1
|
Thomas TA, Francis RO, Zimring JC, Kao JP, Nemkov T, Spitalnik SL. The Role of Ergothioneine in Red Blood Cell Biology: A Review and Perspective. Antioxidants (Basel) 2024; 13:717. [PMID: 38929156 PMCID: PMC11200860 DOI: 10.3390/antiox13060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress can damage tissues and cells, and their resilience or susceptibility depends on the robustness of their antioxidant mechanisms. The latter include small molecules, proteins, and enzymes, which are linked together in metabolic pathways. Red blood cells are particularly susceptible to oxidative stress due to their large number of hemoglobin molecules, which can undergo auto-oxidation. This yields reactive oxygen species that participate in Fenton chemistry, ultimately damaging their membranes and cytosolic constituents. Fortunately, red blood cells contain robust antioxidant systems to enable them to circulate and perform their physiological functions, particularly delivering oxygen and removing carbon dioxide. Nonetheless, if red blood cells have insufficient antioxidant reserves (e.g., due to genetics, diet, disease, or toxin exposure), this can induce hemolysis in vivo or enhance susceptibility to a "storage lesion" in vitro, when blood donations are refrigerator-stored for transfusion purposes. Ergothioneine, a small molecule not synthesized by mammals, is obtained only through the diet. It is absorbed from the gut and enters cells using a highly specific transporter (i.e., SLC22A4). Certain cells and tissues, particularly red blood cells, contain high ergothioneine levels. Although no deficiency-related disease has been identified, evidence suggests ergothioneine may be a beneficial "nutraceutical." Given the requirements of red blood cells to resist oxidative stress and their high ergothioneine content, this review discusses ergothioneine's potential importance in protecting these cells and identifies knowledge gaps regarding its relevance in enhancing red blood cell circulatory, storage, and transfusion quality.
Collapse
Affiliation(s)
- Tiffany A. Thomas
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - Richard O. Francis
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joseph P. Kao
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Denver, CO 80203, USA
| | - Steven L. Spitalnik
- Laboratory of Transfusion Biology, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; (T.A.T.)
| |
Collapse
|
2
|
Matsubara A, Tanno H, Amekura S, Iida S, Yamamoto Y, Fujisawa A. 5- N-Carboxyimino-6-aminopyrimidine-2,4(3 H)-dione, a novel indicator for hypochlorite formation. J Clin Biochem Nutr 2024; 74:113-118. [PMID: 38510685 PMCID: PMC10948346 DOI: 10.3164/jcbn.23-67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 03/22/2024] Open
Abstract
Uric acid is an adequate and endogenous probe for identifying reactive oxygen or nitrogen species generated in vivo because its oxidation products are specific to reacted reactive oxygen or nitrogen species. Recently, we identified 5-N-carboxyimino-6-N-chloroaminopyrimidine-2,4(3H)-dione as a hypochlorite-specific oxidation product. 5-N-carboxyimino-6-N-chloroaminopyrimidine-2,4(3H)-dione was anticipated to be a biomarker for hypochlorite production in vivo. However, while it was stable in aqueous solution at weak acidic and alkaline pH (6.0-8.0), it was unstable in human plasma. In this study, we found that 5-N-carboxyimino-6-N-chloroaminopyrimidine-2,4(3H)-dione rapidly reacted with thiol compounds such as cysteine and glutathione to yield 5-N-carboxyimino-6-aminopyrimidine-2,4(3H)-dione, which was stable in human plasma unlike 5-N-carboxyimino-6-N-chloroaminopyrimidine-2,4(3H)-dione. 5-N-carboxyimino-6-aminopyrimidine-2,4(3H)-dione was produced upon uric acid degradation during myeloperoxidase-induced uric acid oxidation and lipopolysaccharide-induced pseudo-inflammation in collected 2,4(3H)-dione has potential as a marker for hypochlorite production in vivo.
Collapse
Affiliation(s)
- Aya Matsubara
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Haruki Tanno
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Sakiko Amekura
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Sayaka Iida
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Akio Fujisawa
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
3
|
Hondal RJ. Selenium vitaminology: The connection between selenium, vitamin C, vitamin E, and ergothioneine. Curr Opin Chem Biol 2023; 75:102328. [PMID: 37236134 PMCID: PMC10524500 DOI: 10.1016/j.cbpa.2023.102328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Selenium is connected to three small molecule antioxidant compounds, ascorbate, α-tocopherol, and ergothioneine. Ascorbate and α-tocopherol are true vitamins, while ergothioneine is a "vitamin-like" compound. Here we review how selenium is connected to all three. Selenium and vitamin E work together as a team to prevent lipid peroxidation. Vitamin E quenches lipid hydroperoxyl radicals and the resulting lipid hydroperoxide is then converted to the lipid alcohol by selenocysteine-containing glutathione peroxidase. Ascorbate reduces the resulting α-tocopheroxyl radical in this reaction back to α-tocopherol with concomitant production of the ascorbyl radical. The ascorbyl radical can be reduced back to ascorbate by selenocysteine-containing thioredoxin reductase. Ergothioneine and ascorbate are both water soluble, small molecule reductants that can reduce free radicals and redox-active metals. Thioredoxin reductase can reduce oxidized forms of ergothioneine. While the biological significance of this is not yet realized, this discovery underscores the centrality of selenium to all three antioxidants.
Collapse
Affiliation(s)
- Robert J Hondal
- Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, VT, 05405, USA.
| |
Collapse
|
4
|
Monsour CG, Tadle AB, Tafolla-Aguirre BJ, Lakshmanan N, Yoon JH, Sabio RB, Selke M. Singlet Oxygen Quenching by Resveratrol Derivatives. Photochem Photobiol 2023; 99:672-679. [PMID: 36031343 PMCID: PMC9971345 DOI: 10.1111/php.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
We investigated the singlet oxygen quenching ability of several derivatives of trans-resveratrol which have been reported to have significant antioxidant ability, including photoprotective activity. We measured the total rate constants of singlet oxygen removal (kT ) by the methylated resveratrol derivative 1,3-dimethoxy-5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene, and the partially methylated resveratrol derivatives 4-((E)-2-(3,5-dimethoxyphenyl)ethenyl)phenol (pterostilbene), 5-[(E)-2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol and (2R,3R)-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-2,3-dihydrochromen-4-one (dihydromyricetin). A protic solvent system results in higher kT values, except for the completely methylated derivative. We also investigated the ability of trans-resveratrol to directly act as a photosensitizer (rather than via secondary photoproducts resulting from other primary photochemical reactions) for the production of singlet oxygen but found that neither resveratrol nor any of its derivatives are able to do so. We then studied the chemical reactions of the methylated derivative with singlet oxygen. The main pathway consists of a [4 + 2] cycloaddition reaction involving the trans-double bond and the para-substituted benzene ring similar to what has been observed for trans-resveratrol. Unlike trans-resveratrol, the primary singlet oxygen product undergoes a second [4 + 2] cycloaddition with singlet oxygen leading to the formation of diendoperoxides. A second reactivity pathway for both trans-resveratrol and the methylated derivative leads to the formation of aldehydes via cleavage of a transient dioxetane.
Collapse
Affiliation(s)
- Charlotte G. Monsour
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Abegail B. Tadle
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | | | - Nidhi Lakshmanan
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Jin Hyeok Yoon
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Rhemrose B. Sabio
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| |
Collapse
|
5
|
Vahalová P, Cifra M. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:80-108. [PMID: 36336139 DOI: 10.1016/j.pbiomolbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Biological oxidation processes are in the core of life energetics, play an important role in cellular biophysics, physiological cell signaling or cellular pathophysiology. Understanding of biooxidation processes is also crucial for biotechnological applications. Therefore, a plethora of methods has been developed for monitoring oxidation so far, each with distinct advantages and disadvantages. We review here the available methods for monitoring oxidation and their basic characteristics and capabilities. Then we focus on a unique method - the only one that does not require input of additional external energy or chemicals - which employs detection of biological autoluminescence (BAL). We highlight the pros and cons of this method and provide an overview of how BAL can be used to report on various aspects of cellular oxidation processes starting from oxygen consumption to the generation of oxidation products such as carbonyls. This review highlights the application potential of this completely non-invasive and label-free biophotonic diagnostic method.
Collapse
Affiliation(s)
- Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
6
|
Nyssen P, Franck T, Serteyn D, Mouithys-Mickalad A, Hoebeke M. Propofol metabolites and derivatives inhibit the oxidant activities of neutrophils and myeloperoxidase. Free Radic Biol Med 2022; 191:164-175. [PMID: 36064069 DOI: 10.1016/j.freeradbiomed.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
In previous studies, propofol has shown immunomodulatory abilities on various in vitro models. As this anesthetic molecule is extensively used in intensive care units, its anti-inflammatory properties present a great interest for the treatment of inflammatory disorders like the systemic inflammatory response syndrome. In addition to its inhibition abilities on important neutrophils mechanisms (chemotaxis, reactive oxygen species (ROS) production, Neutrophil Extracellular Traps (NETs) formation, …), our group has shown that propofol is also a reversible inhibitor of the oxidant myeloperoxidase (MPO) activity. Propofol being subject to rapid metabolism, its derivatives could contribute to its anti-inflammatory action. First, propofol-β-glucuronide (PPFG), 2,6-diisopropyl-1,4-p-benzoquinone (PPFQ) and 3,5,3',5'-tetraisopropyl-(4,4')-diphenoquinone (PPFDQ) were compared on their superoxide (O2.-) scavenging properties and more importantly on their inhibitory action on the O2.- release by activated neutrophils using EPR spectroscopy and chemiluminescence assays. PPFQ and PPFDQ are potent superoxide scavengers and also inhibit the release of ROS by neutrophils. An Enzyme-Linked Immunosorbent Assay (ELISA) has also highlighted the ability of both molecules to significantly decrease the MPO degranulation process of neutrophils. Fluorescence enzymatic assays helped to investigate the action of the propofol derivatives on the peroxidase and chlorination activities of MPO. In addition, using SIEFED (Specific Immunological Extraction Followed by Enzyme Detection) assays and docking, we demonstrated the concentration-dependent inhibitory action of PPFQ and its ability to bind to the enzyme active site while PPFG presented a much weaker inhibitory action. Overall, the oxidation derivatives and metabolites PPFQ and PPFDQ can, at physiological concentrations, perpetuate the immunomodulatory action of propofol by acting on the oxidant response of PMN and MPO.
Collapse
Affiliation(s)
- Pauline Nyssen
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, University of Liège, Building B5a, Quartier Agora, Allée Du 6 Août, 19, 4000 Liège (Sart-Tilman), Belgium.
| | - Thierry Franck
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Didier Serteyn
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium; Department of Clinical Sciences, Anesthesiology and Equine Surgery, Faculty of Veterinary Medicine, University of Liège, Building B41, Quartier Vallée 2, Avenue de Cureghem 5, 4000 Liège (Sart-Tilman), Belgium
| | - Ange Mouithys-Mickalad
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Maryse Hoebeke
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, University of Liège, Building B5a, Quartier Agora, Allée Du 6 Août, 19, 4000 Liège (Sart-Tilman), Belgium
| |
Collapse
|
7
|
CUI Z, SHU Y, XIE X, JIN Y. Light-driven activation of NADPH oxidases. SCIENTIA SINICA VITAE 2022. [DOI: 10.1360/ssv-2022-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Ogawa H, Azuma M, Umeno A, Shimizu M, Murotomi K, Yoshida Y, Nishioka Y, Tsuneyama K. Singlet oxygen -derived nerve growth factor exacerbates airway hyperresponsiveness in a mouse model of asthma with mixed inflammation. Allergol Int 2022; 71:395-404. [PMID: 35346582 DOI: 10.1016/j.alit.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Refractory asthma, which is caused by several factors including neutrophil infiltration is a serious complication of bronchial asthma. We previously reported that nerve growth factor (NGF) is involved in AHR. NGF-derived induction of hyperalgesia is dependent on neutrophils; however, this relationship remains unclear in respiratory disease. In this study, we examined the roles of neutrophils and NGF in refractory asthma. METHODS Using intranasal house dust mite sensitization, we established a mouse model of asthma with mixed inflammation (Mix-in). AHR, NGF production and hyperinnervation of the lungs were examined with or without different inhibitory treatments. The levels of the singlet oxygen markers, 10- and 12-(Z,E)-hydroxyoctadecadienoic acids (HODE) in the lungs, were measured by liquid chromatography-tandem mass spectrometry. An in vitro experiment was also performed to evaluate the direct effect of singlet oxygen on NGF production. RESULTS NGF production and hyperinnervation were higher in Mix-in mice than in conventional eosinophilic-asthmatic mice and were positively correlated with AHR. Asthmatic parameters were inhibited by NGF neutralizing Abs and myeloperoxidase (MPO) inhibition. The 10- and 12-(Z,E)-HODEs levels were increased in the lungs and were positively correlated with MPO activity and NGF production. NGF was produced by bronchial epithelial cells in vitro upon stimulation with singlet oxygen. CONCLUSIONS Our findings suggest that neutrophil MPO-derived singlet oxygen induces increased NGF production, leading to AHR and 10- and 12-(Z,E)-HODEs production. These findings may help to develop new therapies targeting this mechanism and to establish a new biomarker for non-type 2 and refractory asthma.
Collapse
Affiliation(s)
- Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| | - Masahiko Azuma
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Research Center for Education of Health Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Aya Umeno
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; Department of Ophthalmology, Shimane University Faculty of Medicine, Shimane, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Mayuko Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazutoshi Murotomi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Yasukazu Yoshida
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; LG Japan Lab Inc., Kanagawa, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
9
|
Oxidized Forms of Ergothioneine Are Substrates for Mammalian Thioredoxin Reductase. Antioxidants (Basel) 2022; 11:antiox11020185. [PMID: 35204068 PMCID: PMC8868364 DOI: 10.3390/antiox11020185] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Ergothioneine (EGT) is a sulfur-containing amino acid analog that is biosynthesized in fungi and bacteria, accumulated in plants, and ingested by humans where it is concentrated in tissues under oxidative stress. While the physiological function of EGT is not yet fully understood, EGT is a potent antioxidant in vitro. Here we report that oxidized forms of EGT, EGT-disulfide (ESSE) and 5-oxo-EGT, can be reduced by the selenoenzyme mammalian thioredoxin reductase (Sec-TrxR). ESSE and 5-oxo-EGT are formed upon reaction with biologically relevant reactive oxygen species. We found that glutathione reductase (GR) can reduce ESSE, but only with the aid of glutathione (GSH). The reduction of ESSE by TrxR was found to be selenium dependent, with non-selenium-containing TrxR enzymes having little or no ability to reduce ESSE. In comparing the reduction of ESSE by Sec-TrxR in the presence of thioredoxin to that of GR/GSH, we find that the glutathione system is 10-fold more efficient, but Sec-TrxR has the advantage of being able to reduce both ESSE and 5-oxo-EGT directly. This represents the first discovered direct enzymatic recycling system for oxidized forms of EGT. Based on our in vitro results, the thioredoxin system may be important for EGT redox biology and requires further in vivo investigation.
Collapse
|
10
|
Golubewa L, Kulahava T, Klimovich A, Rutkauskas D, Matulaitiene I, Karpicz R, Belko N, Mogilevtsev D, Kavalenka A, Fetisova M, Karvinen P, Svirko Y, Kuzhir P. Visualizing hypochlorous acid production by human neutrophils with fluorescent graphene quantum dots. NANOTECHNOLOGY 2021; 33:095101. [PMID: 34818632 DOI: 10.1088/1361-6528/ac3ce4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In living organisms, redox reactions play a crucial role in the progression of disorders accompanied by the overproduction of reactive oxygen and reactive chlorine species, such as hydrogen peroxide and hypochlorous acid, respectively. We demonstrate that green fluorescence graphene quantum dots (GQDs) can be employed for revealing the presence of the hypochlorous acid in aqueous solutions and cellular systems. Hypochlorous acid modifies the oxygen-containing groups of the GQD, predominantly opens epoxide ring C-O-C, forms excessive C=O bonds and damages the carbonic core of GQDs. These changes, which depend on the concentration of the hypochlorous acid and exposure time, manifest themselves in the absorbance and fluorescence spectra of the GQD, and in the fluorescence lifetime. We also show that the GQD fluorescence is not affected by hydrogen peroxide. This finding makes GQDs a promising sensing agent for selective detecting reactive chlorine species produced by neutrophils. Neutrophils actively accumulate GQDs allowing to visualize cells and to examine the redox processes via GQDs fluorescence. At high concentrations GQDs induce neutrophil activation and myeloperoxidase release, leading to the disruption of GQD structure by the produced hypochlorous acid. This makes the GQDs a biodegradable material suitable for various biomedical applications.
Collapse
Affiliation(s)
- Lena Golubewa
- Department of Molecular Compounds Physics, State Research Institute Center for Physical Sciences and Technology, Vilnius, 10257, Lithuania
- Laboratory of Nanoelectromagnetics, Institute for Nuclear Problems of Belarusian State University, Minsk, 220006, Belarus
| | - Tatsiana Kulahava
- Laboratory of Nanoelectromagnetics, Institute for Nuclear Problems of Belarusian State University, Minsk, 220006, Belarus
| | - Aliona Klimovich
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Vilnius, 10257, Lithuania
| | - Danielis Rutkauskas
- Department of Molecular Compounds Physics, State Research Institute Center for Physical Sciences and Technology, Vilnius, 10257, Lithuania
| | - Ieva Matulaitiene
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Vilnius, 10257, Lithuania
| | - Renata Karpicz
- Department of Molecular Compounds Physics, State Research Institute Center for Physical Sciences and Technology, Vilnius, 10257, Lithuania
| | - Nikita Belko
- Laboratory of Spectroscopy, A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University, Minsk, 220045, Belarus
- Center of Quantum Optics and Quantum Information, B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Dmitri Mogilevtsev
- Center of Quantum Optics and Quantum Information, B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Alena Kavalenka
- Department of Biophysics, Physics Faculty, Belarusian State University, Minsk, 220030, Belarus
| | - Marina Fetisova
- Institute of Photonics, Department of Physics and Mathematics, University of Eastern Finland, Joensuu, 80101, Finland
| | - Petri Karvinen
- Institute of Photonics, Department of Physics and Mathematics, University of Eastern Finland, Joensuu, 80101, Finland
| | - Yuri Svirko
- Institute of Photonics, Department of Physics and Mathematics, University of Eastern Finland, Joensuu, 80101, Finland
| | - Polina Kuzhir
- Institute of Photonics, Department of Physics and Mathematics, University of Eastern Finland, Joensuu, 80101, Finland
| |
Collapse
|
11
|
Reactive Oxygen Species and Their Involvement in Red Blood Cell Damage in Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6639199. [PMID: 33708334 PMCID: PMC7932781 DOI: 10.1155/2021/6639199] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) released in cells are signaling molecules but can also modify signaling proteins. Red blood cells perform a major role in maintaining the balance of the redox in the blood. The main cytosolic protein of RBC is hemoglobin (Hb), which accounts for 95-97%. Most other proteins are involved in protecting the blood cell from oxidative stress. Hemoglobin is a major factor in initiating oxidative stress within the erythrocyte. RBCs can also be damaged by exogenous oxidants. Hb autoxidation leads to the generation of a superoxide radical, of which the catalyzed or spontaneous dismutation produces hydrogen peroxide. Both oxidants induce hemichrome formation, heme degradation, and release of free iron which is a catalyst for free radical reactions. To maintain the redox balance, appropriate antioxidants are present in the cytosol, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin 2 (PRDX2), as well as low molecular weight antioxidants: glutathione, ascorbic acid, lipoic acid, α-tocopherol, β-carotene, and others. Redox imbalance leads to oxidative stress and may be associated with overproduction of ROS and/or insufficient capacity of the antioxidant system. Oxidative stress performs a key role in CKD as evidenced by the high level of markers associated with oxidative damage to proteins, lipids, and DNA in vivo. In addition to the overproduction of ROS, a reduced antioxidant capacity is observed, associated with a decrease in the activity of SOD, GPx, PRDX2, and low molecular weight antioxidants. In addition, hemodialysis is accompanied by oxidative stress in which low-biocompatibility dialysis membranes activate phagocytic cells, especially neutrophils and monocytes, leading to a respiratory burst. This review shows the production of ROS under normal conditions and CKD and its impact on disease progression. Oxidative damage to red blood cells (RBCs) in CKD and their contribution to cardiovascular disease are also discussed.
Collapse
|
12
|
Mechanism of Microbicidal Action of E-101 Solution, a Myeloperoxidase-Mediated Antimicrobial, and Its Oxidative Products. Infect Immun 2019; 87:IAI.00261-19. [PMID: 31010816 PMCID: PMC6589053 DOI: 10.1128/iai.00261-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/14/2019] [Indexed: 01/15/2023] Open
Abstract
E-101 solution is a first-in-class myeloperoxidase-mediated antimicrobial developed for topical application. It is composed of porcine myeloperoxidase (pMPO), glucose oxidase (GO), glucose, sodium chloride, and specific amino acids in an aqueous solution. Once activated, the reactive species hydrogen peroxide (H2O2), hypochlorous acid, and singlet oxygen are generated. We evaluated the treatment effects of E-101 solution and its oxidative products on ultrastructure changes and microbicidal activity against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli Time-kill and transmission electron microscopy studies were also performed using formulations with pMPO or GO omitted. The glutathione membrane protection assay was used to study the neutralization of reactive oxygen species. The potency of E-101 solution was also measured in the presence of serum and whole blood by MIC and minimal bactericidal concentration (MBC) determinations. E-101 solution demonstrated rapid bactericidal activity and ultracellular changes in MRSA and E. coli cells. When pMPO was omitted, high levels of H2O2 generated from GO and glucose demonstrated slow microbicidal activity with minimal cellular damage. When GO was omitted from the formulation, no antimicrobial activity or cellular damage was observed. Protection from exposure to E-101 solution reactive oxygen species in the glutathione protection assay was competitive and temporary. E-101 solution maintained its antimicrobial activity in the presence of inhibitory substances, such as serum and whole blood. E-101 solution is a potent myeloperoxidase enzyme system with multiple oxidative mechanisms of action. Our findings suggest that the primary site where E-101 solution exerts microbicidal action is the cell membrane, by inactivation of essential cell membrane components.
Collapse
|
13
|
Oumari M, Goldfuss B, Stoffels C, Schmalz HG, Gründemann D. Regeneration of ergothioneine after reaction with singlet oxygen. Free Radic Biol Med 2019; 134:498-504. [PMID: 30721726 DOI: 10.1016/j.freeradbiomed.2019.01.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 01/09/2023]
Abstract
Ergothioneine (ET), an imidazole-2-thione derivative of histidine betaine, is generally considered an antioxidant. Important antioxidants are typically regenerated from their oxidized products, to prevent the interceptors from being lost after a single chemical reaction with a reactive oxygen species. However, no mechanism for the complete regeneration of ET has yet been uncovered. Here we define a non-enzymatic multi-step cycle for the regeneration of ET after reaction with singlet oxygen (1O2). All reaction steps were verified by density functional theory computations. Four molecules of GSH are used per turn to detoxify 1O2 to water. Pure 1O2 was generated by thermolysis at 37 °C of the endoperoxide DHPNO2. Addition of 1 mM ET to 10 mM DHPNO2 and 10 mM GSH increased the production of oxidized GSH (GSSG), measured by LC-MS/MS, by a factor of 26 (water) and 28 (D2O), respectively. In the same assay, the ring of ET alone was able to drive the cycle at equal speed; thus, the zwitterionic amino acid backbone was not involved. Our data suggest that ET reacts at least 4-fold faster with 1O2 than ascorbic acid. ET must now be viewed as tightly linked with the GSH/GSSG redox couple. The necessary thiol foundation is present in all mammalian and vertebrate cells, and also in all species that generate ET, such as cyanobacteria, mycobacteria, and fungi. Regeneration provides a decisive advantage for ET over other reactive, but non-recoverable, compounds. Our findings substantiate the importance of ET for the eradication of noxious 1O2.
Collapse
Affiliation(s)
- Mhmd Oumari
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Bernd Goldfuss
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Christopher Stoffels
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Dirk Gründemann
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931, Cologne, Germany.
| |
Collapse
|
14
|
Abstract
Growing evidence indicates intermediacy of singlet dioxygen (1O2) in a variety of pathophysiological processes. 1O2 has also found great utility of destructive actions for clinical and environmental applications. However, many details of the molecular mechanisms mediated by 1O2 remain insufficiently understood. Efforts to elucidate the 1O2 chemistry have been hampered by the lack of chemical tools capable of generation and detection of 1O2. In this review, I summarize the recent advances in the development of the chemical tools of 1O2. This article focuses on two topics. The first part introduces chemical methods for ground-state generation of 1O2. Designs of the molecular carriers of 1O2 are also explained. The second part discloses molecular probes of 1O2. The probes are categorized into three groups, depending on signaling modalities: absorption-based probes, photoluminescent probes, and chemiluminescent probes. Focus is on the molecular design to maximize the signaling actions. Disadvantages of using the probes are also discussed to motivate the future research. I hope that this review will serve as helpful guidance to the exploitation and development of the chemical tools of 1O2.
Collapse
Affiliation(s)
- Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
15
|
Chercheja S, Daum S, Xu HG, Beierlein F, Mokhir A. Hybrids of a 9-anthracenyl moiety and fluorescein as chemodosimeters for the detection of singlet oxygen in live cells. Org Biomol Chem 2019; 17:9883-9891. [DOI: 10.1039/c9ob02070e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient fluorogenic chemodosimeter for the detection of singlet oxygen was developed.
Collapse
Affiliation(s)
- Serghei Chercheja
- Department of Chemistry and Pharmacy
- Organic Chemistry II
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| | - Steffen Daum
- Department of Chemistry and Pharmacy
- Organic Chemistry II
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| | - Hong-Gui Xu
- Department of Chemistry and Pharmacy
- Organic Chemistry II
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| | - Frank Beierlein
- Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials
- Department of Chemistry and Pharmacy
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)
- 91052 Erlangen
- Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy
- Organic Chemistry II
- Friedrich-Alexander-University of Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| |
Collapse
|
16
|
Evidence for the Formation of Ozone (or Ozone-Like Oxidants) by the Reaction of Singlet Oxygen with Amino Acids. J CHEM-NY 2018. [DOI: 10.1155/2018/6145180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antibodies or some amino acids, namely, cysteine, methionine, histidine, and tryptophan, were previously reported to catalyse the conversion of singlet oxygen (1O2) to ozone (O3). The originally proposed mechanism for such biological ozone formation was that antibodies or amino acids catalyse the oxidation of water molecules by singlet oxygen to yield dihydrogen trioxide (HOOOH) as a precursor of ozone and hydrogen peroxide (H2O2). However, because HOOOH readily decomposes to form water and singlet oxygen rather than ozone and hydrogen peroxide, an alternative hypothesis has been proposed; ozone is formed due to the reaction of singlet oxygen with amino acids to form polyoxidic amino acid derivatives as ozone precursors. Evidence in support of the latter hypothesis is presented in this article, in that in the presence of singlet oxygen, methionine sulfoxide (RS(O)CH3), an oxidation product of methionine (RSCH3), was found to promote reactions that can best be attributed to the trioxidic anionic derivative RS+(OOO−)CH3 or ozone.
Collapse
|
17
|
Stoffels C, Oumari M, Perrou A, Termath A, Schlundt W, Schmalz HG, Schäfer M, Wewer V, Metzger S, Schömig E, Gründemann D. Ergothioneine stands out from hercynine in the reaction with singlet oxygen: Resistance to glutathione and TRIS in the generation of specific products indicates high reactivity. Free Radic Biol Med 2017; 113:385-394. [PMID: 29074402 DOI: 10.1016/j.freeradbiomed.2017.10.372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/24/2022]
Abstract
The candidate vitamin ergothioneine (ET), an imidazole-2-thione derivative of histidine betaine, is generally considered an antioxidant. However, the precise physiological role of ET is still unresolved. Here, we investigated in vitro the hypothesis that ET serves specifically to eradicate noxious singlet oxygen (1O2). Pure 1O2 was generated by thermolysis at 37°C of N,N'-di(2,3-dihydroxypropyl)-1,4-naphthalenedipropanamide 1,4-endoperoxide (DHPNO2). Assays of DHPNO2 with ET or hercynine (= ET minus sulfur) at pH 7.4 were analyzed by LC-MS in full scan mode to detect products. Based on accurate mass and product ion scan data, several products were identified and then quantitated as a function of time by selected reaction monitoring. All products of hercynine contained, after a [4+2] cycloaddition of 1O2, a carbonyl at position 2 of the imidazole ring. By contrast, because of the doubly bonded sulfur, we infer from the products of ET as the initial intermediates a 4,5-dioxetane (after [2+2] cycloaddition) and hydroperoxides at position 4 and 5 (after Schenck ene reactions). The generation of single products from ET, but not from hercynine, was fully resistant to a large excess of tris(hydroxymethyl)aminomethane (TRIS) or glutathione (GSH). This suggests that 1O2 markedly favors ET over GSH (at least 50-fold) and TRIS (at least 250-fold) for the initial reaction. Loss of ET was almost abolished in 5mM GSH, but not in 25mM TRIS. Regeneration of ET seems feasible, since some ET products - by contrast to hercynine products - decomposed easily in the MS collision cell to become aromatic again.
Collapse
Affiliation(s)
- Christopher Stoffels
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany
| | - Mhmd Oumari
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany
| | - Aris Perrou
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany
| | - Andreas Termath
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Waldemar Schlundt
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Mathias Schäfer
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939 Cologne, Germany
| | - Vera Wewer
- MS-Platform Biocenter, Cluster of Excellence on Plant Science (CEPLAS), University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Sabine Metzger
- MS-Platform Biocenter, Cluster of Excellence on Plant Science (CEPLAS), University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Edgar Schömig
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany
| | - Dirk Gründemann
- Department of Pharmacology, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany.
| |
Collapse
|
18
|
Jenie SNA, Plush SE, Voelcker NH. Singlet Oxygen Detection on a Nanostructured Porous Silicon Thin Film via Photonic Luminescence Enhancements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8606-8613. [PMID: 28412813 DOI: 10.1021/acs.langmuir.7b00522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Because reactive oxygen species are involved in a range of pathologies, developing analytical tools for this group of molecules opens new vistas for biomedical diagnostics. Herein, we fabricate a porous silicon microcavity (pSiMC) functionalized with luminescent singlet oxygen (1O2) probe EuA ((Eu(III)-2,2',2″-(10-(2-((4-(2-((4-(2-((anthracen-9-ylmethyl)amino)ethyl)-1H-1,2,3-triazol-1-yl)amino)-2-oxoethyl)-2-oxo-1,2-dihydroquinolin-7-yl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid) as proof of concept of an optical sensor for reactive oxygen species. We characterize each surface modification step of the pSiMC by means of FTIR and X-ray photoelectron spectroscopy as well as by determining the optical shifts of the resonance wavelength of the pSiMC. The luminescence signal upon detection of 1O2 on the EuA-modified pSiMC is enhanced ∼2-fold compared to that of a single layer and a detuned microcavity. The sensing performance of the EuA probe is improved significantly on the pSiMC compared to that in aqueous solution, giving a limit of 1O2 detection of 3.7 × 10-8 M.
Collapse
Affiliation(s)
- S N Aisyiyah Jenie
- Future Industries Institute, University of South Australia , Mawson Lakes, SA 5095, Australia
- Research Centre for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Pusat Penelitian, Ilmu Pengetahuan dan Teknologi (Centre for Research, Science and Technology-PUSPIPTEK), Serpong, Tangerang, Banten 15310, Indonesia
| | - Sally E Plush
- School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, SA 5000, Australia
| | - Nicolas H Voelcker
- Future Industries Institute, University of South Australia , Mawson Lakes, SA 5095, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| |
Collapse
|
19
|
Stief TW. Singlet Oxygen Enhances Intrinsic Thrombolysis: The Intrinsic Oxidative Clot Lysis Assay (INOXCLA). Clin Appl Thromb Hemost 2016; 13:369-83. [PMID: 17911188 DOI: 10.1177/1076029607306594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Granulocytes are important cells of inflammation and cellular thrombolysis. They produce urokinase (u-PA) and chloramines. In this study, u-PA/chloramine—mediated fibrinolysis is imitated in a microtiter-plate. Seventy-five microliters plasma are incubated with 50 μL 50% Pathromtin SL, 6% BSA, and 38 mM CaCl2 for 30 minutes (37°C). Then, 50 μL 10 mM chloramine-T in PBS are added. After 30 minutes (37°C), 50 μL 0, 100, or 10 IU/mL u-PA in 6% BSA-PBS are added and the turbidity is determined at 405 nm after 0, 3, or 16 hours. Clot lysis was increased more than tenfold by 0.5 to 1 μmoles chloramine (ED50 after 3h = about 0.25 μmoles = 2mM final concentration). The normal range for the present intrinsic oxidative clot lysis assay (INOXCLA) is 100% ± 25% (MV ± SD; 100 relative % of norm; the normal lysis being 60 absolute %; CVs < 10%). Fifty percent lysis of adherent microclots occurred after 0.75 hours, 2 hours, 14 hours, 13 days, or 17 days when using 1000, 100, 10, 1, or 0 IU/mL u-PA reagent. If the u-PA activity is quenched by PAI-2, no clot lysis appears. Chloramines are important physiologic generators of nonradical excited singlet oxygen and enhance u-PA—mediated lysis of plasma clots. Based on the u-PA/chloramines coaction, a new global fibrinolysis assay has been derived.
Collapse
Affiliation(s)
- Thomas W Stief
- Department of Clinical Chemistry, University Hospital Giesson and Morburg, Germany.
| |
Collapse
|
20
|
Murotomi K, Umeno A, Yasunaga M, Shichiri M, Ishida N, Abe H, Yoshida Y, Nakajima Y. Switching from singlet-oxygen-mediated oxidation to free-radical-mediated oxidation in the pathogenesis of type 2 diabetes in model mouse. Free Radic Res 2014; 49:133-8. [DOI: 10.3109/10715762.2014.985218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Five-year longitudinal assessment (2008 to 2012) of E-101 solution activity against clinical target and antimicrobial-resistant pathogens. Antimicrob Agents Chemother 2014; 58:4911-4. [PMID: 24841272 DOI: 10.1128/aac.03020-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study summarizes the topical E-101 solution susceptibility testing results for 760 Gram-positive and Gram-negative target pathogens collected from 75 U.S. sites between 2008 and 2012 and 103 ESKAPE pathogens. E-101 solution maintained potent activity against all bacterial species studied for each year tested, with MICs ranging from <0.008 to 0.25 μg porcine myeloperoxidase (pMPO)/ml. These results confirm that E-101 solution retains its potent broad-spectrum activity against U.S. clinical isolates and organisms with challenging resistance phenotypes.
Collapse
|
22
|
Abstract
Lipid hydroperoxides (LOOH) are formed in biological system by enzymatic and non-enzymatic pathways. These hydroperoxides exerts multiple damaging effects on cellular macromolecules and are also important regulators of cellular processes. Several classes of hydroperoxides including fatty acid, phospholipid, cholesterol and cholesteryl ester hydroperoxides have been detected and characterized both in vitro and in vivo. Although cells are normally endowed with enzymatic defenses capable to reduce LOOH to less reactive hydroxides, LOOH may accumulate in several pathological conditions and attention has been focused on elucidating their pathophysiological role. In the last years we have demonstrated the generation of singlet molecular oxygen (O2 (1)Δg or (1)O2) in several reactions involving LOOH. The generation of (1)O2 was directly evidenced by spectroscopic detection and characterization of its light emission at 1,270 nm. Moreover, using 18-oxygen labeled hydroperoxides (L(18)O(18)OH) we could detect the formation of (18)O-labeled (1)O2 by chemical trapping with anthracene derivatives followed by detection of the corresponding labeled endoperoxides by HPLC coupled to tandem mass spectrometry. The experimental evidences indicate that (1)O2 is generated at a yield close to 10 % by the Russell mechanism from LOOH, either free or in membranes, in the presence of biologically relevant oxidants, such as metal ions, peroxynitrite, HOCl and cytochrome c.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil,
| | | |
Collapse
|
23
|
Mazzone G, Alberto ME, Russo N, Sicilia E. Ab initio calculations on the 1O2 quenching mechanism by trans-resveratrol. Phys Chem Chem Phys 2014; 16:12773-81. [DOI: 10.1039/c4cp00754a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational exploration of possible reaction mechanisms of trans-resveratrol with singlet molecular oxygen shows benzaldehydes as the most probable products.
Collapse
Affiliation(s)
- Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- I-87036 Arcavacata di Rende, Italy
| | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- I-87036 Arcavacata di Rende, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- I-87036 Arcavacata di Rende, Italy
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- I-87036 Arcavacata di Rende, Italy
| |
Collapse
|
24
|
Winterbourn CC, Kettle AJ. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal 2013; 18:642-60. [PMID: 22881869 DOI: 10.1089/ars.2012.4827] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE When neutrophils kill microorganisms, they ingest them into phagosomes and bombard them with a burst of reactive oxygen species. RECENT ADVANCES This review focuses on what oxidants are produced and how they kill. The neutrophil NADPH oxidase is activated and shuttles electrons from NADPH in the cytoplasm to oxygen in the phagosomal lumen. Superoxide is generated in the narrow space between the ingested organism and the phagosomal membrane and kinetic modeling indicates that it reaches a concentration of around 20 μM. Degranulation leads to a very high protein concentration with up to millimolar myeloperoxidase (MPO). MPO has many substrates, but its main phagosomal reactions should be to dismutate superoxide and, provided adequate chloride, catalyze efficient conversion of hydrogen peroxide to hypochlorous acid (HOCl). Studies with specific probes have shown that HOCl is produced in the phagosome and reacts with ingested bacteria. The amount generated should be high enough to kill. However, much of the HOCl reacts with phagosomal proteins. Generation of chloramines may contribute to killing, but the full consequences of this are not yet clear. CRITICAL ISSUES Isolated neutrophils kill most of the ingested microorganisms rapidly by an MPO-dependent mechanism that is almost certainly due to HOCl. However, individuals with MPO deficiency rarely have problems with infection. A possible explanation is that HOCl provides a frontline response that kills most of the microorganisms, with survivors killed by nonoxidative processes. The latter may deal adequately with low-level infection but with high exposure, more efficient HOCl-dependent killing is required. FUTURE DIRECTIONS Better quantification of HOCl and other oxidants in the phagosome should clarify their roles in antimicrobial action.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand.
| | | |
Collapse
|
25
|
Parker H, Winterbourn CC. Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol 2013; 3:424. [PMID: 23346086 PMCID: PMC3549523 DOI: 10.3389/fimmu.2012.00424] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/23/2012] [Indexed: 12/20/2022] Open
Abstract
Neutrophils release extracellular traps (NETs) in response to a variety of inflammatory stimuli. These structures are composed of a network of chromatin strands associated with a variety of neutrophil-derived proteins including the enzyme myeloperoxidase (MPO). Studies into the mechanisms leading to the formation of NETs indicate a complex process that differs according to the stimulus. With some stimuli an active nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is required. However, assigning specific reactive oxygen species involved downstream of the oxidase is a difficult task and definitive proof for any single oxidant is still lacking. Pharmacological inhibition of MPO and the use of MPO-deficient neutrophils indicate active MPO is required with phorbol myristate acetate as a stimulus but not necessarily with bacteria. Reactive oxidants and MPO may also play a role in NET-mediated microbial killing. MPO is present on NETs and maintains activity at this site. Therefore, MPO has the potential to generate reactive oxidants in close proximity to trapped microorganisms and thus effect microbial killing. This brief review discusses current evidence for the involvement of reactive oxidants and MPO in NET formation and their potential contribution to NET antimicrobial activity.
Collapse
Affiliation(s)
- Heather Parker
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch Christchurch, New Zealand
| | | |
Collapse
|
26
|
In vitro and in vivo activities of E-101 solution against Acinetobacter baumannii isolates from U.S. military personnel. Antimicrob Agents Chemother 2011; 55:3603-8. [PMID: 21518842 DOI: 10.1128/aac.01606-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the in vitro and in vivo activity of a novel topical myeloperoxidase-mediated antimicrobial, E-101 solution, against 5 multidrug-resistant Acinetobacter baumannii isolates recovered from wounded American soldiers. Time-kill studies demonstrated rapid bactericidal activity against all A. baumannii strains tested in the presence of 3% blood. The in vitro bactericidal activity of E-101 solution against A. baumannii strains was confirmed in a full-thickness excision rat model. Additional in vivo studies appear warranted.
Collapse
|
27
|
Terao J, Minami Y, Bando N. Singlet molecular oxygen-quenching activity of carotenoids: relevance to protection of the skin from photoaging. J Clin Biochem Nutr 2010; 48:57-62. [PMID: 21297913 PMCID: PMC3022065 DOI: 10.3164/jcbn.11-008fr] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 09/24/2010] [Indexed: 02/02/2023] Open
Abstract
Carotenoids are known to be potent quenchers of singlet molecular oxygen [O2 (1Δg)]. Solar light-induced photooxidative stress causes skin photoaging by accelerating the generation of reactive oxygen species via photodynamic actions in which O2 (1Δg) can be generated by energy transfer from excited sensitizers. Thus, dietary carotenoids seem to participate in the prevention of photooxidative stress by accumulating as antioxidants in the skin. An in vivo study using hairless mice clarified that a O2 (1Δg) oxygenation-specific peroxidation product of cholesterol, cholesterol 5α-hydroperoxide, accumulates in skin lipids due to ultraviolet-A exposure. Matrix metalloproteinase-9, a metalloproteinase family enzyme responsible for the formation of wrinkles and sagging, was enhanced in the skin of ultraviolet-A -irradiated hairless mice. The activation of metalloproteinase-9 and the accumulation of 5α-hydroperoxide, as well as formation of wrinkles and sagging, were lowered in mice fed a β-carotene diet. These results strongly suggest that dietary β-carotene prevents the expression of metalloproteinase-9 (at least in part), by inhibiting the photodynamic action involving the formation of 5α-hydroperoxide in the skin. Intake of β-Carotene therefore appears to be helpful in slowing down ultraviolet-A -induced photoaging in human skin by acting as a O2 (1Δg) quencher.
Collapse
Affiliation(s)
- Junji Terao
- Department of Food Science, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | |
Collapse
|
28
|
Denys GA, Grover P, O'Hanley P, Stephens JT. In vitro antibacterial activity of E-101 Solution, a novel myeloperoxidase-mediated antimicrobial, against Gram-positive and Gram-negative pathogens. J Antimicrob Chemother 2010; 66:335-42. [PMID: 21118915 DOI: 10.1093/jac/dkq429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES E-101 Solution (E-101) is a novel myeloperoxidase-mediated antimicrobial. It is composed of porcine myeloperoxidase (pMPO), glucose oxidase, glucose as the substrate and specific amino acids in an aqueous vehicle. E-101 is being developed for topical application directly into surgical wounds to prevent surgical site infections (SSIs). The in vitro activity of E-101 was investigated. METHODS MIC, MBC, time-kill and antimicrobial combination experiments were performed according to CLSI guidelines with modifications. Resistance selection studies were performed using a serial passage method. RESULTS E-101 showed MIC(90) values of 0.03, 0.5 and 0.5 mg pMPO/L for staphylococci (n = 140), streptococci (n = 95) and enterococci (n = 55), respectively. MIC(90) values ranged between 0.03-0.5 and ≤ 0.004-0.12 mg pMPO/L for Enterobacteriaceae (n = 148) and Gram-negative non-Enterobacteriaceae (n = 92) strains, respectively. There was no antimicrobial tolerance to E-101 for Staphylococcus aureus, Streptococcus agalactiae or Streptococcus pyogenes. Time-kill studies demonstrated a rapid (<30 min) bactericidal effect against S. aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa in a concentration-dependent and time-dependent manner. There was no evidence of stable resistance to E-101 among staphylococci, enterococci, E. coli or P. aeruginosa strains and no evidence of E-101 interaction with antibiotics commonly used in clinical medicine. Conclusions E-101 shows potent and broad-spectrum in vitro activity against bacteria that are the causative pathogens of SSIs, thereby providing the impetus to test its clinical utility in the prevention of SSIs.
Collapse
Affiliation(s)
- Gerald A Denys
- Clarian Pathology Laboratory, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
29
|
Rahmanto AS, Morgan PE, Hawkins CL, Davies MJ. Cellular effects of photogenerated oxidants and long-lived, reactive, hydroperoxide photoproducts. Free Radic Biol Med 2010; 49:1505-15. [PMID: 20708682 DOI: 10.1016/j.freeradbiomed.2010.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 11/22/2022]
Abstract
Reaction of radicals and singlet oxygen ((1)O(2)) with proteins results in both direct damage and the formation of long-lived reactive hydroperoxides. Elevated levels of protein hydroperoxide-derived products have been detected in multiple human pathologies, suggesting that these secondary oxidants contribute to tissue damage. Previous studies have provided evidence for protein hydroperoxide-mediated inhibition of thiol-dependent enzymes and modulation of signaling processes in isolated systems. In this study (1)O(2) and hydroperoxides have been generated in J774A.1 macrophage-like cells using visible light and the photosensitizer rose bengal, with the consequences of oxidant formation examined both immediately and after subsequent (dark-phase) incubation. Significant losses of GSH (≤50%), total thiols (≤20%), and activity of thiol-dependent proteins (GAPDH, thioredoxin, protein tyrosine phosphatases, creatine kinase, and cathepsins B and L; 10-50% inhibition) were detected after 1 or 2 min photo-oxidation. Non-thiol-dependent enzymes were not affected. In contrast, NADPH levels increased, together with the activity of glutathione reductase, glutathione peroxidase, and thioredoxin reductase; these increases may be components of a rapid global cytoprotective cellular response to stress. Neither oxidized thioredoxin nor radical-mediated protein oxidation products were detected at significant levels. Further decreases in thiol levels and enzyme activity occurred during dark-phase incubation, with this accompanied by decreased cell viability. These secondary events are ascribed to the reactions of long-lived hydroperoxides, generated by (1)O(2)-mediated reactions. Overall, this study provides novel insights into early cellular responses to photo-oxidative damage and indicates that long-lived hydroperoxides can play a significant role in cellular damage.
Collapse
|
30
|
Shimizu T, Nakanishi Y, Nakahara M, Wada N, Moro-Oka Y, Hirano T, Konishi T, Matsugo S. Structure Effect on Antioxidant Activity of Catecholamines toward Singlet Oxygen and Other Reactive Oxygen Species in vitro. J Clin Biochem Nutr 2010; 47:181-90. [PMID: 21103026 PMCID: PMC2966927 DOI: 10.3164/jcbn.09-112] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 12/22/2009] [Indexed: 01/03/2023] Open
Abstract
The reactivity of catecholamine neurotransmitters and the related metabolites were precisely investigated toward 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and reactive oxygen species. Catecholamines reacted immediately with DPPH radicals, their reactivity being stronger than that of ascorbic acid as a reference. Superoxide scavenging activities of catecholamines determined by WST-1 and electron spin resonance (ESR) spin trapping methods were also high. Whereas tyrosine, the dopamine precursor showed no reactivity toward superoxide. The reactivity toward singlet oxygen was evaluated by observing specific photon emission from singlet oxygen. The results revealed that reactivity of catecholamines was markedly higher than that of sodium azide, and catechin as catechol reference. The reaction of catecholamines and singlet oxygen was further studied by ESR using 55-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trapping reagent and rose bengal as photosensitizer. DMPO-OH signal of epinephrine was significantly small compared to other catecholamines, catechin, and 4-methylcatechol as a reference compound and was as small as that of tyrosine. The signal formation was totally dependent on singlet oxygen, and the presence of catechol compounds. These results indicated that epinephrine is the most potent singlet oxygen quencher than other catecholamines, and the secondary amino group in its alkyl side chain could play a role in unique singlet oxygen quenching property of epinephrine.
Collapse
Affiliation(s)
- Takako Shimizu
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mansano FV, Kazaoka RMA, Ronsein GE, Prado FM, Genaro-Mattos TC, Uemi M, Mascio PD, Miyamoto S. Highly Sensitive Fluorescent Method for the Detection of Cholesterol Aldehydes Formed by Ozone and Singlet Molecular Oxygen. Anal Chem 2010; 82:6775-81. [DOI: 10.1021/ac1006427] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fernando V. Mansano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970, São Paulo, SP, Brazil
| | - Rafaella M. A. Kazaoka
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970, São Paulo, SP, Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970, São Paulo, SP, Brazil
| | - Fernanda M. Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970, São Paulo, SP, Brazil
| | - Thiago C. Genaro-Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970, São Paulo, SP, Brazil
| | - Miriam Uemi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970, São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970, São Paulo, SP, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970, São Paulo, SP, Brazil
| |
Collapse
|
32
|
van der Veen BS, de Winther MPJ, Heeringa P. Myeloperoxidase: molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal 2009; 11:2899-937. [PMID: 19622015 DOI: 10.1089/ars.2009.2538] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) is a heme-containing peroxidase abundantly expressed in neutrophils and to a lesser extent in monocytes. Enzymatically active MPO, together with hydrogen peroxide and chloride, produces the powerful oxidant hypochlorous acid and is a key contributor to the oxygen-dependent microbicidal activity of phagocytes. In addition, excessive generation of MPO-derived oxidants has been linked to tissue damage in many diseases, especially those characterized by acute or chronic inflammation. It has become increasingly clear that MPO exerts effects that are beyond its oxidative properties. These properties of MPO are, in many cases, independent of its catalytic activity and affect various processes involved in cell signaling and cell-cell interactions and are, as such, capable of modulating inflammatory responses. Given these diverse effects, an increased interest has emerged in the role of MPO and its downstream products in a wide range of inflammatory diseases. In this article, our knowledge pertaining to the biologic role of MPO and its downstream effects and mechanisms of action in health and disease is reviewed and discussed.
Collapse
Affiliation(s)
- Betty S van der Veen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | | | | |
Collapse
|
33
|
Lau V, Heyne B. Does the DNA Binding Mode of a Molecule Affect its Ability to Interact With Singlet Oxygen? Photochem Photobiol 2009; 85:1110-5. [DOI: 10.1111/j.1751-1097.2009.00559.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Prado FM, Oliveira MCB, Miyamoto S, Martinez GR, Medeiros MHG, Ronsein GE, Di Mascio P. Thymine hydroperoxide as a potential source of singlet molecular oxygen in DNA. Free Radic Biol Med 2009; 47:401-9. [PMID: 19426799 DOI: 10.1016/j.freeradbiomed.2009.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 04/28/2009] [Accepted: 05/01/2009] [Indexed: 11/23/2022]
Abstract
The decomposition of organic hydroperoxides into peroxyl radicals is a potential source of singlet molecular oxygen [O2 (1Deltag)] in biological systems. This study shows that 5-(hydroperoxymethyl)uracil (5-HPMU), a thymine hydroperoxide within DNA, reacts with metal ions or HOCl, generating O2 (1Deltag). Spectroscopic evidence for generation of O2 (1Deltag) was obtained by measuring (i) the bimolecular decay, (ii) the monomolecular decay, and (iii) the observation of D2O enhancement of O2 (1Deltag) production and the quenching effect of NaN3. Moreover, the presence of O2 (1Deltag) was unequivocally demonstrated by the direct characterization of the near-infrared light emission. For the sake of comparison, O2 (1Deltag) derived from the H2O2/HOCl system and from the thermolysis of the N,N'-di(2,3-dihydroxypropyl)-1,4-naphthalenedipropanamide endoperoxide was also monitored. More evidence of O2 (1Deltag) generation was obtained by chemical trapping of O2 (1Deltag) with anthracene-9,10-divinylsulfonate (AVS) and detection of the specific AVS endoperoxide by HPLC/MS/MS. The detection by HPLC/MS of 5-(hydroxymethyl)uracil and 5-formyluracil, two thymine oxidation products generated from the reaction of 5-HPMU and Ce4+ ions, supports the Russell mechanism. These photoemission properties and chemical trapping clearly demonstrate that the decomposition of 5-HPMU generates O2 (1Deltag) by the Russell mechanism and point to the involvement of O2 (1Deltag) in thymidine hydroperoxide cytotoxicity.
Collapse
Affiliation(s)
- Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Kohno M, Sato E, Yaekashiwa N, Mokudai T, Niwano Y. Proposed Mechanisms for HOOOH Formation in Two Typical Enzyme Reactions Responsible for Superoxide Anion Production in Biological Systems. CHEM LETT 2009. [DOI: 10.1246/cl.2009.302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Davies MJ, Hawkins CL, Pattison DI, Rees MD. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:1199-234. [PMID: 18331199 DOI: 10.1089/ars.2007.1927] [Citation(s) in RCA: 432] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A marked increase in interest has occurred over the last few years in the role that mammalian heme peroxidase enzymes, primarily myeloperoxidase, eosinophil peroxidase, and lactoperoxidase, may play in both disease prevention and human pathologies. This increased interest has been sparked by developments in our understanding of polymorphisms that control the levels of these enzymes, a greater understanding of the basic chemistry and biochemistry of the oxidants formed by these species, the development of specific biomarkers that can be used in vivo to detect damage induced by these oxidants, the detection of active forms of these peroxidases at most, if not all, sites of inflammation, and a correlation between the levels of these enzymes and a number of major human pathologies. This article reviews recent developments in our understanding of the enzymology, chemistry, biochemistry and biologic roles of mammalian peroxidases and the oxidants that they generate, the potential role of these oxidants in human disease, and the use of the levels of these enzymes in disease prognosis.
Collapse
Affiliation(s)
- Michael J Davies
- The Heart Research Institute, Camperdown, University of Sydney, Sydney, Australia., Faculty of Medicine, University of Sydney, Sydney, Australia.
| | | | | | | |
Collapse
|
37
|
Abstract
Activated polymorphonuclear neutrophils (PMN) participate in physiologic thrombolysis. PMN produce large amounts of urokinase (u-PA) and oxidants of the hypochlorite/chloramine-type that generate nonradical excited singlet oxygen ((1)O(2)). The u-PA/(1)O(2)-mediated thrombolysis was imitated in vitro. One hundred microliters microclots of normal human plasma were oxidized with 25 microL 0 to 5.0 micromoles of chloramine-T in physiol. NaCl in the absence or presence of 100 microL 6% bovine serum albumin or 100 microL normal plasma. Twenty-five microliters 0 to 167 IU/mL (related to 150 microL added supernatant) u-PA or 0 to 2.08 microg/mL t-PA were added. The absorbance at 405 nm was determined after 0 to 27 hours (37 degrees C). The specific clot turbidity was calculated, subtracting the 100% lysis absorbance from the respective measured absorbance. The chloramine-effective dose 50% (ED(50)) after 27 hours was determined in the presence of 2.6 IU/mL u-PA. The plasminogen activator-ED(25) was determined after 2 hours (37 degrees C), and the ET(25); i.e., the time needed to lyse a microclot by 25%, was determined for each respective clot-oxidation. The ED(25) of u-PA depends on the oxidation of the microclots: 1.25 micromoles chloramine/100 microL clot enhances thrombolysis approximately 20-fold; here, 25% of clot lysis is achieved within 50 minutes (using approximately 20 IU/mL u-PA), whereas approximately 5 hours are needed to lyse an unoxidized microclot by 25%. The present global assay technique imitates the u-PA/(1)O(2) aspects of physiologic thrombolysis by PMN.
Collapse
Affiliation(s)
- Thomas W Stief
- Department of Clinical Chemistry, University of Giessen & Marburg, Germany.
| |
Collapse
|
38
|
Cadet J, Ravanat JL, Martinez GR, Medeiros MHG, Di Mascio P. Singlet oxygen oxidation of isolated and cellular DNA: product formation and mechanistic insights. Photochem Photobiol 2007; 82:1219-25. [PMID: 16808595 DOI: 10.1562/2006-06-09-ir-914] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This survey focuses on recent aspects of the singlet oxygen oxidation of the guanine moiety of nucleosides, oligonucleotides, isolated and cellular DNA that has been shown to be the exclusive DNA target for this biologically relevant photogenerated oxidant. A large body of mechanistic data is now available from studies performed on nucleosides in both aprotic solvents and aqueous solutions. A common process to both reaction conditions is the formation of 8-oxo-7,8-dihydroguanine by reduction of 8-hydroperoxyguanine that arises from the rearrangement of initially formed endoperoxide across the 4,8-bond of the purine moiety. However, in organic solvent the hydroperoxide is converted as a major degradation pathway into a dioxirane that subsequently decomposes into a complex pattern of oxidation products. A different reaction that involved the formation of a highly reactive quinonoid intermediate consecutively to the loss of a water molecule from the 8-hydroperoxide has been shown to occur in aqueous solution. Subsequent addition of a water molecule at C5 leads to the generation of a spiroiminodihy-dantoin compound via a rearrangement that involves an acyl shift. However, in both isolated and cellular DNA the latter decomposition pathway is at the best a minor process, because only 8-oxo-7,8-dihydroguanine has been found to be generated. It is interesting to point out that singlet oxygen has been shown to contribute predominantly to the formation of 8-oxo-7,8-dihydroguanine in the DNA of bacterial and human cells upon exposure to UVA radiation. It may be added that the formation of secondary singlet-oxygen oxidation products of 8-oxo-7,8-dihydroguanine, including spiroiminodihydantoin and oxaluric acid that were characterized in nucleosides and oligonucleotide, respectively, have not yet been found in cellular DNA.
Collapse
Affiliation(s)
- Jean Cadet
- Laboratoire Lésions des Acides Nucléiques, DRFMC/SCIB-UMR-E No. 3 (CEA/UJF), CEA/Grenoble, F-38054 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
39
|
Zanocco AL, Meléndrez M, Günther G, Lemp E. Study of Singlet Oxygen Equilibrium in Dioctadecyldimethylammonium Chloride Vesicles Employing 2-(n-(N,N,N-trimethylamine)-n-alkyl)- 5-alkylfuryl Halides†. Photochem Photobiol 2007; 83:584-91. [PMID: 17115800 DOI: 10.1562/2006-08-01-ra-991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Steady state photolysis and time resolved near infrared luminescence detection were employed to study the reaction kinetics of singlet oxygen with three different lipid-soluble probes incorporated in large unilamellar dioctadecyldimethylammonium chloride (DODAC) vesicles. The probes: 2-(4-(N,N,N-trimethylamine)-butyl)-5-dodecylfuryl bromide (DFTA), 2-(12-(N,N,N-trimethylamine)-dodecyl)-5-hexylfuryl bromide (HFDA) and 2-(1-(N,N,N-trimethylamine)-methyl)-5-methylfuryl iodide (MFMA) are useful in studying both singlet oxygen dynamics and its equilibrium in microcompartmentalized systems because they are actinometers in lipidic microphases. These probes contain a reactive furan ring, which will be located at different depths in the bilayer of DODAC vesicles. In the limit of the approximations, the result indicates an inhomogeneous equilibrium distribution of singlet oxygen across the bilayer. The calculated mean partitioning constant of singlet oxygen equals 2.8 and 8.3 at 20 degrees C and 40 degrees C, respectively, in the order of the previously reported constants for other microorganized systems such as sodium dodecylsulfate and cetyltrimethylammonium halide micelles and water/oil microemulsions.
Collapse
Affiliation(s)
- Antonio L Zanocco
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Santiago, Chile.
| | | | | | | |
Collapse
|
40
|
Doronicheva N, Yasui H, Sakurai H. Chemical structure-dependent differential effects of flavonoids on the catalase activity as evaluated by a chemiluminescent method. Biol Pharm Bull 2007; 30:213-7. [PMID: 17268053 DOI: 10.1248/bpb.30.213] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The antioxidative activity of flavonoids depends upon a combination of many factors, such as the concentration and chemical structure of the flavonoids and the arrangement of functional groups in their structure. In the present study, to evaluate the antioxidative effect of several types of flavonoids on catalase activity at a physiological H2O2 concentration, a chemiluminescent (CL) method was used. The H2O2/luminol-dependent CL intensity in a system containing 3.7 nM catalase and low concentrations (10-100 nM) of green tea flavanols (epigallocatechin gallate; EGCG and epicatechin gallate; EG) was enhanced in comparison with that of a system without catalase, suggesting that EGCG and EG partially suppressed catalase activity. On the other hand, flavone and flavonols such as rutin (a 3-glycosidic flavone), quercitrin (a 3-glycosidic flavonol), myricetin, and kaempferol (flavonols), respectively, lowered the CL intensity to a greater extent at low concentrations (<0.1 microM) when catalase was present than when catalase was absent, indicating that these flavonoids activate catalase. In addition, isoflavone and flavanone such as daidzein and naringenin, respectively, exhibited weak antioxidative activities against H2O2 without any effect on the catalase activity over a wide range of flavonoid concentrations (0.04-0.4 microM). From these results, it was for the first time suggested that the binding of flavonoids to the heme moiety or a protein region of catalase contributes to the enhancement of catalase activity.
Collapse
Affiliation(s)
- Nataliya Doronicheva
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Japan
| | | | | |
Collapse
|
41
|
Voeikov VL. Reactive Oxygen Species—(ROS) Pathogens or Sources of Vital Energy? Part 1. ROS in Normal and Pathologic Physiology of Living Systems. J Altern Complement Med 2006; 12:111-8. [PMID: 16566669 DOI: 10.1089/acm.2006.12.111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Free radicals and reactive oxygen species (ROS) are considered to be dangerous pathogens as they may damage key molecular constituents of cells. However this concept approach does not take into account vital functions of ROS in normal physiology. Information has emerged that a substantial share of oxygen consumed by aerobic organisms is used for ROS production and that ROS are indispensable for regulation of multiple functions of living cells. Yet, each cell is equipped with powerful means to eliminate ROS immediately. Explanations of the mechanisms of regulatory action of ROS upon a wide spectrum of biochemical and physiologic reactions and of ROS therapeutic efficacy raise serious problems in the framework of the conventional biochemical paradigm. Here data concerning ROS production and utilization are considered with an emphasis on an apparent paradox: Why does the body produce a lot of ROS and then eliminate them as soon as they appear?
Collapse
|
42
|
Yasui H, Hayashi S, Sakurai H. Possible involvement of singlet oxygen species as multiple oxidants in p450 catalytic reactions. Drug Metab Pharmacokinet 2005; 20:1-13. [PMID: 15770070 DOI: 10.2133/dmpk.20.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 (P450) constitutes a superfamily of enzymes which activate dioxygen and carry out monooxygenation reactions of large numbers of endogenous and xenobiotic compounds. Drug metabolism is a particularly important P450 function, and, therefore, elucidating the metabolic products and pathways of drugs is essential for drug development. To explain the substrate selectivity of P450 reactions, it is necessary to understand the formation of multiple activated oxygen species to determine the type of catalyzed reactions, in addition to conducting structure analyses of P450s. Although an oxo-Fe(IV)-porphyrin-pi-cation radical is regarded as an activated oxygen species in P450 reactions, a nucleophilic Fe(III)-peroxo species has also been proposed as another oxidant. In the past decade, various studies indicated that P450-catalyzed oxygenations are complex, and that a single reaction pathway cannot explain all of the experimental results. In addition, the microsomal P450 system is known to generate reactive oxygen species (ROS). However, the contribution of ROS to P450 reactions remains unclear. We recently found that singlet oxygen (1O2) was involved in both several rat liver microsomal P450 reactions and four human CYP subfamily activities, as confirmed by the ESR spin-trapping method. In this review, we describe the studies that have been conducted on the detection and characterization of ROS in P450 reactions related to drug metabolism that involve the possibility of 1O2 in the P450 catalytic cycle. Gaining an understanding of the activated oxygen species that determine the type of drug metabolism will help us to predict the important metabolites formed.
Collapse
Affiliation(s)
- Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | |
Collapse
|
43
|
Adam W, Kazakov DV, Kazakov VP. Singlet-Oxygen Chemiluminescence in Peroxide Reactions. Chem Rev 2005; 105:3371-87. [PMID: 16159156 DOI: 10.1021/cr0300035] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Waldemar Adam
- Institut für Organische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | |
Collapse
|
44
|
Heyne B, Brault D, Fontaine-Aupart MP, Kohnen S, Tfibel F, Mouithys-Mickalad A, Deby-Dupont G, Hans P, Hoebeke M. Reactivity towards singlet oxygen of propofol inside liposomes and neuronal cells. Biochim Biophys Acta Gen Subj 2005; 1724:100-7. [PMID: 15878638 DOI: 10.1016/j.bbagen.2005.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 03/30/2005] [Accepted: 04/01/2005] [Indexed: 11/21/2022]
Abstract
Singlet oxygen (1O2), a reactive oxygen species, has been found to be implicated in many cellular events and pathological disorders. Herein, we investigated the reactivity of 1O2 towards the anaesthetic agent propofol (PPF) encapsulated within DMPC liposomes. By time resolved luminescence, the rate constant of 1O2 quenching by PPF was evaluated, depending on the location of the sensitizer, with following values: 1.35+/-0.05x10(7) M(-1) s(-1) for deuteroporphyrin (as embedded source) and 0.8+/-0.04x10(7) M(-1) s(-1) for uroporphyrin (as external source), respectively. The nature of the oxidation product, resulting from the reaction of 1O2 with PPF, was determined using absorption and HPLC techniques. Finally, the in vitro protective effect of PPF towards the 1O2-induced neuronal cell toxicity was evaluated in terms of cell viability.
Collapse
Affiliation(s)
- B Heyne
- Department of Physics, Institute of Physics (B5), Biomedical Spectroscopy (C.O.R.D.), University of Liège, Allée du 6 Août, 17, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Neutrophilic polymorphonuclear leukocytes (neutrophils) are highly specialized for their primary function, the phagocytosis and destruction of microorganisms. When coated with opsonins (generally complement and/or antibody), microorganisms bind to specific receptors on the surface of the phagocyte and invagination of the cell membrane occurs with the incorporation of the microorganism into an intracellular phagosome. There follows a burst of oxygen consumption, and much, if not all, of the extra oxygen consumed is converted to highly reactive oxygen species. In addition, the cytoplasmic granules discharge their contents into the phagosome, and death of the ingested microorganism soon follows. Among the antimicrobial systems formed in the phagosome is one consisting of myeloperoxidase (MPO), released into the phagosome during the degranulation process, hydrogen peroxide (H2O2), formed by the respiratory burst and a halide, particularly chloride. The initial product of the MPO-H2O2-chloride system is hypochlorous acid, and subsequent formation of chlorine, chloramines, hydroxyl radicals, singlet oxygen, and ozone has been proposed. These same toxic agents can be released to the outside of the cell, where they may attack normal tissue and thus contribute to the pathogenesis of disease. This review will consider the potential sources of H2O2 for the MPO-H2O2-halide system; the toxic products of the MPO system; the evidence for MPO involvement in the microbicidal activity of neutrophils; the involvement of MPO-independent antimicrobial systems; and the role of the MPO system in tissue injury. It is concluded that the MPO system plays an important role in the microbicidal activity of phagocytes.
Collapse
Affiliation(s)
- Seymour J Klebanoff
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195-7185, USA.
| |
Collapse
|
46
|
Morgan PE, Dean RT, Davies MJ. Protective mechanisms against peptide and protein peroxides generated by singlet oxygen. Free Radic Biol Med 2004; 36:484-96. [PMID: 14975451 DOI: 10.1016/j.freeradbiomed.2003.11.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 10/16/2003] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
Reaction of certain amino acids, peptides, and proteins with singlet oxygen yields substrate-derived peroxides. Recent studies have shown that these species are formed within intact cells and can inactivate key cellular enzymes. This study examines potential mechanisms by which cells might remove or detoxify such peroxides. It is shown that catalase, horseradish peroxidase, and Cu/Zn superoxide dismutase do not react rapidly with these peroxides. Oxymyoglobin and oxyhemoglobin, but not the met (Fe3+) forms of these proteins, react with peptide but not protein, peroxides with oxidation of the heme iron. Glutathione peroxidase, in the presence of reduced glutathione (GSH) rapidly removes peptide, but not protein, peroxides, consistent with substrate size being a key factor. Protein thiols, GSH, other low-molecular-weight thiols, and the seleno-compound ebselen react, in a nonstoichiometric manner, with both peptide and protein peroxides. Cell lysate studies show that thiol consumption and peroxide removal occur in parallel; the stoichiometry of these reactions suggests that thiol groups are the major direct, or indirect, reductants for these species. Ascorbic acid and some derivatives can remove both the parent peroxides and radicals derived from them, whereas methionine and the synthetic phenolic antioxidants Probucol and BHT show little activity. These studies show that cells do not have efficient enzymatic defenses against protein peroxides, with only thiols and ascorbic acid able to remove these materials; the slow removal of these species is consistent with protein peroxides playing a role in cellular dysfunction resulting from oxidative stress.
Collapse
Affiliation(s)
- Philip E Morgan
- Free Radical Group, The Heart Research Institute, Camperdown, Sydney, NSW, Australia
| | | | | |
Collapse
|
47
|
Arisawa F, Tatsuzawa H, Kambayashi Y, Kuwano H, Fujimori K, Nakano M. MCLA-dependent chemiluminescence suggests that singlet oxygen plays a pivotal role in myeloperoxidase-catalysed bactericidal action in neutrophil phagosomes. LUMINESCENCE 2003; 18:229-38. [PMID: 12950060 DOI: 10.1002/bio.728] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria ingested by a neutrophil are located in phagosomes in which H(2)O(2) is produced through the NADPH oxidase-dependent respiratory burst. Myeloperoxidase (MPO) plays important role in the bactericidal action of phagosomes. MPO catalyses the reaction of H(2)O(2) and Cl(-) to produce HClO. The chemical mechanism behind the bactericidal action of the MPO-H(2)O(2)-Cl(-) system is unclear. Bactericidal action may result from (a) the direct reactions of HOCl with biological components (through amine chlorination) or (b) (1)O(2), formed non-enzymatically from HOCl and H(2)O(2), that mainly works to kill microorganisms through bacterial respiratory chain injury. To answer this question, we developed a Cypridina luciferin analogue (MCLA)-dependent chemiluminescence method to determine the rate of formation of (1)O(2) from a (1)O(2) source at pH 4.5-9.0. Using the MCLA-dependent chemiluminescence method, we found that the rate of formation of (1)O(2) from the MPO-H(2)O(2)-Cl(-) system peaked at pH 7.0. Segal et al. (28) reported that almost all Staphylococcus aureus is killed 2 min after phagocytosis by neutrophils where the phagosomal pH is 7.4-7.75. However, amine chlorination by HOCl did not proceed at pH > 7.0. Moreover, the bactericidal activities of the MPO-H(2)O(2)-Cl(-) system with Escherichia coli at pH 4.5 and 8.0 were paralleled by the rate of formation of (1)O(2). Combining these observations and the results reported by Segal et al., we concluded that (1)O(2) is a major chemical species in the killing of bacteria in neutrophil phagosomes.
Collapse
Affiliation(s)
- Fumio Arisawa
- Department of Surgery 1, Gunma University Faculty of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Schweitzer C, Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 2003; 103:1685-757. [PMID: 12744692 DOI: 10.1021/cr010371d] [Citation(s) in RCA: 1332] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Claude Schweitzer
- Institut für Physikalische und Theoretische Chemie, Johann Wolfgang Goethe-Universität, Marie-Curie-Strasse 11, D60439 Frankfurt am Main, Germany
| | | |
Collapse
|
49
|
Tarr M, Valenzeno DP. Singlet oxygen: the relevance of extracellular production mechanisms to oxidative stress in vivo. Photochem Photobiol Sci 2003; 2:355-61. [PMID: 12760529 DOI: 10.1039/b211778a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the physiological relevance of 1O2 independent of photosensitization has been controversial, we review proposed reaction mechanisms for its extracellular production in vivo and discuss the relevance of this production to oxidative stress. We conclude that extracellular 1O2 production by the spontaneous dismutation of O2*- does have physiological relevance. Also, extracellular 1O2 production by the eosinophil peroxidase-H2O2-bromide system could have physiological relevance. As regards the other reactions discussed in this review, the evidence is not sufficient to warrant any conclusions as to the physiological relevance of these to extracellular 1O2 production. What is evident is that the microenvironment will have a significant influence on the success or failure of extracellular 1O2 production. To date, most demonstrations of 1O2 production by physiologically relevant mechanisms have used conditions that minimize competitive reactions. More research demonstrating how physiologically relevant competitive reactions influence extracellular 1O2 production is needed.
Collapse
Affiliation(s)
- Merrill Tarr
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 7401, USA.
| | | |
Collapse
|
50
|
Morgan PE, Dean RT, Davies MJ. Inhibition of glyceraldehyde-3-phosphate dehydrogenase by peptide and protein peroxides generated by singlet oxygen attack. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1916-25. [PMID: 11952793 DOI: 10.1046/j.1432-1033.2002.02845.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reaction of certain peptides and proteins with singlet oxygen (generated by visible light in the presence of rose bengal dye) yields long-lived peptide and protein peroxides. Incubation of these peroxides with glyceraldehyde-3-phosphate dehydrogenase, in the absence of added metal ions, results in loss of enzymatic activity. Comparative studies with a range of peroxides have shown that this inhibition is concentration, peroxide, and time dependent, with H2O2 less efficient than some peptide peroxides. Enzyme inhibition correlates with loss of both the peroxide and enzyme thiol residues, with a stoichiometry of two thiols lost per peroxide consumed. Blocking the thiol residues prevents reaction with the peroxide. This stoichiometry, the lack of metal-ion dependence, and the absence of electron paramagnetic resonance (EPR)-detectable species, is consistent with a molecular (nonradical) reaction between the active-site thiol of the enzyme and the peroxide. A number of low-molecular-mass compounds including thiols and ascorbate, but not Trolox C, can prevent inhibition by removing the initial peroxide, or species derived from it. In contrast, glutathione reductase and lactate dehydrogenase are poorly inhibited by these peroxides in the absence of added Fe2+-EDTA. The presence of this metal-ion complex enhanced the inhibition observed with these enzymes consistent with the occurrence of radical-mediated reactions. Overall, these studies demonstrate that singlet oxygen-mediated damage to an initial target protein can result in selective subsequent damage to other proteins, as evidenced by loss of enzymatic activity, via the formation and subsequent reactions of protein peroxides. These reactions may be important in the development of cellular dysfunction as a result of photo-oxidation.
Collapse
Affiliation(s)
- Philip E Morgan
- EPR Group, The Heart Research Institute, Sydney, New South Wales, Australia
| | | | | |
Collapse
|