1
|
Dickinson K, Yee EJ, Vigil I, Schulick RD, Zhu Y. GPCRs: emerging targets for novel T cell immune checkpoint therapy. Cancer Immunol Immunother 2024; 73:253. [PMID: 39358616 PMCID: PMC11447192 DOI: 10.1007/s00262-024-03801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Although immune checkpoint blockade (ICB) has become the mainstay of treatment for advanced solid organ malignancies, success in revitalizing the host anticancer immune response remains limited. G-protein coupled receptors (GPCRs) are a broad family of cell-surface proteins that have been regarded as main players in regulating the immune system, namely by mediating the activity of T lymphocytes. Among the most novel immunoregulatory GPCRs include GPR171, lysophosphatidic acid receptors (LPARs), GPR68, cannabinoid receptor 2 (CB2), and prostaglandin E receptors, many of which have shown promise in mediating antitumor response via activation of cytotoxic T cells, inhibiting immunosuppressive lymphocytes, and facilitating immune cell infiltration within the tumor microenvironment across multiple types of cancers. This paper reviews our current understanding of some of the most novel GPCRs-their expression patterns, evolving roles within the immune system and cancer, potential therapeutic applications, and perspective for future investigation.
Collapse
Affiliation(s)
- Kaitlyn Dickinson
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elliott J Yee
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Isaac Vigil
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard D Schulick
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Wissemann J, Heidenreich A, Zimmermann H, Engelmann J, Jansen J, Suchanek D, Westermann D, Wolf D, Stachon P, Merz J. ADP as a novel stimulus for NLRP3-inflammasome activation in mice fails to translate to humans. Purinergic Signal 2024; 20:291-302. [PMID: 37410223 PMCID: PMC11189352 DOI: 10.1007/s11302-023-09953-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
The NLRP3-inflammasome is a cytosolic multiprotein complex that triggers an inflammatory response to certain danger signals. Recently adenosine diphosphate (ADP) was found to activate the NLRP3-inflammasome in murine macrophages via the P2Y1 receptor. Blockade of this signaling pathway reduced disease severity in a murine colitis-model. However, the role of the ADP/P2Y1-axis has not yet been studied in humans. This present study confirmed ADP-dependent NLRP3-inflammasome activation in murine macrophages, but found no evidence for a role of ADP in inflammasome activation in humans. We investigated the THP1 cell line as well as primary monocytes and further looked at macrophages. Although all cells express the three human ADP-receptors P2Y1, P2Y12 and P2Y13, independent of priming, neither increased ASC-speck formation could be detected with flow cytometry nor additional IL-1β release be found in the culture supernatant of ADP stimulated cells. We now show for the first time that the responsiveness of monocytes and macrophages to ADP as well as the regulation of its purinergic receptors is very much dependent on the species. Therefore the signaling pathway found to contribute to colitis in mice is likely not applicable to humans.
Collapse
Affiliation(s)
- Julius Wissemann
- Cardiology and Angiology, Medical Center, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Adrian Heidenreich
- Cardiology and Angiology, Medical Center, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Helene Zimmermann
- Cardiology and Angiology, Medical Center, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Juliane Engelmann
- Cardiology and Angiology, Medical Center, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Jasper Jansen
- Cardiology and Angiology, Medical Center, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Dymphie Suchanek
- Cardiology and Angiology, Medical Center, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Dirk Westermann
- Cardiology and Angiology, Medical Center, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology, Medical Center, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Cardiology and Angiology, Medical Center, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany
| | - Julian Merz
- Cardiology and Angiology, Medical Center, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Sluyter R, McEwan TBD, Sophocleous RA, Stokes L. Methods for studying P2X4 receptor ion channels in immune cells. J Immunol Methods 2024; 526:113626. [PMID: 38311008 DOI: 10.1016/j.jim.2024.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
The P2X4 receptor is a trimeric ligand-gated ion channel activated by adenosine 5'-triphosphate (ATP). P2X4 is present in immune cells with emerging roles in inflammation and immunity, and related disorders. This review aims to provide an overview of the methods commonly used to study P2X4 in immune cells, focusing on those methods used to assess P2RX4 gene expression, the presence of the P2X4 protein, and P2X4 ion channel activity in these cells from humans, dogs, mice and rats. P2RX4 gene expression in immune cells is commonly assessed using semi-quantitative and quantitative reverse-transcriptase-PCR. The presence of P2X4 protein in immune cells is mainly assessed using anti-P2X4 polyclonal antibodies with immunoblotting or immunochemistry, but the use of these antibodies, as well as monoclonal antibodies and nanobodies to detect P2X4 with flow cytometry is increasing. Notably, use of an anti-P2X4 monoclonal antibody and flow cytometry has revealed that P2X4 is present on immune cells with a rank order of expression in eosinophils, then neutrophils and monocytes, then basophils and B cells, and finally T cells. P2X4 ion channel activity has been assessed mainly by Ca2+ flux assays using the cell permeable Ca2+-sensitive dyes Fura-2 and Fluo-4 with fluorescence microscopy, spectrophotometry, or flow cytometry. However, other methods including electrophysiology, and fluorescence assays measuring Na+ flux (using sodium green tetra-acetate) and dye uptake (using YO-PRO-12+) have been applied. Collectively, these methods have demonstrated the presence of functional P2X4 in monocytes and macrophages, microglia, eosinophils, mast cells and CD4+ T cells, with other evidence suggestive of functional P2X4 in dendritic cells, neutrophils, B cells and CD8+ T cells.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Tahnee B-D McEwan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
4
|
Peng X, Zhang Y, Bai X, Li X, Zhao R. Phasic regulation of the ATP/P2X7 receptor signaling pathway affects the function of antigen-presenting cells in experimental autoimmune uveitis. Int Immunopharmacol 2023; 119:110241. [PMID: 37141671 DOI: 10.1016/j.intimp.2023.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine type P2 receptor that is expressed on a variety of immune cells. Recent studies have shown that P2X7R signaling is required to trigger an immune response, and P2X7R antagonist-oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study, we investigated the effect of phasic regulation of the ATP/P2X7R signaling pathway on antigen-presenting cells (APCs) by constructing an experimental autoimmune uveitis (EAU) disease model. Our results demonstrated that APCs isolated from the 1st, 4th, 7th and 11th days of EAU presented antigen function and could stimulate the differentiation of naive T cells. Moreover, after stimulation by ATP and BzATP (a P2X7R agonist), antigen presentation, promoting differentiation and inflammation were enhanced. The regulation of the Th17 cell response was significantly stronger than that of the Th1 cell response. In addition, we verified that oxATP blocked the P2X7R signaling pathway on APCs, attenuated the effect of BzATP, and significantly improved the adoptive transfer EAU induced by antigen-specific T cells cocultured with APCs. Our results demonstrated that at an early stage of EAU, the ATP/P2X7R signaling pathway regulation of APCs was time dependent, and the treatment of EAU could be achieved by intervening in P2X7R function on APCs.
Collapse
Affiliation(s)
- Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Yunfang Zhang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xue Bai
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xinyu Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
5
|
Rodriguez NR, Fortune T, Vuong T, Swartz TH. The role of extracellular ATP and P2X receptors in the pathogenesis of HIV-1. Curr Opin Pharmacol 2023; 69:102358. [PMID: 36848824 PMCID: PMC10023410 DOI: 10.1016/j.coph.2023.102358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) causes a chronic, incurable infection associated with chronic inflammation despite virologic suppression on antiretroviral therapy (ART). This chronic inflammation underlies significant comorbidities, including cardiovascular disease, neurocognition decline, and malignancies. The mechanisms of chronic inflammation have been attributed, in part, to the role of extracellular ATP and P2X-type purinergic receptors that sense damaged or dying cells and undergo signaling responses to activate inflammation and immunomodulation. This review describes the current literature on the role of extracellular ATP and P2X receptors in HIV-1 pathogenesis, describing the known intersection with the HIV-1 life cycle in mediating immunopathogenesis and neuronal disease. The literature supports key roles for this signaling mechanism in cell-to-cell communication and in activating transcriptional changes that impact the inflammatory state leading to disease progression. Future studies must characterize the numerous functions of ATP and P2X receptors in HIV-1 pathogenesis to inform future therapeutic targeting.
Collapse
Affiliation(s)
- Natalia R Rodriguez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thien Vuong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
7
|
Xue XM, Liu YY, Chen XM, Tao BY, Liu P, Zhou HW, Zhang C, Wang L, Jiang YK, Ding ZW, Shen WD, Zhang J, Yang SM, Wang FY. Pan-cancer analysis identifies NT5E as a novel prognostic biomarker on cancer-associated fibroblasts associated with unique tumor microenvironment. Front Pharmacol 2022; 13:1064032. [PMID: 36569293 PMCID: PMC9768042 DOI: 10.3389/fphar.2022.1064032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Ecto-5'-nucleotidase (NT5E) encodes the cluster of differentiation 73 (CD73), whose overexpression contributes to the formation of immunosuppressive tumor microenvironment and is related to exacerbated prognosis, increased risk of metastasis and resistance to immunotherapy of various tumors. However, the prognostic significance of NT5E in pan-cancer is obscure so far. Methods: We explored the expression level of NT5E in cancers and adjacent tissues and revealed the relationship between the NT5E expression level and clinical outcomes in pan-cancer by utilizing the UCSC Xena database. Then, correlation analyses were performed to evaluate the relationship between NT5E expression and immune infiltration level via EPIC, MCP-counter and CIBERSORT methods, and the enrichment analysis were employed to identify NT5E-interacting molecules and functional pathways. Furthermore, we conducted single-cell analysis to explore the potential role of NT5E on single-cell level based on the CancerSEA database. Meanwhile, gene set enrichment analysis (GSEA) in single-cell level was also conducted in TISCH database and single-cell signature explorer was utilized to evaluate the epithelial-mesenchymal transition (EMT) level in each cell type. Results: The expression level of NT5E was aberrant in almost all cancer types, and was correlated with worse prognosis in several cancers. Notably, NT5E overexpression was related to worse overall survival (OS) in pancreatic adenocarcinoma (PAAD), head and neck squamous cell carcinoma (HNSC), mesothelioma (MESO), stomach adenocarcinoma (STAD), uveal melanoma (UVM) and cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) (p < 0.01). NT5E-related immune microenvironment analysis revealed that NT5E is associated positively with the degree of infiltration of cancer-associated fibroblasts (CAFs) and endothelial cells in most cancers. Enrichment analysis of cellular component (CC) demonstrated the critical part of NT5E played in cell-substrate junction, cell-substrate adherens junction, focal adhesion and external side of plasma membrane. Finally, single-cell analysis of NT5E illuminated that EMT function of CAFs was elevated in basal cell carcinoma (BCC), skin cutaneous melanoma (SKCM), HNSC and PAAD. Conclusion: NT5E could serve as a potential prognostic biomarker for cancers. The potential mechanism may be related to the upregulated EMT function of CAFs, which provides novel inspiration for immunotherapy by targeting CAFs with high NT5E expression.
Collapse
Affiliation(s)
- Xin-miao Xue
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Yu-yang Liu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Department of Neurosurgery, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xue-min Chen
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Bing-yan Tao
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Department of Neurosurgery, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Peng Liu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Han-wen Zhou
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Chi Zhang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,The Zhantansi Outpatient Department of Central Medical Branch of People’s Liberation Army (PLA) General Hospital Beijing, China
| | - Li Wang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Yu-ke Jiang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Zhi-wei Ding
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China,Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Wei-dong Shen
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China
| | - Jun Zhang
- Department of Neurosurgery, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China,*Correspondence: Jun Zhang, ; Shi-ming Yang, ; Fang-yuan Wang,
| | - Shi-ming Yang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China,*Correspondence: Jun Zhang, ; Shi-ming Yang, ; Fang-yuan Wang,
| | - Fang-yuan Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese People’s Liberation Army (PLA) General Hospital, National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Ministry of Education, Beijing, China,*Correspondence: Jun Zhang, ; Shi-ming Yang, ; Fang-yuan Wang,
| |
Collapse
|
8
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
9
|
Schiller IC, Jacobson KA, Wen Z, Malisetty A, Schmalzing G, Markwardt F. Dihydropyridines Potentiate ATP-Induced Currents Mediated by the Full-Length Human P2X5 Receptor. Molecules 2022; 27:molecules27061846. [PMID: 35335209 PMCID: PMC8948676 DOI: 10.3390/molecules27061846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
The P2X5 receptor, an ATP-gated cation channel, is believed to be involved in tumor development, inflammatory bone loss and inflammasome activation after bacterial infection. Therefore, it is a worthwhile pharmacological target to treat the corresponding diseases, especially in minority populations that have a gene variant coding for functional homotrimeric P2X5 channels. Here, we investigated the effects of dihydropyridines on the human full-length P2X5 receptor (hP2X5FL) heterologously expressed in Xenopus oocytes using the two-microelectrode voltage clamp method. Agonist dependency, kinetics and permeation behavior, including Cl− permeability, were similar to hP2X5FL expressed in HEK293 or 1321N1 cells. Additionally, 1,4-dihydropyridines have been shown to interact with various other purinergic receptors, and we have examined them as potential hP2X5 modulators. Of seven commercially available and four newly synthesized dihydropyridines tested at hP2X5FL, only amlodipine exerted an inhibitory effect, but only at a high concentration of 300 µM. Isradipine and—even more—nimodipine stimulated ATP-induced currents in the low micromolar range. We conclude that common dihydropyridines or four new derivatives of amlodipine are not suitable as hP2X5 antagonists, but amlodipine might serve as a lead for future synthesis to increase its affinity. Furthermore, a side effect of nimodipine therapy could be a stimulatory effect on inflammatory processes.
Collapse
Affiliation(s)
- Ida C. Schiller
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, 06097 Halle, Germany;
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry & Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.J.); (Z.W.)
| | - Zhiwei Wen
- Laboratory of Bioorganic Chemistry & Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.J.); (Z.W.)
| | - Aparna Malisetty
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (A.M.); (G.S.)
| | - Günther Schmalzing
- Institute of Clinical Pharmacology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (A.M.); (G.S.)
| | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, 06097 Halle, Germany;
- Correspondence:
| |
Collapse
|
10
|
Poshtkohi A, Wade J, McDaid L, Liu J, Dallas M, Bithell A. Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia. PLoS Comput Biol 2021; 17:e1009520. [PMID: 34723961 PMCID: PMC8584768 DOI: 10.1371/journal.pcbi.1009520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/11/2021] [Accepted: 10/02/2021] [Indexed: 01/14/2023] Open
Abstract
Regulation of cytosolic calcium (Ca2+) dynamics is fundamental to microglial function. Temporal and spatial Ca2+ fluxes are induced from a complicated signal transduction pathway linked to brain ionic homeostasis. In this paper, we develop a novel biophysical model of Ca2+ and sodium (Na+) dynamics in human microglia and evaluate the contribution of purinergic receptors (P2XRs) to both intracellular Ca2+ and Na+ levels in response to agonist/ATP binding. This is the first comprehensive model that integrates P2XRs to predict intricate Ca2+ and Na+ transient responses in microglia. Specifically, a novel compact biophysical model is proposed for the capture of whole-cell patch-clamp currents associated with P2X4 and P2X7 receptors, which is composed of only four state variables. The entire model shows that intricate intracellular ion dynamics arise from the coupled interaction between P2X4 and P2X7 receptors, the Na+/Ca2+ exchanger (NCX), Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA), and Ca2+ and Na+ leak channels. Both P2XRs are modelled as two separate adenosine triphosphate (ATP) gated Ca2+ and Na+ conductance channels, where the stoichiometry is the removal of one Ca2+ for the hydrolysis of one ATP molecule. Two unique sets of model parameters were determined using an evolutionary algorithm to optimise fitting to experimental data for each of the receptors. This allows the proposed model to capture both human P2X7 and P2X4 data (hP2X7 and hP2X4). The model architecture enables a high degree of simplicity, accuracy and predictability of Ca2+ and Na+ dynamics thus providing quantitative insights into different behaviours of intracellular Na+ and Ca2+ which will guide future experimental research. Understanding the interactions between these receptors and other membrane-bound transporters provides a step forward in resolving the qualitative link between purinergic receptors and microglial physiology and their contribution to brain pathology. Mathematical modelling and computer simulation are powerful tools by which we can analyse complex biological systems, particularly, neural phenomena involved in brain dysfunction. In this research, we develop a theoretical foundation for studying P2X-mediated calcium and sodium signalling in human microglial cells. Microglia, which are brain-resident macrophages, restructure their intracellular actin cytoskeleton to enable motility; this restructuring requires a complex molecular cascade involving a set of ionic channels, membrane-coupled receptors and cytosolic components. Recent studies highlight the importance for increasing our understanding of microglia physiology, since their functions play critical roles in both normal physiological and pathological dynamics of the brain. There is a need to develop reliable human cellular models to investigate the biology of microglia aimed at understanding the influence of purinergic signalling in brain dysfunction to provide novel drug discovery targets. In this work, a detailed mathematical model is built for the dynamics of human P2XRs in microglia. Subsequently, experimental whole-cell currents are used to derive P2X-mediated electrophysiology of human microglia (i.e. sodium and calcium dynamics, and membrane potential). Our predictions reveal new quantitative insights into P2XRs on how they regulate ionic concentrations in terms of physiological interactions and transient responses.
Collapse
Affiliation(s)
- Alireza Poshtkohi
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
- * E-mail:
| | - John Wade
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Junxiu Liu
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Mark Dallas
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Angela Bithell
- School of Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
11
|
To inhibit or to boost the ATP/P2RX7 pathway to fight cancer-that is the question. Purinergic Signal 2021; 17:619-631. [PMID: 34347213 DOI: 10.1007/s11302-021-09811-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite new biological insights and recent therapeutic advances, many tumors remain at baseline during treatments. Therefore, there is an urgent need to find new therapeutic strategies to improve the care of patients with solid tumors. P2RX7 receptor (P2XR7), an ATP-gated ion channel characterized by its ability to form large pore within the cell membrane, is described by most of the investigators as a "chef d'orchestre" of the antitumor immune response. The purpose of this review is to detail the recent information concerning different cellular mechanisms linking P2RX7 to hallmarks of cancer and to discuss different progresses in elucidating how activation of the ATP/P2RX7/NLRP3/IL-18 pathway is a very promising approach to fight cancer progression by increasing antitumor immune responses.
Collapse
|
12
|
Klaver D, Thurnher M. Control of Macrophage Inflammation by P2Y Purinergic Receptors. Cells 2021; 10:1098. [PMID: 34064383 PMCID: PMC8147772 DOI: 10.3390/cells10051098] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages comprise a phenotypically and functionally diverse group of hematopoietic cells. Versatile macrophage subsets engage to ensure maintenance of tissue integrity. To perform tissue stress surveillance, macrophages express many different stress-sensing receptors, including purinergic P2X and P2Y receptors that respond to extracellular nucleotides and their sugar derivatives. Activation of G protein-coupled P2Y receptors can be both pro- and anti-inflammatory. Current examples include the observation that P2Y14 receptor promotes STAT1-mediated inflammation in pro-inflammatory M1 macrophages as well as the demonstration that P2Y11 receptor suppresses the secretion of tumor necrosis factor (TNF)-α and concomitantly promotes the release of soluble TNF receptors from anti-inflammatory M2 macrophages. Here, we review macrophage regulation by P2Y purinergic receptors, both in physiological and disease-associated inflammation. Therapeutic targeting of anti-inflammatory P2Y receptor signaling is desirable to attenuate excessive inflammation in infectious diseases such as COVID-19. Conversely, anti-inflammatory P2Y receptor signaling must be suppressed during cancer therapy to preserve its efficacy.
Collapse
Affiliation(s)
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
13
|
Soare AY, Freeman TL, Min AK, Malik HS, Osota EO, Swartz TH. P2RX7 at the Host-Pathogen Interface of Infectious Diseases. Microbiol Mol Biol Rev 2021; 85:e00055-20. [PMID: 33441488 PMCID: PMC7849353 DOI: 10.1128/mmbr.00055-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The P2X7 receptor (P2RX7) is an important molecule that functions as a danger sensor, detecting extracellular nucleotides from injured cells and thus signaling an inflammatory program to nearby cells. It is expressed in immune cells and plays important roles in pathogen surveillance and cell-mediated responses to infectious organisms. There is an abundance of literature on the role of P2RX7 in inflammatory diseases and the role of these receptors in host-pathogen interactions. Here, we describe the current knowledge of the role of P2RX7 in the host response to a variety of pathogens, including viruses, bacteria, fungi, protozoa, and helminths. We describe in vitro and in vivo evidence for the critical role these receptors play in mediating and modulating immune responses. Our observations indicate a role for P2X7 signaling in sensing damage-associated molecular patterns released by nearby infected cells to facilitate immunopathology or protection. In this review, we describe how P2RX7 signaling can play critical roles in numerous cells types in response to a diverse array of pathogens in mediating pathogenesis and immunity to infectious agents.
Collapse
Affiliation(s)
- Alexandra Y Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracey L Freeman
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alice K Min
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hagerah S Malik
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Elizabeth O Osota
- University of California San Diego, Graduate School of Biomedical Sciences, San Diego, California, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
14
|
Zeng J, Ning Z, Wang Y, Xiong H. Implications of CD39 in immune-related diseases. Int Immunopharmacol 2020; 89:107055. [PMID: 33045579 DOI: 10.1016/j.intimp.2020.107055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Extracellular adenosine triphosphate (eATP) mediates pro-inflammatory responses by recruiting and activating inflammatory cells. CD39 can hydrolyze eATP into adenosine monophosphate (AMP), while CD73 can convert AMP into the immunosuppressive nucleoside adenosine (ADO). CD39 is a rate-limiting enzyme in this cascade, which is regarded as an immunological switch shifting the ATP-mediated pro-inflammatory environment to the ADO- mediated anti-inflammatory status. The CD39 expression can be detected in a wide spectrum of immunocytes, which is under the influence of environmental and genetic factors. It is increasingly suggested that, CD39 participates in some pathophysiological processes, like inflammatory bowel disease (IBD), sepsis, multiple sclerosis (MS), allergic diseases, ischemia-reperfusion (I/R) injury, systemic lupus erythematosus (SLE), diabetes and cancer. Here, we focus on the current understanding of CD39 in immunity, and comprehensively illustrate the diverse CD39 functions within a variety of disorders.
Collapse
Affiliation(s)
- Jianrui Zeng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Yuzhong Wang
- Department of Neurology and Central Laboratory, Affiliated Hospital of Jining Medical University, Shandong 272000, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China.
| |
Collapse
|
15
|
Freeman TL, Swartz TH. Purinergic Receptors: Elucidating the Role of these Immune Mediators in HIV-1 Fusion. Viruses 2020; 12:E290. [PMID: 32155980 PMCID: PMC7150916 DOI: 10.3390/v12030290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Purinergic receptors are inflammatory mediators activated by extracellular nucleotides released by dying or injured cells. Several studies have described an important role for these receptors in HIV-1 entry, particularly regarding their activity on HIV-1 viral membrane fusion. Several reports identify purinergic receptor antagonists that inhibit HIV-1 membrane fusion; these drugs are suspected to act through antagonizing Env-chemokine receptor interactions. They also appear to abrogate activity of downstream mediators that potentiate activation of the NLRP3 inflammasome pathway. Here we review the literature on purinergic receptors, the drugs that inhibit their function, and the evidence implicating these receptors in HIV-1 entry.
Collapse
Affiliation(s)
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
16
|
Harjula SKE, Saralahti AK, Ojanen MJT, Rantapero T, Uusi-Mäkelä MIE, Nykter M, Lohi O, Parikka M, Rämet M. Characterization of immune response against Mycobacterium marinum infection in the main hematopoietic organ of adult zebrafish (Danio rerio). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103523. [PMID: 31626817 DOI: 10.1016/j.dci.2019.103523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Tuberculosis remains a major global health challenge. To gain information about genes important for defense against tuberculosis, we used a well-established tuberculosis model; Mycobacterium marinum infection in adult zebrafish. To characterize the immunological response to mycobacterial infection at 14 days post infection, we performed a whole-genome level transcriptome analysis using cells from kidney, the main hematopoietic organ of adult zebrafish. Among the upregulated genes, those associated with immune signaling and regulation formed the largest category, whereas the largest group of downregulated genes had a metabolic role. We also performed a forward genetic screen in adult zebrafish and identified a fish line with severely impaired survival during chronic mycobacterial infection. Based on transcriptome analysis, these fish have decreased expression of several immunological genes. Taken together, these results give new information about the genes involved in the defense against mycobacterial infection in zebrafish.
Collapse
Affiliation(s)
- Sanna-Kaisa E Harjula
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Markus J T Ojanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Laboratory of Immunoregulation, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Tommi Rantapero
- Laboratory of Computational Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Matti Nykter
- Laboratory of Computational Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Olli Lohi
- Tampere Center for Child Health Research, Tampere University and Tays Cancer Center, Tampere University Hospital, FI-33014, Tampere University, Finland.
| | - Mataleena Parikka
- Laboratory of Infection Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Oral and Maxillofacial Unit, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland.
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Department of Pediatrics, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland; PEDEGO Research Unit, Medical Research Center Oulu, P.O. Box 8000, FI-90014, University of Oulu, Finland; Department of Children and Adolescents, Oulu University Hospital, P.O. Box 10, FI-90029, OYS, Finland.
| |
Collapse
|
17
|
de Leve S, Wirsdörfer F, Jendrossek V. The CD73/Ado System-A New Player in RT Induced Adverse Late Effects. Cancers (Basel) 2019; 11:cancers11101578. [PMID: 31623231 PMCID: PMC6827091 DOI: 10.3390/cancers11101578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a central component of standard treatment for many cancer patients. RT alone or in multimodal treatment strategies has a documented contribution to enhanced local control and overall survival of cancer patients, and cancer cure. Clinical RT aims at maximizing tumor control, while minimizing the risk for RT-induced adverse late effects. However, acute and late toxicities of IR in normal tissues are still important biological barriers to successful RT: While curative RT may not be tolerable, sub-optimal tolerable RT doses will lead to fatal outcomes by local recurrence or metastatic disease, even when accepting adverse normal tissue effects that decrease the quality of life of irradiated cancer patients. Technical improvements in treatment planning and the increasing use of particle therapy have allowed for a more accurate delivery of IR to the tumor volume and have thereby helped to improve the safety profile of RT for many solid tumors. With these technical and physical strategies reaching their natural limits, current research for improving the therapeutic gain of RT focuses on innovative biological concepts that either selectively limit the adverse effects of RT in normal tissues without protecting the tumor or specifically increase the radiosensitivity of the tumor tissue without enhancing the risk of normal tissue complications. The biology-based optimization of RT requires the identification of biological factors that are linked to differential radiosensitivity of normal or tumor tissues, and are amenable to therapeutic targeting. Extracellular adenosine is an endogenous mediator critical to the maintenance of homeostasis in various tissues. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (NT5E, CD73) that catabolize ATP to adenosine. Recent work revealed a role of the immunoregulatory CD73/adenosine system in radiation-induced fibrotic disease in normal tissues suggesting a potential use as novel therapeutic target for normal tissue protection. The present review summarizes relevant findings on the pathologic roles of CD73 and adenosine in radiation-induced fibrosis in different organs (lung, skin, gut, and kidney) that have been obtained in preclinical models and proposes a refined model of radiation-induced normal tissue toxicity including the disease-promoting effects of radiation-induced activation of CD73/adenosine signaling in the irradiated tissue environment. However, expression and activity of the CD73/adenosine system in the tumor environment has also been linked to increased tumor growth and tumor immune escape, at least in preclinical models. Therefore, we will discuss the use of pharmacologic inhibition of CD73/adenosine-signaling as a promising strategy for improving the therapeutic gain of RT by targeting both, malignant tumor growth and adverse late effects of RT with a focus on fibrotic disease. The consideration of the therapeutic window is particularly important in view of the increasing use of RT in combination with various molecularly targeted agents and immunotherapy to enhance the tumor radiation response, as such combinations may result in increased or novel toxicities, as well as the increasing number of cancer survivors.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| |
Collapse
|
18
|
Antonioli L, Blandizzi C, Fornai M, Pacher P, Lee HT, Haskó G. P2X4 receptors, immunity, and sepsis. Curr Opin Pharmacol 2019; 47:65-74. [PMID: 30921560 DOI: 10.1016/j.coph.2019.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/20/2022]
Abstract
Sepsis is life-threatening systemic organ dysfunction caused by a deregulated host response to an infectious insult. Currently, the treatment of sepsis is limited to the use of antibiotics, fluids, and cardiovascular/respiratory support. Despite these interventions, septic mortality remains high, with reduced life quality in survivors. For this reason, the identification of novel drug targets is a pressing task of modern pharmacology. According to a recent research, it appears that P2 purinergic receptors, which can regulate the host's response to infections, have been identified as potential targets for the treatment of sepsis. Among P2 receptors, the P2X4 receptor has recently captured the attention of the research community owing to its role in protecting against infections, inflammation, and organ injury. The present review provides an outline of the role played by P2X4 receptors in the modulation of the host's response to sepsis and the promise that targeting this receptor holds in the treatment of sepsis.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - H Thomas Lee
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
19
|
Haskó G, Antonioli L, Cronstein BN. Adenosine metabolism, immunity and joint health. Biochem Pharmacol 2018; 151:307-313. [PMID: 29427624 PMCID: PMC5899962 DOI: 10.1016/j.bcp.2018.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/02/2018] [Indexed: 12/19/2022]
Abstract
The purine nucleoside adenosine is a present in most body fluids where it regulates a wide variety of physiologic and pharmacologic processes. Adenosine mediates its effects through activating 4 G protein-coupled receptors expressed on the cell membrane: A1, A2A, A2B, and A3. The adenosine receptors are widely distributed in the body, and tissues with high expression include immune tissues, cartilage, bone, heart, and brain. Here we review the source and metabolism of adenosine and the role of adenosine in regulating immunity and cartilage biology.
Collapse
Affiliation(s)
- György Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
20
|
Kordaß T, Osen W, Eichmüller SB. Controlling the Immune Suppressor: Transcription Factors and MicroRNAs Regulating CD73/NT5E. Front Immunol 2018; 9:813. [PMID: 29720980 PMCID: PMC5915482 DOI: 10.3389/fimmu.2018.00813] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/04/2018] [Indexed: 01/27/2023] Open
Abstract
The NT5E (CD73) molecule represents an ecto-5′-nucleotidase expressed on the cell surface of various cell types. Hydrolyzing extracellular adenosine monophosphate into adenosine and inorganic phosphate, NT5E performs numerous homeostatic functions in healthy organs and tissues. Importantly, NT5E can act as inhibitory immune checkpoint molecule, since free adenosine generated by NT5E inhibits cellular immune responses, thereby promoting immune escape of tumor cells. MicroRNAs (miRNAs) are small non-coding RNA molecules regulating gene expression on posttranscriptional level through binding to mRNAs, resulting in translational repression or degradation of the targeted mRNA molecule. In tumor cells, miRNA expression patterns are often altered which in turn might affect NT5E surface expression and eventually influence the efficacy of antitumor immune responses. This review describes the diverse roles of NT5E, summarizes current knowledge about transcription factors controlling NT5E expression, and highlights the significance of miRNAs involved in the posttranscriptional regulation of NT5E expression.
Collapse
Affiliation(s)
- Theresa Kordaß
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Wolfram Osen
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan B Eichmüller
- GMP & T Cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
|
22
|
Dou L, Chen YF, Cowan PJ, Chen XP. Extracellular ATP signaling and clinical relevance. Clin Immunol 2017; 188:67-73. [PMID: 29274390 DOI: 10.1016/j.clim.2017.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Since purinergic signaling was discovered in the early 1970s, it has been shown that extracellular nucleotides, and their derivative nucleosides, are released in a regulated or unregulated manner by cells in various challenging settings and then bind defined purinergic receptors to activate intricate signaling networks. Extracellular ATP plays a role based on different P2 receptor subtypes expressed on specific cell types. Sequential hydrolysis of extracellular ATP catalyzed by ectonucleotidases (e.g. CD39, CD73) is the main pathway for the generation of adenosine, which in turn activates P1 receptors. Many studies have demonstrated that extracellular ATP signaling functions as an important dynamic regulatory pathway to coordinate appropriate immune responses in various pathological processes, including intracellular infection, host-tumor interaction, pro-inflammation vascular injury, and transplant immunity. ATP receptors and CD39 also participate in related clinical settings. Here, we review the latest research in to the development of promising clinical treatment strategies.
Collapse
Affiliation(s)
- Lei Dou
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Fa Chen
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia.
| | - Xiao-Ping Chen
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Affiliation(s)
- Thaiz Rivera Vargas
- Centre de Recherche; INSERM U1231; Facultés de Médecine et de Pharmacie; Dijon France
- Faculté de Médecine; Université de Bourgogne Franche comté; Dijon France
| | - Lionel Apetoh
- Centre de Recherche; INSERM U1231; Facultés de Médecine et de Pharmacie; Dijon France
- Faculté de Médecine; Université de Bourgogne Franche comté; Dijon France
- Centre Georges François Leclerc; Dijon France
| |
Collapse
|
24
|
Le Duc D, Schulz A, Lede V, Schulze A, Thor D, Brüser A, Schöneberg T. P2Y Receptors in Immune Response and Inflammation. Adv Immunol 2017; 136:85-121. [PMID: 28950952 DOI: 10.1016/bs.ai.2017.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) are expressed in virtually all cells with implications in very diverse biological functions, including the well-established platelet aggregation (P2Y12), but also immune regulation and inflammation. The classical P2Y receptors bind nucleotides and are encoded by eight genes with limited sequence homology, while phylogenetically related receptors (e.g., P2Y12-like) recognize lipids and peptides, but also nucleotide derivatives. Growing lines of evidence suggest an important function of P2Y receptors in immune cell differentiation and maturation, migration, and cell apoptosis. Here, we give a perspective on the P2Y receptors' molecular structure and physiological importance in immune cells, as well as the related diseases and P2Y-targeting therapies. Extensive research is being undertaken to find modulators of P2Y receptors and uncover their physiological roles. We anticipate the medical applications of P2Y modulators and their immune relevance.
Collapse
Affiliation(s)
- Diana Le Duc
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Annelie Schulze
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
25
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017. [PMID: 28258700 DOI: 10.1111/imr.12528]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
26
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017. [PMID: 28258700 DOI: 10.1111/imr.12528] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal et Institut du Cancer de Montréal, Montréal, QC, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
27
|
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 2017; 276:121-144. [PMID: 28258700 PMCID: PMC5338647 DOI: 10.1111/imr.12528] [Citation(s) in RCA: 627] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers are able to grow by subverting immune suppressive pathways, to prevent the malignant cells as being recognized as dangerous or foreign. This mechanism prevents the cancer from being eliminated by the immune system and allows disease to progress from a very early stage to a lethal state. Immunotherapies are newly developing interventions that modify the patient's immune system to fight cancer, by either directly stimulating rejection-type processes or blocking suppressive pathways. Extracellular adenosine generated by the ectonucleotidases CD39 and CD73 is a newly recognized "immune checkpoint mediator" that interferes with anti-tumor immune responses. In this review, we focus on CD39 and CD73 ectoenzymes and encompass aspects of the biochemistry of these molecules as well as detailing the distribution and function on immune cells. Effects of CD39 and CD73 inhibition in preclinical and clinical studies are discussed. Finally, we provide insights into potential clinical application of adenosinergic and other purinergic-targeting therapies and forecast how these might develop in combination with other anti-cancer modalities.
Collapse
Affiliation(s)
- Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal et Institut du Cancer de Montréal, Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
| | - Maria Serena Longhi
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, USA. 02215
| | - Simon C. Robson
- Divisions of Gastroenterology and Transplantation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, USA. 02215
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal et Institut du Cancer de Montréal, Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
| |
Collapse
|
28
|
Matsuo K, Nishiuma S, Hasegawa Y, Kawabata F, Kitahata K, Nakayama T. Vaccination with Antigen Combined with αβ-ATP as a Vaccine Adjuvant Enhances Antigen-Specific Antibody Production via Dendritic Cell Activation. Biol Pharm Bull 2017; 39:1073-6. [PMID: 27251512 DOI: 10.1248/bpb.b16-00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adjuvants are required to enhance antigen-specific immune responses by vaccines. Extracellular ATP serves as a danger signal to alert the immune system of tissue damage by acting on P2X and P2Y receptors and triggers the activation of dendritic cells (DCs). Here we investigated the in vivo adjuvant efficacy of α,β-methylene-ATP (αβ-ATP), a non-hydrolysable form of ATP. We found that intradermal injection of ovalbumin (OVA), as a model antigen, combined with αβ-ATP, as the adjuvant, enhanced OVA-specific immune responses more than OVA alone. Additionally, DCs in the skin of mice injected with OVA and αβ-ATP had increased expression of major histocompatibility complex class II and co-stimulator molecules, CD40, CD80, and CD86, suggesting that αβ-ATP activated DC. These findings indicate that αβ-ATP functions as a potent vaccine adjuvant.
Collapse
Affiliation(s)
- Kazuhiko Matsuo
- Division of Chemotherapy, Faculty of Pharmacy, Kindai University
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Background: The nucleotide adenosine triphosphate (ATP) has long been known to drive and participate in countless intracellular processes. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin. Knowledge of the sources and effects of extracellular ATP in human skin may help shape new therapies for skin injury, inflammation, and numerous other cutaneous disorders. Objective: The objective of this review is to introduce the reader to current knowledge regarding the sources and effects of extracellular ATP in human skin and to outline areas in which further research is necessary to clarify the nature and mechanism of these effects. Conclusion: Extracellular ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity.
Collapse
Affiliation(s)
| | - Richard D. Granstein
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
30
|
Conroy S, Kindon N, Kellam B, Stocks MJ. Drug-like Antagonists of P2Y Receptors-From Lead Identification to Drug Development. J Med Chem 2016; 59:9981-10005. [PMID: 27413802 DOI: 10.1021/acs.jmedchem.5b01972] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
P2Y receptors are expressed in virtually all cells and tissue types and mediate an astonishing array of biological functions, including platelet aggregation, smooth muscle cell proliferation, and immune regulation. The P2Y receptors belong to the G protein-coupled receptor superfamily and are composed of eight members encoded by distinct genes that can be subdivided into two groups on the basis of their coupling to specific G-proteins. Extensive research has been undertaken to find modulators of P2Y receptors, although to date only a limited number of small-molecule P2Y receptor antagonists have been approved by drug/medicines agencies. This Perspective reviews the known P2Y receptor antagonists, highlighting oral drug-like receptor antagonists, and considers future opportunities for the development of small molecules for clinical evaluation.
Collapse
Affiliation(s)
- Sean Conroy
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| | - Nicholas Kindon
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| | - Barrie Kellam
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| | - Michael J Stocks
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
31
|
Jäger E, Schulz A, Lede V, Lin CC, Schöneberg T, Le Duc D. Dendritic Cells Regulate GPR34 through Mitogenic Signals and Undergo Apoptosis in Its Absence. THE JOURNAL OF IMMUNOLOGY 2016; 196:2504-13. [DOI: 10.4049/jimmunol.1501326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022]
|
32
|
Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules 2015; 5:775-92. [PMID: 25950510 PMCID: PMC4496696 DOI: 10.3390/biom5020775] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 12/17/2022] Open
Abstract
Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine's control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.
Collapse
|
33
|
Schachter J, Delgado KV, Barreto-de-Souza V, Bou-Habib DC, Persechini PM, Meyer-Fernandes JR. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages. Immunobiology 2014; 220:589-96. [PMID: 25577295 DOI: 10.1016/j.imbio.2014.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/29/2014] [Accepted: 12/10/2014] [Indexed: 12/21/2022]
Abstract
Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages.
Collapse
Affiliation(s)
- Julieta Schachter
- Campus de Xerem, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, RJ, Brazil.
| | - Kelly Valcárcel Delgado
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, RJ, Brazil; Instituto de Biofísica, Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Victor Barreto-de-Souza
- Laboratório de Pesquisa sobre o Timo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Dumith Chequer Bou-Habib
- Laboratório de Pesquisa sobre o Timo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Pedro Muanis Persechini
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, RJ, Brazil; Instituto de Biofísica, Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
34
|
Burnstock G, Boeynaems JM. Purinergic signalling and immune cells. Purinergic Signal 2014; 10:529-64. [PMID: 25352330 PMCID: PMC4272370 DOI: 10.1007/s11302-014-9427-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
35
|
Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 2014; 171:3575-94. [PMID: 24602016 PMCID: PMC4128058 DOI: 10.1111/bph.12678] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 12/11/2022] Open
Abstract
Lysophospholipids encompass a diverse range of small, membrane-derived phospholipids that act as extracellular signals. The signalling properties are mediated by 7-transmembrane GPCRs, constituent members of which have continued to be identified after their initial discovery in the mid-1990s. Here we briefly review this class of receptors, with a particular emphasis on their protein and gene nomenclatures that reflect their cognate ligands. There are six lysophospholipid receptors that interact with lysophosphatidic acid (LPA): protein names LPA1 - LPA6 and italicized gene names LPAR1-LPAR6 (human) and Lpar1-Lpar6 (non-human). There are five sphingosine 1-phosphate (S1P) receptors: protein names S1P1 -S1P5 and italicized gene names S1PR1-S1PR5 (human) and S1pr1-S1pr5 (non-human). Recent additions to the lysophospholipid receptor family have resulted in the proposed names for a lysophosphatidyl inositol (LPI) receptor - protein name LPI1 and gene name LPIR1 (human) and Lpir1 (non-human) - and three lysophosphatidyl serine receptors - protein names LyPS1 , LyPS2 , LyPS3 and gene names LYPSR1-LYPSR3 (human) and Lypsr1-Lypsr3 (non-human) along with a variant form that does not appear to exist in humans that is provisionally named LyPS2L . This nomenclature incorporates previous recommendations from the International Union of Basic and Clinical Pharmacology, the Human Genome Organization, the Gene Nomenclature Committee, and the Mouse Genome Informatix.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
36
|
Haas M, Shaaban A, Reiser G. Alanine-(87)-threonine polymorphism impairs signaling and internalization of the human P2Y11 receptor, when co-expressed with the P2Y1 receptor. J Neurochem 2014; 129:602-13. [PMID: 24524250 DOI: 10.1111/jnc.12666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 12/23/2022]
Abstract
The P2Y11 nucleotide receptor detects high extracellular ATP concentrations. Mutations of the human P2RY11 gene can play a role in brain autoimmune responses, and the P2Y11 receptor alanine-87-threonine (A87T) polymorphism has been suggested to affect immune-system functions. We investigated receptor functionality of the P2Y11 A87T mutant using HEK293 and 1321N1 astrocytoma cells. In HEK293 cells, the P2Y11 receptor agonist 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) was completely inactive in evoking intracellular calcium release while the potency of ATP was reduced. ATP was also less potent in triggering cAMP generation. However, 1321N1 astrocytoma cells, which lack any endogenous P2Y1 receptors, did not display a reduction. Only when 1321N1 cells were co-transfected with P2Y11 A87T and P2Y1 receptors, the calcium responses to the P2Y11 receptor-specific agonist BzATP were reduced. It is already known that P2Y1 and P2Y11 receptors interact. We thus conclude that the physiological impact of A87T mutation of the P2Y11 receptor derives from detrimental effects on P2Y1 -P2Y11 receptor interaction. We additionally investigated alanine-87-serine and alanine-87-tyrosine P2Y11 receptor mutants. Both mutations rescue the response to BzATP in HEK293 cells, thus ruling out polarity of amino acid-87 to be the molecular basis for altered receptor characteristics. We further found that the P2Y11 A87T receptor shows complete loss of nucleotide-induced internalization in HEK293 cells. Thus, we demonstrate impaired signaling of the P2Y11 A87T-mutated receptors when co-operating with P2Y1 receptors.
Collapse
Affiliation(s)
- Michael Haas
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke Universität, Magdeburg, Germany
| | | | | |
Collapse
|
37
|
Yoshida O, Kimura S, Jackson EK, Robson SC, Geller DA, Murase N, Thomson AW. CD39 expression by hepatic myeloid dendritic cells attenuates inflammation in liver transplant ischemia-reperfusion injury in mice. Hepatology 2013; 58:2163-75. [PMID: 23813862 PMCID: PMC3844081 DOI: 10.1002/hep.26593] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/12/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatic innate immune cells, in particular, interstitial dendritic cells (DCs), regulate inflammatory responses and may promote inherent liver tolerogenicity. After tissue injury, adenosine triphosphate (ATP) is released and acts as a damage-associated molecular pattern that activates innate immune cells by pattern recognition receptors. CD39 (ectonucleoside triphosphate diphosphohydrolase-1) rapidly hydrolyzes extracellular ATP to maintain physiological levels. We hypothesized that CD39 expression on liver DCs might contribute to regulation of their innate immune functions. Mouse liver conventional myeloid DCs (mDCs) were hyporesponsive to ATP, compared with their splenic counterparts. This disparity was ascribed to more efficient hydrolysis of ATP by higher expression of CD39 on liver mDCs. Human liver mDCs expressed greater levels of CD39 than those from peripheral blood. The comparatively high expression of CD39 on liver mDCs correlated strongly with both ATP hydrolysis and adenosine production. Notably, CD39(-/-) mouse liver mDCs exhibited a more mature phenotype, greater responsiveness to Toll-like receptor 4 ligation, and stronger proinflammatory and immunostimulatory activity than wild-type (WT) liver mDCs. To investigate the role of CD39 on liver mDCs in vivo, we performed orthotopic liver transplantation with extended cold preservation using CD39(-/-) or WT donor mouse livers. Compared to WT liver grafts, CD39(-/-) grafts exhibited enhanced interstitial DC activation, elevated proinflammatory cytokine levels, and more-severe tissue injury. Moreover, portal venous delivery of WT, but not CD39(-/-) liver mDCs, to donor livers immediately post-transplant exerted a protective effect against graft injury in CD39(-/-) to CD39(-/-) liver transplantation. CONCLUSIONS These data reveal that CD39 expression on conventional liver mDCs limits their proinflammatory activity and confers protective properties on these important innate immune cells against liver transplant ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Osamu Yoshida
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Shoko Kimura
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02215, USA
| | - David A. Geller
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Noriko Murase
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
38
|
Jacob F, Novo CP, Bachert C, Van Crombruggen K. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal 2013; 9:285-306. [PMID: 23404828 PMCID: PMC3757148 DOI: 10.1007/s11302-013-9357-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/28/2013] [Indexed: 01/13/2023] Open
Abstract
Extracellular ATP and related nucleotides promote a wide range of pathophysiological responses via activation of cell surface purinergic P2 receptors. Almost every cell type expresses P2 receptors and/or exhibit regulated release of ATP. In this review, we focus on the purinergic receptor distribution in inflammatory cells and their implication in diverse immune responses by providing an overview of the current knowledge in the literature related to purinergic signaling in neutrophils, macrophages, dendritic cells, lymphocytes, eosinophils, and mast cells. The pathophysiological role of purinergic signaling in these cells include among others calcium mobilization, actin polymerization, chemotaxis, release of mediators, cell maturation, cytotoxicity, and cell death. We finally discuss the therapeutic potential of P2 receptor subtype selective drugs in inflammatory conditions.
Collapse
Affiliation(s)
- Fenila Jacob
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Claudina Pérez Novo
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Koen Van Crombruggen
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
39
|
Haas M, Ben-Moshe I, Fischer B, Reiser G. Sp-2-propylthio-ATP-α-B and Sp-2-propylthio-ATP-α-B,β-γ-dichloromethylene are novel potent and specific agonists of the human P2Y₁₁ receptor. Biochem Pharmacol 2013; 86:645-55. [PMID: 23810430 DOI: 10.1016/j.bcp.2013.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
The human P2Y₁₁ nucleotide receptor mRNA was found in virtually all human tissues, and the receptor serves many physiological roles, such as immune response regulation. The Ala-87-Thr-P2Y₁₁ receptor single nucleotide polymorphism was linked to increased risk for acute myocardial infarction. To facilitate the development of new therapeutic applications involving cells expressing several P2 receptor subtypes, the availability of specific and potent agonists is mandatory. Here, we synthesized a series of novel adenine nucleotide derivatives, based upon the potent P2Y₁₁ receptor agonists AR-C67085. Features of the novel nucleotide derivatives are a propylthio substitution at C2-adenine and a Pα-borano or Pα-thio substitution of non-bridging oxygen atom. The latter substitutions introduce a chiral center at the α-phosphate. Sp-isomers of Pα-borano- and Rp-isomers of Pα-thio-substituted nucleotides are preferred by the P2Y₁₁ receptor. As recently reported by us, diastereoselectivity of the P2Y₁₁ receptor is opposite to that of the P2Y₁ receptor. Therefore, we exploit this characteristic to increase nucleotide selectivity. At the P2Y₁₁ receptor, the Sp-isomers of 2-propylthio-ATP-α-B (2B) and 2-propylthio-ATP-α-B,β-γ-dichloromethylene (4B) were the most potent of the novel nucleotide series, with EC₅₀ values of 0.03 μM for both, being ca. 80-fold more potent than 2-propylthio-ATP and ATP (EC₅₀ = 2.6 μM). We conclude that the borano-substitution at the α-phosphate of 2-propylthio-ATP enhances nucleotide potency at the P2Y₁₁ receptor. The combination with a Pβ-Pγ-dichloromethylene group in 4B results in a nucleotide, which shows higher selectivity for the P2Y₁₁ receptor over the P2Y₁₁ receptor than 2B making it the most promising of the novel P2Y₁₁ receptor agonists.
Collapse
Affiliation(s)
- Michael Haas
- Institute for Neurobiochemistry, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | |
Collapse
|
40
|
Vukcevic M, Zorzato F, Keck S, Tsakiris DA, Keiser J, Maizels RM, Treves S. Gain of function in the immune system caused by a ryanodine receptor 1 mutation. J Cell Sci 2013; 126:3485-92. [PMID: 23704352 DOI: 10.1242/jcs.130310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in RYR1, the gene encoding ryanodine receptor 1, are linked to a variety of neuromuscular disorders including malignant hyperthermia (MH), a pharmacogenetic hypermetabolic disease caused by dysregulation of Ca(2+) in skeletal muscle. RYR1 encodes a Ca(2+) channel that is predominantly expressed in skeletal muscle sarcoplasmic reticulum, where it is involved in releasing the Ca(2+) necessary for muscle contraction. Other tissues, however, including cells of the immune system, have been shown to express ryanodine receptor 1; in dendritic cells its activation leads to increased surface expression of major histocompatibility complex II molecules and provides synergistic signals leading to cell maturation. In the present study, we investigated the impact of an MH mutation on the immune system by studying the RYR1Y522S knock-in mouse. Our results show that there are subtle but significant differences both in resting 'non-challenged' mice as well as in mice treated with antigenic stimuli, in particular the knock-in mice: (i) have dendritic cells that are more efficient at stimulating T cell proliferation, (ii) have higher levels of natural IgG1 and IgE antibodies, and (iii) are faster and more efficient at mounting a specific immune response in the early phases of immunization. We suggest that some gain-of-function MH-linked RYR1 mutations might offer selective immune advantages to their carriers. Furthermore, our results raise the intriguing possibility that pharmacological activation of RyR1 might be exploited for the development of new classes of vaccines and adjuvants.
Collapse
Affiliation(s)
- Mirko Vukcevic
- Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
41
|
Sakaki H, Fujiwaki T, Tsukimoto M, Kawano A, Harada H, Kojima S. P2X4 receptor regulates P2X7 receptor-dependent IL-1β and IL-18 release in mouse bone marrow-derived dendritic cells. Biochem Biophys Res Commun 2013; 432:406-11. [PMID: 23428419 DOI: 10.1016/j.bbrc.2013.01.135] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/26/2013] [Indexed: 12/31/2022]
Abstract
Activation of P2X7 receptor of dendritic cells plays a significant role in inflammation through production of cytokines such as IL-1β, and recent studies have suggested structural and functional interactions of P2X7 receptor with P2X4 receptor in macrophages. However, it is unknown whether P2X4 receptor modulates P2X7 functions in dendritic cells. Here, we present evidence that expression of P2X4 receptor is required for P2X7 receptor-dependent IL-1β and IL-18 release in mouse bone marrow-derived dendritic cells (BMDCs). We confirmed expression of both P2X7 receptor and P2X4 receptor in BMDCs. Treatment of BMDCs with 3 mM ATP caused a transient, P2X4-dependent elevation, or spike, of intracellular Ca(2+) level [Ca(2+)]i, followed by the sustained P2X7-dependent increase of [Ca(2+)]i. We performed knockdown of P2X4 receptor in BMDCs by transfection with short hairpin RNA targeting this receptor. The ATP-induced initial peak of [Ca(2+)]i was decreased in P2X4-knockdown cells (P2X4-KD). Further, we found that ATP-induced IL-1β and IL-18 release from LPS-primed BMDCs was suppressed by pretreatment with P2X7 antagonist A438079 or P2X4 antagonist TNP-ATP. The P2X7-dependent IL-1β and IL-18 release was significantly lower in P2X4-KD cells. Chelation of intracellular Ca(2+) also caused suppression of ATP-induced IL-1β and IL-18 release. These results suggest that P2X4 receptor-induced Ca(2+) influx is required for effective production of IL-1β and IL-18 via activation of P2X7 receptor in BMDCs. We conclude that co-expression of P2X4 receptor with P2X7 receptor in dendritic cells leads to enhancement of inflammation through facilitation of P2X7-dependent release of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Hayato Sakaki
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Paustian C, Taylor P, Johnson T, Xu M, Ramirez N, Rosenthal KS, Shu S, Cohen PA, Czerniecki BJ, Koski GK. Extracellular ATP and Toll-like receptor 2 agonists trigger in human monocytes an activation program that favors T helper 17. PLoS One 2013; 8:e54804. [PMID: 23382974 PMCID: PMC3561418 DOI: 10.1371/journal.pone.0054804] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 12/17/2012] [Indexed: 12/13/2022] Open
Abstract
Strategically-paired Toll-like receptor (TLR) ligands induce a unique dendritic cell (DC) phenotype that polarizes Th1 responses. We therefore investigated pairing single TLR ligands with a non TLR-mediated danger signal to cooperatively induce distinct DC properties from cultured human monocytes. Adenosine triphosphate (ATP) and the TLR2 ligand lipoteichoic acid (LTA) selectively and synergistically induced expression of IL-23 and IL-1β from cultured monocytes as determined by ELISA assays. Flow cytometric analysis revealed that a sizable sub-population of treated cells acquired DC-like properties including activated surface phenotype with trans-well assays showing enhanced migration towards CCR7 ligands. Such activated cells also preferentially deviated, in an IL-23 and IL-1-dependent manner, CD4pos T lymphocyte responses toward the IL-22hi, IL-17hi/IFN-γlo Th17 phenotype in standard in vitro allogeneic sensitization assays. Although pharmacological activation of either ionotropic or cAMP-dependent pathways acted in synergy with LTA to enhance IL-23, only inhibition of the cAMP-dependent pathway antagonized ATP-enhanced cytokine production. ATP plus atypical lipopolysaccharide from P. gingivalis (signaling through TLR2) was slightly superior to E. coli-derived LPS (TLR4 ligand) for inducing the high IL-23-secreting DC-like phenotype, but greatly inferior for inducing IL-12 p70 production when paired with IFN-γ, a distinction reflected in activated DCs’ ability to deviate lymphocytes toward Th1. Collectively, our data suggest TLR2 ligands encountered by innate immune cells in an environment with physiologically-relevant levels of extracellular ATP can induce a distinct activation state favoring IL-23- and IL-1β-dependent Th17 type response.
Collapse
Affiliation(s)
- Christopher Paustian
- Department of Biological Sciences, Biomedical Sciences Program, Kent State University, Kent, Ohio, United States of America
| | - Patricia Taylor
- Department of Integrative Medical Sciences, Northeastern Ohio Medical University, Rootstown, Ohio, United States of America
| | - Terrence Johnson
- Department of Biological Sciences, Biomedical Sciences Program, Kent State University, Kent, Ohio, United States of America
| | - Min Xu
- Harrison Department of Surgical Research, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nancy Ramirez
- Department of Biological Sciences, Biomedical Sciences Program, Kent State University, Kent, Ohio, United States of America
| | - Kenneth S. Rosenthal
- Department of Integrative Medical Sciences, Northeastern Ohio Medical University, Rootstown, Ohio, United States of America
| | - Suyu Shu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Peter A. Cohen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Brian J. Czerniecki
- Harrison Department of Surgical Research, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary K. Koski
- Department of Biological Sciences, Biomedical Sciences Program, Kent State University, Kent, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Visovatti SH, Hyman MC, Bouis D, Neubig R, McLaughlin VV, Pinsky DJ. Increased CD39 nucleotidase activity on microparticles from patients with idiopathic pulmonary arterial hypertension. PLoS One 2012; 7:e40829. [PMID: 22792409 PMCID: PMC3394716 DOI: 10.1371/journal.pone.0040829] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 06/17/2012] [Indexed: 12/02/2022] Open
Abstract
Background Idiopathic pulmonary arterial hypertension (IPAH) is a devastating disease characterized by increased pulmonary vascular resistance, smooth muscle and endothelial cell proliferation, perivascular inflammatory infiltrates, and in situ thrombosis. Circulating intravascular ATP, ADP, AMP and adenosine activate purinergic cell signaling pathways and appear to induce many of the same pathologic processes that underlie IPAH. Extracellular dephosphorylation of ATP to ADP and AMP occurs primarily via CD39 (ENTPD1), an ectonucleotidase found on the surface of leukocytes, platelets, and endothelial cells [1]. Microparticles are micron-sized phospholipid vesicles formed from the membranes of platelets and endothelial cells. Objectives: Studies here examine whether CD39 is an important microparticle surface nucleotidase, and whether patients with IPAH have altered microparticle-bound CD39 activity that may contribute to the pathophysiology of the disease. Methodology/ Principal Findings Kinetic parameters, inhibitor blocking experiments, and immunogold labeling with electron microscopy support the role of CD39 as a major nucleotidase on the surface of microparticles. Comparison of microparticle surface CD39 expression and nucleotidase activity in 10 patients with advanced IPAH and 10 healthy controls using flow cytometry and thin layer chromatograph demonstrate the following: 1) circulating platelet (CD39+CD31+CD42b+) and endothelial (CD39+CD31+CD42b−) microparticle subpopulations in patients with IPAH show increased CD39 expression; 2) microparticle ATPase and ADPase activity in patients with IPAH is increased. Conclusions/ Significance We demonstrate for the first time increased CD39 expression and function on circulating microparticles in patients with IPAH. Further research is needed to elucidate whether these findings identify an important trigger for the development of the disease, or reflect a physiologic response to IPAH.
Collapse
Affiliation(s)
- Scott H Visovatti
- Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | | | | | | | | | |
Collapse
|
44
|
Figueiredo AB, Serafim TD, Marques-da-Silva EA, Meyer-Fernandes JR, Afonso LCC. Leishmania amazonensis impairs DC function by inhibiting CD40 expression via A2B adenosine receptor activation. Eur J Immunol 2012; 42:1203-15. [PMID: 22311598 DOI: 10.1002/eji.201141926] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) play an essential role in the modulation of immune responses and several studies have evaluated the interactions between Leishmania parasites and DCs. While extracellular ATP exhibits proinflammatory properties, adenosine is an important anti-inflammatory mediator. Here we investigated the effects of Leishmania infection on DC responses and the participation of purinergic signalling in this process. Bone marrow-derived dendritic cells (BMDCs) from C57BL/6J mice infected with Leishmania amazonensis, Leishmania braziliensis or Leishmania major metacyclic promastigotes showed decreased major histocompatibility complex (MHC) class II and CD86 expression and increased ectonucleotidase expression as compared with uninfected cells. In addition, L. amazonensis-infected DCs, which had lower CD40 expression, exhibited a decreased ability to induce T-cell proliferation. The presence of MRS1754, a highly selective A(2B) adenosine receptor antagonist at the time of infection increased MHC class II, CD86 and CD40 expression in L. amazonensis-infected DCs and restored the ability of the infected DCs to induce T-cell proliferation. Similar results were obtained through the inhibition of extracellular ATP hydrolysis using suramin. In conclusion, we propose that A(2B) receptor activation may be used by L. amazonensis to inhibit DC function and evade the immune response.
Collapse
Affiliation(s)
- Amanda B Figueiredo
- Laboratório de Imunoparasitologia, Departamento de Ciências Biológicas, ICEB/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
45
|
AMP affects intracellular Ca2+ signaling, migration, cytokine secretion and T cell priming capacity of dendritic cells. PLoS One 2012; 7:e37560. [PMID: 22624049 PMCID: PMC3356328 DOI: 10.1371/journal.pone.0037560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/25/2012] [Indexed: 12/21/2022] Open
Abstract
The nucleotide adenosine-5'-monophosphate (AMP) can be released by various cell types and has been shown to elicit different cellular responses. In the extracellular space AMP is dephosphorylated to the nucleoside adenosine which can then bind to adenosine receptors. However, it has been shown that AMP can also activate A(1) and A(2a) receptors directly. Here we show that AMP is a potent modulator of mouse and human dendritic cell (DC) function. AMP increased intracellular Ca(2+) concentration in a time and dose dependent manner. Furthermore, AMP stimulated actin-polymerization in human DCs and induced migration of immature human and bone marrow derived mouse DCs, both via direct activation of A(1) receptors. AMP strongly inhibited secretion of TNF-α and IL-12p70, while it enhanced production of IL-10 both via activation of A(2a) receptors. Consequently, DCs matured in the presence of AMP and co-cultivated with naive CD4(+)CD45RA(+) T cells inhibited IFN-γ production whereas secretion of IL-5 and IL-13 was up-regulated. An enhancement of Th2-driven immune response could also be observed when OVA-pulsed murine DCs were pretreated with AMP prior to co-culture with OVA-transgenic naïve OTII T cells. An effect due to the enzymatic degradation of AMP to adenosine could be ruled out, as AMP still elicited migration and changes in cytokine secretion in bone-marrow derived DCs generated from CD73-deficient animals and in human DCs pretreated with the ecto-nucleotidase inhibitor 5'-(alpha,beta-methylene) diphosphate (APCP). Finally, the influence of contaminating adenosine could be excluded, as AMP admixed with adenosine desaminase (ADA) was still able to influence DC function. In summary our data show that AMP when present during maturation is a potent regulator of dendritic cell function and point out the role for AMP in the pathogenesis of inflammatory disorders.
Collapse
|
46
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
47
|
Power Coombs MR, Belderbos ME, Gallington LC, Bont L, Levy O. Adenosine modulates Toll-like receptor function: basic mechanisms and translational opportunities. Expert Rev Anti Infect Ther 2011; 9:261-9. [PMID: 21342073 DOI: 10.1586/eri.10.158] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is an endogenous purine metabolite whose concentration in human blood plasma rises from nanomolar to micromolar concentrations during the inflammatory process. Leukocytes express seven-transmembrane adenosine receptors whose engagement modulates Toll-like receptor-mediated cytokine responses, in part via modulation of intracellular cyclic adenosine monophosphate. Adenosine analogs are used clinically to treat arrhythmias and apnea of prematurity. Herein, we consider the potential of adenosine analogs as innate immune response modifiers to prevent and/or treat infection.
Collapse
Affiliation(s)
- Melanie R Power Coombs
- Department of Medicine/Infectious Diseases, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Kessler S, Clauss WG, Günther A, Kummer W, Fronius M. Expression and functional characterization of P2X receptors in mouse alveolar macrophages. Pflugers Arch 2011; 462:419-30. [PMID: 21638035 DOI: 10.1007/s00424-011-0980-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 12/20/2022]
Abstract
Alveolar macrophages (AM) are crucial for pulmonary host defense, and evidence emerges that ATP-gated P2X receptors are involved in inflammatory processes. This study focuses on the expression and functional characterization of P2X receptors in AM from mouse. In RT-PCR experiments, transcripts encoding the P2X₁, P2X₃, P2X₄, P2X₅, and P2X₇ receptors were detected. In whole-cell patch-clamp recordings, ATP (1 mM) evoked an inward current (mouse and human AM) that was reversible upon washout, and the reversal potential was ~5 mV, indicating the activation of a non-selective conductance-a fingerprint of P2X receptors. Further characterization (mouse AM) revealed that the current was not desensitized by a second ATP application. The ATP-induced current was increased by the removal of extracellular Ca²⁺ (in human and mouse AM), and EC₅₀ in mouse AM were determined with ~1 mM ATP, in the presence as well as in the absence of extracellular Ca²⁺. Pharmacological characterization of mouse AM revealed that the effect was augmented by BzATP and pre-application with ivermectin, but no effect with α,β-meATP was observed. Further, the ATP effect was reduced by PPADS (300 μM), brilliant blue G (5 μM), and about A438079 (10 μM). Although different P2X receptor transcripts were detected in mouse AM, the observed functional and pharmacological characteristics indicate primarily the participation of P2X₄ and P2X₇ receptors as mediators of the ATP-induced ion current in mouse AM. These suggestions were confirmed by experiments with AM from P2X₇ -deficient animals, indicating a contribution of P2X₄ and P2X₇ receptors in pulmonary immune function.
Collapse
Affiliation(s)
- Sarah Kessler
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
49
|
Gendaszewska-Darmach E, Kucharska M. Nucleotide receptors as targets in the pharmacological enhancement of dermal wound healing. Purinergic Signal 2011; 7:193-206. [PMID: 21519856 PMCID: PMC3146642 DOI: 10.1007/s11302-011-9233-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/10/2011] [Indexed: 12/15/2022] Open
Abstract
With a growing interest of the involvement of extracellular nucleotides in both normal physiology and pathology, it has become evident that P2 receptor agonists and antagonists may have therapeutic potential. The P2Y2 receptor agonists (diquafosol tetrasodium and denufosol tetrasodium) are in the phase 3 of clinical trials for dry eye and cystic fibrosis, respectively. The thienopyridine derivatives clopidogrel and ticlopidine (antagonists of the platelet P2Y12 receptor) have been used in cardiovascular medicine for nearly a decade. Purines and pyrimidines may be of therapeutic potential also in wound healing since ATP and UTP have been shown to have many hallmarks of wound healing factors. Recent studies have demonstrated that extracellular nucleotides take part in all phases of wound repair: hemostasis, inflammation, tissue formation, and tissue remodeling. This review is focused on the potent purines and pyrimidines which regulate many physiological processes important for wound healing.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924, Lodz, Poland,
| | | |
Collapse
|
50
|
Abstract
The immune and inflammatory responses initiated by the interaction of a pathogen with airway surfaces constitute vital mechanisms to eradicate an infection. Sentinel dendritic cells embedded in the mucosa migrate to the lymph nodes to induce immune responses, whereas epithelial cells release chemokines to recruit inflammatory cells engaged in the active destruction of the intruder. All immune and inflammatory cells are regulated by customized purinergic networks of receptors and ectonucleotidases. The general concept is that bacterial products induce ATP release, which activates P2 receptors to initiate an inflammatory response, and is terminated by the conversion of ATP into adenosine (ADO) to initiate P1 receptor-mediated negative feedback responses. However, this chapter exposes a far more complex purinergic regulation of critical functions, such as the differentiation of naive lymphocytes and the complex maturation and secretion of pro-cytokines (i.e. IL-1β) by the "inflammasome". This material also reconciles decades of research by exposing the specificity and plasticity of the signaling network expressed by each immune and inflammatory cell, which changes through cell differentiation and in response to infectious or inflammatory mediators. By the end of this chapter, the reader will have a new appreciation for this aspect of airway defenses, and several leads in terms of therapeutic applications for the treatment of chronic respiratory diseases.
Collapse
|