was confirmed by plasmid complementation. Fluorescence microscopy of green fluorescent protein (GFP)-tagged Kha1p showed that this antiporter is localized preferentially intracellularly (in contrast to the plasma membrane Na+/H+ antiporter Nha1p). Based on these findings, Kha1p is probably not localized in plasma membrane and does not mediate efflux of alkali metal cations from cells, but is important for the regulation of intracellular cation homeostasis and optimal pH control, similarly as the Nhx1p.
Collapse
Affiliation(s)
- Lydie Maresova
- Department of Membrane Transport, Institute of Physiology, Academy of Sciences CR, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
34
|
Ruiz A, del Carmen Ruiz M, Sánchez-Garrido MA, Ariño J, Ramos J. The Ppz protein phosphatases regulate Trk-independent potassium influx in yeast. FEBS Lett 2004; 578:58-62. [PMID: 15581616 DOI: 10.1016/j.febslet.2004.10.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 10/20/2004] [Accepted: 10/21/2004] [Indexed: 11/16/2022]
Abstract
The Ppz protein phosphatases have been recently shown to negatively regulate the major potassium transport system in the yeast Saccharomyces cerevisiae, encoded by the TRK1 and TRK2 genes. We have found that, in the absence of the Trk system, Ppz mutants require abnormally high concentrations of potassium to proliferate. This can be explained by the observation that trk1 trk2 ppz1 or trk1 trk2 ppz1 ppz2 strains display a very poor rubidium uptake, with markedly increased Km values. These cells are very sensitive to the presence of several toxic cations in the medium, such as hygromicyn B or spermine, but not to lithium or sodium cations. At limiting potassium concentrations, addition of EGTA to the medium improves growth of these mutants. Therefore, our results indicate that, in addition to their role in regulating Trk potassium transporters, Ppz phosphatases (essentially Ppz1), positively affect the residual low affinity potassium transport mechanisms in yeast. These findings may provide a new way to elucidate the molecular nature of the low affinity potassium uptake system in yeast as well as a useful model to analyze the function of plant or mammalian potassium channels through heterologous expression in yeast.
Collapse
Affiliation(s)
- Amparo Ruiz
- Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Baev D, Rivetta A, Vylkova S, Sun JN, Zeng GF, Slayman CL, Edgerton M. The TRK1 potassium transporter is the critical effector for killing of Candida albicans by the cationic protein, Histatin 5. J Biol Chem 2004; 279:55060-72. [PMID: 15485849 DOI: 10.1074/jbc.m411031200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The principal feature of killing of Candida albicans and other pathogenic fungi by the catonic protein Histatin 5 (Hst 5) is loss of cytoplasmic small molecules and ions, including ATP and K(+), which can be blocked by the anion channel inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. We constructed C. albicans strains expressing one, two, or three copies of the TRK1 gene in order to investigate possible roles of Trk1p (the organism's principal K(+) transporter) in the actions of Hst 5. All measured parameters (Hst 5 killing, Hst 5-stimulated ATP efflux, normal Trk1p-mediated K(+) ((86)Rb(+)) influx, and Trk1p-mediated chloride conductance) were similarly reduced (5-7-fold) by removal of a single copy of the TRK1 gene from this diploid organism and were fully restored by complementation of the missing allele. A TRK1 overexpression strain of C. albicans, constructed by integrating an additional TRK1 gene into wild-type cells, demonstrated cytoplasmic sequestration of Trk1 protein, along with somewhat diminished toxicity of Hst 5. These results could be produced either by depletion of intracellular free Hst 5 due to sequestered binding, or to cooperativity in Hst 5-protein interactions at the plasma membrane. Furthermore, Trk1p-mediated chloride conductance was blocked by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid in all of the tested strains, strongly suggesting that the TRK1 protein provides the essential pathway for ATP loss and is the critical effector for Hst 5 toxicity in C. albicans.
Collapse
Affiliation(s)
- Didi Baev
- Department of Oral Biology, School of Dental Medicine, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Etherton B, Heppner TJ, Cumming JR, Nelson MT. Opposing Effects of Aluminum on Inward-Rectifier Potassium Currents in BeanRoot-Tip Protoplasts. J Membr Biol 2004; 198:15-22. [PMID: 15209093 DOI: 10.1007/s00232-004-0658-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inward currents in root cap protoplasts of the aluminum-tolerant cultivar, Dade, of Phaseolus vulgaris L. were investigated using the whole-cell patch-clamp technique. The properties of these currents were similar to those seen in inward rectifying K+ channels in other plant tissues. Replacing bath K+ with Na+ nearly abolished the observed currents. Higher bath K+ concentrations increased inward currents. AlCl3 in pH 4.7 bath solutions caused inward K+ currents to activate more rapidly and at more positive voltages when compared with AlCl3 free solutions. In 10 microM AlCl3 the activated inward K+ currents were significantly larger than in the AlCl3-free solution at all voltages except at the most negative voltage of -174 mV and the least negative of -74 mV. In contrast, in 80 microM Al3+, when hyperpolarizing voltages were most negative, the inward K+ currents were inhibited relative to the currents in 10 microM AlCl3. Enhancement of inward K+ currents by AlCl3 is consistent with Al3+ binding to the external surface of the root cap protoplast, decreasing the surface charge, thus causing the channels to sense a more negative membrane potential. Inhibition of inward K+ currents with higher AlCl3 concentrations and more negative voltages is consistent with Al3+ block of K+ channels.
Collapse
Affiliation(s)
- B Etherton
- Department of Pharmacology, University of Vermont, College of Medicine, Given Building, Burlington, VT 05405-0068, USA.
| | | | | | | |
Collapse
|
37
|
Wirén NV, Merrick M. Regulation and function of ammonium carriers in bacteria, fungi, and plants. MOLECULAR MECHANISMS CONTROLLING TRANSMEMBRANE TRANSPORT 2004. [DOI: 10.1007/b95775] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Baev D, Rivetta A, Li XS, Vylkova S, Bashi E, Slayman CL, Edgerton M. Killing of Candida albicans by human salivary histatin 5 is modulated, but not determined, by the potassium channel TOK1. Infect Immun 2003; 71:3251-60. [PMID: 12761106 PMCID: PMC155775 DOI: 10.1128/iai.71.6.3251-3260.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salivary histatin 5 (Hst 5), a potent toxin for the human fungal pathogen Candida albicans, induces noncytolytic efflux of cellular ATP, potassium, and magnesium in the absence of cytolysis, implicating these ion movements in the toxin's fungicidal activity. Hst 5 action on Candida resembles, in many respects, the action of the K1 killer toxin on Saccharomyces cerevisiae, and in that system the yeast plasma membrane potassium channel, Tok1p, has recently been reported to be a primary target of toxin action. The question of whether the Candida homologue of Saccharomyces Tok1p might be a primary target of Hst 5 action has now been investigated by disruption of the C. albicans TOK1 gene. The resultant strains (TOK1/tok1) and (tok1/tok1) were compared with wild-type Candida (TOK1/TOK1) for relative ATP leakage and killing in response to Hst 5. Patch-clamp measurements on Candida protoplasts were used to verify the functional deletion of Tok1p and to provide its first description in Candida. Tok1p is an outwardly rectifying, noisily gated, 40-pS channel, very similar to that described in Saccharomyces. Knockout of CaTOK1 (tok1/tok1) completely abolishes the currents and gating events characteristic of Tok1p. Also, knockout (tok1/tok1) increases residual viability of Candida after Hst 5 treatment to 27%, from 7% in the wild type, while the single allele deletion (TOK1/tok1) increases viability to 18%. Comparable results were obtained for Hst-induced ATP efflux, but quantitative features of ATP loss suggest that wild-type TOK1 genes function cooperatively. Overall, very substantial killing and ATP efflux are produced by Hst 5 treatment after complete knockout of wild-type TOK1, making clear that Tok1p channels are not the primary site of Hst 5 action, even though they do play a modulating role.
Collapse
Affiliation(s)
- Didi Baev
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 14214, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Bertl A, Ramos J, Ludwig J, Lichtenberg-Fraté H, Reid J, Bihler H, Calero F, Martínez P, Ljungdahl PO. Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Mol Microbiol 2003; 47:767-80. [PMID: 12535075 DOI: 10.1046/j.1365-2958.2003.03335.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae cells express three defined potassium-specific transport systems en-coded by TRK1, TRK2 and TOK1. To gain a more complete understanding of the physiological function of these transport proteins, we have constructed a set of isogenic yeast strains carrying all combinations of trk1delta, trk2delta and tok1delta null mutations. The in vivo K+ transport characteristics of each strain have been documented using growth-based assays, and the in vitro biochemical and electrophysiological properties associated with K+ transport have been determined. As has been reported previously, Trk1p and Trk2p facilitate high-affinity potassium uptake and appear to be functionally redundant under a wide range of environmental conditions. In the absence of TRK1 and TRK2, strains lack the ability specifically to take up K+, and trk1deltatrk2delta double mutant cells depend upon poorly understood non-specific cation uptake mechanisms for growth. Under conditions that impair the activity of the non-specific uptake system, termed NSC1, we have found that the presence of functional Tok1p renders cells sensitive to Cs+. Based on this finding, we have established a growth-based assay that monitors the in vivo activity of Tok1p.
Collapse
|
40
|
Roberts SK. TOK homologue in Neurospora crassa: first cloning and functional characterization of an ion channel in a filamentous fungus. EUKARYOTIC CELL 2003; 2:181-90. [PMID: 12582135 PMCID: PMC141169 DOI: 10.1128/ec.2.1.181-190.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In contrast to animal and plant cells, very little is known of ion channel function in fungal physiology. The life cycle of most fungi depends on the "filamentous" polarized growth of hyphal cells; however, no ion channels have been cloned from filamentous fungi and comparatively few preliminary recordings of ion channel activity have been made. In an attempt to gain an insight into the role of ion channels in fungal hyphal physiology, a homolog of the yeast K(+) channel (ScTOK1) was cloned from the filamentous fungus, Neurospora crassa. The patch clamp technique was used to investigate the biophysical properties of the N. crassa K(+) channel (NcTOKA) after heterologous expression of NcTOKA in yeast. NcTOKA mediated mainly time-dependent outward whole-cell currents, and the reversal potential of these currents indicated that it conducted K(+) efflux. NcTOKA channel gating was sensitive to extracellular K(+) such that channel activation was dependent on the reversal potential for K(+). However, expression of NcTOKA was able to overcome the K(+) auxotrophy of a yeast mutant missing the K(+) uptake transporters TRK1 and TRK2, suggesting that NcTOKA also mediated K(+) influx. Consistent with this, close inspection of NcTOKA-mediated currents revealed small inward K(+) currents at potentials negative of E(K). NcTOKA single-channel activity was characterized by rapid flickering between the open and closed states with a unitary conductance of 16 pS. NcTOKA was effectively blocked by extracellular Ca(2+), verapamil, quinine, and TEA(+) but was insensitive to Cs(+), 4-aminopyridine, and glibenclamide. The physiological significance of NcTOKA is discussed in the context of its biophysical properties.
Collapse
Affiliation(s)
- Stephen K Roberts
- Biology Department, Institute of Environment and Natural Sciences, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| |
Collapse
|
41
|
Liu GJ, Martin DK, Gardner RC, Ryan PR. Large Mg(2+)-dependent currents are associated with the increased expression of ALR1 in Saccharomyces cerevisiae. FEMS Microbiol Lett 2002; 213:231-7. [PMID: 12167543 DOI: 10.1111/j.1574-6968.2002.tb11311.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Two genes in Saccharomyces cerevisiae, ALR1 and ALR2, encode proteins putatively involved in Mg(2+) uptake. The present study supports this role for ALR1 and provides the first electrophysiological characterisation of this protein. The patch-clamp technique was used to measure whole-cell ion currents in protoplasts prepared from the wild-type strain, the alr1 alr2 double mutant (CM66), and the double mutant over-expressing the ALR1 gene (CM66+ALR1). With 50 mM Mg(2+) in the bathing solution, the inward current in protoplasts of CM66+ALR1 averaged -264+/-48 pA at -150 mV. Inward currents measured in the wild-type and CM66 protoplasts were more than five-fold smaller. When Mg(2+) was the major cation in the pipette solution, time-dependent outward currents were also detected in CM66+ALR1 protoplasts suggesting ALR1 can facilitate Mg(2+) efflux as well as uptake. We conclude that the ALR1 gene encodes a transport protein. The large magnitude of the Mg(2+)-dependent currents suggests that ALR1 could function as a cation channel.
Collapse
Affiliation(s)
- Guo Jun Liu
- Department of Health Sciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia
| | | | | | | |
Collapse
|
42
|
Erez O, Kahana C. Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiae trk1Deltatrk2Delta mutant cells exert dual effect on ion homeostasis. Biochem Biophys Res Commun 2002; 295:1142-9. [PMID: 12135613 DOI: 10.1016/s0006-291x(02)00823-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sky1p and Ptk2p are protein kinases that regulate ion transport across the plasma membrane of Saccharomyces cerevisiae. We show here that deletion of SKY1 or PTK2 in trk1,2Delta cells increase spermine tolerance, implying Trk1,2p independent activity. Unexpectedly, trk1,2Deltasky1Delta and trk1,2Deltaptk2Delta cells display hypersensitivity to LiCl. These cells also show increased tolerance to low pH and improved growth in low K(+), as demonstrated for deletion of PMP3 in trk1,2Delta cells. We show that Sky1p and Pmp3p act in different pathways. Hypersensitivity to LiCl and improved growth in low K(+) are partly dependent on the Nha1p and Kha1p antiporters and on the Tok1p channel. Finally, Dhh1p, a RNA helicase was demonstrated to improve growth of trk1,2Deltasky1Delta cells in low K(+). Overexpression of Dhh1p improves the ability of trk1,2Delta cells to grow in low K(+) while dhh1Delta cells are sensitive to spermine and salt ions. A model that integrates these results to explain the mechanism of ion transport across the plasma membrane is proposed.
Collapse
Affiliation(s)
- Omri Erez
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
43
|
Williams-Hart T, Wu X, Tatchell K. Protein phosphatase type 1 regulates ion homeostasis in Saccharomyces cerevisiae. Genetics 2002; 160:1423-37. [PMID: 11973298 PMCID: PMC1462070 DOI: 10.1093/genetics/160.4.1423] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein phosphatase type 1 (PP1) is encoded by the essential gene GLC7 in Saccharomyces cerevisiae. glc7-109 (K259A, R260A) has a dominant, hyperglycogen defect and a recessive, ion and drug sensitivity. Surprisingly, the hyperglycogen phenotype is partially retained in null mutants of GAC1, GIP2, and PIG1, which encode potential glycogen-targeting subunits of Glc7. The R260A substitution in GLC7 is responsible for the dominant and recessive traits of glc7-109. Another mutation at this residue, glc7-R260P, confers only salt sensitivity, indicating that the glycogen and salt traits of glc7-109 are due to defects in distinct physiological pathways. The glc7-109 mutant is sensitive to cations, aminoglycosides, and alkaline pH and exhibits increased rates of l-leucine and 3,3'-dihexyloxacarbocyanine iodide uptake, but it is resistant to molar concentrations of sorbitol or KCl, indicating that it has normal osmoregulation. KCl suppresses the ion and drug sensitivities of the glc7-109 mutant. The CsCl sensitivity of this mutant is suppressed by recessive mutations in PMA1, which encodes the essential plasma membrane H(+)ATPase. Together, these results indicate that Glc7 regulates ion homeostasis by controlling ion transport and/or plasma membrane potential, a new role for Glc7 in budding yeast.
Collapse
Affiliation(s)
- Tara Williams-Hart
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
44
|
Hamilton CA, Taylor GJ, Good AG. Vacuolar H(+)-ATPase, but not mitochondrial F(1)F(0)-ATPase, is required for NaCl tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 2002; 208:227-32. [PMID: 11959441 DOI: 10.1111/j.1574-6968.2002.tb11086.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Salt tolerance in Saccharomyces cerevisiae is a complex trait, involving regulation of membrane polarization, Na(+) efflux and sequestration of Na(+) in the vacuole. Since transmembrane transport energized by H(+)-adenosine triphosphatases (ATPases) is common to all of these tolerance mechanisms, the objective of this study was to characterize the responses of the plasma membrane H(+)-ATPase, vacuolar H(+)-ATPase and mitochondrial F(1)F(0)-ATPase to NaCl stress. We hypothesized that since the vacuolar ATPase is responsible for generating the proton motive force required for import of cations (such as Na(+)) into the vacuole, strains lacking this activity should be hypersensitive to NaCl. We found that strains lacking vacuolar ATPase activity were in fact hypersensitive to NaCl, while strains lacking ATP synthase were not. This effect was specific to the ionic component of NaCl stress, since the mutant strains were indistinguishable from wild-type and complemented strains in the presence of sorbitol.
Collapse
Affiliation(s)
- Christie A Hamilton
- Department of Biological Sciences, CW-405 Biological Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | | | |
Collapse
|
45
|
Bihler H, Slayman CL, Bertl A. Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specific cation channel. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:109-18. [PMID: 11779561 DOI: 10.1016/s0005-2736(01)00414-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous descriptions by whole-cell patch clamping of the calcium-inhibited non-selective cation channel (NSC1) in the plasma membrane of Saccharomyces cerevisiae (H. Bihler, C.L. Slayman, A. Bertl, FEBS Lett. 432 (1998); S.K. Roberts, M. Fischer, G.K. Dixon, D.Sanders, J. Bacteriol. 181 (1999)) suggested that this inwardly rectifying pathway could relieve the growth inhibition normally imposed on yeast by disruption of its potassium transporters, Trk1p and Trk2p. Now, demonstration of multiple parallel effects produced by various agonists and antagonists on both NSC1 currents and growth (of trk1 Delta trk2 Delta strains), has identified this non-selective cation pathway as the primary low-affinity uptake route for potassium ions in yeast. Factors which suppress NSC1-mediated inward currents and inhibit growth of trk1 Delta trk2 Delta cells include (i) elevating extracellular calcium over the range of 10 microM-10 mM, (ii) lowering extracellular pH over the range 7.5-4, (iii) blockade of NSC1 by hygromycin B, and (iv) to a lesser extent by TEA(+). Growth of trk1 Delta trk2 Delta cells is also inhibited by lithium and ammonium; however, these ions do not inhibit NSC1, but instead enter yeast cells via NSC1. Growth inhibition by lithium ions is probably a toxic effect, whereas growth inhibition by ammonium ions probably results from competitive inhibition, i.e. displacement of intracellular potassium by entering ammonium.
Collapse
Affiliation(s)
- Hermann Bihler
- Botanisches Institut, Lehrstuhl I, Universität Karlsruhe, Germany.
| | | | | |
Collapse
|
46
|
Abstract
The yeast membrane transporters play crucial roles in functions as diverse as nutrient uptake, drug resistance, salt tolerance, control of cell volume, efflux of undesirable metabolites and sensing of extracellular nutrients. A significant fraction of the many transporters inventoried after sequencing of the yeast genome has been characterised by classical experimental approaches. Post-genomic analysis has allowed a more extensive characterisation of transporter categories less tractable by genetics, for instance of transporters of intracellular membranes or transporters encoded by multigene families and displaying overlapping substrate specificities. A complete view of the role of membrane transporters in the metabolism of yeast may not be far off.
Collapse
Affiliation(s)
- D Van Belle
- Unité de Bioinformatique, Université Libre de Bruxelles CP300, Institut de Biologie et de Médecine Moléculaires, rue des Pr. Jeener et Brachet 10, 6041, Gosselies, Belgium.
| | | |
Collapse
|
47
|
Abstract
Recent progress has been made in the characterization of cation transporters that maintain ion homeostasis during salt stress in plants. Sodium-proton antiporters at the vacuolar (NHX1) and plasma membrane (SOS1) have been identified in Arabidopsis. SOS1 is regulated by the calcium-activated protein kinase complex SOS2-SOS3. In yeast, a transcription repressor, Sko1, mediates regulation of the sodium-pump ENA1 gene by the Hog1 MAP kinase. The recent visualization at the atomic level of the inhibitory site of sodium in the known target Hal2 has helped identify the interactions determining Na(+) toxicity.
Collapse
Affiliation(s)
- R Serrano
- Instituto de Biología Molecular y Celular de Plantas Universidad Politécnica de Valencia-C.S.I.C., Camino de Vera, 46022, Valencia, Spain.
| | | |
Collapse
|
48
|
Macianskiene R, Matejovic P, Sipido K, Flameng W, Mubagwa K. Modulation of the extracellular divalent cation-inhibited non-selective conductance in cardiac cells by metabolic inhibition and by oxidants. J Mol Cell Cardiol 2001; 33:1371-85. [PMID: 11437543 DOI: 10.1006/jmcc.2001.1401] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of metabolic inhibition and oxidative stress on the monovalent cation-permeable, extracellular divalent cation-inhibited non-selective conductance was investigated in ventricular myocytes at 22 degrees C. Under whole-cell voltage-clamp, with L-type Ca2+ channels blocked by nifedipine, and K+ currents blocked by Cs+ substitution for K+, removal of Ca2+(o)and Mg2+(o) induced a non-selective current (I(NS-(Ca)o)) in mouse, rabbit and rat cells. Removal of glucose increased I(NS-(Ca)o)in the absence of Ca2+(o) and Mg2+(o), but failed to induce this current in the presence of the divalent cations. Further inhibition of glycolysis by 2-deoxyglucose (DOG; 10 mM, in zero glucose) or of mitochondrial function by rotenone (10 microM) or NaCN (5 mM) also failed to induce I(NS-(Ca)o)in the presence of Ca2+(o) and Mg2+(o). Even when given together, DOG and rotenone did not induce I(NS-(Ca)o) in the presence of divalent cations. Preactivated I(NS-(Ca)o) was increased by the oxidants thimerosal (50 microM), diamide (500 microM) and pCMPS (50 microM). However, none of these drugs nor NEM (1 mM) did elicit I(NS-(Ca)o)in the presence of Ca2+(o) and Mg2+(o). Exposure of rat myocytes to Ag+ induced a current resembling I(NS-(Ca)o) (reversing at -5 mV; blocked by 100 microM Gd3+) even in the presence of divalent cations. The data indicate that metabolic inhibition only regulates activated I(NS-(Ca)o)but does not induce the opening of closed channels, and that small oxidants like Ag+ may induce I(NS-(Ca)o) activation by accessing at sites unavailable for larger molecules.
Collapse
Affiliation(s)
- R Macianskiene
- Laboratory of Cardiac Cellular Research, Centre for Experimental Surgery and Anaesthesiology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Leuven, B-3000, Belgium
| | | | | | | | | |
Collapse
|
49
|
Navarre C, Goffeau A. Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J 2000; 19:2515-24. [PMID: 10835350 PMCID: PMC212770 DOI: 10.1093/emboj/19.11.2515] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Yeast plasma membranes contain a small 55 amino acid hydrophobic polypeptide, Pmp3p, which has high sequence similarity to a novel family of plant polypeptides that are overexpressed under high salt concentration or low temperature treatment. The PMP3 gene is not essential under normal growth conditions. However, its deletion increases the plasma membrane potential and confers sensitivity to cytotoxic cations, such as Na(+) and hygromycin B. Interestingly, the disruption of PMP3 exacerbates the NaCl sensitivity phenotype of a mutant strain lacking the Pmr2p/Enap Na(+)-ATPases and the Nha1p Na(+)/H(+) antiporter, and suppresses the potassium dependency of a strain lacking the K(+) transporters, Trk1p and Trk2p. All these phenotypes could be reversed by the addition of high Ca(2+) concentration to the medium. These genetic interactions indicate that the major effect of the PMP3 deletion is a hyperpolarization of the plasma membrane potential that probably promotes a non-specific influx of monovalent cations. Expression of plant RCI2A in yeast could substitute for the loss of Pmp3p, indicating a common role for Pmp3p and the plant homologue.
Collapse
Affiliation(s)
- C Navarre
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Croix du Sud 2-20, 1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
50
|
Buschmann PH, Vaidyanathan R, Gassmann W, Schroeder JI. Enhancement of Na(+) uptake currents, time-dependent inward-rectifying K(+) channel currents, and K(+) channel transcripts by K(+) starvation in wheat root cells. PLANT PHYSIOLOGY 2000; 122:1387-97. [PMID: 10759535 PMCID: PMC58974 DOI: 10.1104/pp.122.4.1387] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/1999] [Accepted: 12/20/1999] [Indexed: 05/18/2023]
Abstract
Excessive low-affinity Na(+) uptake is toxic to the growth of glycophytic plants. Recently, several reports have suggested that the interaction between K(+) and Na(+) uptake might represent a key factor in determining the Na(+) tolerance of plants. We investigated the effects of K(+) starvation on Na(+) and K(+) uptake mechanisms in the plasma membrane of wheat (Triticum aestivum L.) root cortex cells using the patch-clamp technique. Unexpectedly, K(+) starvation of wheat seedlings was found to enhance the magnitude and frequency of occurrence of time-dependent inward-rectifying K(+) channel currents (I(K)(+)(in)). We examined whether the transcription of a wheat root K(+)(in) channel gene is induced by K(+) starvation. A cDNA coding for a wheat root K(+) channel homolog, TaAKT1 (accession no. AF207745), was isolated. TaAKT1 mRNA levels were up-regulated in roots in response to withdrawal of K(+) from the growth medium. Furthermore, K(+) starvation caused an enhancement of instantaneous Na(+) currents (I(Na)(+)). Electrophysiological analyses suggested that I(K)(+)(in) and I(Na)(+) are not mediated by the same transport protein based on: (a) different activation curves, (b) different time dependencies, (c) different sensitivities to external Ca(2+), and (d) different cation selectivities. These data implicate a role for I(Na)(+) in Na(+) uptake and stress during K(+) starvation, and indicate that K(+)(in) channels may contribute to K(+)-starvation-induced K(+) uptake in wheat roots.
Collapse
Affiliation(s)
- P H Buschmann
- Department of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | |
Collapse
|