1
|
Li J, Liu Y, Kong L, Xu E, Zou Y, Zhang P, Zhang W, Chen X. An intracellular transporter OsNRAMP7 is required for distribution and accumulation of iron into rice grains. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111831. [PMID: 37598889 DOI: 10.1016/j.plantsci.2023.111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and human health. Plants have evolved an efficient transport system for absorbing and redistributing Fe from the soil to other organs; however, the molecular mechanisms underlying Fe loading into grains are poorly understood. Our study shows that OsNRAMP7, a member of the natural resistance-associated macrophage protein (NRAMP) family, is a rice Fe transporter that localizes to the Golgi and trans-Golgi network (TGN). OsNRAMP7 was highly expressed in leaf blade, node I, pollen, and vascular tissues of almost tissues at the rice flowering stage. OsNRAMP7 knockdown by RNA interference (RNAi) increased Fe accumulation in the flag leaf blade, but decreased the Fe concentration in node I and rice grains. In addition, the knockdown of OsNRAMP7 also reduced grain fertility, pollen viability, and grain Fe concentration in the paddy fields; OsNRAMP7 overexpression significantly promoted Fe accumulation in the grains. Thus, our results suggest that OsNRAMP7 is required for the distribution and accumulation of Fe in rice grains and its overexpression could be a novel strategy for Fe biofortification in staple food crops.
Collapse
Affiliation(s)
- Jingjun Li
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanyuan Liu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Linghui Kong
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
2
|
Yang Y, Xie P, Li Y, Bi Y, Prusky DB. Updating Insights into the Regulatory Mechanisms of Calcineurin-Activated Transcription Factor Crz1 in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1082. [PMID: 36294647 PMCID: PMC9604740 DOI: 10.3390/jof8101082] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Ca2+, as a second messenger in cells, enables organisms to adapt to different environmental stresses by rapidly sensing and responding to external stimuli. In recent years, the Ca2+ mediated calcium signaling pathway has been studied systematically in various mammals and fungi, indicating that the pathway is conserved among organisms. The pathway consists mainly of complex Ca2+ channel proteins, calcium pumps, Ca2+ transporters and many related proteins. Crz1, a transcription factor downstream of the calcium signaling pathway, participates in regulating cell survival, ion homeostasis, infection structure development, cell wall integrity and virulence. This review briefly summarizes the Ca2+ mediated calcium signaling pathway and regulatory roles in plant pathogenic fungi. Based on discussing the structure and localization of transcription factor Crz1, we focus on the regulatory role of Crz1 on growth and development, stress response, pathogenicity of pathogenic fungi and its regulatory mechanisms. Furthermore, we explore the cross-talk between Crz1 and other signaling pathways. Combined with the important role and pathogenic mechanism of Crz1 in fungi, the new strategies in which Crz1 may be used as a target to explore disease control in practice are also discussed.
Collapse
Affiliation(s)
- Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov B. Prusky
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
3
|
Li Y, Li J, Yu Y, Dai X, Gong C, Gu D, Xu E, Liu Y, Zou Y, Zhang P, Chen X, Zhang W. The tonoplast-localized transporter OsNRAMP2 is involved in iron homeostasis and affects seed germination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4839-4852. [PMID: 33864461 DOI: 10.1093/jxb/erab159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Vacuolar storage of iron (Fe) is important for Fe homeostasis in plants. When sufficient, excess Fe could be stored in vacuoles for remobilization in the case of Fe deficiency. Although the mechanism of Fe remobilization from vacuoles is critical for crop development under low Fe stress, the transporters that mediate vacuolar Fe translocation into the cytosol in rice remains unknown. Here, we showed that under high Fe2+ concentrations, the Δccc1 yeast mutant transformed with the rice natural resistance-associated macrophage protein 2 gene (OsNRAMP2) became more sensitive to Fe toxicity. In rice protoplasts and transgenic plants expressing Pro35S:OsNRAMP2-GFP, OsNRAMP2 was localized to the tonoplast. Vacuolar Fe content in osnramp2 knockdown lines was higher than in the wild type, while the growth of osnramp2 knockdown plants was significantly influenced by Fe deficiency. Furthermore, the germination of osnramp2 knockdown plants was arrested. Conversely, the vacuolar Fe content of Pro35S:OsNRAMP2-GFP lines was significantly lower than in the wild type, and overexpression of OsNRAMP2 increased shoot biomass under Fe deficiency. Taken together, we propose that OsNRAMP2 transports Fe from the vacuole to the cytosol and plays a pivotal role in seed germination.
Collapse
Affiliation(s)
- Yun Li
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Jingjun Li
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Yihong Yu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Xia Dai
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Changyi Gong
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Dongfang Gu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Yiheng Liu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
The pH-sensing Rim101 pathway positively regulates the transcriptional expression of the calcium pump gene PMR1 to affect calcium sensitivity in budding yeast. Biochem Biophys Res Commun 2020; 532:453-458. [PMID: 32891431 DOI: 10.1016/j.bbrc.2020.08.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 08/22/2020] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the Rim101 pathway senses extracellular pH changes through a complex consisted of Rim8, Rim9 and Rim21 at the plasma membrane. Activation of this sensor complex induces a proteolytical complex composed of Rim13 and Rim20 and leads to the C-terminal processing and activation of the transcription factor Rim101. Deletion mutants for RIM8, RIM9, RIM13, RIM20, RIM21 and RIM101 causes yeast cells to be sensitive to calcium stress, but how they regulate calcium sensitivity remain unknown. Here we show that deletion mutations of these six Rim101 pathway components elevate the activation level of the calcium/calcineurin signaling and the transcriptional expression level of the vacuolar calcium pump gene PMC1, but lead to a reduction in transcriptional expression level of the ER/Golgi calcium pump gene PMR1 in yeast cells. Deletion of NRG1, encoding one of the repression targets of Rim101, rescues the transcriptional expression of PMR1 in all these mutants. Furthermore, ectopic expression of a constitutively active form of Rim101 or further deletion of NRG1 suppresses the calcium sensitivity of these six deletion mutants. Therefore, the pH-sensing Rim101 pathway positively regulates the transcriptional expression of PMR through its downstream target Nrg1 to affect the calcium sensitivity of yeast cells.
Collapse
|
5
|
Muncanovic D, Justesen MH, Preisler SS, Pedersen PA. Characterization of Hailey-Hailey Disease-mutants in presence and absence of wild type SPCA1 using Saccharomyces cerevisiae as model organism. Sci Rep 2019; 9:12442. [PMID: 31455819 PMCID: PMC6712213 DOI: 10.1038/s41598-019-48866-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/12/2019] [Indexed: 01/07/2023] Open
Abstract
Hailey-Hailey disease is an autosomal genetic disease caused by mutations in one of the two ATP2C1 alleles encoding the secretory pathway Ca2+/Mn2+-ATPase, hSPCA1. The disease almost exclusively affects epidermis, where it mainly results in acantholysis of the suprabasal layers. The etiology of the disease is complex and not well understood. We applied a yeast based complementation system to characterize fourteen disease-causing ATP2C1 missense mutations in presence or absence of wild type ATP2C1 or ATP2A2, encoding SERCA2. In our yeast model system, mutations in ATP2C1 affected Mn2+ transport more than Ca2+ transport as twelve out of fourteen mutations were unable to complement Mn2+ sensitivity while thirteen out of fourteen to some extent complemented the high Ca2+requirement. Nine out of fourteen mutations conferred a cold sensitive complementation capacity. In absence of a wild type ATP2C1 allele, twelve out of fourteen mutations induced an unfolded protein response indicating that in vivo folding of hSPCA1 is sensitive to disease causing amino acid substitutions and four of the fourteen mutations caused the hSPCA1 protein to accumulate in the vacuolar membrane. Co-expression of either wild type ATP2C1 or ATP2A2 prevented induction of the unfolded protein response and hSPCA1 mis-localization.
Collapse
Affiliation(s)
- Daniel Muncanovic
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark
| | - Mette Heberg Justesen
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark
| | - Sarah Spruce Preisler
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark
| | - Per Amstrup Pedersen
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, OE, Denmark.
| |
Collapse
|
6
|
Jiang L, Xu D, Hameed A, Fang T, Bakr Ahmad Fazili A, Asghar F. The plasma membrane protein Rch1 and the Golgi/ER calcium pump Pmr1 have an additive effect on filamentation in Candida albicans. Fungal Genet Biol 2018; 115:1-8. [PMID: 29621626 DOI: 10.1016/j.fgb.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 03/18/2018] [Accepted: 04/01/2018] [Indexed: 12/17/2022]
Abstract
Pmr1 is the Golgi/ER calcium pump, while Rch1 is a newly identified negative regulator of calcium influx in the plasma membrane of yeast cells. We show here that CaRch1 plays a dominant role over CaPmr1 in response of Candida albicans to SDS and tunicamycin stresses, while CaPmr1 has a major role in cell wall stress. Deletion of CaRCH1 increases the calcium/calcineurin signaling level in cells lacking CaPMR1. Calcineurin function is required for the role of CaRch1 in SDS stresses, while it is required for the function of CaPmr1 under all conditions examined. Disruption of CaRCH1 alone does not reduce the cell wall chitin, mannan or β-glucan content, but lack of CaRCH1 slightly decreases the chitin content of cells lacking CaPMR1. Furthermore, CaRch1 and CaPmr1 have an additive effect on filamentation of C. albicans cells in vitro. Cells lacking both CaRCH1 and CaPMR1 and cells lacking CaPMR1 alone show a similar degree of virulence attenuation, being much more attenuated than cells lacking CaRCH1 alone. Therefore, CaRch1 genetically interacts with CaPmr1 in the regulation of in vitro filamentation in C. albicans.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Dayong Xu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Ahsan Hameed
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Abu Bakr Ahmad Fazili
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Faiza Asghar
- Laboratory for Yeast Molecular and Cell Biology, The Research Center of Fermentation Technology, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| |
Collapse
|
7
|
H + and Pi Byproducts of Glycosylation Affect Ca 2+ Homeostasis and Are Retrieved from the Golgi Complex by Homologs of TMEM165 and XPR1. G3-GENES GENOMES GENETICS 2017; 7:3913-3924. [PMID: 29042410 PMCID: PMC5714488 DOI: 10.1534/g3.117.300339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glycosylation reactions in the Golgi complex and the endoplasmic reticulum utilize nucleotide sugars as donors and produce inorganic phosphate (Pi) and acid (H+) as byproducts. Here we show that homologs of mammalian XPR1 and TMEM165 (termed Erd1 and Gdt1) recycle luminal Pi and exchange luminal H+ for cytoplasmic Ca2+, respectively, thereby promoting growth of yeast cells in low Pi and low Ca2+ environments. As expected for reversible H+/Ca2+ exchangers, Gdt1 also promoted growth in high Ca2+ environments when the Golgi-localized V-ATPase was operational but had the opposite effect when the V-ATPase was eliminated. Gdt1 activities were negatively regulated by calcineurin signaling and by Erd1, which recycled the Pi byproduct of glycosylation reactions and prevented the loss of this nutrient to the environment via exocytosis. Thus, Erd1 transports Pi in the opposite direction from XPR1 and other EXS family proteins and facilitates byproduct removal from the Golgi complex together with Gdt1.
Collapse
|
8
|
Jogawat A, Vadassery J, Verma N, Oelmüller R, Dua M, Nevo E, Johri AK. PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Sci Rep 2016; 6:36765. [PMID: 27849025 PMCID: PMC5111105 DOI: 10.1038/srep36765] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/20/2016] [Indexed: 12/04/2022] Open
Abstract
In this study, yeast HOG1 homologue from the root endophyte Piriformospora indica (PiHOG1) was isolated and functionally characterized. Functional expression of PiHOG1 in S. cerevisiae ∆hog1 mutant restored osmotolerance under high osmotic stress. Knockdown (KD) transformants of PiHOG1 generated by RNA interference in P. indica showed that genes for the HOG pathway, osmoresponse and salinity tolerance were less stimulated in KD-PiHOG1 compared to the wild-type under salinity stress. Furthermore, KD lines are impaired in the colonization of rice roots under salinity stress of 200 mM NaCl, and the biomass of the host plants, their shoot and root lengths, root number, photosynthetic pigment and proline contents were reduced as compared to rice plants colonized by WT P. indica. Therefore, PiHOG1 is critical for root colonisation, salinity tolerance and the performance of the host plant under salinity stress. Moreover, downregulation of PiHOG1 resulted not only in reduced and delayed phosphorylation of the remaining PiHOG1 protein in colonized salinity-stressed rice roots, but also in the downregulation of the upstream MAP kinase genes PiPBS2 and PiSSK2 involved in salinity tolerance signalling in the fungus. Our data demonstrate that PiHOG1 is not only involved in the salinity response of P. indica, but also helping host plant to overcome salinity stress.
Collapse
Affiliation(s)
- Abhimanyu Jogawat
- School of Life Sciences Jawaharlal Nehru University, New Delhi-110067, India
| | | | - Nidhi Verma
- School of Life Sciences Jawaharlal Nehru University, New Delhi-110067, India
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Eviatar Nevo
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa, 3498838, Israel
| | - Atul Kumar Johri
- School of Life Sciences Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
9
|
Zhao Y, Xu H, Zhang Y, Jiang L. Vcx1-D1 (M383I), the Vcx1 mutant with a calcineurin-independent vacuolar Ca(2+)/H(+) exchanger activity, confers calcineurin-independent Mn(2+) tolerance in Saccharomyces cerevisiae. Can J Microbiol 2016; 62:475-84. [PMID: 27100389 DOI: 10.1139/cjm-2015-0595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Vcx1-M1 mutant is known to confer calcineurin-dependent Mn(2+) tolerance in budding yeast. Here, we demonstrate that another Vcx1 mutant, Vcx1-D1 with calcineurin-independent vacuolar Ca(2+)/H(+) exchanger activity, confers calcineurin-independent Mn(2+) tolerance. Unlike Vcx1-M1, the Mn(2+) tolerance conferred by Vcx1-D1 is dependent on the presence of Pmr1 or Pmc1. The Pmr1-dependent Mn(2+) tolerance of Vcx1-D1 requires the presence of calcineurin but not the functioning of the Ca(2+)/calcineurin signaling pathway. Similar to the wild-type Vcx1, C-terminally green fluorescent protein tagged Vcx1-D1 and Vcx1-M1 mutants localize to the endoplasmic reticulum instead of its normal vacuolar destination, but they remain functional in Ca(2+) sensitivity and Mn(2+) tolerance.
Collapse
Affiliation(s)
- Yunying Zhao
- a The State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,b The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Huihui Xu
- b The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yan Zhang
- b The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Linghuo Jiang
- a The State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,b The National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
10
|
Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation. Sci Rep 2016; 6:24282. [PMID: 27075443 PMCID: PMC4830978 DOI: 10.1038/srep24282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/22/2016] [Indexed: 11/30/2022] Open
Abstract
Calcium signaling depends on a tightly regulated set of pumps, exchangers, and channels that are responsible for controlling calcium fluxes between the different subcellular compartments of the eukaryotic cell. We have recently reported that two members of the highly-conserved UPF0016 family, human TMEM165 and budding yeast Gdt1p, are functionally related and might form a new group of Golgi-localized cation/Ca2+ exchangers. Defects in the human protein TMEM165 are known to cause a subtype of Congenital Disorders of Glycosylation. Using an assay based on the heterologous expression of GDT1 in the bacterium Lactococcus lactis, we demonstrated the calcium transport activity of Gdt1p. We observed a Ca2+ uptake activity in cells expressing GDT1, which was dependent on the external pH, indicating that Gdt1p may act as a Ca2+/H+ antiporter. In yeast, we found that Gdt1p controls cellular calcium stores and plays a major role in the calcium response induced by osmotic shock when the Golgi calcium pump, Pmr1p, is absent. Importantly, we also discovered that, in the presence of a high concentration of external calcium, Gdt1p is required for glycosylation of carboxypeptidase Y and the glucanosyltransferase Gas1p. Finally we showed that glycosylation process is restored by providing more Mn2+ to the cells.
Collapse
|
11
|
Li LH, Tian XR, Jiang Z, Zeng LW, He WF, Hu ZP. The Golgi Apparatus: Panel Point of Cytosolic Ca(2+) Regulation. Neurosignals 2016; 21:272-84. [PMID: 23796968 DOI: 10.1159/000350471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/05/2013] [Indexed: 12/21/2022] Open
Abstract
The Golgi apparatus (GA), an intermediate organelle of the cell inner membrane system, plays a key role in protein glycosylation and secretion. In recent years, this organelle has been found to act as a vital intracellular Ca(2+) store because different Ca (2+) regulators, such as the inositol-1,4,5-triphosphate receptor, sarco/endoplasmic reticulum Ca(2+) -ATPase and secretory pathway Ca 2+ -ATPase, were demonstrated to localize on their membrane. The mechanisms involved in Ca(2+) release and uptake in the GA have now been established.Here, based on careful backward looking on compartments and patterns in GA Ca (2+) regulation, we review neurological diseases related to GA calcium remodeling and propose a modified cytosolic Ca(2+) adjustment model, in which GA acts as part of the panel point.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Neurology, Second Xiangya Hospital, Central-South University, Changsha; School of Medicine, Jishou University, Jishou , PR China
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Calcium is an essential cation for a cell. This cation participates in the regulation of numerous processes in either prokaryotes or eukaryotes, from bacteria to humans. Saccharomyces cerevisiae has served as a model organism to understand calcium homeostasis and calcium-dependent signaling in fungi. In this chapter it will be reviewed known and predicted transport mechanisms that mediate calcium homeostasis in the yeast. How and when calcium enters the cell, how and where it is stored, when is reutilized, and finally secreted to the environment to close the cycle. As a second messenger, maintenance of a controlled free intracellular calcium concentration is important for mediating transcriptional regulation. Many environmental stimuli modify the concentration of cytoplasmic free calcium generating the "calcium signal". This is sensed and transduced through the calmodulin/calcineurin pathway to a transcription factor, named calcineurin-responsive zinc finger, CRZ, also known as "crazy", to mediate transcriptional regulation of a large number of genes of diverse pathways including a negative feedback regulation of the calcium homeostasis system.
Collapse
Affiliation(s)
- Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
13
|
D'hooge P, Coun C, Van Eyck V, Faes L, Ghillebert R, Mariën L, Winderickx J, Callewaert G. Ca(2+) homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca(2+) storage. Cell Calcium 2015; 58:226-35. [PMID: 26055636 DOI: 10.1016/j.ceca.2015.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
Yeast has proven to be a powerful tool to elucidate the molecular aspects of several biological processes in higher eukaryotes. As in mammalian cells, yeast intracellular Ca(2+) signalling is crucial for a myriad of biological processes. Yeast cells also bear homologs of the major components of the Ca(2+) signalling toolkit in mammalian cells, including channels, co-transporters and pumps. Using yeast single- and multiple-gene deletion strains of various plasma membrane and organellar Ca(2+) transporters, combined with manipulations to estimate intracellular Ca(2+) storage, we evaluated the contribution of individual transport systems to intracellular Ca(2+) homeostasis. Yeast strains lacking Pmr1 and/or Cod1, two ion pumps implicated in ER/Golgi Ca(2+) homeostasis, displayed a fragmented vacuolar phenotype and showed increased vacuolar Ca(2+) uptake and Ca(2+) influx across the plasma membrane. In the pmr1Δ strain, these effects were insensitive to calcineurin activity, independent of Cch1/Mid1 Ca(2+) channels and Pmc1 but required Vcx1. By contrast, in the cod1Δ strain increased vacuolar Ca(2+) uptake was not affected by Vcx1 deletion but was largely dependent on Pmc1 activity. Our analysis further corroborates the distinct roles of Vcx1 and Pmc1 in vacuolar Ca(2+) uptake and point to the existence of not-yet identified Ca(2+) influx pathways.
Collapse
Affiliation(s)
- Petra D'hooge
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Catherina Coun
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Vincent Van Eyck
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Liesbeth Faes
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Ruben Ghillebert
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Lore Mariën
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Joris Winderickx
- Functional Biology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium.
| | - Geert Callewaert
- The Yeast Hub Lab, KU Leuven, Campus Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| |
Collapse
|
14
|
Yang L, Xie L, Xue B, Goodwin PH, Quan X, Zheng C, Liu T, Lei Z, Yang X, Chao Y, Wu C. Comparative transcriptome profiling of the early infection of wheat roots by Gaeumannomyces graminis var. tritici. PLoS One 2015; 10:e0120691. [PMID: 25875107 PMCID: PMC4397062 DOI: 10.1371/journal.pone.0120691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/25/2015] [Indexed: 12/15/2022] Open
Abstract
Take-all, which is caused by the fungal pathogen, Gaeumannomyces graminis var. tritici (Ggt), is an important soil-borne root rot disease of wheat occurring worldwide. However, the genetic basis of Ggt pathogenicity remains unclear. In this study, transcriptome sequencing for Ggt in axenic culture and Ggt-infected wheat roots was performed using Illumina paired-end sequencing. Approximately 2.62 and 7.76 Gb of clean reads were obtained, and 87% and 63% of the total reads were mapped to the Ggt genome for RNA extracted from Ggt in culture and infected roots, respectively. A total of 3,258 differentially expressed genes (DEGs) were identified with 2,107 (65%) being 2-fold up-regulated and 1,151 (35%) being 2-fold down-regulated between Ggt in culture and Ggt in infected wheat roots. Annotation of these DEGs revealed that many were associated with possible Ggt pathogenicity factors, such as genes for guanine nucleotide-binding protein alpha-2 subunit, cellulase, pectinase, xylanase, glucosidase, aspartic protease and gentisate 1, 2-dioxygenase. Twelve DEGs were analyzed for expression by qRT-PCR, and could be generally divided into those with high expression only early in infection, only late in infection and those that gradually increasing expression over time as root rot developed. This indicates that these possible pathogenicity factors may play roles during different stages of the interaction, such as signaling, plant cell wall degradation and responses to plant defense compounds. This is the first study to compare the transcriptomes of Ggt growing saprophytically in axenic cultures to it growing parasitically in infected wheat roots. As a result, new candidate pathogenicity factors have been identified, which can be further examined by gene knock-outs and other methods to assess their true role in the ability of Ggt to infect roots.
Collapse
Affiliation(s)
- Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Lihua Xie
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Baoguo Xue
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Xin Quan
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| | - Chuanlin Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Taiguo Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhensheng Lei
- Research Centre for Wheat, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Xiaojie Yang
- Economic Crop Research Institute, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Yueen Chao
- Research Centre for Wheat, Henan Academy of Agricultural Science, Zhengzhou, P. R. China
| | - Chao Wu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Henan Key Laboratory for Control of Crop Diseases and Insect Pests, IPM Key Laboratory in Southern Part of North China for Ministry of Agriculture, Zhengzhou, P. R. China
| |
Collapse
|
15
|
Expression of NYV1 encoding the negative regulator of Pmc1 is repressed by two transcriptional repressors, Nrg1 and Mig1. FEBS Lett 2014; 588:3195-201. [PMID: 25017437 DOI: 10.1016/j.febslet.2014.06.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022]
Abstract
ESCRT components function to form multivesicular bodies for sorting of proteins destined to the yeast vacuole. The calcium hypersensitivity of ESCRT mutants is mainly due to repressed expression of PMR1 through the Rim101/Nrg1 pathway in budding yeast. Here, we show that overexpression of PMC1 and its negative regulator gene NYV1 suppresses and increases calcium hypersensitivity of ESCRT mutants, respectively. Consistently, deletion of NYV1 suppresses their calcium hypersensitivity. Expression of NYV1 is dramatically reduced in ESCRT mutants. Promoter analysis demonstrates that both Nrg1 and Mig1 repress NYV1 expression. Deletion of ESCRTs increases Nrg1 binding, but not Mig1-binding, to the NYV1 promoter. Deletion of MIG1 increases calcium sensitivity of ESCRT mutants due to derepression of NYV1 expression.
Collapse
|
16
|
Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells. Proc Natl Acad Sci U S A 2013; 110:6859-64. [PMID: 23569283 DOI: 10.1073/pnas.1219871110] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Defects in the human protein TMEM165 are known to cause a subtype of Congenital Disorders of Glycosylation. Transmembrane protein 165 (TMEM165) belongs to an uncharacterized family of membrane proteins called Uncharacterized Protein Family 0016, which are well conserved throughout evolution and share characteristics reminiscent of the cation/Ca(2+) exchanger superfamily. Gcr1 dependent translation factor 1 (Gdt1p), the budding yeast member of this family, contributes to Ca(2+) homeostasis via an uncharacterized Ca(2+) transport pathway localized in the Golgi apparatus. The gdt1Δ mutant was found to be sensitive to high concentrations of Ca(2+), and interestingly, this sensitivity was suppressed by expression of TMEM165, the human ortholog of Gdt1p, indicating conservation of function among the members of this family. Patch-clamp analyses on human cells indicated that TMEM165 expression is linked to Ca(2+) ion transport. Furthermore, defects in TMEM165 affected both Ca(2+) and pH homeostasis. Based on these results, we propose that Gdt1p and TMEM165 could be members of a unique family of Golgi-localized Ca(2+)/H(+) antiporters and that modification of the Golgi Ca(2+) and pH balance could explain the glycosylation defects observed in TMEM165-deficient patients.
Collapse
|
17
|
Bodvard K, Jörhov A, Blomberg A, Molin M, Käll M. The yeast transcription factor Crz1 is activated by light in a Ca2+/calcineurin-dependent and PKA-independent manner. PLoS One 2013; 8:e53404. [PMID: 23335962 PMCID: PMC3546054 DOI: 10.1371/journal.pone.0053404] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022] Open
Abstract
Light in the visible range can be stressful to non-photosynthetic organisms. The yeast Saccharomyces cerevisiae has earlier been reported to respond to blue light via activation of the stress-regulated transcription factor Msn2p. Environmental changes also induce activation of calcineurin, a Ca(2+)/calmodulin dependent phosphatase, which in turn controls gene transcription by dephosphorylating the transcription factor Crz1p. We investigated the connection between cellular stress caused by blue light and Ca(2+) signalling in yeast by monitoring the nuclear localization dynamics of Crz1p, Msn2p and Msn4p. The three proteins exhibit distinctly different stress responses in relation to light exposure. Msn2p, and to a lesser degree Msn4p, oscillate rapidly between the nucleus and the cytoplasm in an apparently stochastic fashion. Crz1p, in contrast, displays a rapid and permanent nuclear localization induced by illumination, which triggers Crz1p-dependent transcription of its target gene CMK2. Moreover, increased extracellular Ca(2+) levels stimulates the light-induced responses of all three transcription factors, e.g. Crz1p localizes much quicker to the nucleus and a larger fraction of cells exhibits permanent Msn2p nuclear localization at higher Ca(2+) concentration. Studies in mutants lacking Ca(2+) transporters indicate that influx of extracellular Ca(2+) is crucial for the initial stages of light-induced Crz1p nuclear localization, while mobilization of intracellular Ca(2+) stores appears necessary for a sustained response. Importantly, we found that Crz1p nuclear localization is dependent on calcineurin and the carrier protein Nmd5p, while not being affected by increased protein kinase A activity (PKA), which strongly inhibits light-induced nuclear localization of Msn2/4p. We conclude that the two central signalling pathways, cAMP-PKA-Msn2/4 and Ca(2+)-calcineurin-Crz1, are both activated by blue light illumination.
Collapse
Affiliation(s)
- Kristofer Bodvard
- Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Bowman BJ, Abreu S, Johl JK, Bowman EJ. The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa. EUKARYOTIC CELL 2012; 11:1362-70. [PMID: 22983986 PMCID: PMC3486030 DOI: 10.1128/ec.00105-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/06/2012] [Indexed: 12/17/2022]
Abstract
The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.
Collapse
Affiliation(s)
- Barry J Bowman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | | | | | | |
Collapse
|
19
|
Zhao Y, Du J, Zhao G, Jiang L. Activation of calcineurin is mainly responsible for the calcium sensitivity of gene deletion mutations in the genome of budding yeast. Genomics 2012; 101:49-56. [PMID: 23026396 DOI: 10.1016/j.ygeno.2012.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 01/20/2023]
Abstract
Here we have identified 120 gene deletion mutants that are sensitive to 0.4M calcium in Saccharomyces cerevisiae. Twenty-seven of these mutants are of genes involved in the vacuolar protein sorting pathway, including those encoding the seven components of the ESCRT complexes, and ten of them encode the components and assembly factors of the vacuolar H(+)-ATPase. Both Mediator and Paf1 complexes modulating the activity of the general transcription machinery are involved in the calcium sensitivity of yeast cells. Most of these mutants show elevated intracellular calcium contents in response to calcium stress. The calcium sensitivity of 106 mutants can be completely suppressed by 10mM Mg(2+), 56 of which can also be suppressed by the inhibitor of calcineurin, cyclosporine A. Therefore, the calcium sensitivity of nearly a half of these 120 mutations is at least partially due to the activation of calcineurin and can be modulated by magnesium ion.
Collapse
Affiliation(s)
- Yunying Zhao
- The State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | | |
Collapse
|
20
|
Yu Q, Wang H, Xu N, Cheng X, Wang Y, Zhang B, Xing L, Li M. Spf1 strongly influences calcium homeostasis, hyphal development, biofilm formation and virulence in Candida albicans. Microbiology (Reading) 2012; 158:2272-2282. [DOI: 10.1099/mic.0.057232-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Hui Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Ning Xu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Xinxin Cheng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Yuzhou Wang
- Experimental Animal Center, College of Life Science, Nankai University, Tianjin, PR China
| | - Biao Zhang
- Tianjin Traditional Chinese Medicine University, Tianjin, PR China
| | - Laijun Xing
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| |
Collapse
|
21
|
Curwin AJ, von Blume J, Malhotra V. Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast. Mol Biol Cell 2012; 23:2327-38. [PMID: 22553351 PMCID: PMC3374751 DOI: 10.1091/mbc.e11-09-0826] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sorting of secretory cargo from the Golgi remains an elusive process. Previously a role was identified for cofilin and the Ca2+ATPase SPCA1 in sorting of secretory cargo from the Golgi of mammalian cells. Now it is shown that the yeast orthologues cofilin and Pmr1 are also required for sorting of selective secretory cargo at the Golgi in yeast. The mechanism of cargo sorting at the trans-Golgi network (TGN) for secretion is poorly understood. We previously reported the involvement of the actin-severing protein cofilin and the Ca2+ ATPase secretory pathway calcium ATPase 1 (SPCA1) in the sorting of soluble secretory cargo at the TGN in mammalian cells. Now we report that cofilin in yeast is required for export of selective secretory cargo at the late Golgi membranes. In cofilin mutant (cof1-8) cells, the cell wall protein Bgl2 was secreted at a reduced rate and retained in a late Golgi compartment, whereas the plasma membrane H+ ATPase Pma1, which is transported in the same class of carriers, reached the cell surface. In addition, sorting of carboxypeptidase Y (CPY) to the vacuole was delayed, and CPY was secreted from cof1-8 cells. Loss of the yeast orthologue of SPCA1 (Pmr1) exhibited similar sorting defects and displayed synthetic sickness with cof1-8. In addition, overexpression of PMR1 restored Bgl2 secretion in cof1-8 cells. These findings highlight the conserved role of cofilin and SPCA1/Pmr1 in sorting of the soluble secretory proteins at the TGN/late Golgi membranes in eukaryotes.
Collapse
Affiliation(s)
- Amy J Curwin
- Department of Cell and Developmental Biology, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | | | | |
Collapse
|
22
|
Raffaello T, Keriö S, Asiegbu FO. Role of the HaHOG1 MAP kinase in response of the conifer root and butt rot pathogen (heterobasidion annosum) to osmotic and oxidative stress [corrected]. PLoS One 2012; 7:e31186. [PMID: 22319614 PMCID: PMC3271117 DOI: 10.1371/journal.pone.0031186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/04/2012] [Indexed: 01/23/2023] Open
Abstract
The basidiomycete Heterobasidion annosum (Fr.) Bref. s.l. is a filamentous white rot fungus, considered to be the most economically important pathogen of conifer trees. Despite the severity of the tree infection, very little is known about the molecular and biochemical aspects related to adaptation to abiotic stresses. In this study, the osmotic and oxidative tolerance as well as the role of the HaHOG1 Mitogen Activated Protein Kinase (MAPK) gene were investigated. The transcript levels of the yeast orthologues GPD1, HSP78, STL1, GRE2 and the ATPase pumps ENA1, PMR1, PMC1 known to have an important role in osmotolerance were also quantified under salt osmotic conditions. The HaHOG1 gene was used for a heterologous expression and functional study in the Saccharomyces cerevisiae Δhog1 strain. Moreover, the phosphorylation level of HaHog1p was studied under salt osmotic and oxidative stress. The result showed that H. annosum displayed a decreased growth when exposed to an increased concentration of osmotic and oxidative stressors. GPD1, HSP78, STL1 and GRE2 showed an induction already at 10 min after exposure to salt stress. Among the ATPase pumps studied, PMC1 was highly induced when the fungus was exposed to 0.2 M CaCl2 for 60 min. The heterologous expression of the HaHOG1 sequence in yeast confirmed that the gene is able to restore the osmotolerance and oxidative tolerance in the S. cerevisiae hog1Δ mutant strain. The HaHog1p was strongly phosphorylated in the presence of NaCl, KCl, H2O2 but not in the presence of CaCl2 and MgCl2. The GFP-HaHog1p fusion protein accumulated in the nuclei of the S. cerevisiae hog1Δ cells when exposed to high osmotic conditions but not under oxidative stress. These results provide the first insights about the response of H. annosum to osmotic and oxidative stress and elucidate the role of the HaHOG1 gene in such conditions.
Collapse
Affiliation(s)
- Tommaso Raffaello
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
23
|
Mielniczki-Pereira AA, Hahn ABB, Bonatto D, Riger CJ, Eleutherio ECA, Henriques JAP. New insights into the Ca2+-ATPases that contribute to cadmium tolerance in yeast. Toxicol Lett 2011; 207:104-11. [PMID: 21911041 DOI: 10.1016/j.toxlet.2011.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 01/16/2023]
Abstract
Cadmium (Cd(2+)) is a toxic heavy metal which triggers several toxic effects in eukaryotes, including neurotoxicity and impaired calcium metabolism. In the model organism Saccharomyces cerevisiae, the best characterized pathway for Cd(2+) detoxification involves conjugation with glutathione (GSH) and subsequent transport to vacuoles by Ycf1p, an ATPase homologous to human MRP1 (Multidrug resistance associated protein 1). However, Cd(2+) tolerance also can be mediated by Pmr1p, a Ca(2+) pump located in the Golgi membrane, possibly through to the secretory pathway. Herein, we showed that inactivation of the PMR1 gene, alone or simultaneously with YCF1, delayed initial Cd(2+) capture compared to wild-type (WT) cells. In addition, Cd(2+) treatment altered the expression profile of yeast internal Ca(2+) transporters; specifically, PMC1 gene expression is induced substantially by the metal in WT cells, and this induction is stronger in mutants lacking YCF1. Taken together, these results indicate that, in addition to Pmr1p, the vacuolar Ca(2+)-ATPase Pmc1p also helps yeast cells cope with Cd(2+) toxicity. We propose a model where Pmc1p and Pmr1p Ca(2+)-ATPase function in cooperation with Ycf1p to promote Cd(2+) detoxification.
Collapse
|
24
|
Kmetzsch L, Staats CC, Rodrigues ML, Schrank A, Vainstein MH. Calcium signaling components in the human pathogen: Cryptococcus neoformans. Commun Integr Biol 2011; 4:186-7. [PMID: 21655435 DOI: 10.4161/cib.4.2.14271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 11/19/2022] Open
Abstract
Calcium signaling through calmodulin and the phosphatase calcineurin are required for key events of the biology of the human pathogen Cryptococcus neoformans, including mating, morphogenesis, growth at 37°C and virulence. In a recent work we described the functional characterization of a new component of this calcium signaling network: the vacuolar calcium exchanger Vcx1. This transporter is involved in calcium tolerance and virulence in C. neoformans. Two other uncharacterized calcium transporters which are putative orthologs of Saccharomyces cerevisiae PMC1 (a vacuolar calcium ATPase) and PMR1 (a Golgi calcium ATPase) are also functional in C. neoformans. No ortholog of CRZ1, the target of calcineurin in other fungi, has been identified in C. neoformans, indicating a high complexity in cryptococcal calcium-related pathways. Future studies are necessary for the complete understanding of calcium signaling regulation in C. neoformans.
Collapse
Affiliation(s)
- Livia Kmetzsch
- Centro de Biotecnologia; Universidade Federal do Rio Grande do Sul; Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
25
|
Cunningham KW. Acidic calcium stores of Saccharomyces cerevisiae. Cell Calcium 2011; 50:129-38. [PMID: 21377728 DOI: 10.1016/j.ceca.2011.01.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/25/2011] [Accepted: 01/31/2011] [Indexed: 02/06/2023]
Abstract
Fungi and animals constitute sister kingdoms in the eukaryotic domain of life. The major classes of transporters, channels, sensors, and effectors that move and respond to calcium ions were already highly networked in the common ancestor of fungi and animals. Since that time, some key components of the network have been moved, altered, relocalized, lost, or duplicated in the fungal and animal lineages and at the same time some of the regulatory circuitry has been dramatically rewired. Today the calcium transport and signaling networks in fungi provide a fresh perspective on the scene that has emerged from studies of the network in animal cells. This review provides an overview of calcium signaling networks in fungi, particularly the model yeast Saccharomyces cerevisiae, with special attention to the dominant roles of acidic calcium stores in fungal cell physiology.
Collapse
Affiliation(s)
- Kyle W Cunningham
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
26
|
Pittman JK. Vacuolar Ca(2+) uptake. Cell Calcium 2011; 50:139-46. [PMID: 21310481 DOI: 10.1016/j.ceca.2011.01.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 12/22/2022]
Abstract
Calcium transporters that mediate the removal of Ca(2+) from the cytosol and into internal stores provide a critical role in regulating Ca(2+) signals following stimulus induction and in preventing calcium toxicity. The vacuole is a major calcium store in many organisms, particularly plants and fungi. Two main pathways facilitate the accumulation of Ca(2+) into vacuoles, Ca(2+)-ATPases and Ca(2+)/H(+) exchangers. Here I review the biochemical and regulatory features of these transporters that have been characterised in yeast and plants. These Ca(2+) transport mechanisms are compared with those being identified from other vacuolated organisms including algae and protozoa. Studies suggest that Ca(2+) uptake into vacuoles and other related acidic Ca(2+) stores occurs by conserved mechanisms which developed early in evolution.
Collapse
Affiliation(s)
- Jon K Pittman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
27
|
The vacuolar Ca²(+) exchanger Vcx1 is involved in calcineurin-dependent Ca²(+) tolerance and virulence in Cryptococcus neoformans. EUKARYOTIC CELL 2010; 9:1798-805. [PMID: 20889719 DOI: 10.1128/ec.00114-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryptococcus neoformans is an encapsulated yeast that causes a life-threatening meningoencephalitis in immunocompromised individuals. The ability to survive and proliferate at the human body temperature is an essential virulence attribute of this pathogen. This trait is controlled in part by the Ca²(+)-calcineurin pathway, which senses and utilizes cytosolic calcium for signaling. In the present study, the identification of the C. neoformans gene VCX1, which encodes a vacuolar calcium exchanger, is reported. The VCX1 knockout results in hypersensitivity to the calcineurin inhibitor cyclosporine A at 35°C, but not at 30°C. Furthermore, high concentrations of CaCl₂ lead to growth inhibition of the vcx1 mutant strain only in the presence of cyclosporine A, indicating that Vcx1 acts in parallel with calcineurin. The loss of VCX1 does not influence cell wall integrity or capsule size but decreases secretion of the major capsular polysaccharide glucuronoxylomannan (GXM) in culture supernatants.Vcx1 also influences C. neoformans phagocytosis by murine macrophages and is required for full virulence in mice. Analysis of cellular distribution by confocal microscopy confirmed the vacuolar localization of Vcx1 in C. neoformans cells.
Collapse
|
28
|
Manohar M, Mei H, Franklin AJ, Sweet EM, Shigaki T, Riley BB, MacDiarmid CW, Hirschi K. Zebrafish (Danio rerio) Endomembrane Antiporter Similar to a Yeast Cation/H+ Transporter Is Required for Neural Crest Development. Biochemistry 2010; 49:6557-66. [DOI: 10.1021/bi100362k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Murli Manohar
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77845
- United States Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Hui Mei
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77845
| | - Andrew J. Franklin
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Elly M. Sweet
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Toshiro Shigaki
- United States Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Bruce B. Riley
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Colin W. MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53562
| | - Kendal Hirschi
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77845
- United States Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
29
|
Analysis of a novel calcium auxotrophy in Aspergillus nidulans. Fungal Genet Biol 2010; 47:647-55. [PMID: 20438880 PMCID: PMC2884188 DOI: 10.1016/j.fgb.2010.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 12/23/2022]
Abstract
In Aspergillus nidulans a combination of null mutations in halA, encoding a protein kinase, and sltA, encoding a zinc-finger transcription factor having no yeast homologues, results in an elevated calcium requirement (‘calcium auxotrophy’) without impairing net calcium uptake. sltA− (±halA−) mutations result in hypertrophy of the vacuolar system. In halA−sltA− (and sltA−) strains, transcript levels for pmcA and pmcB, encoding vacuolar Ca2+-ATPase homologues, are highly elevated, suggesting a regulatory relationship between vacuolar membrane area and certain vacuolar membrane ATPase levels. Deletion of both pmcA and pmcB strongly suppresses the ‘calcium auxotrophy’. Therefore the ‘calcium auxotrophy’ possibly results from excessive vacuolar calcium sequestration, causing cytosolic calcium deprivation. Null mutations in nhaA, homologous to Saccharomyces cerevisiaeNHA1, encoding a plasma membrane Na+/H+ antiporter effluxing Na+ and K+, and a non-null mutation in trkB, homologous to S. cerevisiaeTRK1, encoding a plasma membrane high affinity K+ transporter, also suppress the calcium auxotrophy.
Collapse
|
30
|
Yadav J, Muend S, Zhang Y, Rao R. A phenomics approach in yeast links proton and calcium pump function in the Golgi. Mol Biol Cell 2007; 18:1480-9. [PMID: 17314395 PMCID: PMC1839000 DOI: 10.1091/mbc.e06-11-1049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Golgi-localized Ca2+- and Mn2+-transporting ATPase Pmr1 is important for secretory pathway functions. Yeast mutants lacking Pmr1 show growth sensitivity to multiple drugs (amiodarone, wortmannin, sulfometuron methyl, and tunicamycin) and ions (Mn2+ and Ca2+). To find components that function within the same or parallel cellular pathways as Pmr1, we identified genes that shared multiple pmr1 phenotypes. These genes were enriched in functional categories of cellular transport and interaction with cellular environment, and predominantly localize to the endomembrane system. The vacuolar-type H+-transporting ATPase (V-ATPase), rather than other Ca2+ transporters, was found to most closely phenocopy pmr1Delta, including a shared sensitivity to Zn2+ and calcofluor white. However, we show that pmr1Delta mutants maintain normal vacuolar and prevacuolar pH and that the two transporters do not directly influence each other's activity. Together with a synthetic fitness defect of pmr1DeltavmaDelta double mutants, this suggests that Pmr1 and V-ATPase work in parallel toward a common function. Overlaying data sets of growth sensitivities with functional screens (carboxypeptidase secretion and Alcian Blue binding) revealed a common set of genes relating to Golgi function. We conclude that overlapping phenotypes with Pmr1 reveal Golgi-localized functions of the V-ATPase and emphasize the importance of calcium and proton transport in secretory/prevacuolar traffic.
Collapse
Affiliation(s)
- Jyoti Yadav
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sabina Muend
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yongqiang Zhang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
31
|
Shigaki T, Hirschi KD. Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:419-29. [PMID: 16906482 DOI: 10.1055/s-2006-923950] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Steep concentration gradients of many ions are actively maintained, with lower concentrations typically located in the cytosol, and higher concentrations in organelles and outside the cell. The vacuole is an important storage organelle for many ions. The concentration gradient of cations is established across the plant tonoplast, in part, by high-capacity cation/H+ (CAX) exchange activity. While plants may not be green yeast, analysis of CAX regulation and substrate specificity has been greatly aided by utilizing yeast as an experimental tool. The basic CAX biology in ARABIDOPSIS has immediate relevance toward understanding the functional interplay between diverse transport processes. The long-range applied goals are to identify novel transporters and express them in crop plants in order to "mine" nutrients out of the soil and into plants. In doing so, this could boost the levels of essential nutrients in plants.
Collapse
Affiliation(s)
- T Shigaki
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates St., Houston, TX 77030, USA.
| | | |
Collapse
|
32
|
Pittman JK, Cheng NH, Shigaki T, Kunta M, Hirschi KD. Functional dependence on calcineurin by variants of the Saccharomyces cerevisiae vacuolar Ca2+/H+ exchanger Vcx1p. Mol Microbiol 2005; 54:1104-16. [PMID: 15522090 DOI: 10.1111/j.1365-2958.2004.04332.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ca(2+)-dependent protein phosphatase calcineurin is an important regulator of ion transporters from many organisms, including the Saccharomyces cerevisiae vacuolar Ca(2+)/H(+) exchanger Vcx1p. In yeast and plants, cation/H(+) exchangers are important in shaping cytosolic Ca(2+) levels involved in signal transduction and providing tolerance to potentially toxic concentrations of cations such as Ca(2+), Mn(2+) and Cd(2+). Previous genetic evidence suggested Vcx1p is negatively regulated by calcineurin. By utilizing direct transport measurements into vacuolar membrane vesicles, we demonstrate that Vcx1p is a low-affinity Ca(2+) transporter and may also function in Cd(2+) transport, but cannot transport Mn(2+). Furthermore, direct Ca(2+) transport by Vcx1p is calcineurin sensitive. Using a yeast growth assay, a mutant allele of VCX1 (VCX1-S204A/L208P), termed VCX1-M1, was previously found to confer strong Mn(2+) tolerance. Here we demonstrate that this Mn(2+) tolerance is independent of the Ca(2+)/Mn(2+)-ATPase Pmr1p and results from Mn(2+)-specific vacuolar transport activity of Vcx1-M1p. This Mn(2+) transport by Vcx1-M1p is calcineurin dependent, although the localization of Vcx1-M1p to the vacuole appears to be calcineurin independent. Additionally, we demonstrate that mutation of L208P alone is enough to confer calcineurin-dependent Mn(2+) tolerance. This study demonstrates that calcineurin can positively regulate the transport of cations by VCX1-M1p.
Collapse
Affiliation(s)
- Jon K Pittman
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
33
|
Missiaen L, Raeymaekers L, Dode L, Vanoevelen J, Van Baelen K, Parys JB, Callewaert G, De Smedt H, Segaert S, Wuytack F. SPCA1 pumps and Hailey-Hailey disease. Biochem Biophys Res Commun 2004; 322:1204-13. [PMID: 15336968 DOI: 10.1016/j.bbrc.2004.07.128] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 10/26/2022]
Abstract
Both the endoplasmic reticulum and the Golgi apparatus are agonist-sensitive intracellular Ca2+ stores. The Golgi apparatus has Ca2+-release channels and a Ca2+-uptake mechanism consisting of sarco(endo)plasmic-reticulum Ca2+-ATPases (SERCA) and secretory-pathway Ca2+-ATPases (SPCA). SPCA1 has been shown to transport both Ca2+ and Mn2+ in the Golgi lumen and therefore plays an important role in the cytosolic and intra-Golgi Ca2+ and Mn2+ homeostasis. Human genetic studies have provided new information on the physiological role of SPCA1. Loss of one functional copy of the SPCA1 (ATP2C1) gene causes Hailey-Hailey disease, a skin disorder arising in the adult age with recurrent vesicles and erosions in the flexural areas. Here, we review recent experimental evidence showing that the Golgi apparatus plays a much more important role in intracellular ion homeostasis than previously anticipated.
Collapse
Affiliation(s)
- Ludwig Missiaen
- Laboratorium voor Fysiologie, K.U.Leuven Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ton VK, Rao R. Functional expression of heterologous proteins in yeast: insights into Ca2+signaling and Ca2+-transporting ATPases. Am J Physiol Cell Physiol 2004; 287:C580-9. [PMID: 15308463 DOI: 10.1152/ajpcell.00135.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The baker's yeast Saccharomyces cerevisiae is a well-developed, versatile, and widely used model organism. It offers a compact and fully sequenced genome, tractable genetics, simple and inexpensive culturing conditions, and, importantly, a conservation of basic cellular machinery and signal transducing pathways with higher eukaryotes. In this review, we describe recent technical advances in the heterologous expression of proteins in yeast and illustrate their application to the study of the Ca2+homeostasis machinery, with particular emphasis on Ca2+-transporting ATPases. Putative Ca2+-ATPases in the newly sequenced genomes of organisms such as parasites, plants, and vertebrates have been investigated by functional complementation of an engineered yeast strain lacking endogenous Ca2+pumps. High-throughput screens of mutant phenotypes to identify side chains critical for ion transport and selectivity have facilitated structure-function analysis, and genomewide approaches may be used to dissect cellular pathways involved in Ca2+transport and trafficking. The utility of the yeast system is demonstrated by rapid advances in the study of the emerging family of Golgi/secretory pathway Ca2+,Mn2+-ATPases (SPCA). Functional expression of human SPCA1 in yeast has provided insight into the physiology, novel biochemical characteristics, and subcellular localization of this pump. Haploinsufficiency of SPCA1 leads to Hailey-Hailey disease (HDD), a debilitating blistering disorder of the skin. Missense mutations, identified in patients with HHD, may be conveniently assessed in yeast for loss-of-function phenotypes associated with the disease.
Collapse
Affiliation(s)
- Van-Khue Ton
- Dept. of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | | |
Collapse
|
35
|
Aiello DP, Fu L, Miseta A, Sipos K, Bedwell DM. The Ca2+ Homeostasis Defects in a pgm2Δ Strain of Saccharomyces cerevisiae Are Caused by Excessive Vacuolar Ca2+ Uptake Mediated by the Ca2+-ATPase Pmc1p. J Biol Chem 2004; 279:38495-502. [PMID: 15252028 DOI: 10.1074/jbc.m400833200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of the major isoform of phosphoglucomutase (PGM) causes an accumulation of glucose 1-phosphate when yeast cells are grown with galactose as the carbon and energy source. Remarkably, the pgm2Delta strain also exhibits a severe imbalance in intracellular Ca(2+) homeostasis when grown under these conditions. In the present study, we examined how the pgm2Delta mutation alters yeast Ca(2+) homeostasis in greater detail. We found that a shift from glucose to galactose as the carbon source resulted in a 2-fold increase in the rate of cellular Ca(2+) uptake in wild-type cells, whereas Ca(2+) uptake increased 8-fold in the pgm2Delta mutant. Disruption of the PMC1 gene, which encodes the vacuolar Ca(2+)-ATPase Pmc1p, suppressed the Ca(2+)-related phenotypes observed in the pgm2Delta strain. This suggests that excessive vacuolar Ca(2+) uptake is tightly coupled to these defects in Ca(2+) homeostasis. An in vitro assay designed to measure Ca(2+) sequestration into intracellular compartments confirmed that the pgm2Delta mutant contained a higher level of Pmc1p-dependent Ca(2+) transport activity than the wild-type strain. We found that this increased rate of vacuolar Ca(2+) uptake also coincided with a large induction of the unfolded protein response in the pgm2Delta mutant, suggesting that Ca(2+) uptake into the endoplasmic reticulum compartment was reduced. These results indicate that the excessive Ca(2+) uptake and accumulation previously shown to be associated with the pgm2Delta mutation are due to a severe imbalance in the distribution of cellular Ca(2+) into different intracellular compartments.
Collapse
Affiliation(s)
- David P Aiello
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | |
Collapse
|
36
|
Gupta SS, Ton VK, Beaudry V, Rulli S, Cunningham K, Rao R. Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis. J Biol Chem 2003; 278:28831-9. [PMID: 12754197 DOI: 10.1074/jbc.m303300200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The antiarrhythmic drug amiodarone was recently demonstrated to have novel broad range fungicidal activity. We provide evidence that amiodarone toxicity is mediated by disruption of Ca2+ homeostasis in Saccharomyces cerevisiae. In mutants lacking calcineurin and various Ca2+ transporters, including pumps (Pmr1 and Pmc1), channels (Cch1/Mid1 and Yvc1), and exchangers (Vcx1), amiodarone sensitivity correlates with cytoplasmic calcium overload. Measurements of cytosolic Ca2+ by aequorin luminescence demonstrate a biphasic response to amiodarone. An immediate and extensive calcium influx was observed that was dose-dependent and correlated with drug sensitivity. The second phase consisted of a sustained release of calcium from the vacuole via the calcium channel Yvc1 and was independent of extracellular Ca2+ entry. To uncover additional cellular pathways involved in amiodarone sensitivity, we conducted a genome-wide screen of nearly 5000 single-gene yeast deletion mutants. 36 yeast strains with amiodarone hypersensitivity were identified, including mutants in transporters (pmr1, pdr5, and vacuolar H+-ATPase), ergosterol biosynthesis (erg3, erg6, and erg24), intracellular trafficking (vps45 and rcy1), and signaling (ypk1 and ptc1). Of three mutants examined (vps45, vma3, and rcy1), all were found to have defective calcium homeostasis, supporting a correlation with amiodarone hypersensitivity. We show that low doses of amiodarone and an azole (miconazole, fluconazole) are strongly synergistic and exhibit potent fungicidal effects in combination. Our findings point to the potentially effective application of amiodarone as a novel antimycotic, particularly in combination with conventional antifungals.
Collapse
Affiliation(s)
- Soma Sen Gupta
- Department of Physiology, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wuytack F, Raeymaekers L, Missiaen L. PMR1/SPCA Ca2+ pumps and the role of the Golgi apparatus as a Ca2+ store. Pflugers Arch 2003; 446:148-53. [PMID: 12739151 DOI: 10.1007/s00424-003-1011-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2003] [Indexed: 11/28/2022]
Abstract
Besides the well-known sarco/endoplasmic-reticulum Ca(2+)-transport ATPases (SERCA), animal cells contain a much less characterized P-type Ca(2+)-transport ATPase: the PMR1/SPCA Ca(2+)/Mn(2+)-transport ATPase. SPCA is mainly targeted to the Golgi apparatus. Phylogenetic analysis indicates that it might be more closely related to a putative ancestral Ca(2+) pump than SERCA. SPCA supplies the Golgi apparatus, and possibly other more distal compartments of the secretory pathway, with the Ca(2+) and Mn(2+) necessary for the production and processing of secretory proteins. In the lactating mammary gland, SPCA appears to be the primary pump responsible for supplementing the milk with high (60-100 mM) Ca(2+). It could also play a role in detoxification of cells overloaded with Mn(2+). Mutations in the human gene encoding the SPCA pump ( ATP2C1) result in Hailey-Hailey disease, a keratinocyte disorder characterized by incomplete cell adhesion. Recent observations show that the Golgi apparatus can function as a Ca(2+) store, which can be involved in setting up cytosolic Ca(2+) oscillations.
Collapse
Affiliation(s)
- Frank Wuytack
- Laboratorium voor Fysiologie, K.U. Leuven Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| | | | | |
Collapse
|
38
|
Abstract
The abundance of Arabidopsis insert mutants portends the day when null alleles in every gene will be obtained. Once these are created, all plant scientists can become geneticists. However, this brief technical highlight of genetic concepts cautions against ascribing gene function based exclusively on phenotypic analysis of null alleles.
Collapse
Affiliation(s)
- Kendal D Hirschi
- United States Department of Agriculture/Agricultural Research Service (USDA/ARS) Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Aiello DP, Fu L, Miseta A, Bedwell DM. Intracellular glucose 1-phosphate and glucose 6-phosphate levels modulate Ca2+ homeostasis in Saccharomyces cerevisiae. J Biol Chem 2002; 277:45751-8. [PMID: 12351653 DOI: 10.1074/jbc.m208748200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme phosphoglucomutase plays a key role in cellular metabolism by virtue of its ability to interconvert Glc-1-P and Glc-6-P. It was recently shown that a yeast strain lacking the major isoform of phosphoglucomutase (pgm2Delta) accumulates a high level of Glc-1-P and exhibits several phenotypes related to altered Ca(2+) homeostasis when d-galactose is utilized as the carbon source (Fu, L., Miseta, A., Hunton, D., Marchase, R. B., and Bedwell, D. M. (2000) J. Biol. Chem. 275, 5431-5440). These phenotypes include increased Ca(2+) uptake and accumulation and sensitivity to high environmental Ca(2+) levels. In the present study, we overproduced the enzyme UDP-Glc pyrophosphorylase to test whether the overproduction of a downstream metabolite produced from Glc-1-P can also mediate changes in Ca(2+) homeostasis. We found that overproduction of UDP-Glc did not cause any alterations in Ca(2+) uptake or accumulation. We also examined whether Glc-6-P can influence cellular Ca(2+) homeostasis. A yeast strain lacking the beta-subunit of phosphofructokinase (pfk2Delta) accumulates a high level of Glc-6-P (Huang, D., Wilson, W. A., and Roach, P. J. (1997) J. Biol. Chem. 272, 22495-22501). We found that this increase in Glc-6-P led to a 1.5-2-fold increase in total cellular Ca(2+). We also found that the pgm2Delta/pfk2Delta strain, which accumulated high levels of both Glc-6-P and Glc-1-P, no longer exhibited the Ca(2+)-related phenotypes associated with high Glc-1-P levels in the pgm2Delta mutant. These results provide strong evidence that cellular Ca(2+) homeostasis is coupled to the relative levels of Glc-6-P and Glc-1-P in yeast.
Collapse
Affiliation(s)
- David P Aiello
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Intracellular Ca(2+)-transport ATPases exert a pivotal role in the endoplasmic reticulum and in the compartments of the cellular secretory pathway by maintaining a sufficiently high lumenal Ca(2+) (and Mn(2+)) concentration in these compartments required for an impressive number of vastly different cell functions. At the same time this lumenal Ca(2+) represents a store of releasable activator Ca(2+) controlling an equally impressive number of cytosolic functions. This review mainly focuses on the different Ca(2+)-transport ATPases found in the intracellular compartments of mainly animal non-muscle cells: the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pumps. Although it is not our intention to treat the ATPases of the specialized sarcoplasmic reticulum in depth, we can hardly ignore the SERCA1 pump of fast-twitch skeletal muscle since its structure and function is by far the best understood and it can serve as a guide to understand the other members of the family. In a second part of this review we describe the relatively novel family of secretory pathway Ca(2+)/Mn(2+) ATPases (SPCA), which in eukaryotic cells are primarily found in the Golgi compartment.
Collapse
Affiliation(s)
- F Wuytack
- Laboratorium voor Fysiologie, K.U.Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | | | |
Collapse
|
41
|
Lombardía LJ, Becerra M, Rodríguez-Belmonte E, Hauser NC, Cerdán ME. Genome-wide analysis of yeast transcription upon calcium shortage. Cell Calcium 2002; 32:83-91. [PMID: 12161108 DOI: 10.1016/s0143-4160(02)00110-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several regulatory circuits related to important functions, like membrane excitation, immunoresponse, replication, control of the cell cycle and differentiation, among others, cause an increase in intracellular calcium level that finally has a consequence upon transcription of specific genes. The sequencing of the whole genome of eukaryotic cells enables genome-wide analysis of gene expression under many conditions not yet assessed by conventional methods. Using the array technology, the effect of calcium shortage in yeast cells was studied. Correspondence analysis of data showed that there is a response in transcription that is correlated to calcium shortage. The distribution of up-regulated-genes in functional categories suggests a regulatory connection between the cell-cycle progression and the energetic metabolic requirements for growth and division. In silico analysis of promoters reveals the frequent appearance of the Mlu I cell cycle box (MCB) cis element that binds the transcriptional regulatory factor Mcm1.
Collapse
Affiliation(s)
- L J Lombardía
- Dpto. Biología Celular y Molecular, Universidad de La Coruña, F. Ciencias, Campus de La Zapateira s/n 15075, La Coruña, Spain
| | | | | | | | | |
Collapse
|
42
|
Abstract
The internal environment of the ER is regulated to accommodate essential cellular processes, yet our understanding of this regulation remains incomplete. Cod1p/Spf1p belongs to the widely conserved, uncharacterized type V branch of P-type ATPases, a large family of ion pumps. Our previous work suggested Cod1p may function in the ER. Consistent with this hypothesis, we localized Cod1p to the ER membrane. The cod1Delta mutant disrupted cellular calcium homeostasis, causing increased transcription of calcium-regulated genes and a synergistic increase in cellular calcium when paired with disruption of the Golgi apparatus-localized Ca2+ pump Pmr1p. Deletion of COD1 also impaired ER function, causing constitutive activation of the unfolded protein response, hypersensitivity to the glycosylation inhibitor tunicamycin, and synthetic lethality with deletion of the unfolded protein response regulator HAC1. Expression of the Drosophila melanogaster homologue of Cod1p complemented the cod1Delta mutant. Finally, we demonstrated the ATPase activity of the purified protein. This study provides the first biochemical characterization of a type V P-type ATPase, implicates Cod1p in ER function and ion homeostasis, and indicates that these functions are conserved among Cod1p's metazoan homologues.
Collapse
Affiliation(s)
- Stephen R Cronin
- Division of Biology, University of California San Diego, La Jolla, CA 92093-0347, USA
| | | | | |
Collapse
|
43
|
Tökés-Füzesi M, Bedwell DM, Repa I, Sipos K, Sümegi B, Rab A, Miseta A. Hexose phosphorylation and the putative calcium channel component Mid1p are required for the hexose-induced transient elevation of cytosolic calcium response in Saccharomyces cerevisiae. Mol Microbiol 2002; 44:1299-308. [PMID: 12028380 DOI: 10.1046/j.1365-2958.2002.02956.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae responds to environ-mental stimuli such as an exposure to pheromone or to hexoses after carbon source limitation with a transient elevation of cytosolic calcium (TECC) response. In this study, we examined whether hexose transport and phosphorylation are necessary for the TECC response. We found that a mutant strain lacking most of the known hexose transporters was unable to carry out the TECC response when exposed to glucose. A mutant strain that lacked the ability to phosphorylate glucose was unable to respond to glucose addition, but displayed a normal TECC response after the addition of galactose. These results indicate that hexose uptake and phosphorylation are required to trigger the hexose-induced TECC response. We also found that the TECC response was significantly smaller than normal when the level of environmental calcium was reduced, and was abolished in a mid1 mutant that lacked a subunit of the high-affinity calcium channel of the yeast plasma membrane. These results indicate that most or all of the TECC response is mediated by an influx of calcium from the extracellular space. Our results indicate that this transient increase in plasma membrane calcium permeability may be linked to the accumulation of Glc-1-P (or a related glucose metabolite) in yeast.
Collapse
Affiliation(s)
- Margit Tökés-Füzesi
- Department of Clinical Chemistry, Faculty of Medicine, Pécs University, 13 Ifjuság u., Pécs 7624, Hungary
| | | | | | | | | | | | | |
Collapse
|
44
|
Bonilla M, Nastase KK, Cunningham KW. Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J 2002; 21:2343-53. [PMID: 12006487 PMCID: PMC126012 DOI: 10.1093/emboj/21.10.2343] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Depletion of calcium ions (Ca2+) from the endoplasmic reticulum (ER) of yeast cells resulted in the activation of the unfolded protein response (UPR) signaling pathway involving Ire1p and Hac1p. The depleted ER also stimulated Ca2+ influx at the plasma membrane through the Cch1p-Mid1p Ca2+ channel and another system. Surprisingly, both Ca2+ influx systems were stimulated upon accumulation of misfolded proteins in the ER even in the presence of Ca2+. The ability of misfolded ER proteins to stimulate Ca2+ influx at the plasma membrane did not require Ire1p or Hac1p, and Ca2+ influx and signaling factors were not required for initial UPR signaling. However, activation of the Ca2+ channel, calmodulin, calcineurin and other factors was necessary for long-term survival of cells undergoing ER stress. A similar calcium cell survival (CCS) pathway operates in the pathogenic fungi and promotes resistance to azole antifungal drugs. These findings reveal an unanticipated new regulatory mechanism that couples ER stress to Ca2+ influx and signaling pathways, which help to prevent cell death and promote resistance to an important class of fungistatic drugs.
Collapse
Affiliation(s)
| | | | - Kyle W. Cunningham
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
Corresponding author e-mail:
| |
Collapse
|
45
|
Ton VK, Mandal D, Vahadji C, Rao R. Functional expression in yeast of the human secretory pathway Ca(2+), Mn(2+)-ATPase defective in Hailey-Hailey disease. J Biol Chem 2002; 277:6422-7. [PMID: 11741891 DOI: 10.1074/jbc.m110612200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery and biochemical characterization of the secretory pathway Ca(2+)-ATPase, PMR1, in Saccharomyces cerevisiae, has paved the way for identification of PMR1 homologues in many species including rat, Caenorhabditis elegans, and Homo sapiens. In yeast, PMR1 has been shown to function as a high affinity Ca(2+)/Mn(2+) pump and has been localized to the Golgi compartment where it is important for protein sorting, processing, and glycosylation. However, little is known about PMR1 homologues in higher organisms. Loss of one functional allele of the human gene, hSPCA1, has been linked to Hailey-Hailey disease, characterized by skin ulceration and improper keratinocyte adhesion. We demonstrate that expression of hSPCA1 in yeast fully complements pmr1 phenotypes of hypersensitivity to Ca(2+) chelators and Mn(2+) toxicity. Similar to PMR1, epitope-tagged hSPCA1 also resides in the Golgi when expressed in yeast or in chinese hamster ovary cells. (45)Ca(2+) transport by hSPCA1 into isolated yeast Golgi vesicles shows an apparent Ca(2+) affinity of 0.26 microm, is inhibitable by Mn(2+), but is thapsigargin-insensitive. In contrast, heterologous expression of vertebrate sarcoplasmic reticulum and plasma membrane Ca(2+)-ATPases in yeast complement the Ca(2+)- but not Mn(2+)-related phenotypes of the pmr1-null strain, suggesting that high affinity Mn(2+) transport is a unique feature of the secretory pathway Ca(2+)-ATPases.
Collapse
Affiliation(s)
- Van-Khue Ton
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
46
|
Rodriguez NM, Docampo R, Lu Hg HG, Scott DA. Overexpression of the Leishmania amazonensis Ca2+-ATPase gene lmaa1 enhances virulence. Cell Microbiol 2002; 4:117-26. [PMID: 11896767 DOI: 10.1046/j.1462-5822.2002.00175.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A gene for a Ca2+-transporting ATPase (lmaa1) from the trypanosomatid parasite Leishmania (mexicana) amazonensis was overexpressed in two clones of L. amazonensis differing in their virulence. RNA and protein expression of the gene was increased in transfectants, as was the infectivity of transfectants versus parental types in both mouse and in vitro macrophage infection experiments. The virulence of the almost avirulent clone was enhanced such that it was more virulent than the parental 'virulent' clone. Growth of the parasites in culture as promastigotes, after isolation from mouse lesions, indicated that transfection led to improved survival of promastigotes during the stationary phase of culture. As it is in this culture phase that infective metacyclic forms develop, the key role of the Lmaa1 protein may be in metacyclogenesis. The protein may be important in the synthesis and trafficking of new proteins through the secretory pathway, as we demonstrate, using a green fluorescent protein hybrid and by immunofluorescence, that the Lmaa1 protein is located in the endoplasmic reticulum in promastigotes and amastigotes of L. amazonensis.
Collapse
Affiliation(s)
- Noris M Rodriguez
- Laboratory of Molecular Parasitology, Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
| | | | | | | |
Collapse
|
47
|
Park SY, Seo SB, Lee SJ, Na JG, Kim YJ. Mutation in PMR1, a Ca(2+)-ATPase in Golgi, confers salt tolerance in Saccharomyces cerevisiae by inducing expression of PMR2, an Na(+)-ATPase in plasma membrane. J Biol Chem 2001; 276:28694-9. [PMID: 11387321 DOI: 10.1074/jbc.m101185200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sodium tolerance in yeast is enhanced by continuous activation of calcineurin, a Ca(2+)/calmodulin-dependent protein phosphatase that is required for modulation of the Na(+) efflux mechanism. We isolated several salt-tolerant mutations with the treatment of ethylmethane sulfonate under high salt stress. One of the mutations was mapped in the PMR1 gene. Pmr1p, the P-type Ca(2+)-ATPase in the Golgi apparatus, regulates a cytosolic Ca(2+) level in various responses. Cytosolic Ca(2+) concentration in the pmr1 mutant is highly maintained, and thus calcineurin is activated continuously. The treatment of FK506, a specific inhibitor of calcineurin, abolishes the salt-tolerant phenotype of the pmr1 mutant. Activated calcineurin induces the expression of PMR2, encoding the P-type Na(+)-ATPase, through the specific transcription factor, Tcn1p/Crz1p. Also, expression of the PMR2::lacZ reporter gene in the pmr1 mutant was higher than that in wild type. We propose that the pmr1 mutation confers salt tolerance through continuous activation of calcineurin and that Pmr1p might act as a major Ca(2+)-ATPase under high salt stress.
Collapse
Affiliation(s)
- S Y Park
- Department of Molecular Biology, Pusan National University, Pusan 609-735, Korea
| | | | | | | | | |
Collapse
|
48
|
Bok JW, Sone T, Silverman-Gavrila LB, Lew RR, Bowring FJ, Catcheside DE, Griffiths AJ. Structure and function analysis of the calcium-related gene spray in Neurospora crassa. Fungal Genet Biol 2001; 32:145-58. [PMID: 11343401 DOI: 10.1006/fgbi.2000.1259] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spray gene was cloned, and wildtype and mutant alleles were sequenced. Spray(+) has a 3452-bp open reading frame plus seven introns. The spray mutant had a T --> G transversion close to the carboxyl end, creating a stop codon (TGA). The sequence shows no match to genes of known function, but the carboxyl end shows seven transmembrane domains and matches putative membrane proteins of yeast. The most abundant transcript detected was 4.4 kb in size. Repeat-induced point mutagenesis produced the mutant spray phenotype. Electrophysiological analysis showed that ion fluxes in the spray plasma membrane are normal; furthermore, whereas the spray mutant was known to have no organelle-based calcium fluorescence, the cytosol shows a tip-high calcium gradient. The spray mutant is sensitive to calcineurin inhibitors. The results suggest that the SPRAY protein is located in an organellar membrane, regulating the distribution of Ca(2+) via calcineurin.
Collapse
Affiliation(s)
- J W Bok
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Takita Y, Engstrom L, Ungermann C, Cunningham KW. Inhibition of the Ca(2+)-ATPase Pmc1p by the v-SNARE protein Nyv1p. J Biol Chem 2001; 276:6200-6. [PMID: 11080502 DOI: 10.1074/jbc.m009191200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pmc1p, the Ca(2+)-ATPase of budding yeast related to plasma membrane Ca(2+)-ATPases of animals, is transcriptionally up-regulated in response to signaling by the calmodulin-calcineurin-Tcn1p/Crz1p signaling pathway. Little is known about post-translational regulation of Pmc1p. In a genetic screen for potential negative regulators of Pmc1p, a vacuolar v-SNARE protein, Nyv1p, was recovered. Cells overproducing Nyv1p show decreased Ca(2+) tolerance and decreased accumulation of Ca(2+) in the vacuole, similar to pmc1 null mutants. Overexpression of Nyv1p had no such effects on pmc1 mutants, suggesting that Nyv1p may inhibit Pmc1p function. Overexpression of Nyv1p did not decrease Pmc1p levels but decreased the specific ATP-dependent Ca(2+) transport activity of Pmc1p in purified vacuoles by at least 2-fold. The effect of Nyv1p on Pmc1p function is likely to be direct because native immunoprecipitation experiments showed that Pmc1p coprecipitated with Nyv1p. Complexes between Nyv1p and its t-SNARE partner Vam3p were also isolated, but these complexes lacked Pmc1p. We conclude that Nyv1p can interact physically with Pmc1p and inhibit its Ca(2+) transport activity in the vacuole membrane. This is the first example of a Ca(2+)-ATPase regulation by a v-SNARE protein involved in membrane fusion reactions.
Collapse
Affiliation(s)
- Y Takita
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
50
|
Locke EG, Bonilla M, Liang L, Takita Y, Cunningham KW. A homolog of voltage-gated Ca(2+) channels stimulated by depletion of secretory Ca(2+) in yeast. Mol Cell Biol 2000; 20:6686-94. [PMID: 10958666 PMCID: PMC86178 DOI: 10.1128/mcb.20.18.6686-6694.2000] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In animal cells, capacitative calcium entry (CCE) mechanisms become activated specifically in response to depletion of calcium ions (Ca(2+)) from secretory organelles. CCE serves to replenish those organelles and to enhance signaling pathways that respond to elevated free Ca(2+) concentrations in the cytoplasm. The mechanism of CCE regulation is not understood because few of its essential components have been identified. We show here for the first time that the budding yeast Saccharomyces cerevisiae employs a CCE-like mechanism to refill Ca(2+) stores within the secretory pathway. Mutants lacking Pmr1p, a conserved Ca(2+) pump in the secretory pathway, exhibit higher rates of Ca(2+) influx relative to wild-type cells due to the stimulation of a high-affinity Ca(2+) uptake system. Stimulation of this Ca(2+) uptake system was blocked in pmr1 mutants by expression of mammalian SERCA pumps. The high-affinity Ca(2+) uptake system was also stimulated in wild-type cells overexpressing vacuolar Ca(2+) transporters that competed with Pmr1p for substrate. A screen for yeast mutants specifically defective in the high-affinity Ca(2+) uptake system revealed two genes, CCH1 and MID1, previously implicated in Ca(2+) influx in response to mating pheromones. Cch1p and Mid1p were localized to the plasma membrane, coimmunoprecipitated from solubilized membranes, and shown to function together within a single pathway that ensures that adequate levels of Ca(2+) are supplied to Pmr1p to sustain secretion and growth. Expression of Cch1p and Mid1p was not affected in pmr1 mutants. The evidence supports the hypothesis that yeast maintains a homeostatic mechanism related to CCE in mammalian cells. The homology between Cch1p and the catalytic subunit of voltage-gated Ca(2+) channels raises the possibility that in some circumstances CCE in animal cells may involve homologs of Cch1p and a conserved regulatory mechanism.
Collapse
Affiliation(s)
- E G Locke
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|