1
|
Lu D, Huang A, Tong X, Zhang X, Li S, Yu X. Nobiletin protects against alcohol-induced mitochondrial dysfunction and liver injury by regulating the hepatic NRF1-TFAM signaling pathway. Redox Rep 2024; 29:2395779. [PMID: 39221774 PMCID: PMC11370696 DOI: 10.1080/13510002.2024.2395779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Alcohol and its metabolites, such as acetaldehyde, induced hepatic mitochondrial dysfunction play a pathological role in the development of alcohol-related liver disease (ALD). METHODS In this study, we investigated the potential of nobiletin (NOB), a polymethoxylated flavone, to counter alcohol-induced mitochondrial dysfunction and liver injury. RESULTS Our findings demonstrate that NOB administration markedly attenuated alcohol-induced hepatic steatosis, endoplasmic reticulum stress, inflammation, and tissue damage in mice. NOB reversed hepatic mitochondrial dysfunction and oxidative stress in both alcohol-fed mice and acetaldehyde-treated hepatocytes. Mechanistically, NOB restored the reduction of hepatic mitochondrial transcription factor A (TFAM) at both mRNA and protein levels. Notably, the protective effects of NOB against acetaldehyde-induced mitochondrial dysfunction and cell death were abolished in hepatocytes lacking Tfam. Furthermore, NOB administration reinstated the levels of hepatocellular NRF1, a key transcriptional regulator of TFAM, which were decreased by alcohol and acetaldehyde exposure. Consistent with these findings, hepatocyte-specific overexpression of Nrf1 protected against alcohol-induced hepatic Tfam reduction, mitochondrial dysfunction, oxidative stress, and liver injury. CONCLUSIONS Our study elucidates the involvement of the NRF1-TFAM signaling pathway in the protective mechanism of NOB against chronic-plus-binge alcohol consumption-induced mitochondrial dysfunction and liver injury, suggesting NOB supplementation as a potential therapeutic strategy for ALD.
Collapse
Affiliation(s)
- Dan Lu
- Department of Digestion, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Aiping Huang
- Department of Blood donation service, Blood Center of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Xiaoqing Tong
- Department of Nutrition, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Xiaoyan Zhang
- Department of Nutrition, Zhejiang Hospital, Hangzhou, People’s Republic of China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Institute of Nutrition and Health, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiaolong Yu
- Department of Nutrition, Zhejiang Hospital, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Thoudam T, Gao H, Jiang Y, Huda N, Yang Z, Ma J, Liangpunsakul S. Mitochondrial quality control in alcohol-associated liver disease. Hepatol Commun 2024; 8:e0534. [PMID: 39445886 PMCID: PMC11512632 DOI: 10.1097/hc9.0000000000000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 10/25/2024] Open
Abstract
Excessive alcohol consumption is a leading cause of alcohol-associated liver disease (ALD), a significant global health concern with limited therapeutic options. Understanding the key factors contributing to ALD pathogenesis is crucial for identifying potential therapeutic targets. Central to ALD pathogenesis is the intricate interplay between alcohol metabolism and cellular processes, particularly involving mitochondria. Mitochondria are essential organelles in the liver, critical for energy production and metabolic functions. However, they are particularly vulnerable to alcohol-induced damage due to their involvement in alcohol metabolism. Alcohol disrupts mitochondrial function, impairing ATP production and triggering oxidative stress, which leads to cellular damage and inflammation. Mitochondrial quality control mechanisms, including biogenesis, dynamics, and mitophagy, are crucial for maintaining optimal mitochondrial function. Chronic alcohol consumption disrupts mitochondrial quality control checkpoints, leading to mitochondrial dysfunction that impairs fatty acid oxidation and contributes to hepatic steatosis in ALD. Moreover, alcohol promotes the accumulation of damaged mitochondria and the release of proinflammatory components, exacerbating liver damage and inflammation. Preserving mitochondrial health presents a promising therapeutic approach to mitigate ALD progression. In this review, we provide a comprehensive overview of the effects of alcohol on mitochondrial function and quality control mechanisms, highlighting their role in ALD pathogenesis. Understanding these mechanisms may pave the way for the development of novel therapeutic interventions for ALD.
Collapse
Affiliation(s)
- Themis Thoudam
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hui Gao
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nazmul Huda
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Ma H, Lee GR, Park JS, Lee J, Wang F, Ma Y, Sui GY, Rustamov N, Kim SH, Jung YS, Yoo HS, Han SB, Hong JT, Yun J, Roh YS. Cocaine-derived hippuric acid activates mtDNA-STING signaling in alcoholic liver disease: Implications for alcohol and cocaine co-abuse. Cell Biol Toxicol 2024; 40:71. [PMID: 39147926 PMCID: PMC11327214 DOI: 10.1007/s10565-024-09901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
The simultaneous abuse of alcohol-cocaine is known to cause stronger and more unpredictable cellular damage in the liver, heart, and brain. However, the mechanistic crosstalk between cocaine and alcohol in liver injury remains unclear. The findings revealed cocaine-induced liver injury and inflammation in both marmosets and mice. Of note, co-administration of cocaine and ethanol in mice causes more severe liver damage than individual treatment. The metabolomic analysis confirmed that hippuric acid (HA) is the most abundant metabolite in marmoset serum after cocaine consumption and that is formed in primary marmoset hepatocytes. HA, a metabolite of cocaine, increases mitochondrial DNA leakage and subsequently increases the production of proinflammatory factors via STING signaling in Kupffer cells (KCs). In addition, conditioned media of cocaine-treated KC induced hepatocellular necrosis via alcohol-induced TNFR1. Finally, disruption of STING signaling in vivo ameliorated co-administration of alcohol- and cocaine-induced liver damage and inflammation. These findings postulate intervention of HA-STING-TNFR1 axis as a novel strategy for treatment of alcohol- and cocaine-induced excessive liver damage.
Collapse
Affiliation(s)
- Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Gyu-Rim Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Feng Wang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Yuanqiang Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Guo-Yan Sui
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Nodir Rustamov
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 46241, South Korea
| | - Hwan-Soo Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea.
| | - Yoon Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28160, South Korea.
| |
Collapse
|
4
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
5
|
López-Pascual E, Rienda I, Perez-Rojas J, Rapisarda A, Garcia-Llorens G, Jover R, Castell JV. Drug-Induced Fatty Liver Disease (DIFLD): A Comprehensive Analysis of Clinical, Biochemical, and Histopathological Data for Mechanisms Identification and Consistency with Current Adverse Outcome Pathways. Int J Mol Sci 2024; 25:5203. [PMID: 38791241 PMCID: PMC11121209 DOI: 10.3390/ijms25105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Drug induced fatty liver disease (DIFLD) is a form of drug-induced liver injury (DILI), which can also be included in the more general metabolic dysfunction-associated steatotic liver disease (MASLD), which specifically refers to the accumulation of fat in the liver unrelated to alcohol intake. A bi-directional relationship between DILI and MASLD is likely to exist: while certain drugs can cause MASLD by acting as pro-steatogenic factors, MASLD may make hepatocytes more vulnerable to drugs. Having a pre-existing MASLD significantly heightens the likelihood of experiencing DILI from certain medications. Thus, the prevalence of steatosis within DILI may be biased by pre-existing MASLD, and it can be concluded that the genuine true incidence of DIFLD in the general population remains unknown. In certain individuals, drug-induced steatosis is often accompanied by concomitant injury mechanisms such as oxidative stress, cell death, and inflammation, which leads to the development of drug-induced steatohepatitis (DISH). DISH is much more severe from the clinical point of view, has worse prognosis and outcome, and resembles MASH (metabolic-associated steatohepatitis), as it is associated with inflammation and sometimes with fibrosis. A literature review of clinical case reports allowed us to examine and evaluate the clinical features of DIFLD and their association with specific drugs, enabling us to propose a classification of DIFLD drugs based on clinical outcomes and pathological severity: Group 1, drugs with low intrinsic toxicity (e.g., ibuprofen, naproxen, acetaminophen, irinotecan, methotrexate, and tamoxifen), but expected to promote/aggravate steatosis in patients with pre-existing MASLD; Group 2, drugs associated with steatosis and only occasionally with steatohepatitis (e.g., amiodarone, valproic acid, and tetracycline); and Group 3, drugs with a great tendency to transit to steatohepatitis and further to fibrosis. Different mechanisms may be in play when identifying drug mode of action: (1) inhibition of mitochondrial fatty acid β-oxidation; (2) inhibition of fatty acid transport across mitochondrial membranes; (3) increased de novo lipid synthesis; (4) reduction in lipid export by the inhibition of microsomal triglyceride transfer protein; (5) induction of mitochondrial permeability transition pore opening; (6) dissipation of the mitochondrial transmembrane potential; (7) impairment of the mitochondrial respiratory chain/oxidative phosphorylation; (8) mitochondrial DNA damage, degradation and depletion; and (9) nuclear receptors (NRs)/transcriptomic alterations. Currently, the majority of, if not all, adverse outcome pathways (AOPs) for steatosis in AOP-Wiki highlight the interaction with NRs or transcription factors as the key molecular initiating event (MIE). This perspective suggests that chemical-induced steatosis typically results from the interplay between a chemical and a NR or transcription factors, implying that this interaction represents the primary and pivotal MIE. However, upon conducting this exhaustive literature review, it became evident that the current AOPs tend to overly emphasize this interaction as the sole MIE. Some studies indeed support the involvement of NRs in steatosis, but others demonstrate that such NR interactions alone do not necessarily lead to steatosis. This view, ignoring other mitochondrial-related injury mechanisms, falls short in encapsulating the intricate biological mechanisms involved in chemically induced liver steatosis, necessitating their consideration as part of the AOP's map road as well.
Collapse
Affiliation(s)
- Ernesto López-Pascual
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ivan Rienda
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Judith Perez-Rojas
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Anna Rapisarda
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Guillem Garcia-Llorens
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramiro Jover
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José V. Castell
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Mahalingam S, Bellamkonda R, Kharbanda KK, Arumugam MK, Kumar V, Casey CA, Leggio L, Rasineni K. Role of ghrelin hormone in the development of alcohol-associated liver disease. Biomed Pharmacother 2024; 174:116595. [PMID: 38640709 PMCID: PMC11161137 DOI: 10.1016/j.biopha.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Fatty liver is the earliest response of the liver to excessive alcohol consumption. Previously we identified that chronic alcohol administration increases levels of stomach-derived hormone, ghrelin, which by reducing circulating insulin levels, ultimately contributes to the development of alcohol-associated liver disease (ALD). In addition, ghrelin directly promotes fat accumulation in hepatocytes by enhancing de novo lipogenesis. Other than promoting ALD, ghrelin is known to increase alcohol craving and intake. In this study, we used a ghrelin receptor (GHSR) knockout (KO) rat model to characterize the specific contribution of ghrelin in the development of ALD with emphasis on energy homeostasis. Male Wistar wild type (WT) and GHSR-KO rats were pair-fed the Lieber-DeCarli control or ethanol diet for 6 weeks. At the end of the feeding period, glucose tolerance test was conducted, and tissue samples were collected. We observed reduced alcohol intake by GHSR-KOs compared to a previous study where WT rats were fed ethanol diet ad libitum. Further, when the WTs were pair-fed to GHSR-KOs, the KO rats exhibited resistance to develop ALD through improving insulin secretion/sensitivity to reduce adipose lipolysis and hepatic fatty acid uptake/synthesis and increase fatty acid oxidation. Furthermore, proteomic data revealed that ethanol-fed KO exhibit less alcohol-induced mitochondrial dysfunction and oxidative stress than WT rats. Proteomic data also confirmed that the ethanol-fed KOs are insulin sensitive and are resistant to hepatic steatosis development compared to WT rats. Together, these data confirm that inhibiting ghrelin action prevent alcohol-induced liver and adipose dysfunction independent of reducing alcohol intake.
Collapse
Affiliation(s)
- Sundararajan Mahalingam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Bellamkonda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vikas Kumar
- Mass Spectrometry and Proteomic Core Facility, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Carol A Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Bethesda, Baltimore, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
7
|
Ma X, Niu M, Ni HM, Ding WX. Mitochondrial dynamics, quality control, and mtDNA in alcohol-associated liver disease and liver cancer. Hepatology 2024:01515467-990000000-00861. [PMID: 38683546 DOI: 10.1097/hep.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Mitochondria are intracellular organelles responsible for energy production, glucose and lipid metabolism, cell death, cell proliferation, and innate immune response. Mitochondria are highly dynamic organelles that constantly undergo fission, fusion, and intracellular trafficking, as well as degradation and biogenesis. Mitochondrial dysfunction has been implicated in a variety of chronic liver diseases including alcohol-associated liver disease, metabolic dysfunction-associated steatohepatitis, and HCC. In this review, we provide a detailed overview of mitochondrial dynamics, mitophagy, and mitochondrial DNA-mediated innate immune response, and how dysregulation of these mitochondrial processes affects the pathogenesis of alcohol-associated liver disease and HCC. Mitochondrial dynamics and mitochondrial DNA-mediated innate immune response may thereby represent an attractive therapeutic target for ameliorating alcohol-associated liver disease and alcohol-associated HCC.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Mobility, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
8
|
Gui Q, Ding N, Yao Z, Wu M, Fu R, Wang Y, Zhao Y, Zhu L. Extracellular vesicles derived from mesenchymal stem cells: the wine in Hebe's hands to treat skin aging. PRECISION CLINICAL MEDICINE 2024; 7:pbae004. [PMID: 38516531 PMCID: PMC10955876 DOI: 10.1093/pcmedi/pbae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Owing to its constant exposure to the external environment and various stimuli, skin ranks among the organs most vulnerable to manifestations of aging. Preventing and delaying skin aging has become one of the prominent research subjects in recent years. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from mesoderm with high self-renewal ability and multilineage differentiation potential. MSC-derived extracellular vesicles (MSC-EVs) are nanoscale biological vesicles that facilitate intercellular communication and regulate biological behavior. Recent studies have shown that MSC-EVs have potential applications in anti-aging therapy due to their anti-inflammatory, anti-oxidative stress, and wound healing promoting abilities. This review presents the latest progress of MSC-EVs in delaying skin aging. It mainly includes the MSC-EVs promoting the proliferation and migration of keratinocytes and fibroblasts, reducing the expression of matrix metalloproteinases, resisting oxidative stress, and regulating inflammation. We then briefly discuss the recently discovered treatment methods of MSC-EVs in the field of skin anti-aging. Moreover, the advantages and limitations of EV-based treatments are also presented.
Collapse
Affiliation(s)
- Qixiang Gui
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| | - Neng Ding
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery of Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Minjuan Wu
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
| | - Ruifeng Fu
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
| | - Yue Wang
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China
| | - Yunpeng Zhao
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
| | - Lie Zhu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| |
Collapse
|
9
|
Arumugam MK, Gopal T, Kalari Kandy RR, Boopathy LK, Perumal SK, Ganesan M, Rasineni K, Donohue TM, Osna NA, Kharbanda KK. Mitochondrial Dysfunction-Associated Mechanisms in the Development of Chronic Liver Diseases. BIOLOGY 2023; 12:1311. [PMID: 37887021 PMCID: PMC10604291 DOI: 10.3390/biology12101311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
The liver is a major metabolic organ that performs many essential biological functions such as detoxification and the synthesis of proteins and biochemicals necessary for digestion and growth. Any disruption in normal liver function can lead to the development of more severe liver disorders. Overall, about 3 million Americans have some type of liver disease and 5.5 million people have progressive liver disease or cirrhosis, in which scar tissue replaces the healthy liver tissue. An estimated 20% to 30% of adults have excess fat in their livers, a condition called steatosis. The most common etiologies for steatosis development are (1) high caloric intake that causes non-alcoholic fatty liver disease (NAFLD) and (2) excessive alcohol consumption, which results in alcohol-associated liver disease (ALD). NAFLD is now termed "metabolic-dysfunction-associated steatotic liver disease" (MASLD), which reflects its association with the metabolic syndrome and conditions including diabetes, high blood pressure, high cholesterol and obesity. ALD represents a spectrum of liver injury that ranges from hepatic steatosis to more advanced liver pathologies, including alcoholic hepatitis (AH), alcohol-associated cirrhosis (AC) and acute AH, presenting as acute-on-chronic liver failure. The predominant liver cells, hepatocytes, comprise more than 70% of the total liver mass in human adults and are the basic metabolic cells. Mitochondria are intracellular organelles that are the principal sources of energy in hepatocytes and play a major role in oxidative metabolism and sustaining liver cell energy needs. In addition to regulating cellular energy homeostasis, mitochondria perform other key physiologic and metabolic activities, including ion homeostasis, reactive oxygen species (ROS) generation, redox signaling and participation in cell injury/death. Here, we discuss the main mechanism of mitochondrial dysfunction in chronic liver disease and some treatment strategies available for targeting mitochondria.
Collapse
Affiliation(s)
- Madan Kumar Arumugam
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | | | - Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (T.G.); (L.K.B.)
| | - Sathish Kumar Perumal
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; (M.K.A.); (S.K.P.); (M.G.); (N.A.O.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
10
|
Zaidi AA, Verma A, Morse C, Ritchie MD, Mathieson I. The genetic and phenotypic correlates of mtDNA copy number in a multi-ancestry cohort. HGG ADVANCES 2023; 4:100202. [PMID: 37255673 PMCID: PMC10225932 DOI: 10.1016/j.xhgg.2023.100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Mitochondrial DNA copy number (mtCN) is often treated as a proxy for mitochondrial (dys-) function and disease risk. Pathological changes in mtCN are common symptoms of rare mitochondrial disorders, but reported associations between mtCN and common diseases vary across studies. To understand the biology of mtCN, we carried out genome- and phenome-wide association studies of mtCN in 30,666 individuals from the Penn Medicine BioBank (PMBB)-a diverse cohort of largely African and European ancestry. We estimated mtCN in peripheral blood using exome sequence data, taking cell composition into account. We replicated known genetic associations of mtCN in the PMBB and found that their effects are highly correlated between individuals of European and African ancestry. However, the heritability of mtCN was much higher among individuals of largely African ancestry ( h 2 = 0.3 ) compared with European ancestry individuals( h 2 = 0.1 ) . Admixture mapping suggests that there are undiscovered variants underlying mtCN that are differentiated in frequency between individuals with African and European ancestry. We show that mtCN is associated with many health-related phenotypes. We discovered robust associations between mtDNA copy number and diseases of metabolically active tissues, such as cardiovascular disease and liver damage, that were consistent across African and European ancestry individuals. Other associations, such as epilepsy and prostate cancer, were only discovered in either individuals with European or African ancestry but not both. We show that mtCN-phenotype associations can be sensitive to blood cell composition and environmental modifiers, explaining why such associations are inconsistent across studies. Thus, mtCN-phenotype associations must be interpreted with care.
Collapse
Affiliation(s)
- Arslan A. Zaidi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anurag Verma
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colleen Morse
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Penn Medicine BioBank
- Center for Translational Bioinformatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Esteban-Zubero E, López-Pingarrón L, Ramírez JM, Reyes-Gonzales MC, Azúa-Romeo FJ, Soria-Aznar M, Agil A, García JJ. Melatonin Preserves Fluidity in Cell and Mitochondrial Membranes against Hepatic Ischemia-Reperfusion. Biomedicines 2023; 11:1940. [PMID: 37509579 PMCID: PMC10377318 DOI: 10.3390/biomedicines11071940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
We evaluated the in vivo effects of melatonin treatment on oxidative damage in the liver in an experimental model of ischemia-reperfusion. A total of 37 male Sprague-Dawley rats were randomly divided into four groups: control, ischemia, ischemia + reperfusion, and ischemia + reperfusion + melatonin. Hepatic ischemia was maintained for 20 min, and the clamp was removed to initiate vascular reperfusion for 30 min. Melatonin (50 mg/kg body weight) was intraperitoneally administered. Fluidity was measured by polarization changes in 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene-p-toluene sulfonate). After 20 min of ischemia, no significant changes were observed in cell and mitochondrial membrane fluidity levels, lipid peroxidation, and protein carbonylation. However, after 30 min of reperfusion, membrane fluidity decreased compared to controls. Increases in lipid and protein oxidation were also seen in hepatic homogenates of animals exposed to reperfusion. Melatonin injected 30 min before ischemia and reperfusion fully prevented membrane rigidity and both lipid and protein oxidation. Livers from ischemia-reperfusion showed histopathological alterations and positive labeling with antibodies to oxidized lipids and proteins. Melatonin reduced the severity of these morphological changes and protected against in vivo ischemia-reperfusion-induced toxicity in the liver. Therefore, melatonin might be a candidate for co-treatment for patients with hepatic vascular occlusion followed by reperfusion.
Collapse
Affiliation(s)
- Eduardo Esteban-Zubero
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Laura López-Pingarrón
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | | | - Marcos César Reyes-Gonzales
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Francisco Javier Azúa-Romeo
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Marisol Soria-Aznar
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Ahmad Agil
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - José Joaquín García
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Abstract
Mitochondria are critical organelles responsible for the maintenance of cellular energy homeostasis. Thus, their dysfunction can have severe consequences in cells responsible for energy-intensive metabolic function, such as hepatocytes. Extensive research over the last decades have identified compromised mitochondrial function as a central feature in the pathophysiology of liver injury induced by an acetaminophen (APAP) overdose, the most common cause of acute liver failure in the United States. While hepatocyte mitochondrial oxidative and nitrosative stress coupled with induction of the mitochondrial permeability transition are well recognized after an APAP overdose, recent studies have revealed additional details about the organelle's role in APAP pathophysiology. This concise review highlights these new advances, which establish the central role of the mitochondria in APAP pathophysiology, and places them in the context of earlier information in the literature. Adaptive alterations in mitochondrial morphology as well as the role of cellular iron in mitochondrial dysfunction and the organelle's importance in liver recovery after APAP-induced injury will be discussed.
Collapse
|
13
|
Gao T, Li Y, Wang X, Ren F. The Melatonin-Mitochondrial Axis: Engaging the Repercussions of Ultraviolet Radiation Photoaging on the Skin's Circadian Rhythm. Antioxidants (Basel) 2023; 12:antiox12051000. [PMID: 37237866 DOI: 10.3390/antiox12051000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Sunlight is a vital element in modulating the central circadian rhythm, such as the regulation of the host's sleep-awake state. Sunlight is also considered to have a significant influence on the circadian rhythm of the skin. Over-exposure or prolonged exposure to sunlight can lead to skin photodamage, including hyperpigmentation, collagen degradation, fibrosis, and even skin cancer. Thus, this review will focus on the adverse effects of sunlight on the skin, not only in terms of photoaging but also its effect on the skin's circadian rhythm. Mitochondrial melatonin, regarded as a beneficial anti-aging substance for the skin, follows a circadian rhythm and exhibits a powerful anti-oxidative capacity, which has been shown to be associated with skin function. Thus, the review will focus on the influence of sunlight on skin status, not only in terms of ultraviolet radiation (UVR)-induced oxidative stress but also its mediation of circadian rhythms regulating skin homeostasis. In addition, this article will address issues regarding how best to unleash the biological potential of melatonin. These findings about the circadian rhythms of the skin have broadened the horizon of a whole new dimension in our comprehension of the molecular mechanisms of the skin and are likely to help pharmaceutical companies to develop more effective products that not only inhibit photoaging but keep valid and relevant throughout the day in future.
Collapse
Affiliation(s)
- Ting Gao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
14
|
Suzen S, Saso L. Melatonin as mitochondria-targeted drug. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:249-276. [PMID: 37437980 DOI: 10.1016/bs.apcsb.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Oxidative damage is associated to numerous diseases as well as aging development. Mitochondria found in most eukaryotic organisms to create the energy of the cell, generate free radicals during its action and they are chief targets of the oxidants. Mitochondrial activities outspread outside the borders of the cell and effect human physiology by modulating interactions among cells and tissues. Therefore, it has been implicated in several human disorders and conditions. Melatonin (MLT) is an endogenously created indole derivative that modifies several tasks, involving mitochondria-associated activities. These possessions make MLT a powerful defender against a selection of free radical-linked disorders. MLT lessens mitochondrial anomalies causing from extreme oxidative stress and may improve mitochondrial physiology. It is a potent and inducible antioxidant for mitochondria. MLT is produced in mitochondria of conceivably of all cells and it also appears to be a mitochondria directed antioxidant which has related defensive properties as the synthesized antioxidant molecules. This chapter summarizes the suggestion that MLT is produced in mitochondria as well as disorders of mitochondrial MLT production that may associate to a number of mitochondria-linked diseases. MLT as a mitochondria-targeted drug is also discussed.
Collapse
Affiliation(s)
- Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Loureiro D, Tout I, Narguet S, Bed CM, Roinard M, Sleiman A, Boyer N, Pons‐Kerjean N, Castelnau C, Giuly N, Tonui D, Soumelis V, El Benna J, Soussan P, Moreau R, Paradis V, Mansouri A, Asselah T. Mitochondrial stress in advanced fibrosis and cirrhosis associated with chronic hepatitis B, chronic hepatitis C, or nonalcoholic steatohepatitis. Hepatology 2023; 77:1348-1365. [PMID: 35971873 PMCID: PMC10026976 DOI: 10.1002/hep.32731] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) infection causes oxidative stress (OS) and alters mitochondria in experimental models. Our goal was to investigate whether HBV might alter liver mitochondria also in humans, and the resulting mitochondrial stress might account for the progression of fibrosis in chronic hepatitis B (CHB). APPROACH AND RESULTS The study included 146 treatment-naïve CHB mono-infected patients. Patients with CHB and advanced fibrosis (AF) or cirrhosis (F3-F4) were compared to patients with no/mild-moderate fibrosis (F0-F2). Patients with CHB were further compared to patients with chronic hepatitis C (CHC; n = 33), nonalcoholic steatohepatatis (NASH; n = 12), and healthy controls ( n = 24). We detected oxidative damage to mitochondrial DNA (mtDNA), including mtDNA strand beaks, and identified multiple mtDNA deletions in patients with F3-F4 as compared to patients with F0-F2. Alterations in mitochondrial function, mitochondrial unfolded protein response, biogenesis, mitophagy, and liver inflammation were observed in patients with AF or cirrhosis associated with CHB, CHC, and NASH. In vitro , significant increases of the mitochondrial formation of superoxide and peroxynitrite as well as mtDNA damage, nitration of the mitochondrial respiratory chain complexes, and impairment of complex I occurred in HepG2 cells replicating HBV or transiently expressing hepatitits B virus X protein. mtDNA damage and complex I impairment were prevented with the superoxide-scavenging Mito-Tempo or with inducible nitric oxide synthase (iNOS)-specific inhibitor 1400 W. CONCLUSIONS Our results emphasized the importance of mitochondrial OS, mtDNA damage, and associated alterations in mitochondrial function and dynamics in AF or cirrhosis in CHB and NASH. Mitochondria might be a target in drug development to stop fibrosis progression.
Collapse
Affiliation(s)
- Dimitri Loureiro
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Issam Tout
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Stéphanie Narguet
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Cheikh Mohamed Bed
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Morgane Roinard
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Ahmad Sleiman
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Boyer
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Pons‐Kerjean
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Pharmacy, Hôpital Beaujon, Clichy, France
| | - Corinne Castelnau
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Nathalie Giuly
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Dorothy Tonui
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Vassili Soumelis
- Université de Paris Cité, INSERM U976 HIPI Unit, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint‐Louis, Paris, France
| | - Jamel El Benna
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| | | | - Richard Moreau
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Valérie Paradis
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Abdellah Mansouri
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| | - Tarik Asselah
- Université Paris Cité, Centre de Recherche sur l'Inflammation, INSERM U1149, CNRS ERL8252, Paris, France
- Assistance Publique‐Hôpitaux de Paris (AP‐HP), Department of Hepatology, Hôpital Beaujon, Clichy, France
| |
Collapse
|
16
|
Solís-Muñoz P, de la Flor-Robledo M, García-Ruíz I, Fernández-García CE, González-Rodríguez Á, Shah N, Bataller R, Heneghan M, García-Monzón C, Solís-Herruzo JA. Mitochondrial respiratory chain activity is associated with severity, corticosteroid response and prognosis of alcoholic hepatitis. Aliment Pharmacol Ther 2023; 57:1131-1142. [PMID: 36864659 DOI: 10.1111/apt.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND AND AIMS Little is known about the extent of mitochondrial respiratory chain (MRC) activity dysfunction in patients with alcoholic hepatitis (AH). We aimed to assess the hepatic MRC activity in AH patients and its potential impact on the severity and prognosis of this life-threatening liver disease. METHODS MRC complexes were measured in liver biopsies of 98 AH patients (non-severe, 17; severe, 81) and in 12 histologically normal livers (NL). Severity was assessed according to Maddrey's Index and MELD score. Corticosteroid response rate and cumulative mortality were also evaluated. RESULTS The activity of the five MRC complexes was markedly decreased in the liver of AH patients compared with that of NL subjects, being significantly lower in patients with severe AH than in those with non-severe AH. There was a negative correlation between the activity of all MRC complexes and the severity of AH. Interestingly, only complex I and III activities showed a significant positive correlation with the corticosteroid response rate and a significant negative correlation with the mortality rate at all-time points studied. In a multivariate regression analysis, besides the MELD score and the corticosteroid response rate, complex I activity was significantly associated with 3-month mortality (OR = 6.03; p = 0.034) and complex III activity with 6-month mortality (OR = 4.70; p = 0.041) in AH patients. CONCLUSION Our results indicate that MRC activity is markedly decreased in the liver of AH patients, and, particularly, the impairment of MRC complexes I and III activity appears to have a significant impact on the clinical outcomes of patients with AH.
Collapse
Affiliation(s)
- Pablo Solís-Muñoz
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain.,Unidad Médica Angloamericana, Madrid, Spain.,Gastroenterology and Hepatology Unit, Hospital Universitario Santa Cristina, Madrid, Spain.,Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Inmaculada García-Ruíz
- Gastroenterology and Hepatology Laboratory, Research Institute, University Hospital "12 de Octubre". Universidad Complutense, Madrid, Spain
| | - Carlos E Fernández-García
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Águeda González-Rodríguez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Madrid, Spain
| | - Naina Shah
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Ramón Bataller
- Center for Liver Diseases, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Liver Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Departamento de Medicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - José A Solís-Herruzo
- Gastroenterology and Hepatology Laboratory, Research Institute, University Hospital "12 de Octubre". Universidad Complutense, Madrid, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Ma X, Chen A, Melo L, Clemente-Sanchez A, Chao X, Ahmadi AR, Peiffer B, Sun Z, Sesaki H, Li T, Wang X, Liu W, Bataller R, Ni HM, Ding WX. Loss of hepatic DRP1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation. Hepatology 2023; 77:159-175. [PMID: 35698731 PMCID: PMC9744966 DOI: 10.1002/hep.32604] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Increased megamitochondria formation and impaired mitophagy in hepatocytes have been linked to the pathogenesis of alcohol-associated liver disease (ALD). This study aims to determine the mechanisms by which alcohol consumption increases megamitochondria formation in the pathogenesis of ALD. APPROACH AND RESULTS Human alcoholic hepatitis (AH) liver samples were used for electron microscopy, histology, and biochemical analysis. Liver-specific dynamin-related protein 1 (DRP1; gene name DNM1L, an essential gene regulating mitochondria fission ) knockout (L-DRP1 KO) mice and wild-type mice were subjected to chronic plus binge alcohol feeding. Both human AH and alcohol-fed mice had decreased hepatic DRP1 with increased accumulation of hepatic megamitochondria. Mechanistic studies revealed that alcohol feeding decreased DRP1 by impairing transcription factor EB-mediated induction of DNM1L . L-DRP1 KO mice had increased megamitochondria and decreased mitophagy with increased liver injury and inflammation, which were further exacerbated by alcohol feeding. Seahorse flux and unbiased metabolomics analysis showed alcohol intake increased mitochondria oxygen consumption and hepatic nicotinamide adenine dinucleotide (NAD + ), acylcarnitine, and ketone levels, which were attenuated in L-DRP1 KO mice, suggesting that loss of hepatic DRP1 leads to maladaptation to alcohol-induced metabolic stress. RNA-sequencing and real-time quantitative PCR analysis revealed increased gene expression of the cGAS-stimulator of interferon genes (STING)-interferon pathway in L-DRP1 KO mice regardless of alcohol feeding. Alcohol-fed L-DRP1 KO mice had increased cytosolic mtDNA and mitochondrial dysfunction leading to increased activation of cGAS-STING-interferon signaling pathways and liver injury. CONCLUSION Alcohol consumption decreases hepatic DRP1 resulting in increased megamitochondria and mitochondrial maladaptation that promotes AH by mitochondria-mediated inflammation and cell injury.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Allen Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Luma Melo
- Center for Liver Diseases, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ana Clemente-Sanchez
- Center for Liver Diseases, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Liver Unit and Digestive Department, Hospital General Universitario Gregorio Marañon, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ali Reza Ahmadi
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brandon Peiffer
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xiaokun Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Ramon Bataller
- Center for Liver Diseases, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
18
|
Alcohol-Related Liver Disease: An Overview on Pathophysiology, Diagnosis and Therapeutic Perspectives. Biomedicines 2022; 10:biomedicines10102530. [PMID: 36289791 PMCID: PMC9599689 DOI: 10.3390/biomedicines10102530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022] Open
Abstract
Alcohol-related liver disease (ALD) refers to a spectrum of liver manifestations ranging from fatty liver diseases, steatohepatitis, and fibrosis/cirrhosis with chronic inflammation primarily due to excessive alcohol use. Currently, ALD is considered as one of the most prevalent causes of liver disease-associated mortality worldwide. Although the pathogenesis of ALD has been intensively investigated, the present understanding of its biomarkers in the context of early clinical diagnosis is not complete, and novel therapeutic targets that can significantly alleviate advanced forms of ALD are limited. While alcohol abstinence remains the primary therapeutic intervention for managing ALD, there are currently no approved medications for treating ALD. Furthermore, given the similarities and the differences between ALD and non-alcoholic fatty liver disease in terms of disease progression and underlying molecular mechanisms, numerous studies have demonstrated that many therapeutic interventions targeting several signaling pathways, including oxidative stress, inflammatory response, hormonal regulation, and hepatocyte death play a significant role in ALD treatment. Therefore, in this review, we summarized several key molecular targets and their modes of action in ALD progression. We also described the updated therapeutic options for ALD management with a particular emphasis on potentially novel signaling pathways.
Collapse
|
19
|
Savu DI, Moisoi N. Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148588. [PMID: 35780856 DOI: 10.1016/j.bbabio.2022.148588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria - nuclear coadaptation has been central to eukaryotic evolution. The dynamic dialogue between the two compartments within the context of multiorganellar interactions is critical for maintaining cellular homeostasis and directing the balance survival-death in case of cellular stress. The conceptualisation of mitochondria - nucleus communication has so far been focused on the communication from the mitochondria under stress to the nucleus and the consequent signalling responses, as well as from the nucleus to mitochondria in the context of DNA damage and repair. During ageing processes this dialogue may be better viewed as an integrated bidirectional 'talk' with feedback loops that expand beyond these two organelles depending on physiological cues. Here we explore the current views on mitochondria - nucleus dialogue and its role in maintaining cellular health with a focus on brain cells and neurodegenerative disease. Thus, we detail the transcriptional responses initiated by mitochondrial dysfunction in order to protect itself and the general cellular homeostasis. Additionally, we are reviewing the knowledge of the stress pathways initiated by DNA damage which affect mitochondria homeostasis and we add the information provided by the study of combined mitochondrial and genotoxic damage. Finally, we reflect on how each organelle may take the lead in this dialogue in an ageing context where both compartments undergo accumulation of stress and damage and where, perhaps, even the communications' mechanisms may suffer interruptions.
Collapse
Affiliation(s)
- Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH Leicester, UK.
| |
Collapse
|
20
|
Gligorijević N, Minić S, Nedić O. Structural changes of proteins in liver cirrhosis and consequential changes in their function. World J Gastroenterol 2022; 28:3780-3792. [PMID: 36157540 PMCID: PMC9367231 DOI: 10.3748/wjg.v28.i29.3780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
The liver is the site of synthesis of the majority of circulating proteins. Besides initial polypeptide synthesis, sophisticated machinery is involved in the further processing of proteins by removing parts of them and/or adding functional groups and small molecules tailoring the final molecule to suit its physiological purpose. Posttranslational modifications (PTMs) design a network of molecules with the common protein ancestor but with slightly or considerably varying activity/localization/purpose. PTMs can change under pathological conditions, giving rise to aberrant or overmodified proteins. Undesired changes in the structure of proteins most often accompany undesired changes in their function, such as reduced activity or the appearance of new effects. Proper protein processing is essential for the reactions in living beings and crucial for the overall quality control. Modifications that occur on proteins synthesized in the liver whose PTMs are cirrhosis-related are oxidation, nitration, glycosylation, acetylation, and ubiquitination. Some of them predominantly affect proteins that remain in liver cells, whereas others predominantly occur on proteins that leave the liver or originate from other tissues and perform their function in the circulation. Altered PTMs of certain proteins are potential candidates as biomarkers of liver-related diseases, including cirrhosis. This review will focus on PTMs on proteins whose structural changes in cirrhosis exert or are suspected to exert the most serious functional consequences.
Collapse
Affiliation(s)
- Nikola Gligorijević
- Department of Metabolism, University of Belgrade-Institute for the Application of Nuclear Energy, Belgrade 11080, Serbia
| | - Simeon Minić
- Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade-Faculty of Chemistry, Belgrade 11000, Serbia
| | - Olgica Nedić
- Department of Metabolism, University of Belgrade-Institute for the Application of Nuclear Energy, Belgrade 11080, Serbia
| |
Collapse
|
21
|
Gao S, Shi J, Wang K, Tan Y, Hong H, Luo Y. Protective effects of oyster protein hydrolysates on alcohol-induced liver disease (ALD) in mice: based on the mechanism of anti-oxidative metabolism. Food Funct 2022; 13:8411-8424. [PMID: 35857308 DOI: 10.1039/d2fo00660j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many bioactivities of hydrolysates from oyster (Crassostrea gigas) muscle have been reported, while there is no knowledge about their protective effects on alcohol-induced liver disease (ALD). In the present study, the anti-oxidative activities in vitro and molecular weight distribution of oyster protein hydrolysates (OPH) were detected and the OPH released by alcalase (AOPH) was used to treat C57BL/6 mice. C57BL/6 mice were treated with a Lindros control diet to establish an ethanol-exposed model. The content of small-weight components (<2.0 kDa) of OPH reached 90.85%. AOPH showed more potent antioxidant activities in vitro with higher reducing power and ferric reducing antioxidant power (FRAP), and those capacities could be maintained at a high level after simulated gastrointestinal digestion. Compared to the model mice, oral administration (4 weeks) of AOPH at 800 mg per kg body weight could lead to a decline in T-AOC, GSH-PX, and ADH in the liver. The hepatocellular lesions were effectively relieved and impaired liver tissue development was successfully inhibited. A total of 834 genes and 54 proteins showed differential expression in the AOPH group and the oxidative metabolic pathways of ethanol such as oxidative phosphorylation, glutathione metabolism, peroxisomes, the PPAR signaling pathway and drug metabolism-cytochrome P450 play a preeminent role in ALD according to the results of transcriptomics and proteomics. The beneficial effects of AOPH were available in the improvement of ALD. These results revealed that AOPH intervention ameliorated ALD by affecting oxidative metabolism and highlighting AOPH's potential application as a functional food.
Collapse
Affiliation(s)
- Song Gao
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Jing Shi
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,State Key Laboratory of Direct-Fed Microbial Engineering, Beijing DaBeiNong Science and Technology Group Co., Ltd., Beijing, 100192, China
| | - Kai Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,National Research and Development Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
22
|
McTernan PM, Siggins RW, Catinis A, Amedee AM, Simon L, Molina PE. Chronic Binge Alcohol and Ovarian Hormone Loss Dysregulate Circulating Immune Cell SIV Co-Receptor Expression and Mitochondrial Homeostasis in SIV-Infected Rhesus Macaques. Biomolecules 2022; 12:946. [PMID: 35883501 PMCID: PMC9313096 DOI: 10.3390/biom12070946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 12/01/2022] Open
Abstract
Effective antiretroviral therapy (ART) has transitioned HIV to a chronic disease, with more than 50% of people living with HIV (PLWH) being over the age of 50. HIV targets activated CD4+ T cells expressing HIV-specific co-receptors (CCR5 and CXCR4). Previously, we reported that chronic binge alcohol (CBA)-administered male rhesus macaques had a higher percentage of gut CD4+ T cells expressing simian immunodeficiency virus (SIV) co-receptor CXCR4. Evidence also suggests that gonadal hormone loss increased activated peripheral T cells. Further, mitochondrial function is critical for HIV replication and alcohol dysregulates mitochondrial homeostasis. Hence, we tested the hypothesis that CBA and ovariectomy (OVX) increase circulating activated CD4+ T cells expressing SIV co-receptors and dysregulate mitochondrial homeostasis in SIV-infected female rhesus macaques. Results showed that at the study end-point, CBA/SHAM animals had increased peripheral CD4+ T cell SIV co-receptor expression, and a lower CD4+ T cell count compared to CBA/OVX animals. CBA and OVX animals had altered peripheral immune cell gene expression important for maintaining mitochondrial homeostasis. These results provide insights into how at-risk alcohol use could potentially impact viral expression in cellular reservoirs, particularly in SIV-infected ovariectomized rhesus macaques.
Collapse
Affiliation(s)
- Patrick M. McTernan
- Comprehensive Alcohol Research Center, New Orleans, LA 70112, USA; (P.M.M.); (R.W.S.); (A.M.A.); (L.S.)
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Robert W. Siggins
- Comprehensive Alcohol Research Center, New Orleans, LA 70112, USA; (P.M.M.); (R.W.S.); (A.M.A.); (L.S.)
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Anna Catinis
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Angela M. Amedee
- Comprehensive Alcohol Research Center, New Orleans, LA 70112, USA; (P.M.M.); (R.W.S.); (A.M.A.); (L.S.)
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Liz Simon
- Comprehensive Alcohol Research Center, New Orleans, LA 70112, USA; (P.M.M.); (R.W.S.); (A.M.A.); (L.S.)
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Patricia E. Molina
- Comprehensive Alcohol Research Center, New Orleans, LA 70112, USA; (P.M.M.); (R.W.S.); (A.M.A.); (L.S.)
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| |
Collapse
|
23
|
McTernan PM, Levitt DE, Welsh DA, Simon L, Siggins RW, Molina PE. Alcohol Impairs Immunometabolism and Promotes Naïve T Cell Differentiation to Pro-Inflammatory Th1 CD4 + T Cells. Front Immunol 2022; 13:839390. [PMID: 35634279 PMCID: PMC9133564 DOI: 10.3389/fimmu.2022.839390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
CD4+ T cell differentiation to pro-inflammatory and immunosuppressive subsets depends on immunometabolism. Pro-inflammatory CD4+ subsets rely on glycolysis, while immunosuppressive Treg cells require functional mitochondria for their differentiation and function. Previous pre-clinical studies have shown that ethanol (EtOH) administration increases pro-inflammatory CD4+ T cell subsets; whether this shift in immunophenotype is linked to alterations in CD4+ T cell metabolism had not been previously examined. The objective of this study was to determine whether ethanol alters CD4+ immunometabolism, and whether this affects CD4+ T cell differentiation. Naïve human CD4+ T cells were plated on anti-CD3 coated plates with soluble anti-CD28, and differentiated with IL-12 in the presence of ethanol (0 and 50 mM) for 3 days. Both Tbet-expressing (Th1) and FOXP3-expressing (Treg) CD4+ T cells increased after differentiation. Ethanol dysregulated CD4+ T cell differentiation by increasing Th1 and decreasing Treg CD4+ T cell subsets. Ethanol increased glycolysis and impaired oxidative phosphorylation in differentiated CD4+ T cells. Moreover, the glycolytic inhibitor 2-deoxyglucose (2-DG) prevented the ethanol-mediated increase in Tbet-expressing CD4+ T cells but did not attenuate the decrease in FOXP3 expression in differentiated CD4+ T cells. Ethanol increased Treg mitochondrial volume and altered expression of genes implicated in mitophagy and autophagosome formation (PINK1 and ATG7). These results suggest that ethanol impairs CD4+ T cell immunometabolism and disrupts mitochondrial repair processes as it promotes CD4+ T cell differentiation to a pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Patrick M. McTernan
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Danielle E. Levitt
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David A. Welsh
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Medicine, Section of Pulmonary/Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Robert W. Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
24
|
Fan H, Shen Y, Ren Y, Mou Q, Lin T, Zhu L, Ren T. Combined intake of blueberry juice and probiotics ameliorate mitochondrial dysfunction by activating SIRT1 in alcoholic fatty liver disease. Nutr Metab (Lond) 2021; 18:50. [PMID: 33971886 PMCID: PMC8108333 DOI: 10.1186/s12986-021-00554-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial dysfunction has been implicated as a significant factor in the liver disease process. Blueberry juice and probiotics (BP) synergistically improve liver function in alcoholic fatty liver disease (AFLD), although the mechanism for this effect was unclear. This study aims to investigate the effect and specific mechanisms of BP on AFLD. Methods C57/BL6 mice were randomly divided into seven groups: CG (control), MG (AFLD model), BJ (MG mice treated with blueberry), BJB (MG mice treated with BP), SI (AFLD mice treated with SIRT1 siRNA), BJSI (SI mice treated with blueberry), and BJBSI (SI mice treated with BP). The mice were fed an alcohol liquid diet for 10 days to establish the AFLD model, and subjected to BP and SIRT1 siRNA intervention for 10 days. Liver pathology was performed on day 11, and biochemical and molecular analyses of liver mitochondria were employed on day 12. Results BP significantly ameliorated hepatic mitochondrial injury, mitochondrial swelling, and hepatic necrosis in AFLD. BP alleviated hepatic mitochondrial dysfunction by increasing the expression of succinate dehydrogenase and cytochrome c oxidase, increasing respiratory control rate and the ADP/O ratio, and facilitating the synthesis of energy-related molecules. Besides, BP increased the expression of glutathione and superoxide dismutase, and inhibited malondialdehyde expression and reactive oxygen species activity. BP-induced sirtuin 1 (SIRT1), which activates peroxisome proliferator-activated receptor-gamma coactivator-1α, both of which mediate mitochondrial homeostasis. SIRT1 silencing suppressed the BP-induced changes in liver mitochondria, blunting its efficacy. Conclusions The ingredients of BP ameliorate hepatocyte mitochondrial dysfunction in AFLD mice. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00554-3.
Collapse
Affiliation(s)
- Houmin Fan
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanyan Shen
- Tongren Maternal and Child Health Care Hospital, Tongren, Guizhou, China
| | - Ya Ren
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Qiuju Mou
- Department of Blood Transfusion, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Tao Lin
- Department of Clinical Examination, The Affiliated Hospital of Guizhou Medical University, No 28, Guiyi Street, Yunyan District, Guiyang, Guizhou, China
| | - Lili Zhu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Tingting Ren
- Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
25
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
26
|
Prasun P, Ginevic I, Oishi K. Mitochondrial dysfunction in nonalcoholic fatty liver disease and alcohol related liver disease. Transl Gastroenterol Hepatol 2021; 6:4. [PMID: 33437892 DOI: 10.21037/tgh-20-125] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Fatty liver disease constitutes a spectrum of liver diseases which begin with simple steatosis and may progress to advance stages of steatohepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The two main etiologies are-alcohol related fatty liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). NAFLD is a global health epidemic strongly associated with modern dietary habits and life-style. It is the second most common cause of chronic liver disease in the US after chronic hepatitis C virus (HCV) infection. Approximately 100 million people are affected with this condition in the US alone. Excessive intakes of calories, saturated fat and refined carbohydrates, and sedentary life style have led to explosion of this health epidemic in developing nations as well. ALD is the third most common cause of chronic liver disease in the US. Even though the predominant trigger for onset of steatosis is different in these two conditions, they share common themes in progression from steatosis to the advance stages. Oxidative stress (OS) is considered a very significant contributor to hepatocyte injury in these conditions. Mitochondrial dysfunction contributes to this OS. Role of mitochondrial dysfunction in pathogenesis of fatty liver diseases is emerging but far from completely understood. A better understanding is essential for more effective preventive and therapeutic interventions. Here, we discuss the pathogenesis and therapeutic approaches of NAFLD and ALD from a mitochondrial perspective.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilona Ginevic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimihiko Oishi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Xue C, Gu X, Li G, Bao Z, Li L. Mitochondrial Mechanisms of Necroptosis in Liver Diseases. Int J Mol Sci 2020; 22:ijms22010066. [PMID: 33374660 PMCID: PMC7793526 DOI: 10.3390/ijms22010066] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease. Necroptosis is a common form of programmed cell death in the liver. Necroptosis can be activated by ligands of death receptors, which then interact with receptor-interactive protein kinases 1 (RIPK1). RIPK1 mediates receptor interacting receptor-interactive protein kinases 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) and necrosome formation. Regarding the molecular mechanisms of mitochondrial-mediated necroptosis, the RIPK1/RIPK3/MLKL necrosome complex can enhance oxidative respiration and generate reactive oxygen species, which can be a crucial factor in the susceptibility of cells to necroptosis. The necrosome complex is also linked to mitochondrial components such as phosphoglycerate mutase family member 5 (PGAM5), metabolic enzymes in the mitochondrial matrix, mitochondrial permeability protein, and cyclophilin D. In this review, we focus on the role of mitochondria-mediated cell necroptosis in acute liver injury, chronic liver diseases, and hepatocellular carcinoma, and its possible translation into clinical applications.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China; (C.X.); (X.G.); (Z.B.)
- Correspondence:
| |
Collapse
|
28
|
Clérico G, Taminelli G, Veronesi JC, Polola J, Pagura N, Pinto C, Sansinena M. Mitochondrial function, blastocyst development and live foals born after ICSI of immature vitrified/warmed equine oocytes matured with or without melatonin. Theriogenology 2020; 160:40-49. [PMID: 33171351 DOI: 10.1016/j.theriogenology.2020.10.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/18/2022]
Abstract
Oocyte vitrification is considered experimental in the horse with only three live foals reported. The oxidative conditions induced by vitrification could in part explain the poor results and melatonin, a powerful antioxidant, could stimulate ROS metabolization and restore mitochondrial function in these oocytes. Our objective was to determine the oxidative status of vitrified equine oocytes and to analyze the effect of melatonin on mitochondrial-specific ROS (mROS), oocyte maturation, ICSI embryo development and viability. Immature, abattoir-derived oocytes were held for 15 h and vitrified in a final concentration of 20% EG, 20% DMSO and 0.65 M trehalose. In Experiment 1, overall ROS was determined by DCHF-DA; vitrification increased ROS production compared to non-vitrified controls (1.29 ± 0.22 vs 0.74 ± 0.25 a. u.; P = 0.0156). In Experiment 2, mROS was analyzed by MitoSOX™ in vitrified/warmed oocytes matured with (+) or without (-) supplementation of 10-9 M melatonin; mROS decreased in vitrified and non-vitrified oocytes matured in presence of melatonin (P < 0.05). In Experiment 3, we assessed the effect of melatonin supplementation on oocyte maturation, embryo development after ICSI, and viability by pregnancy establishment. Melatonin did not improve oocyte maturation, cleavage or blastocyst rate of non-vitrified oocytes. However, vitrified melatonin (+) oocytes reached similar cleavage (61, 75 and 77%, respectively) and blastocyst rate (15, 29 and 26%, respectively) than non-vitrified, melatonin (+) and (-) oocytes. Vitrified, melatonin (-) oocytes had lower cleavage (46%) and blastocyst rate (9%) compared to non-vitrified groups (P < 0.05), but no significant differences were observed when compared to vitrified melatonin (+). Although the lack of available recipients precluded the transfer of every blastocyst produced in our study, transferred embryos from non-vitrified oocytes resulted in 50 and 83% pregnancy rates while embryos from vitrified oocytes resulted in 17 and 33% pregnancy rates, from melatonin (+) and (-) treatments respectively. Two healthy foals, one colt from melatonin (+) and one filly from melatonin (-) treatment, were born from vitrified/warmed oocytes. Gestation lengths (considering day 0 = day of ICSI) were 338 days for the colt and 329 days for the filly, respectively. Our work showed for the first time that in the horse, as in other species, intracellular reactive oxygen species are increased by the process of vitrification. Melatonin was useful in reducing mitochondrial-related ROS and improving ICSI embryo development, although the lower pregnancy rate in presence of melatonin should be further analyzed in future studies. To our knowledge this is the first report of melatonin supplementation to an in vitro embryo culture system and its use to improve embryo developmental competence of vitrified oocytes following ICSI.
Collapse
Affiliation(s)
- G Clérico
- Facultad de Ingeniería y Ciencias Agrarians, Universidad Católica Argentina, 1107, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - G Taminelli
- Facultad de Ingeniería y Ciencias Agrarians, Universidad Católica Argentina, 1107, Buenos Aires, Argentina
| | - J C Veronesi
- Frigorífico Lamar, 6600, Buenos Aires, Argentina
| | - J Polola
- Haras La Aguada El Dok, 6708, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, 2170, Santa Fe, Argentina
| | - N Pagura
- Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, 2170, Santa Fe, Argentina
| | - C Pinto
- Louisiana State School of Veterinary Medicine, 70808, Baton Rouge, LA, USA
| | - M Sansinena
- Facultad de Ingeniería y Ciencias Agrarians, Universidad Católica Argentina, 1107, Buenos Aires, Argentina; Louisiana State School of Veterinary Medicine, 70808, Baton Rouge, LA, USA; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
29
|
Ma X, McKeen T, Zhang J, Ding WX. Role and Mechanisms of Mitophagy in Liver Diseases. Cells 2020; 9:cells9040837. [PMID: 32244304 PMCID: PMC7226762 DOI: 10.3390/cells9040837] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrion is an organelle that plays a vital role in the regulation of hepatic cellular redox, lipid metabolism, and cell death. Mitochondrial dysfunction is associated with both acute and chronic liver diseases with emerging evidence indicating that mitophagy, a selective form of autophagy for damaged/excessive mitochondria, plays a key role in the liver’s physiology and pathophysiology. This review will focus on mitochondrial dynamics, mitophagy regulation, and their roles in various liver diseases (alcoholic liver disease, non-alcoholic fatty liver disease, drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, and cancer) with the hope that a better understanding of the molecular events and signaling pathways in mitophagy regulation will help identify promising targets for the future treatment of liver diseases.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
| | - Tara McKeen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
| | - Jianhua Zhang
- Department of Pathology, Division of Molecular Cellular Pathology, University of Alabama at Birmingham, 901 19th street South, Birmingham, AL 35294, USA;
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA; (X.M.); (T.M.)
- Correspondence: ; Tel.: +1-913-588-9813
| |
Collapse
|
30
|
Abdallah MA, Singal AK. Mitochondrial dysfunction and alcohol-associated liver disease: a novel pathway and therapeutic target. Signal Transduct Target Ther 2020; 5:26. [PMID: 32296016 PMCID: PMC7054548 DOI: 10.1038/s41392-020-0128-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Mohamed A Abdallah
- Department of Medicine, University of South Dakota, Sanford School of Medicine, Sioux falls, SD, USA
- Division of Gastroenterology and Hepatology, University of South Dakota, Sanford School of Medicine, Sioux falls, SD, USA
| | - Ashwani K Singal
- Division of Gastroenterology and Hepatology, University of South Dakota, Sanford School of Medicine, Sioux falls, SD, USA.
- Avera University Hospital Transplant Institute & Chief Clinical Research Affairs, Transplant Hepatology, Institute of Human Genetics Research, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
31
|
Hargitai R, Roivainen P, Kis D, Luukkonen J, Sáfrány G, Seppälä J, Szatmári T, Virén T, Vuolukka K, Salomaa S, Lumniczky K. Mitochondrial DNA damage in the hair bulb: can it be used as a noninvasive biomarker of local exposure to low LET ionizing radiation? Int J Radiat Biol 2019; 96:491-501. [PMID: 31846382 DOI: 10.1080/09553002.2020.1704910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Our aim was to evaluate whether mitochondrial DNA (mtDNA) damage in hair bulbs could be a suitable biomarker for the detection of local exposure to ionizing radiation.Materials and methods: Mouse hair was collected 4 and 24 hours, 3 and 10 days after single whole-body exposure to 0, 0.1, and 2 Gy radiation. Pubic hair (treated area) and scalp hair (control area) were collected from 13 prostate cancer patients before and after fractioned radiotherapy with an average total dose of 2.7 Gy to follicles after five fractions. Unspecified lesion frequency of mtDNA was analyzed with long PCR, large mtDNA deletion levels were tested with real-time PCR.Results: Unspecified lesion frequency of mtDNA significantly increased in mouse hair 24 hours after irradiation with 2 Gy, but variance among samples was high. No increase in lesion frequency could be detected after 0.1 Gy irradiation. In prostate cancer patients, there was no significant change in either the unspecified lesion frequency or in the proportion of 4934-bp deleted mtDNA in pubic hair after radiotherapy. The proportions of murine 3860-bp common deletion, human 4977-bp common deletion and 7455-bp deleted mtDNA were too low to be analyzed reliably.Conclusions: Our results suggest that the unspecified lesion frequency and proportion of large deletions of mtDNA in hair bulbs are not suitable biomarkers of exposure to ionizing radiation.
Collapse
Affiliation(s)
- Rita Hargitai
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Päivi Roivainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dávid Kis
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Géza Sáfrány
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Jan Seppälä
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Tünde Szatmári
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Tuomas Virén
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | | | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katalin Lumniczky
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| |
Collapse
|
32
|
Fromenty B. Inhibition of mitochondrial fatty acid oxidation in drug-induced hepatic steatosis. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Daher R, Mansouri A, Martelli A, Bayart S, Manceau H, Callebaut I, Moulouel B, Gouya L, Puy H, Kannengiesser C, Karim Z. GLRX5 mutations impair heme biosynthetic enzymes ALA synthase 2 and ferrochelatase in Human congenital sideroblastic anemia. Mol Genet Metab 2019; 128:342-351. [PMID: 30660387 DOI: 10.1016/j.ymgme.2018.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 01/20/2023]
Abstract
Non-syndromic microcytic congenital sideroblastic anemia (cSA) is predominantly caused by defective genes encoding for either ALAS2, the first enzyme of heme biosynthesis pathway or SLC25A38, the mitochondrial importer of glycine, an ALAS2 substrate. Herein we explored a new case of cSA with two mutations in GLRX5, a gene for which only two patients have been reported so far. The patient was a young female with biallelic compound heterozygous mutations in GLRX5 (p.Cys67Tyr and p.Met128Lys). Three-D structure analysis confirmed the involvement of Cys67 in the coordination of the [2Fe2S] cluster and suggested a potential role of Met128 in partner interactions. The protein-level of ferrochelatase, the terminal-enzyme of heme process, was increased both in patient-derived lymphoblastoid and CD34+ cells, however, its activity was drastically decreased. The activity of ALAS2 was found altered and possibly related to a defect in the biogenesis of its co-substrate, the succinyl-CoA. Thus, the patient exhibits both a very low ferrochelatase activity without any accumulation of porphyrins precursors in contrast to what is reported in erythropoietic protoporphyria with solely impaired ferrochelatase activity. A significant oxidative stress was evidenced by decreased reduced glutathione and aconitase activity, and increased MnSOD protein expression. This oxidative stress depleted and damaged mtDNA, decreased complex I and IV activities and depleted ATP content. Collectively, our study demonstrates the key role of GLRX5 in modulating ALAS2 and ferrochelatase activities and in maintaining mitochondrial function.
Collapse
Affiliation(s)
- Raêd Daher
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France; AP-HP, Centre Français des Porphyries (CFP), Hôpital Louis Mourier, Colombes, France; AP-HP, Département de Génétique, Hôpital Bichât, Paris, France
| | - Abdellah Mansouri
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France
| | - Alain Martelli
- Department of Translational Medicine and Neurogenetics, Illkirch, France
| | - Sophie Bayart
- Department of Pediatric Hematology, Hôpital Sud, CHU, Rennes, France
| | - Hana Manceau
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France
| | - Isabelle Callebaut
- CNRS UMR7590, Sorbonne Universités, Université Pierre et Marie Curie-Paris6-MNHN-IRD-IUC, Paris, France
| | - Boualem Moulouel
- AP-HP, Centre Français des Porphyries (CFP), Hôpital Louis Mourier, Colombes, France
| | - Laurent Gouya
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France; AP-HP, Centre Français des Porphyries (CFP), Hôpital Louis Mourier, Colombes, France
| | - Hervé Puy
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France; AP-HP, Centre Français des Porphyries (CFP), Hôpital Louis Mourier, Colombes, France.
| | - Caroline Kannengiesser
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France; AP-HP, Département de Génétique, Hôpital Bichât, Paris, France
| | - Zoubida Karim
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France.
| |
Collapse
|
34
|
Alteration of mitochondrial DNA homeostasis in drug-induced liver injury. Food Chem Toxicol 2019; 135:110916. [PMID: 31669601 DOI: 10.1016/j.fct.2019.110916] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes for 13 proteins involved in the oxidative phosphorylation (OXPHOS) process. In liver, genetic or acquired impairment of mtDNA homeostasis can reduce ATP output but also decrease fatty acid oxidation, thus leading to different hepatic lesions including massive necrosis and microvesicular steatosis. Hence, a severe impairment of mtDNA homeostasis can lead to liver failure and death. An increasing number of investigations report that some drugs can induce mitochondrial dysfunction and drug-induced liver injury (DILI) by altering mtDNA homeostasis. Some drugs such as ciprofloxacin, antiretroviral nucleoside reverse-transcriptase inhibitors and tacrine can inhibit hepatic mtDNA replication, thus inducing mtDNA depletion. Drug-induced reduced mtDNA levels can also be the consequence of reactive oxygen species-mediated oxidative damage to mtDNA, which triggers its degradation by mitochondrial nucleases. Such mechanism is suspected for acetaminophen and troglitazone. Other pharmaceuticals such as linezolid and tetracyclines can impair mtDNA translation, thus selectively reducing the synthesis of the 13 mtDNA-encoded proteins. Lastly, some drugs might alter the mtDNA methylation status but the pathophysiological consequences of such alteration are still unclear. Drug-induced impairment of mtDNA homeostasis is probably under-recognized since preclinical and post-marketing safety studies do not classically investigate mtDNA levels, mitochondrial protein synthesis and mtDNA oxidative damage.
Collapse
|
35
|
Yan S, Khambu B, Hong H, Liu G, Huda N, Yin XM. Autophagy, Metabolism, and Alcohol-Related Liver Disease: Novel Modulators and Functions. Int J Mol Sci 2019; 20:ijms20205029. [PMID: 31614437 PMCID: PMC6834312 DOI: 10.3390/ijms20205029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alcohol-related liver disease (ALD) is caused by over-consumption of alcohol. ALD can develop a spectrum of pathological changes in the liver, including steatosis, inflammation, cirrhosis, and complications. Autophagy is critical to maintain liver homeostasis, but dysfunction of autophagy has been observed in ALD. Generally, autophagy is considered to protect the liver from alcohol-induced injury and steatosis. In this review, we will summarize novel modulators of autophagy in hepatic metabolism and ALD, including autophagy-mediating non-coding RNAs (ncRNAs), and crosstalk of autophagy machinery and nuclear factors. We will also discuss novel functions of autophagy in hepatocytes and non-parenchymal hepatic cells during the pathogenesis of ALD and other liver diseases.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Honghai Hong
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gang Liu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
36
|
Ozcan C, Li Z, Kim G, Jeevanandam V, Uriel N. Molecular Mechanism of the Association Between Atrial Fibrillation and Heart Failure Includes Energy Metabolic Dysregulation Due to Mitochondrial Dysfunction. J Card Fail 2019; 25:911-920. [PMID: 31415862 DOI: 10.1016/j.cardfail.2019.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/19/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) and heart failure (HF) commonly coexist, yet the molecular mechanisms of this association have not been determined. We hypothesized that an energy deficit due to mitochondrial dysfunction plays a significant role in pathogenic link between AF and HF. METHODS AND RESULTS Myocardial energy metabolism and mitochondria were examined in atrial tissue samples from patients and mice (cardiac-specific LKB1 knock-out) with HF and/or AF. There was significant atrial energy (ATP) deficit in patients with HF (11.5±1.3 nmol/mg, n=10; vs without HF 17±3.8 nmol/mg, n=5, P = .032). AF was associated with further energy depletion (ATP 5.4±1.2 nmol/mg, n=9) in HF (P = .001) and metabolic stress (AMP/ATP 1.6±0.1 vs 0.7±0.2 in HF alone; P = .043). The left atrium demonstrated lower ATP than the right (P = .004). Mitochondrial dysfunction and remodeling caused ATP depletion with impaired oxidative phosphorylation complexes (succinate dehydrogenase and cytochrome c oxidase), increased reactive oxygen species, and mtDNA damage in mice and human atria with AF and HF. CONCLUSIONS Molecular mechanisms of the association between HF and AF include an energy deficit due to mitochondrial dysfunction in atrial myocardium. Mitochondrial functional and structural remodeling in human and mouse atria is associated with energy metabolic dysregulation and oxidative stress that promote AF in HF and vice versa.
Collapse
Affiliation(s)
- Cevher Ozcan
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, Chicago, Illinois.
| | - Zhenping Li
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, Chicago, Illinois
| | - Gene Kim
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, Chicago, Illinois
| | - Valluvan Jeevanandam
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, Chicago, Illinois; Department of Surgery, Section of Cardiac and Thoracic Surgery, Heart and Vascular Center, University of Chicago Medical Center, Chicago, Illinois
| | - Nir Uriel
- Department of Medicine, Section of Cardiology, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
37
|
Yan S, Zhou J, Chen X, Dong Z, Yin XM. Diverse Consequences in Liver Injury in Mice with Different Autophagy Functional Status Treated with Alcohol. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1744-1762. [PMID: 31199920 DOI: 10.1016/j.ajpath.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
Alcoholic fatty liver disease is often complicated by other pathologic insults, such as viral infection or high-fat diet. Autophagy plays a homeostatic role in the liver but can be compromised by alcohol, high-fat diet, or viral infection, which in turn affects the disease process caused by these etiologies. To understand the full impact of autophagy modulation on alcohol-induced liver injury, several genetic models of autophagy deficiency, which have different levels of functional alterations, were examined after acute binge or chronic-plus-binge treatment. Mice given alcohol with either mode and induced with deficiency in liver-specific Atg7 shortly after the induction of Atg7 deletion had elevated liver injury, indicating the protective role of autophagy. Constitutive hepatic Atg7-deficient mice, in which Atg7 was deleted in embryos, were more susceptible with chronic-plus-binge but not with acute alcohol treatment. Constitutive hepatic Atg5-deficient mice, in which Atg5 was deleted in embryos, were more susceptible with acute alcohol treatment, but liver injury was unexpectedly improved with the chronic-plus-binge regimen. A prolonged autophagy deficiency may complicate the hepatic response to alcohol treatment, likely in part due to endogenous liver injury. The complexity of the relationship between autophagy deficiency and alcohol-induced liver injury can thus be affected by the timing of autophagy dysfunction, the exact autophagy gene being affected, and the alcohol treatment regimen.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Zhou
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Minimal Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Cell Biology and Anatomy, Medical College of Georgia and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
38
|
Zhang X, Wu X, Hu Q, Wu J, Wang G, Hong Z, Ren J. Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci 2019; 236:116464. [PMID: 31078546 DOI: 10.1016/j.lfs.2019.05.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
The function of liver is highly dependent on mitochondria producing ATP for biosynthetic and detoxifying properties. Accumulating evidence indicates that most hepatic disorders are characterized by profound mitochondrial dysfunction. Mitochondrial dysfunction not only exhibits mitochondrial DNA (mtDNA) damage and depletion, but also releases mtDNA. mtDNA is a closed circular molecule encoding 13 of the polypeptides of the oxidative phosphorylation system. Extensive mtDNA lesions could exacerbate mitochondrial oxidative stress and subsequently cause damage to hepatocytes. When mtDNA leaves the confines of mitochondria to the cytosolic and extracellular environment, it can act as damage-associated molecular patterns (DAMPs) to trigger the inflammatory response through the Toll-like receptor 9, inflammasomes, and stimulator of interferon genes (STING) pathways and further exacerbate hepatocellular damage and even remote organs injury. In addition, mtDNA also plays a vital role in hepatitis B virus (HBV)-related liver injury and hepatocellular carcinoma (HCC). In this review, we describe mtDNA alterations during liver injury, focusing on the mechanisms of mtDNA-mediated liver inflammation and oxidative stress injury.
Collapse
Affiliation(s)
- Xufei Zhang
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China.
| | - Qiongyuan Hu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Jie Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Gefei Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Zhiwu Hong
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, PR China; Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China.
| | -
- Lab for Trauma and Surgical Infections, Jinling Hospital, Nanjing 210002, PR China
| |
Collapse
|
39
|
Xu J, Reznik E, Lee HJ, Gundem G, Jonsson P, Sarungbam J, Bialik A, Sanchez-Vega F, Creighton CJ, Hoekstra J, Zhang L, Sajjakulnukit P, Kremer D, Tolstyka Z, Casuscelli J, Stirdivant S, Tang J, Schultz N, Jeng P, Dong Y, Su W, Cheng EH, Russo P, Coleman JA, Papaemmanuil E, Chen YB, Reuter VE, Sander C, Kennedy SR, Hsieh JJ, Lyssiotis CA, Tickoo SK, Hakimi AA. Abnormal oxidative metabolism in a quiet genomic background underlies clear cell papillary renal cell carcinoma. eLife 2019; 8:e38986. [PMID: 30924768 PMCID: PMC6459676 DOI: 10.7554/elife.38986] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
While genomic sequencing routinely identifies oncogenic alterations for the majority of cancers, many tumors harbor no discernable driver lesion. Here, we describe the exceptional molecular phenotype of a genomically quiet kidney tumor, clear cell papillary renal cell carcinoma (CCPAP). In spite of a largely wild-type nuclear genome, CCPAP tumors exhibit severe depletion of mitochondrial DNA (mtDNA) and RNA and high levels of oxidative stress, reflecting a shift away from respiratory metabolism. Moreover, CCPAP tumors exhibit a distinct metabolic phenotype uniquely characterized by accumulation of the sugar alcohol sorbitol. Immunohistochemical staining of primary CCPAP tumor specimens recapitulates both the depletion of mtDNA-encoded proteins and a lipid-depleted metabolic phenotype, suggesting that the cytoplasmic clarity in CCPAP is primarily related to the presence of glycogen. These results argue for non-genetic profiling as a tool for the study of cancers of unknown driver.
Collapse
|
40
|
Weerts MJA, Sleijfer S, Martens JWM. The role of mitochondrial DNA in breast tumors. Drug Discov Today 2019; 24:1202-1208. [PMID: 30910739 DOI: 10.1016/j.drudis.2019.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/29/2022]
Abstract
Somatic variation in mitochondrial DNA (mtDNA) has been described in primary breast tumors, including single-nucleotide variants and variation in the number of mtDNA molecules per cell (mtDNA content). However, there is currently a gap in the knowledge on the link between mitochondrial variation in breast cancer cells and their phenotypic behavior (i.e., tumorigenesis) or outcome. This review focuses on recent findings on mtDNA content and mtDNA somatic mutations in breast cancer and the potential biological impact and clinical relevance.
Collapse
Affiliation(s)
- Marjolein J A Weerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Stefan Sleijfer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
41
|
Yi HS. Implications of Mitochondrial Unfolded Protein Response and Mitokines: A Perspective on Fatty Liver Diseases. Endocrinol Metab (Seoul) 2019; 34:39-46. [PMID: 30912337 PMCID: PMC6435852 DOI: 10.3803/enm.2019.34.1.39] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
The signaling network of the mitochondrial unfolded protein response (UPRmt) and mitohormesis is a retrograde signaling pathway through which mitochondria-to-nucleus communication occurs in organisms. Recently, it has been shown that the UPRmt is closely associated with metabolic disorders and conditions involving insulin resistance, such as alcoholic and non-alcoholic fatty liver and fibrotic liver disease. Scientific efforts to understand the UPRmt and mitohormesis, as well as to establish the mitochondrial proteome, have established the importance of mitochondrial quality control in the development and progression of metabolic liver diseases, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we integrate and discuss the recent data from the literature on the UPRmt and mitohormesis in metabolic liver diseases, including NAFLD/NASH and fibrosis.
Collapse
Affiliation(s)
- Hyon Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University College of Medicine, Daejeon, Korea.
| |
Collapse
|
42
|
de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ, Lupi LA. Mitochondrial functions and melatonin: a tour of the reproductive cancers. Cell Mol Life Sci 2019; 76:837-863. [PMID: 30430198 PMCID: PMC11105419 DOI: 10.1007/s00018-018-2963-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Cancers of the reproductive organs have a strong association with mitochondrial defects, and a deeper understanding of the role of this organelle in preneoplastic-neoplastic changes is important to determine the appropriate therapeutic intervention. Mitochondria are involved in events during cancer development, including metabolic and oxidative status, acquisition of metastatic potential, resistance to chemotherapy, apoptosis, and others. Because of their origin from melatonin-producing bacteria, mitochondria are speculated to produce melatonin and its derivatives at high levels; in addition, exogenously administered melatonin accumulates in the mitochondria against a concentration gradient. Melatonin is transported into tumor cell by GLUT/SLC2A and/or by the PEPT1/2 transporters, and plays beneficial roles in mitochondrial homeostasis, such as influencing oxidative phosphorylation and electron flux, ATP synthesis, bioenergetics, calcium influx, and mitochondrial permeability transition pore. Moreover, melatonin promotes mitochondrial homeostasis by regulating nuclear DNA and mtDNA transcriptional activities. This review focuses on the main functions of melatonin on mitochondrial processes, and reviews from a mechanistic standpoint, how mitochondrial crosstalk evolved in ovarian, endometrial, cervical, breast, and prostate cancers relative to melatonin's known actions. We put emphasis on signaling pathways whereby melatonin interferes within cancer-cell mitochondria after its administration. Depending on subtype and intratumor metabolic heterogeneity, melatonin seems to be helpful in promoting apoptosis, anti-proliferation, pro-oxidation, metabolic shifting, inhibiting neovasculogenesis and controlling inflammation, and restoration of chemosensitivity. This results in attenuation of development, progression, and metastatic potential of reproductive cancers, in addition to lowering the risk of recurrence and improving the life quality of patients.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil.
| | | | - Maira Smaniotto Cucielo
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Henrique Spaulonci Silveira
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, TX, 78229, USA
| | - Luiz Antonio Lupi
- Department of Anatomy, Institute of Biosciences of Botucatu, UNESP, São Paulo State University, P.O Box: 18618-689, R. Prof. Dr. Antônio Celso Wagner Zanin, 250, Rubião Júnior, Botucatu, SP, Brazil
| |
Collapse
|
43
|
Abdelmegeed MA, Ha SK, Choi Y, Akbar M, Song BJ. Role of CYP2E1 in Mitochondrial Dysfunction and Hepatic Injury by Alcohol and Non-Alcoholic Substances. Curr Mol Pharmacol 2019; 10:207-225. [PMID: 26278393 DOI: 10.2174/1874467208666150817111114] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD) are two pathological conditions that are spreading worldwide. Both conditions are remarkably similar with regard to the pathophysiological mechanism and progression despite different causes. Oxidative stressinduced mitochondrial dysfunction through post-translational protein modifications and/or mitochondrial DNA damage has been a major risk factor in both AFLD and NAFLD development and progression. Cytochrome P450-2E1 (CYP2E1), a known important inducer of oxidative radicals in the cells, has been reported to remarkably increase in both AFLD and NAFLD. Interestingly, CYP2E1 isoforms expressed in both endoplasmic reticulum (ER) and mitochondria, likely lead to the deleterious consequences in response to alcohol or in conditions of NAFLD after exposure to high fat diet (HFD) and in obesity and diabetes. Whether CYP2E1 in both ER and mitochondria work simultaneously or sequentially in various conditions and whether mitochondrial CYP2E1 may exert more pronounced effects on mitochondrial dysfunction in AFLD and NAFLD are unclear. The aims of this review are to briefly describe the role of CYP2E1 and resultant oxidative stress in promoting mitochondrial dysfunction and the development or progression of AFLD and NAFLD, to shed a light on the function of the mitochondrial CYP2E1 as compared with the ER-associated CYP2E1. We finally discuss translational research opportunities related to this field.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892. United States
| | - Seung-Kwon Ha
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| |
Collapse
|
44
|
Khambu B, Wang L, Zhang H, Yin XM. The Activation and Function of Autophagy in Alcoholic Liver Disease. Curr Mol Pharmacol 2019; 10:165-171. [PMID: 26278385 DOI: 10.2174/1874467208666150817112654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023]
Abstract
Autophagy is an important lysosome-mediated intracellular degradation pathway required for tissue homeostasis. Dysregulation of liver autophagy is closely associated with different liver diseases including alcoholic liver disease. Studies now indicate that autophagy may be induced or suppressed depending on the amount and the duration of ethanol treatment. Autophagy induced by ethanol serves as a protective mechanism, probably by selective degradation of the damaged mitochondria (mitophagy) and excess lipid droplets (lipophagy) and in turn attenuates alcohol-induced steatosis and liver injury. However, the detailed molecular mechanism of selective targeting of mitochondria and lipid is still unclear. Autophagy may possess other functions that protect hepatocytes from ethanol. Understanding these molecular entities would be essential in order to therapeutically module autophagy for treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202. United States
| | - Lin Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202. United States
| | - Hao Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202. United States
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202. United States
| |
Collapse
|
45
|
Chao X, Ding WX. Role and mechanisms of autophagy in alcohol-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:109-131. [PMID: 31307584 PMCID: PMC7141786 DOI: 10.1016/bs.apha.2019.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is one of the major causes of chronic liver disease worldwide. Currently, no successful treatments are available for ALD. The pathogenesis of ALD is characterized as simple steatosis, fibrosis, cirrhosis, alcoholic hepatitis (AH), and eventually hepatocellular carcinoma (HCC). Autophagy is a highly conserved intracellular catabolic process, which aims at recycling cellular components and removing damaged organelles in response to starvation and stresses. Therefore, autophagy is considered as an important cellular adaptive and survival mechanism under various pathophysiological conditions. Recent studies from our lab and others suggest that chronic alcohol consumption may impair autophagy and contribute to the pathogenesis of ALD. In this chapter, we summarize recent progress on the role and mechanisms of autophagy in the development of ALD. Understanding the roles of autophagy in ALD may offer novel therapeutic avenues against ALD by targeting these pathways.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
46
|
Zhao L. Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes 2019; 45:311-341. [PMID: 31627882 DOI: 10.1016/bs.enz.2019.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria play a central role in bioenergetics, and fulfill a plethora of functions in cell signaling, programmed cell death, and biosynthesis of key protein cofactors. Mitochondria harbor their own genomic DNA, which encodes protein subunits of the electron transport chain and a full set of transfer and ribosomal RNAs. Mitochondrial DNA (mtDNA) is essential for cellular and organismal functions, and defects in mitochondrial genome maintenance have been implicated in common human diseases and mitochondrial disorders. mtDNA repair and degradation are known pathways to cope with mtDNA damage; however, molecular factors involved in this process have remained unclear. Such knowledge is fundamental to the understanding of mitochondrial genomic maintenance and pathology, because mtDNA degradation may contribute to the etiology of mtDNA depletion syndromes and to the activation of the innate immune response by fragmented mtDNA. This article reviews the current literature regarding the importance of mitochondrial DNA degradation in mtDNA maintenance and stress response, and the recent progress in uncovering molecular factors involved in mtDNA degradation. These factors include key components of the mtDNA replication machinery, such as DNA polymerase γ, helicase Twinkle, and exonuclease MGME1, as well as a major DNA-packaging protein, mitochondrial transcription factor A (TFAM).
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
47
|
Mansouri A, Gattolliat CH, Asselah T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018; 155:629-647. [PMID: 30012333 DOI: 10.1053/j.gastro.2018.06.083] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/23/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
Abstract
Mitochondria regulate hepatic lipid metabolism and oxidative stress. Ultrastructural mitochondrial lesions, altered mitochondrial dynamics, decreased activity of respiratory chain complexes, and impaired ability to synthesize adenosine triphosphate are observed in liver tissues from patients with alcohol-associated and non-associated liver diseases. Increased lipogenesis with decreased fatty acid β-oxidation leads to the accumulation of triglycerides in hepatocytes, which, combined with increased levels of reactive oxygen species, contributes to insulin resistance in patients with steatohepatitis. Moreover, mitochondrial reactive oxygen species mediate metabolic pathway signaling; alterations in these pathways affect development and progression of chronic liver diseases. Mitochondrial stress and lesions promote cell death, liver fibrogenesis, inflammation, and the innate immune responses to viral infections. We review the involvement of mitochondrial processes in development of chronic liver diseases, such as nonalcoholic fatty, alcohol-associated, and drug-associated liver diseases, as well as hepatitis B and C, and discuss how they might be targeted therapeutically.
Collapse
Affiliation(s)
- Abdellah Mansouri
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France
| | - Charles-Henry Gattolliat
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France
| | - Tarik Asselah
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1149, Université Paris Diderot, PRES Paris Sorbonne Cité, Paris, France; Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Clichy, France.
| |
Collapse
|
48
|
Lemasters JJ, Zhong Z. Mitophagy in hepatocytes: Types, initiators and role in adaptive ethanol metabolism☆. LIVER RESEARCH 2018; 2:125-132. [PMID: 31157120 PMCID: PMC6541449 DOI: 10.1016/j.livres.2018.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitophagy (mitochondrial autophagy) in hepatocytes is an essential quality control mechanism that removes for lysosomal digestion damaged, effete and superfluous mitochondria. Mitophagy has distinct variants. In type 1 mitophagy, typical of nutrient deprivation, cup-shaped sequestration membranes (phagophores) grow, surround and sequester individual mitochondria into mitophagosomes, often in coordination with mitochondrial fission. After sequestration, the outer compartment of the mitophagosome acidifies and the entrapped mitochondrion depolarizes, followed by fusion with lysosomes. By contrast, mitochondrial depolarization stimulates type 2 mitophagy, which is characterized by coalescence of autophagic microtubule-associated protein 1A/1B-light chain 3 (LC3)-containing structures on mitochondrial surfaces without the formation of a phagophore or mitochondrial fission. Oppositely to type 1 mitophagy, the inhibition of phosphoinositide-3-kinase (PI3K) does not block type 2 mitophagy. In type 3 mitophagy, or micromitophagy, mitochondria-derived vesicles (MDVs) enriched in oxidized proteins bud off from mitochondrial inner and outer membranes and incorporate into multivesicular bodies by vesicle scission into the lumen. In response to ethanol feeding, widespread ethanol-induced hepatocellular mitochondrial depolarization occurs to facilitate hepatic ethanol metabolism. As a consequence, type 2 mitophagy develops in response to the mitochondrial depolarization. After chronic high ethanol feeding, processing of depolarized mitochondria by mitophagy becomes compromised, leading to release of mitochondrial damage-associated molecular patterns (mtDAMPs) that promote inflammatory and profibrogenic responses. We propose that the persistence of mitochondrial responses for acute ethanol metabolism links initial adaptive ethanol metabolism to mitophagy and then to chronic maladaptive changes initiating onset and the progression of alcoholic liver disease (ALD).
Collapse
Affiliation(s)
- John J. Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Zhi Zhong
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
49
|
Kakunje A, Kanaradi H, Pai G, Karkal R, Nafisa D, Chandrasekaran P. Drinking pattern in persons with alcohol dependence with and without cirrhosis: A hospital-based comparative study. Indian J Psychiatry 2018; 60:189-194. [PMID: 30166674 PMCID: PMC6102971 DOI: 10.4103/psychiatry.indianjpsychiatry_453_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Worldwide, alcohol is the most frequently used and socially accepted hepatotoxin. However, not everyone who has alcohol dependence develops alcoholic cirrhosis, and does quantity/type or pattern of alcohol intake determine the development of cirrhosis? A study of this nature would help in delineating similarities/differences in the drinking pattern between alcohol dependence and alcohol-induced cirrhosis groups. AIM The aim was to study the drinking pattern of persons with alcohol dependence syndrome (ADS) and alcohol-induced cirrhosis. MATERIALS AND METHODS Alcohol Intake database and Severity of Alcohol Dependence Questionnaire (SADQ) were administered to eighty male inpatients with a reliable family member of which forty were in ADS group and forty were in alcohol dependence with cirrhosis group. RESULTS Persons in the cirrhosis group were older with longer duration of drinking. There is no statistically significant difference in the educational status, religion, occupation, socioeconomic class, mean age of onset of drinking, mean age of development of dependence, type of beverage preferred, and initiating/maintaining factors between the two groups. The amount of alcohol consumed was significantly high in the cirrhosis group, with 33.5% in the high severity of dependence. They usually were drinking alone, outside meal times with regular and intermittent binge pattern. CONCLUSION Alcohol dependence and alcohol-induced cirrhosis may be on a continuum but form a different group of heavy drinkers who may require different approaches to management.
Collapse
Affiliation(s)
- Anil Kakunje
- Department of Psychiatry, Yenepoya Medical College, Mangalore, Karnataka, India
| | | | - Ganesh Pai
- Professor of Gastroenterology, KMC, Manipal, Karnataka, India
| | - Ravichandra Karkal
- Department of Psychiatry, Yenepoya Medical College, Mangalore, Karnataka, India
| | - Dilshana Nafisa
- Department of Psychiatry, Yenepoya Medical College, Mangalore, Karnataka, India
| | | |
Collapse
|
50
|
Mitochondrial Mutations in Cholestatic Liver Disease with Biliary Atresia. Sci Rep 2018; 8:905. [PMID: 29343773 PMCID: PMC5772057 DOI: 10.1038/s41598-017-18958-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Biliary atresia (BA) results in severe bile blockage and is caused by the absence of extrahepatic ducts. Even after successful hepatic portoenterostomy, a considerable number of patients are likely to show progressive deterioration in liver function. Recent studies show that mutations in protein-coding mitochondrial DNA (mtDNA) genes and/or mitochondrial genes in nuclear DNA (nDNA) are associated with hepatocellular dysfunction. This observation led us to investigate whether hepatic dysfunctions in BA is genetically associated with mtDNA mutations. We sequenced the mtDNA protein-coding genes in 14 liver specimens from 14 patients with BA and 5 liver specimens from 5 patients with choledochal cyst using next-generation sequencing. We found 34 common non-synonymous variations in mtDNA protein-coding genes in all patients examined. A systematic 3D structural analysis revealed the presence of several single nucleotide polymorphism-like mutations in critical regions of complexes I to V, that are involved in subunit assembly, proton-pumping activity, and/or supercomplex formation. The parameters of chronic hepatic injury and liver dysfunction in BA patients were also significantly correlated with the extent of hepatic failure, suggesting that the mtDNA mutations may aggravate hepatopathy. Therefore, mitochondrial mutations may underlie the pathological mechanisms associated with BA.
Collapse
|