1
|
Rodriguez S, Sharma S, Tiarks G, Peterson Z, Jackson K, Thedens D, Wong A, Keffala-Gerhard D, Mahajan VB, Ferguson PJ, Newell EA, Glykys J, Nickl-Jockschat T, Bassuk AG. Neuroprotective effects of naltrexone in a mouse model of post-traumatic seizures. Sci Rep 2024; 14:13507. [PMID: 38867062 PMCID: PMC11169394 DOI: 10.1038/s41598-024-63942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Traumatic Brain Injury (TBI) induces neuroinflammatory response that can initiate epileptogenesis, which develops into epilepsy. Recently, we identified anti-convulsive effects of naltrexone, a mu-opioid receptor (MOR) antagonist, used to treat drug addiction. While blocking opioid receptors can reduce inflammation, it is unclear if post-TBI seizures can be prevented by blocking MORs. Here, we tested if naltrexone prevents neuroinflammation and/or seizures post-TBI. TBI was induced by a modified Marmarou Weight-Drop (WD) method on 4-week-old C57BL/6J male mice. Mice were placed in two groups: non-telemetry assessing the acute effects or in telemetry monitoring for interictal events and spontaneous seizures both following TBI and naltrexone. Molecular, histological and neuroimaging techniques were used to evaluate neuroinflammation, neurodegeneration and fiber track integrity at 8 days and 3 months post-TBI. Peripheral immune responses were assessed through serum chemokine/cytokine measurements. Our results show an increase in MOR expression, nitro-oxidative stress, mRNA expression of inflammatory cytokines, microgliosis, neurodegeneration, and white matter damage in the neocortex of TBI mice. Video-EEG revealed increased interictal events in TBI mice, with 71% mice developing post-traumatic seizures (PTS). Naltrexone treatment ameliorated neuroinflammation, neurodegeneration, reduced interictal events and prevented seizures in all TBI mice, which makes naltrexone a promising candidate against PTS, TBI-associated neuroinflammation and epileptogenesis in a WD model of TBI.
Collapse
Affiliation(s)
- Saul Rodriguez
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Shaunik Sharma
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Grant Tiarks
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Zeru Peterson
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Kyle Jackson
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Daniel Thedens
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Angela Wong
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - David Keffala-Gerhard
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University, Palo Alto, CA, USA
| | - Polly J Ferguson
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Elizabeth A Newell
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
| | - Joseph Glykys
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Alexander G Bassuk
- Stead Family Department of Pediatrics , Carver College of Medicine, University of Iowa, 25 South Grand Ave, 2040 MedLabs, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Petrocelli G, Pampanella L, Abruzzo PM, Ventura C, Canaider S, Facchin F. Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. Int J Mol Sci 2022; 23:3819. [PMID: 35409178 PMCID: PMC8998234 DOI: 10.3390/ijms23073819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the super-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP). Endogenous opioids are mainly studied in the central nervous system (CNS), but their role has been investigated in other organs, both in physiological and in pathological conditions. Here, we revise their role in stem cell (SC) biology, since these cells are a subject of great scientific interest due to their peculiar features and their involvement in cell-based therapies in regenerative medicine. In particular, we focus on endogenous opioids' ability to modulate SC proliferation, stress response (to oxidative stress, starvation, or damage following ischemia-reperfusion), and differentiation towards different lineages, such as neurogenesis, vasculogenesis, and cardiogenesis.
Collapse
Affiliation(s)
- Giovannamaria Petrocelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Provvidenza M. Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
3
|
Kim J, Lee S, Kang S, Jeon TI, Kang MJ, Lee TH, Kim YS, Kim KS, Im HI, Moon C. Regulator of G-Protein Signaling 4 (RGS4) Controls Morphine Reward by Glutamate Receptor Activation in the Nucleus Accumbens of Mouse Brain. Mol Cells 2018; 41:454-464. [PMID: 29754475 PMCID: PMC5974622 DOI: 10.14348/molcells.2018.0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 11/27/2022] Open
Abstract
Crosstalk between G-protein signaling and glutamatergic transmission within the brain reward circuits is critical for long-term emotional effects (depression and anxiety), cravings, and negative withdrawal symptoms associated with opioid addiction. A previous study showed that Regulator of G-protein signaling 4 (RGS4) may be implicated in opiate action in the nucleus accumbens (NAc). However, the mechanism of the NAc-specific RGS4 actions that induce the behavioral responses to opiates remains largely unknown. The present study used a short hairpin RNA (shRNA)-mediated knock-down of RGS4 in the NAc of the mouse brain to investigate the relationship between the activation of ionotropic glutamate receptors and RGS4 in the NAc during morphine reward. Additionally, the shRNA-mediated RGS4 knock-down was implemented in NAc/striatal primary-cultured neurons to investigate the role that striatal neurons have in the morphine-induced activation of ionotropic glutamate receptors. The results of this study show that the NAc-specific knockdown of RGS4 significantly increased the behaviors associated with morphine and did so by phosphorylation of the GluR1 (Ser831) and NR2A (Tyr1325) glutamate receptors in the NAc. Furthermore, the knock-down of RGS4 enhanced the phosphorylation of the GluR1 and NR2A glutamate receptors in the primary NAc/striatal neurons during spontaneous morphine withdrawal. These findings show a novel molecular mechanism of RGS4 in glutamatergic transmission that underlies the negative symptoms associated with morphine administration.
Collapse
Affiliation(s)
- Juhwan Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186,
Korea
| | - Sueun Lee
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| | - Sohi Kang
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| | - Tae-Il Jeon
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Man-Jong Kang
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186,
Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186,
Korea
| | - Yong Sik Kim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 08826,
Korea
| | - Key-Sun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
| | - Heh-In Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792,
Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792,
Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
4
|
Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience 2014; 280:299-317. [PMID: 25241065 DOI: 10.1016/j.neuroscience.2014.09.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022]
Abstract
CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at toll-like receptor 4 (TLR4), presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu opioid receptor (MOR)-inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated nuclear factor kappaB (NF-κB), increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 (PGE2) from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and PGE2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequelae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by presumptive glial inhibitors, as well as TLR4-mediated phenomena more broadly.
Collapse
|
5
|
Garzón J, Rodríguez-Muñoz M, Vicente-Sánchez A, Bailón C, Martínez-Murillo R, Sánchez-Blázquez P. RGSZ2 binds to the neural nitric oxide synthase PDZ domain to regulate mu-opioid receptor-mediated potentiation of the N-methyl-D-aspartate receptor-calmodulin-dependent protein kinase II pathway. Antioxid Redox Signal 2011; 15:873-87. [PMID: 21348811 DOI: 10.1089/ars.2010.3767] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UNLABELLED Morphine increases the production of nitric oxide (NO) via the phosphoinositide 3-kinase/Akt/neural nitric oxide synthase (nNOS) pathway. Subsequently, NO enhances N-methyl-D-aspartate receptor (NMDAR)/calmodulin-dependent protein kinase II (CaMKII) cascade, diminishing the strength of morphine-activated Mu-opioid receptor (MOR) signaling. During this process, NO signaling is restricted by the association of nNOS to the MOR. AIMS Here, we examined how nNOS/NO signaling is downregulated by the morphine-activated MOR and how this regulation affects antinociception. RESULTS Accordingly, we show that the MOR-NMDAR regulatory loop relies on the negative control of nNOS activity exerted by RGSZ2, a protein physically coupled to the MOR. This regulation requires binding of the nNOS N terminal PDZ domain to the RGSZ2 PDZ binding motifs that lie upstream of the RGS box. INNOVATION Indeed, in RGSZ2-deficient mice morphine over-stimulates the nNOS/NO/NMDAR/CaMKII pathway, causing analgesic tolerance to develop rapidly. Recovery of RGSZ2 levels or inhibition of nNOS, protein kinase C, NMDAR, or CaMKII function restores MOR signaling and morphine recovers its full analgesic potency. CONCLUSION This RGSZ2-dependent regulation of NMDAR activity is relevant to persistent pain disorders associated with heightened NMDAR-mediated glutamate responses and the reduced antinociceptive capacity of opioids.
Collapse
Affiliation(s)
- Javier Garzón
- Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Deb I, Das S. Thyroid hormones protect astrocytes from morphine-induced apoptosis by regulating nitric oxide and pERK 1/2 pathways. Neurochem Int 2011; 58:861-71. [DOI: 10.1016/j.neuint.2011.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 12/22/2022]
|
7
|
Matsushita Y, Ueda H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. Neuroreport 2009; 20:63-8. [PMID: 19033880 DOI: 10.1097/wnr.0b013e328314decb] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study was carried out based on the assumption that brain-derived neurotrophic factor (BDNF) may counterbalance the action of morphine in the brain. Morphine analgesic tolerance after daily administrations for six days was blocked by intracerebroventricular injection of anti-BDNF IgG on day 5, but not by administrations on days 1-4. Chronic morphine treatment significantly increased the expression of exon I and IV BDNF transcripts, indicating differential regulation of BDNF gene expression. Daily administration of the CREB-binding protein inhibitor curcumin abolished the upregulation of BDNF transcription and morphine analgesic tolerance. These results suggest that curcumin might be a promising adjuvant to reduce morphine analgesic tolerance, and that epigenetic control could be a new strategy useful for the control of this problem.
Collapse
Affiliation(s)
- Yosuke Matsushita
- aDivision of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | |
Collapse
|
8
|
Pateliya BB, Singh N, Jaggi AS. Possible Role of Opioids and KATP Channels in Neuroprotective Effect of Postconditioning in Mice. Biol Pharm Bull 2008; 31:1755-60. [DOI: 10.1248/bpb.31.1755] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University
| | | |
Collapse
|
9
|
Korzh A, Keren O, Gafni M, Bar-Josef H, Sarne Y. Modulation of extracellular signal-regulated kinase (ERK) by opioid and cannabinoid receptors that are expressed in the same cell. Brain Res 2007; 1189:23-32. [PMID: 18068691 DOI: 10.1016/j.brainres.2007.10.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 09/17/2007] [Accepted: 10/28/2007] [Indexed: 11/30/2022]
Abstract
In the present study we investigated the signal transduction pathways leading to the activation of extracellular signal-regulated kinase (ERK) by opioid or cannabinoid drugs, when their receptors are coexpressed in the same cell-type. In N18TG2 neuroblastoma cells, the opioid agonist etorphine and the cannabinoid agonist CP-55940 induced the phosphorylation of ERK by a similar mechanism that involved activation of delta-opioid receptors or CB1 cannabinoid receptors coupled to Gi/Go proteins, matrix metalloproteases, vascular endothelial growth factor (VEGF) receptors and MAPK/ERK kinase (MEK). In HEK-293 cells, these two drugs induced the phosphorylation of ERK by separate mechanisms. While CP-55940 activated ERK by transactivation of VEGFRs, similar to its effect in N18TG2 cells, the opioid agonist etorphine activated ERK by a mechanism that did not involve transactivation of a receptor tyrosine kinase. Interestingly, the activation of ERK by etorphine was resistant to the inhibition of MEK, suggesting the possible existence of a novel, undescribed yet mechanism for the activation of ERK by opioids. This mechanism was found to be specific to etorphine, as activation of ERK by the micro-opioid receptor (MOR) agonist DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol] enkephalin) was mediated by MEK in these cells, suggesting that etorphine and DAMGO activate distinct, ligand-specific, conformations of MOR. The characterization of cannabinoid- and opioid-induced ERK activation in these two cell-lines enables future studies into possible interactions between these two groups of drugs at the level of MAPK signaling.
Collapse
Affiliation(s)
- Alexander Korzh
- The Mauerberger Chair in Neuropharmacology, Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
10
|
Chen YL, Law PY, Loh HH. Nuclear factor kappaB signaling in opioid functions and receptor gene expression. J Neuroimmune Pharmacol 2006; 1:270-9. [PMID: 18040804 PMCID: PMC3446243 DOI: 10.1007/s11481-006-9028-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 05/31/2006] [Indexed: 12/20/2022]
Abstract
Opiates are the most powerful of all known analgesics. The prototype opiate morphine has been used as a painkiller for several thousand years. Chronic usage of opiates not only causes drug tolerance, dependence, and addiction, but also suppresses immune functions and affects cell proliferation and cell survival. The diverse functions of opiates underscore the complexity of opioid receptor signaling. Several downstream signaling effector systems, including adenylyl cyclase, mitogen-activated protein kinase, Ca2+ channels, K+ channels, and phosphatidylinositol 3-kinase/Akt, have been identified to be critical in opioid functions. Nuclear factor-kappaB (NF-kappaB), one of the most diverse and critical transcription factors, is one of the downstream molecules that may either directly or indirectly transmit the receptor-mediated upstream signals to the nucleus, resulting in the regulation of the NF-kappaB-dependent genes, which are critical for the opioid-induced biological responses of neuronal and immune cells. In this minireview, we focus on current understanding of the involvement of NF-kappaB signaling in opioid functions and receptor gene expression in cells.
Collapse
Affiliation(s)
- Yulong L Chen
- Department of Pharmacology, the University of Minnesota School of Medicine, 321 Church St. S.E., Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
11
|
Ziółkowska B, Urbański MJ, Wawrzczak-Bargieła A, Bilecki W, Przewłocki R. Morphine activates Arc expression in the mouse striatum and in mouse neuroblastoma Neuro2A MOR1A cells expressing mu-opioid receptors. J Neurosci Res 2006; 82:563-70. [PMID: 16211563 DOI: 10.1002/jnr.20661] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is an effector immediate early gene product implicated in long-term potentiation and other forms of neuroplasticity. Earlier studies demonstrated Arc induction in discrete brain regions by several psychoactive substances, including drugs of abuse. In the present experiments, the influence of morphine on Arc expression was assessed by quantitative reverse transcription real-time PCR and Western blotting in vivo in the mouse striatum/nucleus accumbens and, in vitro, in the mouse Neuro2A MOR1A cell line, expressing mu-opioid receptor. An acute administration of morphine produced a marked increase in Arc mRNA and protein level in the mouse striatum/nucleus accumbens complex. After prolonged opiate treatment, tolerance to the stimulatory effect of morphine on Arc expression developed. No changes in the striatal Arc mRNA levels were observed during spontaneous or opioid antagonist-precipitated morphine withdrawal. In Neuro2A MOR1A cells, acute, but not prolonged, morphine treatment elevated Arc mRNA level by activation of mu-opioid receptor. This was accompanied by a corresponding increase in Arc protein level. Inhibition experiments revealed that morphine induced Arc expression in Neuro2A MOR1A cells via intracellular signaling pathways involving mitogen-activated protein (MAP) kinases and protein kinase C. These results lend further support to the notion that stimulation of opioid receptors may exert an activating influence on some intracellular pathways and leads to induction of immediate early genes. They also demonstrate that Arc is induced in the brain in vivo after morphine administration and thus may play a role in neuroadaptations produced by the drug.
Collapse
MESH Headings
- AIDS-Related Complex/genetics
- AIDS-Related Complex/metabolism
- Analysis of Variance
- Animals
- Blotting, Western/methods
- Cell Line, Tumor
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Interactions
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Expression/drug effects
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Indoles/pharmacology
- Male
- Maleimides/pharmacology
- Mice
- Mice, Inbred C57BL
- Morphine/administration & dosage
- Narcotics/administration & dosage
- Neuroblastoma/metabolism
- RNA, Messenger/biosynthesis
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Barbara Ziółkowska
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków
| | | | | | | | | |
Collapse
|
12
|
McNally GP, Lee BW, Chiem JY, Choi EA. The midbrain periaqueductal gray and fear extinction: opioid receptor subtype and roles of cyclic AMP, protein kinase A, and mitogen-activated protein kinase. Behav Neurosci 2006; 119:1023-33. [PMID: 16187830 DOI: 10.1037/0735-7044.119.4.1023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Four experiments studied the opioid receptor subtype and signal transduction mechanisms mediating fear extinction in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG). Microinjection of a mu- but not a delta- or kappa-opioid receptor antagonist into the vlPAG retarded extinction. Extinction was also dose-dependently retarded by vlPAG infusions of a cyclic AMP (cAMP) analog but was unaffected by infusions of a protein kinase A activator or a mitogen-activated protein kinase inhibitor across wide dose ranges. The results show that fear extinction occurs via activation of vlPAG mu-opioid receptors and involves reductions in cAMP. These mechanisms are different from the cellular mechanisms for extinction in the amygdala and from the known cellular mechanisms for opioid analgesia in the vlPAG.
Collapse
Affiliation(s)
- Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
13
|
Cao JL, He JH, Ding HL, Zeng YM. Activation of the spinal ERK signaling pathway contributes naloxone-precipitated withdrawal in morphine-dependent rats. Pain 2005; 118:336-349. [PMID: 16289800 DOI: 10.1016/j.pain.2005.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 08/14/2005] [Accepted: 09/02/2005] [Indexed: 11/22/2022]
Abstract
Extracellular signal-regulated kinase (ERK), a mitogen-activated protein kinases (MAPK), transduces a broad range of extracellular stimuli into diverse intracellular responses. Recent studies have showed that ERK activation in the supraspinal level involved in the development of drug dependence, especially in psychological dependence. In this study, we reported that the spinal ERK signaling pathway was activated by chronic morphine injection. There was a further increase in ERK activation after naloxone-precipitated withdrawal. Furthermore, attenuation of the spinal ERK phosphorylation by intrathecal a MAPK kinase (MEK) inhibitor U0126 or knockdown of the spinal ERK by antisense oligonucleotides not only decreased the scores of morphine withdrawal, but also attenuated withdrawal-induced allodynia, which were accompanied by decreased ERK phosphorylation in the spinal cord. The spinal ERK inhibition or knockdown also reduced morphine withdrawal-induced phosphorylation of cAMP response element binding protein (CREB), which is one of the important downstream substrates of ERK pathway, and Fos expression. The involvement of the spinal ERK in morphine withdrawal was supported by our finding that intrathecal N-methyl-D-aspartate receptor antagonist MK-801 or protein kinase C inhibitor chelerythrine chloride suppressed withdrawal-induced ERK activation in the spinal cord and attenuated morphine withdrawal symptoms. These findings suggest activation of the spinal ERK signaling pathway contributes naloxone-precipitated withdrawal in morphine-dependent rats.
Collapse
Affiliation(s)
- Jun-Li Cao
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical College, 99 Huaihai West Road, Xuzhou 221002, People's Republic of China Jiangsu Key Laboratory of Anesthesiology, Jiangsu Institute of Anesthesiology, 99 Huaihai West Road, Xuzhou 221002, People's Republic of China Department of Physiology, University of Texas, Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9040, USA
| | | | | | | |
Collapse
|
14
|
Hauser KF, El-Hage N, Buch S, Berger JR, Tyor WR, Nath A, Bruce-Keller AJ, Knapp PE. Molecular targets of opiate drug abuse in neuroAIDS. Neurotox Res 2005; 8:63-80. [PMID: 16260386 PMCID: PMC4306668 DOI: 10.1007/bf03033820] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Opiate drug abuse, through selective actions at mu-opioid receptors (MOR), exacerbates the pathogenesis of human immunodeficiency virus-1 (HIV-1) in the CNS by disrupting glial homeostasis, increasing inflammation, and decreasing the threshold for pro-apoptotic events in neurons. Neurons are affected directly and indirectly by opiate-HIV interactions. Although most opiates drugs have some affinity for kappa (KOR) and/or delta (DOR) opioid receptors, their neurotoxic effects are largely mediated through MOR. Besides direct actions on the neurons themselves, opiates directly affect MOR-expressing astrocytes and microglia. Because of their broad-reaching actions in glia, opiate abuse causes widespread metabolic derangement, inflammation, and the disruption of neuron-glial relationships, which likely contribute to neuronal dysfunction, death, and HIV encephalitis. In addition to direct actions on neural cells, opioids modulate inflammation and disrupt normal intercellular interactions among immunocytes (macrophages and lymphocytes), which on balance further promote neuronal dysfunction and death. The neural pathways involved in opiate enhancement of HIV-induced inflammation and cell death, appear to involve MOR activation with downstream effects through PI3-kinase/Akt and/or MAPK signaling, which suggests possible targets for therapeutic intervention in neuroAIDS.
Collapse
Affiliation(s)
- K F Hauser
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Peart JN, Gross ER, Gross GJ. Opioid-induced preconditioning: recent advances and future perspectives. Vascul Pharmacol 2005; 42:211-8. [PMID: 15922254 DOI: 10.1016/j.vph.2005.02.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Opioids, named by Acheson for compounds with morphine-like actions despite chemically distinct structures, have received much research interest, particularly for their central nervous system (CNS) actions involved in pain management, resulting in thousands of scientific papers focusing on their effects on the CNS and other organ systems. A more recent area which may have great clinical importance concerns the role of opioids, either endogenous or exogenous compounds, in limiting the pathogenesis of ischemia-reperfusion injury in heart and brain. The role of endogenous opioids in hibernation provides tantalizing evidence for the protective potential of opioids against ischemia or hypoxia. Mammalian hibernation, a distinct energy-conserving state, is associated with depletion of energy stores, intracellular acidosis and hypoxia, similar to those which occur during ischemia. However, despite the potentially detrimental cellular state induced with hibernation, the myocardium remains resilient for many months. What accounts for the hypoxia-tolerant state is of great interest. During hibernation, circulating levels of opioid peptides are increased dramatically, and indeed, are considered a "trigger" of hibernation. Furthermore, administration of opioid antagonists can effectively reverse hibernation in mammals. Therefore, it is not surprising that activation of opioid receptors has been demonstrated to preserve cellular status following a hypoxic insult, such as ischemia-reperfusion in many model systems including the intestine [Zhang, Y., Wu, Y.X., Hao, Y.B., Dun, Y. Yang, S.P., 2001. Role of endogenous opioid peptides in protection of ischemic preconditioning in rat small intestine. Life Sci. 68, 1013-1019], skeletal muscle [Addison, P.D., Neligan, P.C., Ashrafpour, H., Khan, A., Zhong, A., Moses, M., Forrest, C.R., Pang, C.Y., 2003. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am. J. Physiol. Heart Circ. Physiol. 285, H1435-H1443], the CNS [Borlongan, C.V., Wang, Y., Su, T.P., 2005. Delta opioid peptide (d-ala 2, d-leu 5) enkephalin: linking hiberation and neuroprotection. Front Biosci. 9, 3392-3398] and the myocardium [Romano, M.A., Seymour, E.M., Berry, J.A., McNish, R.A., Bolling, S.F., 2004. Relative contribution of endogenous opioids to myocardial ischemic tolerance. J Surg Res. 118, 32-37; Peart, J.N., Gross, G.J., 2004a. Exogenous activation of delta- and kappa-opioid receptors affords cardioprotection in isolated murine heart. Basic Res Cardiol. 99(1), 29-37]. For the purpose of this review, we will focus primarily on the protective effects of opioids against post-reperfusion myocardial stunning and infarction.
Collapse
Affiliation(s)
- Jason N Peart
- Department Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA.
| | | | | |
Collapse
|
16
|
Ren X, Noda Y, Mamiya T, Nagai T, Nabeshima T. A neuroactive steroid, dehydroepiandrosterone sulfate, prevents the development of morphine dependence and tolerance via c-fos expression linked to the extracellular signal-regulated protein kinase. Behav Brain Res 2004; 152:243-50. [PMID: 15196791 DOI: 10.1016/j.bbr.2003.10.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 10/02/2003] [Accepted: 10/04/2003] [Indexed: 10/26/2022]
Abstract
In the present study, we investigated how the neurosteroid, dehydroepiandrosterone sulfate (DHEAS) affects the development of morphine dependence and tolerance in mice. Mice administered morphine (10 mg/kg) twice a day for 5 days developed tolerance to the analgesic effect and dependence as shown by a severe withdrawal syndrome induced by naloxone. Co-administration of DHEAS (10 mg/kg) with morphine significantly inhibited the development, but not the expression, of tolerance to morphine-induced analgesia and the naloxone-precipitated withdrawal. The expression of c-fos mRNA was observed in the frontal cortex and thalamus of mice showing signs of naloxone-precipitated withdrawal, while the expression of c-fos mRNA was significantly diminished by co-administration of DHEAS with morphine. On the naloxone-precipitated withdrawal, mice showed a significant elevation of cyclic AMP (cAMP) levels in the thalamus, whereas chronic administration of DHEAS with morphine did not affect the increase in cAMP. Interestingly, repeated co-administration of DHEAS with morphine prevented the withdrawal-induced phosphorylation of extracellular signal-regulated protein kinase (ERK) 2 in the frontal cortex. These results showed that DHEAS prevented the development of morphine tolerance and dependence and suggested that the attenuating effects of DHEAS might result from the regulation of c-fos mRNA expression, which is possibly involved the signaling activation of ERK, but not of cAMP pathway.
Collapse
Affiliation(s)
- Xiuhai Ren
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65, Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | | | | | | | | |
Collapse
|
17
|
Muller DL, Unterwald EM. In vivo regulation of extracellular signal-regulated protein kinase (ERK) and protein kinase B (Akt) phosphorylation by acute and chronic morphine. J Pharmacol Exp Ther 2004; 310:774-82. [PMID: 15056728 DOI: 10.1124/jpet.104.066548] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro evidence suggests that extracellular signal-regulated protein kinases (ERKs) and Akt (also referred to as protein kinase B) are among the myriad of intracellular signaling molecules regulated by opioid receptors. The present study examined the regulation of ERK and Akt activation in the nucleus accumbens and caudate putamen following acute and chronic morphine administration in the rat. ERK and Akt are activated by phosphorylation, hence the levels of phosphorylated ERK (pERK) and Akt (pAkt) as well as total levels of ERK and Akt protein were measured by Western blot analysis. Male Sprague-Dawley rats received either a single injection of morphine or twice daily injections of morphine for 6 or 10 days. Following acute morphine, pERK levels were significantly decreased in the nucleus accumbens but not in the caudate putamen. Phosphorylated Akt levels in the nucleus accumbens were significantly increased after a single morphine injection. Naltrexone pretreatment prevented both the morphine-induced pERK down-regulation and pAkt up-regulation. Although reductions in pERK levels were evident after 6 days of morphine administration, no differences were observed in pERK levels after 10 days. In contrast to the up-regulation seen after acute morphine, pAkt levels in the nucleus accumbens were significantly decreased after chronic morphine administration. Thus, the differential activation patterns of both ERK and Akt after acute and chronic morphine administration could have important implications for understanding additional pathways mediating opioid signaling in vivo.
Collapse
Affiliation(s)
- Daniella L Muller
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
18
|
Eisinger DA, Schulz R. Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinases Block Internalization of δ-Opioid Receptors. J Pharmacol Exp Ther 2004; 309:776-85. [PMID: 14742744 DOI: 10.1124/jpet.103.061788] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Translocation of G protein-coupled receptors (GPCRs) from the cell membrane to cytosol depends on the kind of ligand activating the receptor. This principle is clearly demonstrated for opioid receptors, because diverse opiate agonists rapidly induce receptor internalization, whereas morphine almost fails. We report here the impact of mitogen-activated protein (MAP) kinase isoforms extracellular signal-regulated kinase (ERK)1/2 on the internalization of delta-opioid receptors (DORs) expressed in human embryonic kidney (HEK)293 cells. Receptor activation by etorphine turned out to transiently phosphorylate ERK/MAP kinases and bring about DOR internalization within 20 min. In contrast, prolonged exposure of HEK293 cells to morphine excited persistent phosphorylation of ERK/MAP kinases, and those cells failed to internalize the opioid receptor. When ERK/MAP kinase phosphorylation was blocked by 2'-Amino-3'-methoxyflavone (PD98059), morphine gained the ability to strongly induce DOR endocytosis. The importance of activated MAP kinases for DOR internalization is further demonstrated by glutamate and paclitaxel because these substances induce phosphorylation of ERK1/2 and concomitantly prevent DOR sequestration by etorphine. In addition, receptor internalization by morphine was facilitated by inhibition of protein kinase C and opioid-mediated transactivation of epidermal growth factor receptor (EGFR), both activating ERK/MAP kinases by opioids. The mechanism affording DOR internalization by PD98059 may relate to arrestin, which uncouples GPCRs and thus triggers receptor internalization. Arrestin considerably translocates toward the cell membrane upon DOR activation by morphine in presence of the MAP kinase blocker, but it fails in the absence of PD98059. We conclude that ERK/MAP kinase activity prevents opioid receptor desensitization and sequestration by blocking arrestin 2 interaction with activated DORs.
Collapse
Affiliation(s)
- Daniela A Eisinger
- Institute of Pharmacology, Toxicology and Pharmacy, University of Munich, Germany.
| | | |
Collapse
|
19
|
Phosphoinositide 3-kinase cascade facilitates mu-opioid desensitization in sensory neurons by altering G-protein-effector interactions. J Neurosci 2003. [PMID: 14614088 DOI: 10.1523/jneurosci.23-32-10292.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Signaling via G-protein-coupled receptors undergoes desensitization after prolonged agonist exposure. Here we investigated the role of phosphoinositide 3-kinase (PI3K) and its downstream pathways in desensitization of micro-opioid inhibition of neuronal Ca2+ channels. In cultured mouse dorsal root ganglion neurons, two mechanistically different forms of desensitization were observed after acute or chronic treatment with the micro agonist [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin (DAMGO). Chronic DAMGO desensitization was heterologous in nature and significantly attenuated by blocking the activity of PI3K or mitogen-activated protein kinase (MAPK). A combined application of PI3K and MAPK inhibitors showed no additive effect, suggesting that these two kinases act in a common pathway to facilitate chronic desensitization. Acute DAMGO desensitization, however, was not affected by the inhibitors. Furthermore, upregulation of the PI3K-Akt pathway in mutant mice lacking phosphatase and tensin homolog, a lipid phosphatase counteracting PI3K, selectively enhanced chronic desensitization in a PI3K- and MAPK-dependent manner. Using the prepulse facilitation (PPF) test, we further examined changes in the voltage-dependent component of DAMGO action that requires direct interactions between betagamma subunits of G-proteins and Ca2+ channels. DAMGO-induced PPF was diminished after chronic treatment, suggesting disruption of G-protein-channel interactions. Such disruption could occur at the postreceptor level, because chronic DAMGO also reduced GTPgammaS-induced PPF that was independent of receptor activation. Again, inhibition of PI3K or MAPK reduced desensitization of PPF. Our data suggest that the PI3Kcascade involving MAPK and Akt enhances micro-opioid desensitization via postreceptor modifications that interfere with G-protein-effector interactions.
Collapse
|
20
|
Smith AP, Lee NM. Opioid receptor interactions: local and nonlocal, symmetric and asymmetric, physical and functional. Life Sci 2003; 73:1873-93. [PMID: 12899914 DOI: 10.1016/s0024-3205(03)00549-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pharmacological effects of opioid drugs and endogenous opioid peptides are mediated by several kinds of receptors, the major ones being mu, delta and kappa. Though classically it has been thought that a particular effect mediated by a drug or other ligand results from its interaction with a single type of receptor, accumulating evidence demonstrates that interactions between receptors play a major role in opioid actions. These interactions may be either local, involving receptors within the same tissue, or nonlocal, between receptors located in different tissues. Nonlocal interactions always involve intercellular mechanisms, whereas local interactions may involve either intercellular or intracellular interactions, the latter including physical association of receptors. Both local and nonlocal interactions, moreover, may be either symmetric, with ligand interaction at one receptor affecting interaction at the other, or asymmetric; and either potentiating or inhibitory. In this article we discuss major examples of these kinds of interactions, and their role in the acute and chronic effects of opioids. Knowledge of these interactions may have important implications for the design of opioids with more specific actions, and for eliminating the addictive liability of these drugs.
Collapse
Affiliation(s)
- Andrew P Smith
- California Pacific Medical Center Research Institute, 2330 Clay St., San Francisco, CA 94115, USA
| | | |
Collapse
|
21
|
Persson AI, Thorlin T, Bull C, Eriksson PS. Opioid-induced proliferation through the MAPK pathway in cultures of adult hippocampal progenitors. Mol Cell Neurosci 2003; 23:360-72. [PMID: 12837621 DOI: 10.1016/s1044-7431(03)00061-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Administration of opioid agonists or antagonists has been reported to regulate proliferation or survival of neural progenitors in vivo. Here we report that beta-endorphin and selective mu-opioid receptor (MOR) and delta-opioid receptor (DOR) agonists stimulate proliferation of isolated rat adult hippocampal progenitors (AHPs). The AHPs were found to express DORs and MORs, but not kappa-opioid receptors. Incubation with beta-endorphin for 48 h increased the number of AHPs found in mitosis, the total DNA content, and the expression of proliferating cell nuclear antigen. This proliferative effect from beta-endorphin on AHPs was antagonized by naloxone. The beta-endorphin-induced proliferation was mediated through phosphorylation of extracellular signal-regulated kinases 1 and 2 and dependent on phosphatidylinositol 3-kinase and both intra- and extracellular calcium. These data suggest a role for the opioid system in the regulation of proliferation in progenitors from the adult hippocampus.
Collapse
Affiliation(s)
- Anders I Persson
- The Arvid Carlsson Institute for Neuroscience at Institute of Clinical Neuroscience, Sahlgrenska University Hospital, Göteborg University, Göteborg, Sweden
| | | | | | | |
Collapse
|
22
|
Lesscher HMB, Burbach JPH, van Ree JM, Gerrits MAFM. ERK1/2 activation in rat ventral tegmental area by the mu-opioid agonist fentanyl: an in vitro study. Neuroscience 2003; 116:139-44. [PMID: 12535947 DOI: 10.1016/s0306-4522(02)00552-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Opioid receptors in the ventral tegmental area, predominantly the mu-opioid receptors, have been suggested to modulate reinforcement sensitivity for both opioid and non-opioid drugs of abuse. The present study was conducted to study signal transduction proteins, which may mediate the functioning of mu-opioid receptors in the neurons of the ventral tegmental area. Therefore, brain slices of the ventral tegmental area were exposed in vitro to the specific mu-opioid agonist fentanyl and immunohistochemically stained for four different activated proteins using phospho-specific antibodies. Fentanyl dose-dependently activated extracellular signal-regulated protein in brain slices of the ventral tegmental area. This activation was reversible with naloxone. Furthermore, naloxone itself also activated extracellular signal-regulated protein kinase. Under the present conditions fentanyl did not affect extracellular signal-regulated protein kinase 1 and 2, Stat and cyclic AMP-response element-binding protein activity. The direct activation of extracellular signal-regulated protein kinase in ventral tegmental area slices by the mu-opioid agonist fentanyl may suggest a role of extracellular signal-regulated protein kinase in reward processes.
Collapse
Affiliation(s)
- H M B Lesscher
- Division of Pharmacology and Anatomy, Rudolf Magnus Institute for Neurosciences, University Medical Center, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | |
Collapse
|
23
|
Belcheva MM, Haas PD, Tan Y, Heaton VM, Coscia CJ. The fibroblast growth factor receptor is at the site of convergence between mu-opioid receptor and growth factor signaling pathways in rat C6 glioma cells. J Pharmacol Exp Ther 2002; 303:909-18. [PMID: 12438509 DOI: 10.1124/jpet.102.038554] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitogenic signaling of G protein-coupled receptors (GPCRs) can proceed via sequential epidermal growth factor receptor (EGFR) transactivation and extracellular signal-regulated kinase (ERK) phosphorylation. Although the mu-opioid receptor (MOR) mediates stimulation of ERK via EGFR transactivation in human embryonic kidney 293 cells, the mechanism of acute MOR signaling to ERK has not been characterized in rat C6 glioma cells that seem to contain little EGFR. Herein, we describe experiments that implicate fibroblast growth factor (FGF) receptor (FGFR) transactivation in the convergence of MOR and growth factor signaling pathways in C6 cells. MOR agonists, endomorphin-1 and morphine, induced a rapid (3-min) increase of ERK phosphorylation that was abolished by MOR antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2. By using selective inhibitors and overexpression of dominant negative mutants, data were obtained to suggest that MOR signaling to ERK is transduced by Gbetagamma and entails Ca2+- and protein kinase C-mediated steps, whereas the FGFR branch of the pathway is Ras-dependent. An intermediary role of FGFR1 transactivation was suggested by MOR- but not kappa-opioid receptor (KOR)-induced FGFR1 tyrosine phosphorylation. A dominant negative mutant of FGFR1 attenuated MOR- but not KOR-induced ERK phosphorylation. Thus, a novel transactivation mechanism entailing secreted endogenous FGF may link the GPCR and growth factor pathways involved in MOR activation of ERK in C6 cells.
Collapse
MESH Headings
- Animals
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Glioma/metabolism
- Humans
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/physiology
- Rats
- Receptors, Fibroblast Growth Factor/agonists
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transcriptional Activation/drug effects
- Transcriptional Activation/physiology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- Mariana M Belcheva
- E. A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
24
|
Narita M, Ohnishi O, Nemoto M, Yajima Y, Suzuki T. Implications of phosphoinositide 3-kinase in the mu- and delta-opioid receptor-mediated supraspinal antinociception in the mouse. Neuroscience 2002; 113:647-52. [PMID: 12150784 DOI: 10.1016/s0306-4522(02)00197-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that activates signalling pathways. The present study was designed to investigate whether PI3K could be involved in supraspinal antinociception induced by intracerebroventricular (i.c.v.) administration of micro- and delta-opioid receptor agonists in the mouse. We demonstrated using the mouse warm-plate assay that the prototype of micro-opioid receptor agonist morphine, selective mu-opioid receptor agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO) and delta-opioid receptor agonists [D-Ala(2)]deltorphin II and [D-Pen(2,5)]enkephalin (DPDPE) when given i.c.v. produced profound antinociceptive responses. Under these conditions, i.c.v. pretreatment with cell-permeable and specific PI3K inhibitors wortmannin (0.7-2.3 nmol) and LY294002 (3-33 nmol), which alone had no effects on the basal warm-plate latencies, caused a dose-dependent inhibition of either morphine-, DAMGO-, DPDPE- or [D-Ala(2)]deltorphin II-induced antinociception. Furthermore, LY294002 at 33 nmol significantly shifted the dose-response curves for DAMGO-, DPDPE- and [D-Ala(2)]deltorphin II-induced antinociception to the right. In the immunoblotting assay, we found that PI3K gamma is dense in the periaqueductal gray and lower medulla regions that include several key sites for the production of opioid-induced antinociception. Our findings provide evidence that central PI3K pathways may, at least in part, contribute to the expression of supraspinal antinociception induced by both mu- and delta-opioid receptor agonists in the mouse.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Blotting, Western
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Injections, Intraventricular
- Male
- Mice
- Pain/drug therapy
- Pain/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction
- Time Factors
Collapse
Affiliation(s)
- M Narita
- Department of Toxicology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | |
Collapse
|
25
|
Patel NA, Yamamoto M, Illingworth P, Mancu D, Mebert K, Chappell DS, Watson JE, Cooper DR. Phosphoinositide 3-kinase mediates protein kinase C beta II mRNA destabilization in rat A10 smooth muscle cell cultures exposed to high glucose. Arch Biochem Biophys 2002; 403:111-20. [PMID: 12061808 DOI: 10.1016/s0003-9861(02)00208-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-glucose exposure down-regulates protein kinaseC beta II posttranscriptionally in rat and human vascular smooth muscle cells and contributes to increased cell proliferation. High-glucose-induced mRNA destabilization is specific for PKC beta II mRNA, while PKC beta I and other PKC mRNA are not affected. This study focused on whether glucose metabolism was required. The effect was blocked by cytochalasin B, suggesting a requirement for glucose uptake. Glucosamine did not mimic the effect, indicating that metabolism via hexosamine pathway was not involved. The effect was hexokinase-independent since 3-O-methylglucose, in a dose-dependent manner, mimicked high-glucose effects. Cycloheximide did not block the effect excluding dependency on new protein synthesis. Wortmannin and LY294002, phosphoinositide 3-kinase (PI3-kinase) inhibitors, blocked glucose effects in the presence of 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole. Glucose and 3-O-methylglucose activated PI3-kinase, and LY294002 blocked glucose effects on Akt phosphorylation. In these cells, high-glucose concentrations activated a metabolically linked signaling pathway independent of glucose metabolism to regulate mRNA processing.
Collapse
Affiliation(s)
- Niketa A Patel
- Department of Biochemistry, College of Medicine, University of South Florida, Tampa, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Trujillo KA. The neurobiology of opiate tolerance, dependence and sensitization: mechanisms of NMDA receptor-dependent synaptic plasticity. Neurotox Res 2002; 4:373-91. [PMID: 12829426 DOI: 10.1080/10298420290023954] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Long-term administration of opiates leads to changes in the effects of these drugs, including tolerance, sensitization and physical dependence. There is, as yet, incomplete understanding of the neural mechanisms that underlie these phenomena. Tolerance, sensitization and physical dependence can be considered adaptive processes similar to other experience-dependent changes in the brain, such as learning and neural development. There is considerable evidence demonstrating that N-methyl-D-aspartate (NMDA) receptors and downstream signaling cascades may have an important role in different forms of experience-dependent changes in the brain and behavior. This review will explore evidence indicating that NMDA receptors and downstream messengers may be involved in opiate tolerance, sensitization and physical dependence. This evidence has been used to develop a cellular model of NMDA receptor/opiate interactions. According to this model, mu opioid receptor stimulation leads to a protein kinase C-mediated activation of NMDA receptors. Activation of NMDA receptors leads to influx of calcium and activation of calcium-dependent processes. These calcium-dependent processes have the ability to produce critical changes in opioid-responsive neurons, including inhibition of opioid receptor/second messenger coupling. This model is similar to cellular models of learning and neural development in which NMDA receptors have a central role. Together, the evidence suggests that the mechanisms that underlie changes in the brain and behavior produced by long-term opiate use may be similar to other central nervous system adaptations. The experimental findings and the resulting model may have implications for the treatment of pain and addiction.
Collapse
Affiliation(s)
- Keith A Trujillo
- Department of Psychology, California State University San Marcos, San Marcos, CA 92096-0001, USA.
| |
Collapse
|
27
|
Rozenfeld-Granot G, Toren A, Amariglio N, Nagler A, Rosenthal E, Biniaminov M, Brok-Simoni F, Rechavi G. MAP kinase activation by mu opioid receptor in cord blood CD34(+)CD38(-) cells. Exp Hematol 2002; 30:473-80. [PMID: 12031654 DOI: 10.1016/s0301-472x(02)00786-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Opioid receptor expression and function traditionally have been studied in neuronal cells and recently in mature lymphoid cells; however, little is known about their possible functions in hematopoietic stem cells (CD34(+) cells). We studied the expression of the mu receptor on CD34(+) cells and assessed the signal transduction cascade it induces. MATERIALS AND METHODS Mu-receptor expression on cord blood (CB) and peripheral blood (PB) CD34(+) cells was studied by microarrays, immunostaining, and fluorescence-activated cell sorting analysis. Signal transduction by the mu receptor was studied through Western blots and kinase assay of enkephalin-activated CB CD34(+) cells. Apoptotic, differentiation, and proliferation responses following mu-receptor activatioSn were studied by annexin V assay and inverted microscopy. RESULTS A prominent difference in gene expression, in favor of CB compared to PB CD34(+) cells, was observed in the mu-receptor gene. This receptor was mainly expressed on the CB CD34(+)CD38(-) subpopulation. A MAP kinase signal transduction cascade was shown to be induced through activation of this receptor by enkephalin or morphine. CONCLUSIONS We showed for the first time that the mu receptor is expressed on immature CB stem cells and that its activation by enkephalin or morphine induces a MAP kinase signal transduction cascade. Because the MAP kinase cascade is known to elicit proliferation and differentiation responses, these findings suggest a possible role of endogenous enkephalins in hematopoietic stem cell proliferation and differentiation and may lead to therapeutic applications of opiates in CB stem cell expansion and neuronal differentiation.
Collapse
Affiliation(s)
- Galit Rozenfeld-Granot
- Pediatric Hemato-Oncology Department and the Institute of Hematology, The Chaim Sheba Medical Center, Tel-Hashomer, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hutchinson DS, Bengtsson T, Evans BA, Summers RJ. Mouse beta 3a- and beta 3b-adrenoceptors expressed in Chinese hamster ovary cells display identical pharmacology but utilize distinct signalling pathways. Br J Pharmacol 2002; 135:1903-14. [PMID: 11959793 PMCID: PMC1573318 DOI: 10.1038/sj.bjp.0704654] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. This study characterizes the mouse beta(3a)-adrenoceptor (AR) and the splice variant of the beta(3)-AR (beta(3b)-AR) expressed in Chinese hamster ovary cells (CHO-K1). 2. Stable clones with high (approximately 1200), medium (approximately 500) or low receptor expression (approximately 100 fmol mg protein(-1)) were determined by saturation binding with [(125)I]-(-)-cyanopindolol. Competition binding studies showed no significant differences in affinity of beta-AR ligands for either receptor. 3. Several functional responses of each receptor were measured, namely extracellular acidification rate (EAR; cytosensor microphysiometer), cyclic AMP accumulation, and Erk1/2 phosphorylation. The beta(3)-AR agonists BRL37344, CL316243, GR265162X, L755507, SB251023, the non-conventional partial beta-AR agonist CGP12177 and the beta-AR agonist (-)-isoprenaline caused concentration-dependent increases in EAR in cells expressing either splice variant. CL316243 caused concentration-dependent increases in cyclic AMP accumulation and Erk1/2 phosphorylation in cells expressing either receptor. 4. PTX treatment increased maximum EAR and cyclic AMP responses to CL316243 in cells expressing the beta(3b)-AR but not in cells expressing the beta(3a)-AR at all levels of receptor expression. 5. CL316243 increased Erk1/2 phosphorylation with pEC(50) values and maximum responses that were not significantly different in cells expressing either splice variant. Erk1/2 phosphorylation was insensitive to PTX or H89 (PKA inhibitor) but was inhibited by LY294002 (PI3K gamma inhibitor), PP2 (c-Src inhibitor), genistein (tyrosine kinase inhibitor) and PD98059 (MEK inhibitor). 6. The adenylate cyclase activators forskolin or cholera toxin failed to increase Erk1/2 levels although both treatments markedly increased cyclic AMP accumulation in both beta(3a)- or beta(3b)-AR transfected cells. 7. These results suggest that in CHO-K1 cells, the beta(3b)-AR, can couple to both G(s) and G(i) to stimulate and inhibit cyclic AMP production respectively, while the beta(3a)-AR, couples solely to G(s) to increase cyclic AMP levels. However, the increase in Erk1/2 phosphorylation following receptor activation is not dependent upon coupling of the receptors to G(i) or the generation of cyclic AMP.
Collapse
Affiliation(s)
- Dana S Hutchinson
- Department of Pharmacology, P.O. Box 13E, Monash University, Victoria 3800, Australia
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tore Bengtsson
- The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bronwyn A Evans
- Department of Pharmacology, P.O. Box 13E, Monash University, Victoria 3800, Australia
| | - Roger J Summers
- Department of Pharmacology, P.O. Box 13E, Monash University, Victoria 3800, Australia
- Author for correspondence:
| |
Collapse
|
29
|
Liebmann C. Regulation of MAP kinase activity by peptide receptor signalling pathway: paradigms of multiplicity. Cell Signal 2001; 13:777-85. [PMID: 11583913 DOI: 10.1016/s0898-6568(01)00192-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
G protein-coupled receptors (GPCRs) can stimulate the mitogen-activated protein kinase (MAPK) cascade and thereby induce cellular proliferation like receptor tyrosine kinases (RTKs). Work over the past 5 years has established several models which reduce the links of G(i)-, G(q)-, and G(s)-coupled receptors to MAPK on few principle pathways. They include (i) Ras-dependent activation of MAPK via transactivation of RTKs such as the epidermal growth factor receptor (EGFR), (ii) Ras-independent MAPK activation via protein kinase C (PKC) that converges with the RTK signalling at the level of Raf, and (iii) activation as well as inactivation of MAPK via the cAMP/protein kinase A (PKA) pathway in dependency on the type of Raf. Most of these generalizing hypotheses are founded on experimental data obtained from expression studies and using a limited set of individual receptors. This review will compare these models with pathways to MAPK found for a great variety of peptide hormone and neuropeptide receptor subtypes in various cells. It becomes evident that under endogenous conditions, the transactivation pathway is less dominant as postulated, whereas pathways involving isoforms of PKC and, especially, phosphoinositide 3-kinase (PI-3K) appear to play a more important role as assumed so far. Highly cell-specific and unusual connections of signalling proteins towards MAPK, in particular tumour cells, might provide points of attacks for new therapeutic concepts.
Collapse
Affiliation(s)
- C Liebmann
- Institute of Biochemistry and Biophysics, Biological and Pharmaceutical Faculty, Friedrich-Schiller University, Philosophenweg 12, D-07743, Jena, Germany.
| |
Collapse
|
30
|
Miyamoto T, Fox JC. Autocrine signaling through Ras prevents apoptosis in vascular smooth muscle cells in vitro. J Biol Chem 2000; 275:2825-30. [PMID: 10644748 DOI: 10.1074/jbc.275.4.2825] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cell (SMC) apoptosis contributes to physiological and pathological vascular remodeling. Autocrine fibroblast growth factor (FGF) signaling promotes survival in SMC in vitro. Interruption of autocrine FGF signaling results in apoptosis that can be rescued by other growth factors such as PDGF (platelet-derived growth factor) or EGF (epidermal growth factor). Such heterologous growth factor rescue is prevented by pharmacological inhibition of MAPK, implicating signaling through Ras in mediating survival. This study was designed to test the hypothesis that signaling through Ras is both necessary and sufficient to mediate SMC survival in vitro. Recombinant adenoviruses encoding dominant-negative (Ras(N17)) and constitutively active (Ras(L61)) mutants of Ras were used. Ras(N17) blocks growth factor-mediated MAPK activation and can itself induce SMC apoptosis. Ras(N17) is synergistic with inhibition of autocrine FGF signaling in triggering apoptosis and prevents heterologous growth factor rescue. Conversely, Ras(L61) prevents apoptosis resulting from inhibition of autocrine FGF signaling. Rescue by Ras(L61) can be partially prevented by pharmacological inhibition of MEK or phosphatidylinositol 3-kinase, two downstream effectors of Ras. These results suggest that Ras signaling is both necessary and sufficient to mediate survival in SMC in vitro. Further work is required to determine how these signaling events are regulated in the context of vascular remodeling in vivo.
Collapse
Affiliation(s)
- T Miyamoto
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|