1
|
Mannes M, Savukoski S, Ignatius A, Halbgebauer R, Huber-Lang M. Crepuscular rays - The bright side of complement after tissue injury. Eur J Immunol 2024; 54:e2350848. [PMID: 38794857 DOI: 10.1002/eji.202350848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Acute injuries trigger an intense activation of the body's defense mechanisms aiming to limit damage and initiate healing. Among the crucial components of the intravascular immune system, the complement system plays a significant role in traumatic injuries, albeit often negatively. It has been suggested that excessive activation of the complement system, transitioning from a localized and timed response to a systemic one, can lead to a loss of its host-protective characteristics. Complement activation products have been associated with the severity of injuries, which sometimes serve as predictors for the onset of organ dysfunctions. Animal studies utilizing complement-targeting agents have provided the basis for considering complement in the management of traumatic injuries in humans. However, numerous studies suggest that the spatial and temporal aspects of complement inhibition are crucial for its efficacy. Understanding the underlying mechanism of the injury is essential to determine where, when, and whether complement inhibition is warranted. Despite the detrimental effects of uncontrolled complement activation, its regulated activation may contribute to essential aspects of healing, such as waste removal and regeneration. This review focuses on the beneficial roles of complement activation in trauma, which are often overlooked or given less consideration but are of immense importance.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Susa Savukoski
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
2
|
Moore HB, Barrett CD, Moore EE, Pieracci FM, Sauaia A. Differentiating Pathologic from Physiologic Fibrinolysis: Not as Simple as Conventional Thrombelastography. J Am Coll Surg 2024; 239:30-41. [PMID: 38299576 DOI: 10.1097/xcs.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Conventional rapid thrombelastography (rTEG) cannot differentiate fibrinolysis shutdown from hypofibrinolysis, as both of these patient populations have low fibrinolytic activity. Tissue plasminogen activator (tPA) TEG can identify depletion of fibrinolytic inhibitors, and its use in combination with rTEG has the potential to differentiate all 3 pathologic fibrinolytic phenotypes after trauma. We hypothesize tPA-TEG and rTEG in combination can further stratify fibrinolysis phenotypes postinjury to better stratify risk for mortality. STUDY DESIGN Adult trauma patients (981) with both rTEG and tPA-TEG performed less than 2 hours postinjury were included. rTEG lysis at 30 minutes after maximum amplitude (LY30) was used to initially define fibrinolysis phenotypes (hyperfibrinolysis >3%, physiologic 0.9% to 3%, and shutdown <0.9%), with Youden Index then used to define pathologic extremes of tPA-TEG LY30 (tPA sensitive [depletion of fibrinolytic inhibitors] vs resistant) resulting in 9 groups that were assessed for risk of death. RESULTS The median New Injury Severity Score was 22, 21% were female, 45% had penetrating injury, and overall mortality was 13%. The tPA-TEG LY30 inflection point for increased mortality was >35.5% (tPA sensitive, odds ratio mortality 9.2, p < 0.001) and <0.3% (tPA resistance, odds ratio mortality 6.3, p = 0.04). Of the 9 potential fibrinolytic phenotypes, 5 were associated with increased mortality. Overall, the 9 phenotypes provided a significantly better prediction of mortality than rTEG or tPA-TEG alone (areas under the operating characteristics curves = 0.80 vs 0.63 and 0.75, respectively, p < 0.0001). These could be condensed to 3 pathologic phenotypes (true hyperfibrinolysis, early fibrinolysis shutdown, and hypofibrinolysis). CONCLUSIONS The combination of rTEG and tPA-TEG increases the ability to predict mortality and suggests patient-specific strategies for improved outcomes.
Collapse
Affiliation(s)
- Hunter B Moore
- From the Department of Surgery, Transplant Institution, AdventHealth at Porter Hospital, Denver, CO (HB Moore)
| | - Christopher D Barrett
- Department of Surgery, University of Nebraska School of Medicine, Omaha, NE (Barrett)
| | - Ernest E Moore
- Department of Surgery, Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO (EE Moore, Pieracci)
| | - Fredric M Pieracci
- Department of Surgery, Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO (EE Moore, Pieracci)
| | - Angela Sauaia
- Department of Public Health, University of Colorado School of Public Health, Aurora, CO (Sauaia)
| |
Collapse
|
3
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
4
|
Bouras M, Asehnoune K, Roquilly A. Immune modulation after traumatic brain injury. Front Med (Lausanne) 2022; 9:995044. [PMID: 36530909 PMCID: PMC9751027 DOI: 10.3389/fmed.2022.995044] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/14/2022] [Indexed: 07/20/2023] Open
Abstract
Traumatic brain injury (TBI) induces instant activation of innate immunity in brain tissue, followed by a systematization of the inflammatory response. The subsequent response, evolved to limit an overwhelming systemic inflammatory response and to induce healing, involves the autonomic nervous system, hormonal systems, and the regulation of immune cells. This physiological response induces an immunosuppression and tolerance state that promotes to the occurrence of secondary infections. This review describes the immunological consequences of TBI and highlights potential novel therapeutic approaches using immune modulation to restore homeostasis between the nervous system and innate immunity.
Collapse
Affiliation(s)
- Marwan Bouras
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Karim Asehnoune
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| | - Antoine Roquilly
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- CHU Nantes, INSERM, Nantes Université, Anesthesie Reanimation, CIC 1413, Nantes, France
| |
Collapse
|
5
|
Kamel MH, Jaberi A, Gordon CE, Beck LH, Francis J. The Complement System in the Modern Era of Kidney Transplantation: Mechanisms of Injury and Targeted Therapies. Semin Nephrol 2022; 42:14-28. [DOI: 10.1016/j.semnephrol.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Latov N. Immune mechanisms, the role of complement, and related therapies in autoimmune neuropathies. Expert Rev Clin Immunol 2021; 17:1269-1281. [PMID: 34751638 DOI: 10.1080/1744666x.2021.2002147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Autoimmune neuropathies have diverse presentations and underlying immune mechanisms. Demonstration of efficacy of therapeutic agents that inhibit the complement cascade would confirm the role of complement activation. AREAS COVERED A review of the pathophysiology of the autoimmune neuropathies, to identify those that are likely to be complement mediated. EXPERT OPINION Complement mediated mechanisms are implicated in the acute and chronic neuropathies associated with IgG or IgM antibodies that target the Myelin Associated Glycoprotein (MAG) or gangliosides in the peripheral nerves. Antibody and complement mechanisms are also suspected in the Guillain-Barré syndrome and chronic inflammatory demyelinating neuropathy, given the therapeutic response to plasmapheresis or intravenous immunoglobulins, even in the absence of an identifiable target antigen. Complement is unlikely to play a role in paraneoplastic sensory neuropathy associated with antibodies to HU/ANNA-1 given its intracellular localization. In chronic demyelinating neuropathy with anti-nodal/paranodal CNTN1, NFS-155, and CASPR1 antibodies, myotonia with anti-VGKC LGI1 or CASPR2 antibodies, or autoimmune autonomic neuropathy with anti-gAChR antibodies, the response to complement inhibitory agents would depend on the extent to which the antibodies exert their effects through complement dependent or independent mechanisms. Complement is also likely to play a role in Sjogren's, vasculitic, and cryoglobulinemic neuropathies.
Collapse
Affiliation(s)
- Norman Latov
- Department of Neurology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
7
|
Rognes IN, Pischke SE, Ottestad W, Røislien J, Berg JP, Johnson C, Eken T, Mollnes TE. Increased complement activation 3 to 6 h after trauma is a predictor of prolonged mechanical ventilation and multiple organ dysfunction syndrome: a prospective observational study. Mol Med 2021; 27:35. [PMID: 33832430 PMCID: PMC8028580 DOI: 10.1186/s10020-021-00286-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
Background Complement activation is a central mechanism in systemic inflammation and remote organ dysfunction following major trauma. Data on temporal changes of complement activation early after injury is largely missing. We aimed to describe in detail the kinetics of complement activation in individual trauma patients from admission to 10 days after injury, and the association with trauma characteristics and outcome. Methods In a prospective cohort of 136 trauma patients, plasma samples obtained with high time resolution (admission, 2, 4, 6, 8 h, and thereafter daily) were assessed for terminal complement complex (TCC). We studied individual TCC concentration curves and calculated a summary measure to obtain the accumulated TCC response 3 to 6 h after injury (TCC-AUC3–6). Correlation analyses and multivariable linear regression analyses were used to explore associations between individual patients’ admission TCC, TCC-AUC3–6, daily TCC during the intensive care unit stay, trauma characteristics, and predefined outcome measures. Results TCC concentration curves showed great variability in temporal shapes between individuals. However, the highest values were generally seen within the first 6 h after injury, before they subsided and remained elevated throughout the intensive care unit stay. Both admission TCC and TCC-AUC3–6 correlated positively with New Injury Severity Score (Spearman’s rho, p-value 0.31, 0.0003 and 0.21, 0.02) and negatively with admission Base Excess (− 0.21, 0.02 and − 0.30, 0.001). Multivariable analyses confirmed that deranged physiology was an important predictor of complement activation. For patients without major head injury, admission TCC and TCC-AUC3–6 were negatively associated with ventilator-free days. TCC-AUC3–6 outperformed admission TCC as a predictor of Sequential Organ Failure Assessment score at day 0 and 4. Conclusions Complement activation 3 to 6 h after injury was a better predictor of prolonged mechanical ventilation and multiple organ dysfunction syndrome than admission TCC. Our data suggest that the greatest surge of complement activation is found within the first 6 h after injury, and we argue that this time period should be in focus in the design of future experimental studies and clinical trials using complement inhibitors. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00286-3.
Collapse
Affiliation(s)
- Ingrid Nygren Rognes
- Department of Research, The Norwegian Air Ambulance Foundation, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Søren Erik Pischke
- Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway.,Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - William Ottestad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Jo Røislien
- Department of Research, The Norwegian Air Ambulance Foundation, Oslo, Norway.,Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
| | - Jens Petter Berg
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christina Johnson
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Torsten Eken
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Anaesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway. .,Research Laboratory, Nordland Hospital, K.G. Jebsen TREC, Faculty of Health Sciences, The Arctic University of Norway, Bodø and Tromsø, Norway. .,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
8
|
Chakraborty S, Winkelmann VE, Braumüller S, Palmer A, Schultze A, Klohs B, Ignatius A, Vater A, Fauler M, Frick M, Huber-Lang M. Role of the C5a-C5a receptor axis in the inflammatory responses of the lungs after experimental polytrauma and hemorrhagic shock. Sci Rep 2021; 11:2158. [PMID: 33495506 PMCID: PMC7835219 DOI: 10.1038/s41598-020-79607-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Singular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.
Collapse
Affiliation(s)
- Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Veronika Eva Winkelmann
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sonja Braumüller
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Anke Schultze
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Bettina Klohs
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstrasse 14, 89081, Ulm, Germany
| | - Axel Vater
- Aptarion Biotech AG, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, Ulm University Medical Center, Helmholtzstrasse 8/1, 89081, Ulm, Germany.
| |
Collapse
|
9
|
Weber B, Lackner I, Gebhard F, Miclau T, Kalbitz M. Trauma, a Matter of the Heart-Molecular Mechanism of Post-Traumatic Cardiac Dysfunction. Int J Mol Sci 2021; 22:E737. [PMID: 33450984 PMCID: PMC7828409 DOI: 10.3390/ijms22020737] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/18/2022] Open
Abstract
Trauma remains a leading global cause of mortality, particularly in the young population. In the United States, approximately 30,000 patients with blunt cardiac trauma were recorded annually. Cardiac damage is a predictor for poor outcome after multiple trauma, with a poor prognosis and prolonged in-hospitalization. Systemic elevation of cardiac troponins was correlated with survival, injury severity score, and catecholamine consumption of patients after multiple trauma. The clinical features of the so-called "commotio cordis" are dysrhythmias, including ventricular fibrillation and sudden cardiac arrest as well as wall motion disorders. In trauma patients with inappropriate hypotension and inadequate response to fluid resuscitation, cardiac injury should be considered. Therefore, a combination of echocardiography (ECG) measurements, echocardiography, and systemic appearance of cardiomyocyte damage markers such as troponin appears to be an appropriate diagnostic approach to detect cardiac dysfunction after trauma. However, the mechanisms of post-traumatic cardiac dysfunction are still actively being investigated. This review aims to discuss cardiac damage following trauma, focusing on mechanisms of post-traumatic cardiac dysfunction associated with inflammation and complement activation. Herein, a causal relationship of cardiac dysfunction to traumatic brain injury, blunt chest trauma, multiple trauma, burn injury, psychosocial stress, fracture, and hemorrhagic shock are illustrated and therapeutic options are discussed.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, 2550 23rd Street, San Francisco, CA 94110, USA;
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 86081 Ulm, Germany; (B.W.); (I.L.); (F.G.)
| |
Collapse
|
10
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
11
|
Bain W, Li H, van der Geest R, Moore SR, Olonisakin TF, Ahn B, Papke E, Moghbeli K, DeSensi R, Rapport S, Saul M, Hulver M, Xiong Z, Mallampalli RK, Ray P, Morris A, Ma L, Doi Y, Zhang Y, Kitsios GD, Kulkarni HS, McVerry BJ, Ferreira VP, Nouraie M, Lee JS. Increased Alternative Complement Pathway Function and Improved Survival during Critical Illness. Am J Respir Crit Care Med 2020; 202:230-240. [PMID: 32374177 PMCID: PMC7365364 DOI: 10.1164/rccm.201910-2083oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/01/2020] [Indexed: 01/16/2023] Open
Abstract
Rationale: Complement is crucial for host defense but may also drive dysregulated inflammation. There is limited understanding of alternative complement function, which can amplify all complement activity, during critical illness.Objectives: We examined the function and key components of the alternative complement pathway in a series of critically ill patients and in a mouse pneumonia model.Methods: Total classical (CH50) and alternative complement (AH50) function were quantified in serum from 321 prospectively enrolled critically ill patients and compared with clinical outcomes. Alternative pathway (AP) regulatory factors were quantified by ELISA (n = 181) and examined via transcriptomics data from external cohorts. Wild-type, Cfb-/-, and C3-/- mice were infected intratracheally with Klebsiella pneumoniae (KP) and assessed for extrapulmonary dissemination.Measurements and Main Results: AH50 greater than or equal to median, but not CH50 greater than or equal to median, was associated with decreased 30-day mortality (adjusted odds ratio [OR], 0.53 [95% confidence interval (CI), 0.31-0.91]), independent of chronic liver disease. One-year survival was improved in patients with AH50 greater than or equal to median (adjusted hazard ratio = 0.59 [95% CI, 0.41-0.87]). Patients with elevated AH50 had increased levels of AP factors B, H, and properdin, and fewer showed a "hyperinflammatory" subphenotype (OR, 0.30 [95% CI, 0.18-0.49]). Increased expression of proximal AP genes was associated with improved survival in two external cohorts. AH50 greater than or equal to median was associated with fewer bloodstream infections (OR, 0.67 [95% CI, 0.45-0.98). Conversely, depletion of AP factors, or AH50 less than median, impaired in vitro serum control of KP that was restored by adding healthy serum. Cfb-/- mice demonstrated increased extrapulmonary dissemination and serum inflammatory markers after intratracheal KP infection compared with wild type.Conclusions: Elevated AP function is associated with improved survival during critical illness, possibly because of enhanced immune capacity.
Collapse
Affiliation(s)
- William Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Veterans Health Administration Pittsburgh Health System, Pittsburgh, Pennsylvania
| | - Huihua Li
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Sara R. Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Life Sciences, Toledo, Ohio
| | - Tolani F. Olonisakin
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Brian Ahn
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Erin Papke
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Kaveh Moghbeli
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Rebecca DeSensi
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Sarah Rapport
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Melissa Saul
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Mei Hulver
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Zeyu Xiong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | | | - Prabir Ray
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Alison Morris
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Center for Medicine and the Microbiome
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, Washington University, St. Louis, Missouri
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, and
| | - Yingze Zhang
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Georgios D. Kitsios
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Center for Medicine and the Microbiome
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, Washington University, St. Louis, Missouri
| | - Bryan J. McVerry
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Center for Medicine and the Microbiome
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Life Sciences, Toledo, Ohio
| | - Mehdi Nouraie
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Lackner I, Weber B, Baur M, Fois G, Gebhard F, Pfeifer R, Cinelli P, Halvachizadeh S, Lipiski M, Cesarovic N, Schrezenmeier H, Huber-Lang M, Pape HC, Kalbitz M. Complement Activation and Organ Damage After Trauma-Differential Immune Response Based on Surgical Treatment Strategy. Front Immunol 2020; 11:64. [PMID: 32117238 PMCID: PMC7025487 DOI: 10.3389/fimmu.2020.00064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022] Open
Abstract
Background: The complement system is part of the innate immunity, is activated immediately after trauma and is associated with adult respiratory distress syndrome, acute lung injury, multiple organ failure, and with death of multiply injured patients. The aim of the study was to investigate the complement activation in multiply injured pigs as well as its effects on the heart in vivo and in vitro. Moreover, the impact of reamed vs. non-reamed intramedullary nailing was examined with regard to the complement activation after multiple trauma in pigs. Materials and Methods: Male pigs received multiple trauma, followed by femoral nailing with/without prior conventional reaming. Systemic complement hemolytic activity (CH-50 and AH-50) as well as the local cardiac expression of C3a receptor, C5a receptors1/2, and the deposition of the fragments C3b/iC3b/C3c was determined in vivo after trauma. Human cardiomyocytes were exposed to C3a or C5a and analyzed regarding calcium signaling and mitochondrial respiration. Results: Systemic complement activation increased within 6 h after trauma and was mediated via the classical and the alternative pathway. Furthermore, complement activation correlated with invasiveness of fracture treatment. The expression of receptors for complement activation were altered locally in vivo in left ventricles. C3a and C5a acted detrimentally on human cardiomyocytes by affecting their functionality and their mitochondrial respiration in vitro. Conclusion: After multiple trauma, an early activation of the complement system is triggered, affecting the heart in vivo as well as in vitro, leading to complement-induced cardiac dysfunction. The intensity of complement activation after multiple trauma might correlate with the invasiveness of fracture treatment. Reaming of the femoral canal might contribute to an enhanced “second hit” response after trauma. Consequently, the choice of fracture treatment might imply the clinical outcome of the critically injured patients and might be therefore crucial for their survival.
Collapse
Affiliation(s)
- Ina Lackner
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Birte Weber
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Meike Baur
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Roman Pfeifer
- Department of Trauma, University Hospital of Zurich, Zurich, Switzerland
| | - Paolo Cinelli
- Department of Trauma, University Hospital of Zurich, Zurich, Switzerland
| | | | - Miriam Lipiski
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Nikola Cesarovic
- Department of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Germany.,German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical- and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | | | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University of Ulm, Ulm, Germany
| |
Collapse
|
13
|
Pathophysiology of Acute Illness and Injury. OPERATIVE TECHNIQUES AND RECENT ADVANCES IN ACUTE CARE AND EMERGENCY SURGERY 2019. [PMCID: PMC7122041 DOI: 10.1007/978-3-319-95114-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pathophysiology of acute illness and injury recognizes three main effectors: infection, trauma, and ischemia-reperfusion injury. Each of them can act by itself or in combination with the other two in developing a systemic inflammatory reaction syndrome (SIRS) that is a generalized reaction to the morbid event. The time course of SIRS is variable and influenced by the number and severity of subsequent insults (e.g., reparative surgery, acquired hospital infections). It occurs simultaneously with a complex of counter-regulatory mechanisms (compensatory anti-inflammatory response syndrome, CARS) that limit the aggressive effects of SIRS. In adjunct, a progressive dysfunction of the acquired (lymphocytes) immune system develops with increased risk for immunoparalysis and associated infectious complications. Both humoral and cellular effectors participate to the development of SIRS and CARS. The most important humoral mediators are pro-inflammatory (IL-1β, IL-6, IL-8, IL-12) and anti-inflammatory (IL-4, IL-10) cytokines and chemokines, complement, leukotrienes, and PAF. Effector cells include neutrophils, monocytes, macrophages, lymphocytes, and endothelial cells. The endothelium is a key factor for production of remote organ damage as it exerts potent chemo-attracting effects on inflammatory cells, allows for leukocyte trafficking into tissues and organs, and promotes further inflammation by cytokines release. Moreover, the loss of vasoregulatory properties and the increased permeability contribute to the development of hypotension and tissue edema. Finally, the disseminated activation of the coagulation cascade causes the widespread deposition of microthrombi with resulting maldistribution of capillary blood flow and ultimately hypoxic cellular damage. This mechanism together with increased vascular permeability and vasodilation is responsible for the development of the multiple organ dysfunction syndrome (MODS).
Collapse
|
14
|
Paredes RM, Reyna S, Vernon P, Tadaki DK, Dallelucca JJ, Sheppard F. Generation of complement molecular complex C5b-9 (C5b-9) in response to poly-traumatic hemorrhagic shock and evaluation of C5 cleavage inhibitors in non-human primates. Int Immunopharmacol 2017; 54:221-225. [PMID: 29156357 DOI: 10.1016/j.intimp.2017.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023]
Abstract
Severe trauma initiates a systemic inflammatory cascade and that involves early activation of complement and cleavage of C5 into C5a (anaphylatoxin) and C5b (C5b-9 membrane attack complex). We examined activation of C5 in non-human primate (NHP) models of hemorrhagic shock. Blood plasma concentrations of C5b-9 were significantly increased in NHPs in response to hemorrhage alone and were further increased with the addition of tissue trauma. The onset of increased C5 cleavage was accelerated in NHPs that experienced decompensated poly-traumatic hemorrhagic shock. Next, to identify an effective inhibitor of NHP C5 cleavage in vitro, as a first step in the development of a potential therapy, three inhibitors of human C5 cleavage and hemolysis were tested in vitro. NHP C5 cleavage and complement-mediated hemolysis were successfully inhibited by pre-treatment of serum samples with a small, inhibitory peptide RA101348. Commercially-available C5 inhibitory antibodies were found to exhibit species-specific efficacy in vitro. Quidel's A217 antibody demonstrated dose-dependent inhibition of C5 cleavage and hemolysis in NHP samples, whereas LGM-Eculizumab only inhibited complement-mediated hemolysis in human samples. This study shows that complement activation in NHPs following experimental poly-traumatic hemorrhagic shock is consistent with clinical reports, and that cleavage of C5 and complement-mediated hemolysis can be effectively inhibited in vitro using a small peptide inhibitor. Taken together, these findings offer a clinically-relevant vehicle and a potential strategy for treatment of hemorrhagic shock with poly-traumatic injury.
Collapse
Affiliation(s)
- R Madelaine Paredes
- Naval Medical Research Unit San Antonio, JBSA-Ft. Sam Houston, TX, United States.
| | - Sarah Reyna
- Naval Medical Research Unit San Antonio, JBSA-Ft. Sam Houston, TX, United States
| | - Philip Vernon
- Naval Medical Research Unit San Antonio, JBSA-Ft. Sam Houston, TX, United States
| | - Douglas K Tadaki
- Naval Medical Research Unit San Antonio, JBSA-Ft. Sam Houston, TX, United States
| | - Jurandir J Dallelucca
- Chemical & Biological Technologies Department, Defense Threat Reduction Agency, Fort Belvoir, VA, United States
| | - Forest Sheppard
- Naval Medical Research Unit San Antonio, JBSA-Ft. Sam Houston, TX, United States
| |
Collapse
|
15
|
Fransen EJ, Ganushchak YM, Vijay V, de Jong DS, Buurman WA, Maessen JG. Evaluation of a new condensed extra-corporeal circuit for cardiac surgery: a prospective randomized clinical pilot study. Perfusion 2017; 20:91-9. [PMID: 15918446 DOI: 10.1191/0267659105pf795oa] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This prospective randomized clinical pilot study was conducted to evaluate a recently introduced reduced volume CPB system that is coated with the biopassive Xcoating™. Twenty-two patients undergoing coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB), either with a fully heparin-coated CPB circuit (control, n=11) or with an Xcoating™ coated condensed extra-corporeal circuit (CondECC, n=11), were included. We examined activation of the complement system (C3bc and C4bc), activation of neutrophils (BPI), the acute phase response (interleukin (IL)-6, and acute phase proteins (LBP, AGP, and CRP)), myocardial tissue injury (troponin T), hemolysis (free hemoglobin (FHb)), and clinical outcome parameters. Preoperative risk profiles were identical for both patient groups. All patients went through the procedure without major complications and were discharged from the hospital. FHb and BPI levels at the end of pump support ( p <0.01) and at 15 min after the administration of protamine ( p <0.05) were significantly higher in the control group. In addition, FHb levels were still significantly elevated upon arrival on the cardiothoracic intensive care unit (CICU) in the control group ( p <0.05). C3bc and C4bc, acute phase proteins, IL-6, and troponin T concentrations, and clinical outcome variables were identical in both patient groups. In conclusion, the evaluated condensed extracorporeal circuit is a flexible and multifunctional CPB sytem that offers safe procedures. Furthermore, the results indicate improved biocompatibility of this option for extracorporeal circulation.
Collapse
Affiliation(s)
- Erik J Fransen
- Department of Cardiothoracic Surgery, University Hospital Maastricht, CARIM, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Huber-Lang M, Gebhard F, Schmidt CQ, Palmer A, Denk S, Wiegner R. Complement therapeutic strategies in trauma, hemorrhagic shock and systemic inflammation – closing Pandora’s box? Semin Immunol 2016; 28:278-84. [DOI: 10.1016/j.smim.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
|
17
|
Inflammatory Changes and Coagulopathy in Multiply Injured Patients. THE POLY-TRAUMATIZED PATIENT WITH FRACTURES 2016. [PMCID: PMC7122098 DOI: 10.1007/978-3-662-47212-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Severe tissue trauma leads to an early activation of several danger recognition systems, including the complement and the coagulation system, often resulting in an overwhelming almost synchronic pro- and anti-inflammatory response of the host. Although the immune response is associated with beneficial effects at the site of injury including the elimination of exogenous and endogenous danger molecules as well as the initiation of regenerative processes, an exaggerated systemic inflammatory response significantly contributes to posttraumatic complications such as multiple organ failure (MOF) and early death. Besides pre-existing physical conditions, age, gender, and underlying comorbidities, surgical and anesthesiological management after injury is decisive for outcome. Improvements in surgical intensive care have increased number of patients who survive the initial phase after trauma. However, instead of progressing to normal recovery, patients often pass into persistent inflammation, immunosuppression, and catabolism syndrome (PICS). The characterization and management of PICS will require new strategies for direct monitoring and therapeutic intervention into the patient’s immune function. In this chapter, we describe various factors involved in the inflammatory changes after trauma and aim to understand how these factors interact to progress to systemic inflammation, MOF, and PICS.
Collapse
|
18
|
Abstract
Trauma-induced coagulopathy (TIC) includes heterogeneous coagulopathic syndromes with different underlying causes, and treatment is challenged by limited diagnostic tests to discriminate between these entities in the acute setting. We provide an overview of progress in understanding the mechanisms of TIC and the context for several of the hypotheses that will be tested in 'TACTIC'. Although connected to ongoing clinical trials in trauma, TACTIC itself has no intent to conduct clinical trials. We do anticipate that 'early translation' of promising results will occur. Functions anticipated at this early translational level include: (i) basic science groundwork for future therapeutic candidates; (ii) development of acute coagulopathy scoring systems; (iii) coagulation factor composition-based computational analysis; (iv) characterization of novel analytes including tissue factor, polyphosphates, histones, meizothrombin and α-thrombin-antithrombin complexes, factor XIa, platelet and endothelial markers of activation, signatures of protein C activation and fibrinolysis markers; and (v) assessment of viscoelastic tests and new point-of-care methods.
Collapse
Affiliation(s)
- K G Mann
- Department of Biochemistry, University of Vermont, Colchester, VT, USA
| | - K Freeman
- Department of Surgery, University of Vermont, Burlington, VT, USA
| |
Collapse
|
19
|
C4d deposits on the surface of RBCs in trauma patients and interferes with their function. Crit Care Med 2014; 42:e364-72. [PMID: 24448198 DOI: 10.1097/ccm.0000000000000231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Complement system is activated in patients with trauma. Although complement activation is presumed to contribute to organ damage and constitutional symptoms, little is known about the involved mechanisms. Because complement components may deposit on RBCs, we asked whether complement deposits on the surface of RBC in trauma and whether such deposition alters RBC function. DESIGN A prospective experimental study. SETTING Research laboratory. SUBJECTS Blood samples collected from 42 trauma patients and 21 healthy donors. INTERVENTION None. MEASUREMENTS AND MAIN RESULTS RBC and sera were collected from trauma patients and control donors. RBCs from trauma patients (n = 40) were found to display significantly higher amounts of C4d on their surface by flow cytometry compared with RBCs from control (n = 17) (p < 0.01). Increased amounts of iC3b were found in trauma sera (n = 27) (vs 12 controls, p < 0.01) by enzyme-linked immunosorbent assay. Incubation of RBC from universal donors (type O, Rh negative) with trauma sera (n = 10) promoted C4d deposition on their surface (vs six controls, p< 0.05). Complement-decorated RBC (n = 6) displayed limited their deformability (vs six controls, p < 0.05) in two-dimensional microchannel arrays. Incubation of RBC with trauma sera (n = 10) promoted the phosphorylation of band 3, a cytoskeletal protein important for the function of the RBC membrane (vs eight controls, p < 0.05), and also accelerated calcium influx (n = 9) and enhanced nitric oxide production (n = 12) (vs four and eight controls respectively, p < 0.05) in flow cytometry. CONCLUSIONS Our study found the presence of extensive complement activation in trauma patients and presents new evidence in support of the hypothesis that complement activation products deposit on the surface of RBC. Such deposition could limit RBC deformability and promote the production of nitric oxide. Our findings suggest that RBC in trauma patients malfunctions, which may explain organ damage and constitutional symptoms that is not accounted for otherwise by previously known pathophysiologic mechanisms.
Collapse
|
20
|
Complement mediates a primed inflammatory response after traumatic lung injury. J Trauma Acute Care Surg 2014; 76:601-8; discussion 608-9. [PMID: 24553525 DOI: 10.1097/ta.0000000000000129] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pulmonary contusion (PC) is a common, potentially lethal injury that results in the priming for exaggerated responses to subsequent immune challenge such as an infection (second hit). We hypothesize a PC-induced complement (C) activation participates in the priming effect for a second hit. METHODS Male, 8 weeks to 9 weeks, C57BL/6 mice (wild-type, C5) underwent blunt chest trauma resulting in PC. At 3 hours/24 hours after injury, the inflammatory response was measured in tissue, serum, and bronchoalveolar lavage (BAL). The thrombin inhibitor, hirudin, was used to determine if injury-induced thrombin participated in the activation of C. Injury-primed responses were tested by challenging injured mice with bacterial endotoxin (lipopolysaccharide, LPS) as a second hit. Inflammatory responses were assessed at 4 hours after LPS challenge. Data were analyzed using one-way analysis of variance with Bonferroni multiple comparison posttest (significance, p ≤ 0.05). Protocols were approved by the Institutional Animal Care and Use Committee. RESULTS We found significantly increased levels of C5a in the BAL of injured animals as early as 24 hours, persisting for up to 72 hours after injury. Hirudin-treated injured mice had significantly decreased levels of thrombin in the BAL that correlated with reduced C5a levels. Injured mice challenged with intratracheal (IT) LPS had increased C5a and inflammatory response. Conversely, inhibition of C5a or its receptor, C5aR, before LPS challenge correlated with decreased inflammatory responses; C5a-deficient mice showed a similar loss of primed response to LPS challenge. CONCLUSION Complement C5a levels in the BAL are increased over several days after PC. Premorbid inhibition of thrombin markedly decreases C5a levels after PC, suggesting that thrombin-induced C activation is the major pathway of activation after PC. Similarly, inhibition of C5a after PC will decrease injury-primed responses to LPS stimulation. Our findings suggest cross-talk between the coagulation and complement systems that induce immune priming after PC.
Collapse
|
21
|
The role of complement in trauma and fracture healing. Semin Immunol 2013; 25:73-8. [PMID: 23768898 DOI: 10.1016/j.smim.2013.05.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/21/2022]
Abstract
The complement system, as part of innate immunity, is activated immediately after trauma in response to various pathogen- and danger-associated molecular patterns (PAMPs and DAMPs), and helps to eliminate microorganisms and damaged cells. However, recent data indicate an extended role of complement far beyond pure "killing", which includes regulation of the cytokine/chemokine network, influencing physiological barriers, interaction with the coagulation cascade, and even involvement with bone metabolism and repair. Complement-induced hyper-activation and dysfunction reveal the dark side of this system, leading to complications such as sepsis, multiple-organ dysfunction, delayed fracture healing, and unfavorable outcome. Thus, the present review focuses on less known regulatory roles of the complement system after trauma and during fracture healing, rather than on its bacterial and cellular "killing functions". In particular, various complement crosstalks after trauma, including the coagulation cascade and apoptosis system, appear to be crucially involved early after trauma. Long-term effects of complement on tissue regeneration after fracture and bone turnover are also considered, providing new insights into innate immunity in local and systemic complement-driven effects after trauma.
Collapse
|
22
|
van Oeveren W. Obstacles in haemocompatibility testing. SCIENTIFICA 2013; 2013:392584. [PMID: 24278774 PMCID: PMC3820147 DOI: 10.1155/2013/392584] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
ISO 10993-4 is an international standard describing the methods of testing of medical devices for interactions with blood for regulatory purpose. The complexity of blood responses to biomaterial surfaces and the variability of blood functions in different individuals and species pose difficulties in standardisation. Moreover, in vivo or in vitro testing, as well as the clinical relevance of certain findings, is still matter of debate. This review deals with the major remaining problems, including a brief explanation of surface interactions with blood, the current ISO 10993 requirements for testing, and the role of in vitro test models. The literature is reviewed on anticoagulation, shear rate, blood-air interfaces, incubation time, and the importance of evaluation of the surface area after blood contact. Two test categories deserve further attention: complement and platelet function, including the effects on platelets from adhesion proteins, venipuncture, and animal derived- blood. The material properties, hydrophilicity, and roughness, as well as reference materials, are discussed. Finally this review calls for completing the acceptance criteria in the ISO standard based on a panel of test results.
Collapse
Affiliation(s)
- W. van Oeveren
- HaemoScan and Department of Cardiothoracic Surgery, UMCG Groningen, The Netherlands
| |
Collapse
|
23
|
Recknagel S, Bindl R, Wehner T, Göckelmann M, Wehrle E, Gebhard F, Huber-Lang M, Claes L, Ignatius A. Conversion from external fixator to intramedullary nail causes a second hit and impairs fracture healing in a severe trauma model. J Orthop Res 2013; 31:465-71. [PMID: 23070742 DOI: 10.1002/jor.22242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/13/2012] [Indexed: 02/04/2023]
Abstract
In poly-traumatic patients, second hits are known to potentiate the posttraumatic systemic inflammatory response, thus increasing the risk of multi-organ dysfunction. In accordance with "damage control orthopaedic surgery" principles, fractures are initially treated with external fixators, which are replaced by internal osteosynthesis once the immunological status of the patient is considered stable. Recently, we demonstrated that a severe trauma impaired the healing of fractures stabilized by external fixation during the entire healing period. The question arose, whether switching to intramedullary nailing increases the inflammatory response in terms of a second hit, leading to a further impairment of bone healing. Wistar rats received a femoral osteotomy stabilized by an external fixator. Simultaneously half of the rats underwent an additional thoracic trauma. After 4 days, the external fixator was replaced by an intramedullary nail in half of the rats of the two groups. The inflammatory response was evaluated by measuring serum C5a levels. Fracture healing was determined by three-point-bending, µCT, and histomorphometry. The thoracic trauma significantly increased C5a concentrations 6, 24, and 72 h after the second surgical intervention. After 40 days, conversion to intramedullary nailing considerably decreased the flexural rigidity of the callus, with no significant differences between rats with or without thoracic trauma. After 47 days, flexural rigidity in rats subjected to conversion remained decreased compared to animals solely treated by external fixation, particularly in combination with blunt chest trauma. The results indicate that accumulation of second hits after multiple injuries could lead to aggravation of the fracture healing outcome.
Collapse
Affiliation(s)
- Stefan Recknagel
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Multiorgan failure (MOF) represents the leading cause of death in patients with sepsis and systemic inflammatory response syndrome (SIRS) following severe trauma. The underlying immune response is highly complex and involves activation of the complement system as a crucial entity of innate immunity. Uncontrolled activation of the complement system during sepsis and SIRS with in excessive generation of complement activation products contributes to an ensuing dysfunction of various organ systems. In the present review, mechanisms of the inflammatory response in the development of MOF in sepsis and SIRS with particular focus on the complement system are discussed.
Collapse
|
25
|
Kvarnström A, Sokolov A, Swartling T, Kurlberg G, Mollnes TE, Bengtsson A. Alternative pathway activation of complement in laparoscopic and open rectal surgery. Scand J Immunol 2012; 76:49-53. [PMID: 22486843 DOI: 10.1111/j.1365-3083.2012.02702.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The study was designed to investigate whether complement is activated in patients subject to rectal surgery and whether the choice of surgical technique (open or laparoscopic) has any impact on the activation of complement. Our hypothesis is that laparoscopic surgery leads to a lower-level activation of complement than open surgery. Patients (n = 24) subject to rectal surgery owing to rectal cancer were included. The study was prospective and randomized. The patients were randomized to either laparoscopic surgery (n = 12) or open surgery (n = 12). Blood samples for determination of complement activation (C4d, Bb, C3bc and the terminal C5b-9 complex TCC) were drawn before start of surgery (T0) and at the following time-points after start of surgery: 180 min (T1), 360 min (T2), 24 h (T3) and 3-5 days (T4). A significant increase in the alternative pathway activation product Bb and in the terminal pathway activation product TCC was seen over time in both groups (P < 0.001). Bb peaked early (T1) and returned to baseline levels post-operatively, whereas TCC increased steadily with maximum values in the late post-operative period. The plasma concentrations of C4d and C3bc decreased significantly in both groups at T1 and T2 and returned to baseline levels at T4. There was no significant difference between the groups. Rectal surgery causes activation of the complement system. Complement is activated through the alternative pathway. Results mostly showed no significant differences between laparoscopic and open rectal surgery apart from lower levels of factor Bb in the former group in the perioperative period.
Collapse
Affiliation(s)
- A Kvarnström
- Department of Anaesthesiology & Intensive Care, Sahlgrenska University Hospital/East, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
After severe tissue injury, innate immunity mounts a robust systemic inflammatory response. However, little is known about the immediate impact of multiple trauma on early complement function in humans. In the present study, we hypothesized that multiple trauma results in immediate activation, consumption, and dysfunction of the complement cascade and that the resulting severe "complementopathy" may be associated with morbidity and mortality. Therefore, a prospective multicenter study with 25 healthy volunteers and 40 polytrauma patients (mean injury severity score = 30.3 ± 2.9) was performed. After polytrauma, serum was collected as early as possible at the scene, on admission to the emergency room (ER), and 4, 12, 24, 120, and 240 h post-trauma and analyzed for the complement profile. Complement hemolytic activity (CH-50) was massively reduced within the first 24 h after injury, recovered only 5 days after trauma, and discriminated between lethal and nonlethal 28-day outcome. Serum levels of the complement activation products C3a and C5a were significantly elevated throughout the entire observation period and correlated with the severity of traumatic brain injury and survival. The soluble terminal complement complex SC5b-9 and mannose-binding lectin showed a biphasic response after trauma. Key fluid-phase inhibitors of complement, such as C4b-binding protein and factor I, were significantly diminished early after trauma. The present data indicate an almost synchronical rapid activation and dysfunction of complement, suggesting a trauma-induced complementopathy early after injury. These events may participate in the impairment of the innate immune response observed after severe trauma.
Collapse
|
27
|
Tegla CA, Cudrici C, Patel S, Trippe R, Rus V, Niculescu F, Rus H. Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res 2012; 51:45-60. [PMID: 21850539 DOI: 10.1007/s12026-011-8239-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complement system activation plays an important role in both innate and acquired immunity. Activation of the complement and the subsequent formation of C5b-9 channels (the membrane attack complex) on the cell membranes lead to cell death. However, when the number of channels assembled on the surface of nucleated cells is limited, sublytic C5b-9 can induce cell cycle progression by activating signal transduction pathways and transcription factors and inhibiting apoptosis. This induction by C5b-9 is dependent upon the activation of the phosphatidylinositol 3-kinase/Akt/FOXO1 and ERK1 pathways in a Gi protein-dependent manner. C5b-9 induces sequential activation of CDK4 and CDK2, enabling the G1/S-phase transition and cellular proliferation. In addition, it induces RGC-32, a novel gene that plays a role in cell cycle activation by interacting with Akt and the cyclin B1-CDC2 complex. C5b-9 also inhibits apoptosis by inducing the phosphorylation of Bad and blocking the activation of FLIP, caspase-8, and Bid cleavage. Thus, sublytic C5b-9 plays an important role in cell activation, proliferation, and differentiation, thereby contributing to the maintenance of cell and tissue homeostasis.
Collapse
Affiliation(s)
- Cosmin A Tegla
- Department of Neurology, School of Medicine, University of Maryland, 655 W. Baltimore Street, BRB 12-033, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Neher MD, Weckbach S, Flierl MA, Huber-Lang MS, Stahel PF. Molecular mechanisms of inflammation and tissue injury after major trauma--is complement the "bad guy"? J Biomed Sci 2011; 18:90. [PMID: 22129197 PMCID: PMC3247859 DOI: 10.1186/1423-0127-18-90] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/30/2011] [Indexed: 02/07/2023] Open
Abstract
Trauma represents the leading cause of death among young people in industrialized countries. Recent clinical and experimental studies have brought increasing evidence for activation of the innate immune system in contributing to the pathogenesis of trauma-induced sequelae and adverse outcome. As the "first line of defense", the complement system represents a potent effector arm of innate immunity, and has been implicated in mediating the early posttraumatic inflammatory response. Despite its generic beneficial functions, including pathogen elimination and immediate response to danger signals, complement activation may exert detrimental effects after trauma, in terms of mounting an "innocent bystander" attack on host tissue. Posttraumatic ischemia/reperfusion injuries represent the classic entity of complement-mediated tissue damage, adding to the "antigenic load" by exacerbation of local and systemic inflammation and release of toxic mediators. These pathophysiological sequelae have been shown to sustain the systemic inflammatory response syndrome after major trauma, and can ultimately contribute to remote organ injury and death. Numerous experimental models have been designed in recent years with the aim of mimicking the inflammatory reaction after trauma and to allow the testing of new pharmacological approaches, including the emergent concept of site-targeted complement inhibition. The present review provides an overview on the current understanding of the cellular and molecular mechanisms of complement activation after major trauma, with an emphasis of emerging therapeutic concepts which may provide the rationale for a "bench-to-bedside" approach in the design of future pharmacological strategies.
Collapse
Affiliation(s)
- Miriam D Neher
- Department of Orthopaedic Surgery, University of Colorado Denver, School of Medicine, Denver Health Medical Center, 777 Bannock Street, Denver, CO 80204, USA
| | | | | | | | | |
Collapse
|
29
|
C5a-mediated neutrophil dysfunction is RhoA-dependent and predicts infection in critically ill patients. Blood 2011; 117:5178-88. [PMID: 21292772 DOI: 10.1182/blood-2010-08-304667] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Critically ill patients are at heightened risk for nosocomial infections. The anaphylatoxin C5a impairs phagocytosis by neutrophils. However, the mechanisms by which this occurs and the relevance for acquisition of nosocomial infection remain undetermined. We aimed to characterize mechanisms by which C5a inhibits phagocytosis in vitro and in critically ill patients, and to define the relationship between C5a-mediated dysfunction and acquisition of nosocomial infection. In healthy human neutrophils, C5a significantly inhibited RhoA activation, preventing actin polymerization and phagocytosis. RhoA inhibition was mediated by PI3Kδ. The effects on RhoA, actin, and phagocytosis were fully reversed by GM-CSF. Parallel observations were made in neutrophils from critically ill patients, that is, impaired phagocytosis was associated with inhibition of RhoA and actin polymerization, and reversed by GM-CSF. Among a cohort of 60 critically ill patients, C5a-mediated neutrophil dysfunction (as determined by reduced CD88 expression) was a strong predictor for subsequent acquisition of nosocomial infection (relative risk, 5.8; 95% confidence interval, 1.5-22; P = .0007), and remained independent of time effects as assessed by survival analysis (hazard ratio, 5.0; 95% confidence interval, 1.3-8.3; P = .01). In conclusion, this study provides new insight into the mechanisms underlying immunocompromise in critical illness and suggests novel avenues for therapy and prevention of nosocomial infection.
Collapse
|
30
|
Genetic variability in complement activation modulates the systemic inflammatory response syndrome in children. Pediatr Crit Care Med 2010; 11:561-7. [PMID: 20351616 DOI: 10.1097/pcc.0b013e3181d900ba] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the impact of genetic variability in complement activation on early development of the systemic inflammatory response syndrome (SIRS) in general pediatric critical care. DESIGN Prospective, observational, cohort study. SETTING A tertiary pediatric intensive care unit in the United Kingdom. PATIENTS Children with at least one organ failure expected to stay in the intensive care unit >12 hrs, or an expected death within 12 hrs. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A total of 299 children were genotyped for functional polymorphisms in the complement activation cascade. We identified complement factor H as an important independent genetic modifier of SIRS/sepsis. Homozygosity for the complement factor H Y402H polymorphism, which is thought to reduce complement inhibition, was associated with less frequent SIRS/sepsis (the adjusted odds ratio for the homozygous variant complement factor H Y402H [CC] carriers was 0.3, 95% confidence interval, 0.1-0.7, p = .005). We also confirmed that structural and promoter variant mannose-binding lectin genotypes are a risk factor for SIRS/sepsis in pediatric critical care (adjusted odds ratio, 2.5; 95% confidence interval, 1.3-5.0, p = .008). Both findings were independent of clinical characteristics and other potentially confounding genetic polymorphisms in the innate immune system. CONCLUSIONS Functional polymorphisms in the complement activation cascade modify the risk for early SIRS/sepsis in general pediatric critical care. The complement factor H Y402H variant allele is protective, whereas the mannose-binding lectin variant polymorphisms increase risk. A genotype that permits vigorous complement activation to an infectious or inflammatory insult may offer protection from development of systemic inflammation.
Collapse
|
31
|
Abstract
Abnormal coagulation parameters can be found in 25% of trauma patients with major injuries. Furthermore, trauma patients presenting with coagulopathy on admission have worse clinical outcome. Tissue trauma and systemic hypoperfusion appear to be the primary factors responsible for the development of acute traumatic coagulopathy immediately after injury. As a result of overt activation of the protein C pathway, the acute traumatic coagulopathy is characterised by coagulopathy in conjunction with hyperfibrinolysis. This coagulopathy can then be exacerbated by subsequent physiologic and physical derangements such as consumption of coagulation factors, haemodilution, hypothermia, acidemia and inflammation, all factors being associated with ongoing haemorrhage and inadequate resuscitation or transfusion therapies. Knowledge of the different mechanisms involved in the pathogenesis of acute traumatic coagulopathy is essential for successful management of bleeding trauma patients. Therefore, early evidence suggests that treatment directed at aggressive and targeted haemostatic resuscitation can lead to reductions in mortality of severely injured patients.
Collapse
Affiliation(s)
- Michael T Ganter
- Privatdozent of Anesthesiology, Institute of Anesthesiology, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | | |
Collapse
|
32
|
Abstract
Trauma, the number one cause of death until the fourth decade of life, causes an inflammatory response. This response in its extreme is associated with the development of the systemic inflammatory state, adult respiratory distress syndrome, multi-organ failure, and death. The inflammatory response is mediated via multiple pathways- the inflammatory-cytokine, immunologic, coagulation and endocrine pathways. It is countered by producing antiinflammatory mediators. This reaction is altered in elderly patients. Knowledge of the patient's prior medical problems and the differential diagnosis for the possible causes of the current condition should help direct the surgical intervention and supportive care in an attempt to stabilize the patient. With the improvement of monitoring and diagnostic technologies, understanding the significance of the inflammatory pathways in trauma patients will decrease morbidity and mortality in this group of patients.
Collapse
Affiliation(s)
- Josh E Schroeder
- Department of Orthopedic Surgery, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
33
|
Conway Morris A, Kefala K, Wilkinson TS, Dhaliwal K, Farrell L, Walsh T, Mackenzie SJ, Reid H, Davidson DJ, Haslett C, Rossi AG, Sallenave JM, Simpson AJ. C5a mediates peripheral blood neutrophil dysfunction in critically ill patients. Am J Respir Crit Care Med 2009; 180:19-28. [PMID: 19324972 PMCID: PMC2948533 DOI: 10.1164/rccm.200812-1928oc] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RATIONALE Critically ill patients are highly susceptible to hospital-acquired infection. Neutrophil function in critical illness remains poorly understood. OBJECTIVES To characterize and define mechanisms of peripheral blood neutrophil (PBN) dysfunction in critically ill patients. To determine whether the inflamed lung contributes additional phagocytic impairment. METHODS Prospective collection of blood and bronchoalveolar lavage fluid from patients with suspected ventilator-associated pneumonia and from age- and sex-matched volunteers; laboratory analysis of neutrophil functions. MEASUREMENTS AND MAIN RESULTS Seventy-two patients and 21 volunteers were included. Phagocytic capacity of PBNs was 36% lower in patients than in volunteers (P < 0.0001). From several biologically plausible candidates only activated complement was significantly associated with impaired PBN phagocytosis (P < 0.0001). Phagocytosis was negatively correlated with serum C3a and positively correlated with expression of C5a receptor type 1 (CD88) on PBNs. C5a recapitulated impaired PBN phagocytosis and significantly down-regulated CD88 expression in vitro. C5a-mediated phagocytic impairment was prevented by blocking either CD88 or phosphoinositide 3-kinase, and completely reversed by granulocyte-macrophage colony-stimulating factor. C5a also impaired killing of Pseudomonas aeruginosa by, and migration of, PBNs, indicating that effects were not restricted to phagocytosis. Bronchoalveolar lavage fluid leukocytes from patients also demonstrated significantly impaired function, and lavage supernatant reduced phagocytosis in healthy neutrophils by 43% (P = 0.0001). However, lavage fluid did not affect CD88 expression and lavage-mediated impairment of phagocytosis was not blocked by anti-CD88 antibody. CONCLUSIONS Critically ill patients have significant dysfunction of PBNs, which is mediated predominantly by activated complement. Further, profound complement-independent neutrophil dysfunction occurs in the inflamed lung.
Collapse
Affiliation(s)
- Andrew Conway Morris
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsai JA, Lund M, Lundell L, Nilsson-Ekdahl K. One-lung ventilation during thoracoabdominal esophagectomy elicits complement activation. J Surg Res 2008; 152:331-7. [PMID: 18708192 DOI: 10.1016/j.jss.2008.03.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/26/2008] [Accepted: 03/28/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND One-lung ventilation (OLV) during thoracoabdominal esophagectomy may induce an inflammatory response that can contribute to the induction and propagation of frequently occurring postoperative respiratory distress. Markers of such a response might be detected in the pulmonary as well as in the systemic circulation. Inflammation and tissue damage may be key pathogenetic pathways and we hypothesized that 1-lung ventilation may induce an inflammatory cascade reflected by markers for such a response. MATERIALS AND METHODS Thirty patients with esophageal cancer were randomized to OLV (n = 16) or 2-lung ventilation (TLV; n = 14) during the thoracic part of the operation. Compounds involved in inflammation and coagulation were measured perioperatively and during the 1st, 2nd, 3rd, and 10th postoperative d. RESULTS During the perioperative phase, the proinflammatory cytokine interleukin-6 and thrombin, measured as thrombin-antithrombin complexes, started to increase. Thrombin, which can induce complement activation, peaked at the end of surgery and interleukin-6 at the 1st to 2nd postoperative d, but there were no differences between the OLV and TLV groups. C3a and terminal complement complex (TCC) started to increase on the 2nd postoperative d and continued to do so for the rest of the study period. The increase of TCC was significantly higher in the OLV group compared to the TLV group, whereas C3a attained similar levels in the 2 groups. CONCLUSIONS OLV is associated with an augmented inflammatory response as reflected by the activation of the TCC. This may induce pulmonary tissue damage and recruitment of inflammatory cells.
Collapse
Affiliation(s)
- Jon A Tsai
- Division of Surgery, CLINTEC, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
35
|
Ganter MT, Brohi K, Cohen MJ, Shaffer LA, Walsh MC, Stahl GL, Pittet JF. ROLE OF THE ALTERNATIVE PATHWAY IN THE EARLY COMPLEMENT ACTIVATION FOLLOWING MAJOR TRAUMA. Shock 2007; 28:29-34. [PMID: 17510601 DOI: 10.1097/shk.0b013e3180342439] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Complement activation has been reported after major trauma. However, little is known about the clinical relevance and the mechanisms of complement activation early after trauma. Therefore, the aim of this study was to measure complement activation, to identify the roles of injury severity and hypoperfusion, to determine the predominant activated pathway, and to identify the clinical significance of early complement activation in trauma patients. A total of 208 adult trauma patients were enrolled in this prospective single-center cohort study of major trauma patients. Blood samples were obtained within 30 min after injury before any significant fluid resuscitation. Complement (C5b-9) was activated early after trauma, correlated with injury severity and tissue hypoperfusion, and was associated with increased mortality rate and with the development of organ failure such as acute lung injury and acute renal failure. The alternative pathway seems to be the predominant activated complement pathway early after trauma. However, the classical and/or the lectin pathway initiated complement activation because of the correlation between plasma levels of C4d and C3a/C5b-9. Finally, in patients with low C3a levels, C5b-9 levels correlated with plasma levels of prothrombin fragments 1 + 2, a marker of thrombin generation, suggesting additional C3-independent complement activation by thrombin after severe trauma. In summary, complement activation via its amplification by the alternative pathway is observed early after trauma and correlates with injury severity, tissue hypoperfusion, and worse clinical outcomes. Besides complement activation by the classical and/or lectin pathways, there is an independent association between thrombin generation and complement activation.
Collapse
Affiliation(s)
- Michael T Ganter
- Departments of Anesthesia, San Francisco General Hospital, University of California San Francisco, California 94110, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Robinson Y, Hostmann A, Matenov A, Ertel W, Oberholzer A. Erythropoiesis in multiply injured patients. ACTA ACUST UNITED AC 2006; 61:1285-91. [PMID: 17099548 DOI: 10.1097/01.ta.0000240969.13891.9b] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Posttraumatic anemia in multiply injured patients is caused by hemorrhage, reduced red blood cell survival, and impaired erythropoiesis. Trauma-induced hyperinflammation causes impaired bone-marrow function by means of blunted erythropoietin (EPO) response, reduced iron availability, suppression and egress of erythroid progenitor cells. To treat posttraumatic anemia in severely injured patients, symptomatic therapy by blood transfusion is not sufficient. Furthermore, EPO, iron, and the use of red cell substitutes should be considered. The posttraumatic systemic inflammatory response syndrome (SIRS) induces posttraumatic anemia. Thus, a worsening of SIRS by a "second-hit" through blood transfusion ought to be avoided.
Collapse
Affiliation(s)
- Yohan Robinson
- Department of Trauma and Reconstructive Surgery, Charité - Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
37
|
Souza DG, Esser D, Bradford R, Vieira AT, Teixeira MM. APT070 (Mirococept), a membrane-localised complement inhibitor, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury. Br J Pharmacol 2005; 145:1027-34. [PMID: 15951831 PMCID: PMC1576234 DOI: 10.1038/sj.bjp.0706286] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of the complement system has been shown to play a major role in the mediation of reperfusion injury. Here, we assessed the effects of APT070 (Mirococept), a novel membrane-localised complement inhibitor based on a recombinant fragment of soluble CR1, on the local, remote and systemic injuries following intestinal ischaemia and reperfusion (I/R) in the rat. In a model of mild I/R injury (30 min of ischaemia and 30 min of reperfusion), APT070 dose-dependently (1-10 mg kg(-1)) inhibited the increase in vascular permeability of and neutrophil influx into intestine and lungs. Maximal inhibition occurred at 10 mg kg(-1). Following severe I/R injury (120 min of ischaemia and 120 min of reperfusion), APT070 (10 mg kg(-1)) markedly prevented neutrophil influx and the increase in vascular permeability both in the intestine and the lungs.APT070 also effectively suppressed the increase of tissue (intestine and lungs) and serum concentrations of TNF-alpha and IL-6, but not those of IL-1beta or IL-10. There was no significant reduction of mortality in the APT070 group. In conclusion, treatment with the membrane-targeted complement inhibitor APT070 significantly reduced the hyperinflammatory response after mild and severe ischaemia and reperfusion injury (I/RI) in rats. APT070 may be effective in therapeutic indications involving gut I/RI.
Collapse
Affiliation(s)
- Danielle G Souza
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Dirk Esser
- Adprotech Ltd, Chesterford Research Park, Lt. Chesterford, Saffron Walden, Essex
| | - Roberta Bradford
- Adprotech Ltd, Chesterford Research Park, Lt. Chesterford, Saffron Walden, Essex
| | - Angélica T Vieira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Mauro M Teixeira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627 – Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Author for correspondence:
| |
Collapse
|
38
|
Harkin DW, Marron CD, Rother RP, Romaschin A, Rubin BB, Lindsay TF. C5 complement inhibition attenuates shock and acute lung injury in an experimental model of ruptured abdominal aortic aneurysm. Br J Surg 2005; 92:1227-34. [PMID: 16078298 DOI: 10.1002/bjs.4938] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Ruptured abdominal aortic aneurysm (RAAA) is associated with a systemic inflammatory response syndrome and multiple organ dysfunction. The potential role of a novel C5 complement inhibitor in attenuation of pathological complement activation and tissue injury was explored in a model of RAAA. METHODS Anaesthetized rats were randomized to sham (control) or shock and clamp (SC) groups. Animals in the SC group underwent 1 h of haemorrhagic shock (mean arterial pressure 50 mmHg or less), 45 min of supramesenteric aortic clamping and 2 h of reperfusion. They were randomized to receive an intravenous bolus of a functionally blocking anti-C5 monoclonal antibody (C5 inhibitor), at a dose of 20 mg/kg, or saline. Lung injury was assessed by permeability to 125I-labelled albumin, tissue myeloperoxidase (MPO) activity, and semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) for mRNAs encoding tumour necrosis factor (TNF) alpha and interleukin (IL) 6. RESULTS The lung permeability index was significantly increased in the SC compared with the sham group (P = 0.032); this was prevented by the C5 inhibitor (P = 0.015). Lung MPO activity was significantly increased in the SC compared with the sham group (P < 0.001), and this increase was attenuated by treatment with the C5 inhibitor (P < 0.001). Semiquantitative RT-PCR in SC group demonstrated downregulation of TNF-alpha mRNA (P = 0.050) and upregulation of IL-6 mRNA (P < 0.001), which were both prevented by the C5 inhibitor (P = 0.014 and P < 0.001 respectively). CONCLUSION These results indicated that C5 complement inhibition can reduce shock and acute lung injury in an experimental model of RAAA.
Collapse
Affiliation(s)
- D W Harkin
- Division of Vascular Surgery, Department of Surgery, Toronto Hospital (General Division), Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Jerath RS, Burek CL, Hoffman WH, Passmore GG. Complement activation in diabetic ketoacidosis and its treatment. Clin Immunol 2005; 116:11-7. [PMID: 15925827 DOI: 10.1016/j.clim.2005.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 03/04/2005] [Accepted: 03/07/2005] [Indexed: 11/15/2022]
Abstract
Recent studies support the presence of an inflammatory response during the treatment of diabetic ketoacidosis (DKA). The objectives of this study were to monitor the complement activation products C3a, C4a, Bb, and C5b-9 prior to, during, and after correction of DKA. All patients had increased levels of C3a at 6-8 h and 24 h (P<0.05). C4a was increased in only one patient. Bb showed an upward trend at 6-8 h, and was significantly elevated at 24 h (P<0.05); sC5b-9 was elevated in all patients prior to treatment or in the first 6-8 h of treatment. Results indicate that the alternative pathway may be the primary pathway of activation. These results extend the observation that both DKA and its treatment produce varying degrees of immunologic stress during the time when acute complications are most likely to occur.
Collapse
Affiliation(s)
- Rita S Jerath
- Section of Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Immediate and early trauma deaths are determined by primary brain injuries, or significant blood loss (haemorrhagic shock), while late mortality is caused by secondary brain injuries and host defence failure. First hits (hypoxia, hypotension, organ and soft tissue injuries, fractures), as well as second hits (e.g. ischaemia/reperfusion injuries, compartment syndromes, operative interventions, infections), induce a host defence response. This is characterized by local and systemic release of pro-inflammatory cytokines, arachidonic acid metabolites, proteins of the contact phase and coagulation systems, complement factors and acute phase proteins, as well as hormonal mediators: it is defined as systemic inflammatory response syndrome (SIRS), according to clinical parameters. However, in parallel, anti-inflammatory mediators are produced (compensatory anti-inflammatory response syndrome (CARS). An imbalance of these dual immune responses seems to be responsible for organ dysfunction and increased susceptibility to infections. Endothelial cell damage, accumulation of leukocytes, disseminated intravascular coagulation (DIC) and microcirculatory disturbances lead finally to apoptosis and necrosis of parenchymal cells, with the development of multiple organ dysfunction syndrome (MODS), or multiple organ failure (MOF). Whereas most clinical trials with anti-inflammatory, anti-coagulant, or antioxidant strategies failed, the implementation of pre- and in-hospital trauma protocols and the principle of damage control procedures have reduced post-traumatic complications. However, the development of immunomonitoring will help in the selection of patients at risk of post-traumatic complications and, thereby, the choice of the most appropriate treatment protocols for severely injured patients.
Collapse
Affiliation(s)
- Marius Keel
- Division of Trauma Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | | |
Collapse
|
41
|
Rixen D, Siegel JH. Bench-to-bedside review: oxygen debt and its metabolic correlates as quantifiers of the severity of hemorrhagic and post-traumatic shock. Crit Care 2005; 9:441-53. [PMID: 16277731 PMCID: PMC1297598 DOI: 10.1186/cc3526] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
Evidence is increasing that oxygen debt and its metabolic correlates are important quantifiers of the severity of hemorrhagic and post-traumatic shock and and may serve as useful guides in the treatment of these conditions. The aim of this review is to demonstrate the similarity between experimental oxygen debt in animals and human hemorrhage/post-traumatic conditions, and to examine metabolic oxygen debt correlates, namely base deficit and lactate, as indices of shock severity and adequacy of volume resuscitation. Relevant studies in the medical literature were identified using Medline and Cochrane Library searches. Findings in both experimental animals (dog/pig) and humans suggest that oxygen debt or its metabolic correlates may be more useful quantifiers of hemorrhagic shock than estimates of blood loss, volume replacement, blood pressure, or heart rate. This is evidenced by the oxygen debt/probability of death curves for the animals, and by the consistency of lethal dose (LD)25,50 points for base deficit across all three species. Quantifying human post-traumatic shock based on base deficit and adjusting for Glasgow Coma Scale score, prothrombin time, Injury Severity Score and age is demonstrated to be superior to anatomic injury severity alone or in combination with Trauma and Injury Severity Score. The data examined in this review indicate that estimates of oxygen debt and its metabolic correlates should be included in studies of experimental shock and in the management of patients suffering from hemorrhagic shock.
Collapse
Affiliation(s)
- Dieter Rixen
- Department of Trauma/Orthopedic Surgery, University of Witten/Herdecke at the Hospital Merheim, Cologne, Germany
| | - John H Siegel
- Department of Surgery & Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New Jersey, USA
| |
Collapse
|
42
|
Bossi F, Fischetti F, Pellis V, Bulla R, Ferrero E, Mollnes TE, Regoli D, Tedesco F. Platelet-activating factor and kinin-dependent vascular leakage as a novel functional activity of the soluble terminal complement complex. THE JOURNAL OF IMMUNOLOGY 2005; 173:6921-7. [PMID: 15557188 DOI: 10.4049/jimmunol.173.11.6921] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The infrequent occurrence of septic shock in patients with inherited deficiencies of the terminal complement components experiencing meningococcal disease led us to suspect that the terminal complement complex is involved in vascular leakage. To this end, the permeabilizing effect of the cytolytically inactive soluble terminal complement complex (SC5b-9) was tested in a Transwell system measuring the amount of fluorescein-labeled BSA (FITC-BSA) leaked through a monolayer of endothelial cells. The complex caused increased permeability to FITC-BSA after 15 min as opposed to the prompt response to bradykinin (BK). The effect of SC5b-9 was partially reduced by HOE-140 or CV-3988, two selective antagonists of BK B2 and platelet-activating factor receptors, respectively, and was completely neutralized by the mixture of the two antagonists. Also, DX-88, a specific inhibitor of kallikrein, partially inhibited the activity of SC5b-9. The permeabilizing factor(s) released after 30 min of incubation of endothelial cells with SC5b-9 caused a prompt leakage of albumin like BK. Intravital microscopy confirmed both the extravasation of circulating FITC-BSA across mesenteric microvessels 15 min after topical application of SC5b-9 and the complete neutralization by the mixture of HOE-140 and CV-3988. SC5b-9 induced opening of interendothelial junctions in mesenteric endothelium documented by transmission electron microscopy.
Collapse
Affiliation(s)
- Fleur Bossi
- Department of Physiology and Pathology, University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sharma DK, Sarda AK, Bhalla SA, Goyal A, Kulshreshta VN. THE EFFECT OF RECENT TRAUMA ON SERUM COMPLEMENT ACTIVATION AND SERUM C3 LEVELS CORRELATED WITH THE INJURY SEVERITY SCORE. Indian J Med Microbiol 2004. [DOI: 10.1016/s0255-0857(21)02825-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
44
|
Gundersen Y, Vaagenes P, Myhre O, Andersen JM, Pharo A, Haugen AH, Valoe E, Opstad PK. Hydrocortisone and the mitogen-activated protein kinase inhibitor U0126 acutely suppress reactive oxygen species generation from circulating granulocytes after gunshot injuries in the pig. Crit Care Med 2003; 31:166-70. [PMID: 12545011 DOI: 10.1097/00003246-200301000-00026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Several external stimuli, including trauma, increase the endogenous production of reactive oxygen species that spontaneously attack vital biological molecules. In addition to their direct toxic effects, several secondary messenger systems are induced. To forestall a subsequent organ dysfunction, a short-term posttraumatic down-regulation of granulocyte function has been advocated. Corticosteroids are potent and universal anti-inflammatory agents, but they have well-known side effects. Modulation of the mitogen-activated protein kinase cascade is an alternative approach. The purpose of this study was to investigate how the posttraumatic production of reactive oxygen species can be modulated by hydrocortisone or the extracellular signal-regulated kinase inhibitor U0126. DESIGN Prospective randomized trial. SETTING Field hospital and research laboratory. SUBJECTS Seventeen male pigs. INTERVENTIONS In general anesthesia, the pigs were exposed to a standardized insult: one gunshot hitting the right femur from a distance of 25 m, and one pistol shot to the left upper abdomen from close range. Following immediate first aid treatment, the animals were transported to a nearby field hospital. According to randomization, the animals received either hydrocortisone 250 mg intravenously (group 1, n = 9) or a similar amount of saline (group 2, n = 8). The injections were given 5 mins after the last shot. Blood samples were drawn before shooting, immediately before hydrocortisone was given, and 60 mins after shooting. Circulating neutrophils were isolated, and the production of reactive oxygen species was measured fluorometrically. Neutrophils from nine randomly chosen animals (five from group 1 and four from group 2) were treated in vitro with the extracellular signal-regulated kinase inhibitor U0126. MEASUREMENTS AND MAIN RESULTS The injuries as evaluated by the abbreviated injury scale did not differ between the animals. All survived the first 60 mins. While the in vivo production of reactive oxygen species tended to increase in the controls, a significant reduction was measured in the hydrocortisone group. Subsequent treatment with U0126 further reduced the synthesis of reactive oxygen species by about two thirds in both groups, independently of time. CONCLUSIONS Early injection of hydrocortisone after trauma inhibits the synthesis of reactive oxygen species from circulating neutrophils. Inhibition of the extracellular signal-regulated kinase branch of the mitogen-activated protein kinase signaling cascade is an alternative approach. The powerful in vitro capacity of selective extracellular signal-regulated kinase inhibitors to reduce the posttraumatic reactive oxygen species generation deserves further investigations, and compelling evidence of their in vivo usefulness is still lacking.
Collapse
Affiliation(s)
- Yngvar Gundersen
- Division of Protection and Material, Norweigian Defense Research Establishment, Kjeller, Norway
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Cichon G, Boeckh-Herwig S, Schmidt HH, Wehnes E, Müller T, Pring-Akerblom P, Burger R. Complement activation by recombinant adenoviruses. Gene Ther 2001; 8:1794-800. [PMID: 11803399 PMCID: PMC7091591 DOI: 10.1038/sj.gt.3301611] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2001] [Accepted: 10/29/2001] [Indexed: 11/08/2022]
Abstract
Recombinant adenoviruses are currently the most important vector system in gene therapy. Adenoviruses frequently cause upper respiratory tract infections in humans and anti-adenoviral antibodies are found in 35-70% of the population. Therefore in the majority of potential patients receiving adenoviral gene therapy, the contact of virus particles and blood will lead to the formation of antigen-antibody complexes. These complexes have the ability to induce inflammatory reactions via an activation of the complement system. We have determined the level of C3a (the most reactive complement component) generated in isolated citrate plasma of healthy individuals after challenge with recombinant and wild-type adenoviruses in amounts corresponding to virus blood levels to be expected in patients during adenoviral gene therapy. All plasma samples containing anti-adenoviral antibodies showed a substantial, dose-dependent generation of C3a. A virus plasma level of about 7.5 x 10(9) particles/ml (which was calculated to be the highest blood level reached during clinical trials in the past) induced an average release of about 3000 ng/ml C3a (baseline levels <140 ng/ml). Analyzing the nature of anti-adenoviral antibodies showed, that not only antibodies with neutralizing properties (anti-Ad5), but also non-neutralizing anti-adenoviral antibodies are capable of complement activation. This study suggests that complement activation can be ignored in local low-dose applications of recombinant adenoviruses, but warrants attention after systemic application of large viral quantities. In clinical protocols aiming at systemic virus application, measures for monitoring and controlling the complement system should be included on a regular basis.
Collapse
Affiliation(s)
- G Cichon
- Institute for Biology, Department of Molecular Cell Biology, Humboldt-University Berlin at the Max Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Breiburg AN, Aitken L, Reaby L, Clancy RL, Pierce JD. Efficacy and safety of prone positioning for patients with acute respiratory distress syndrome. J Adv Nurs 2000. [DOI: 10.1046/j.1365-2648.2000.t01-1-01557.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|