1
|
Munkhsaikhan U, Kwon YI, Sahyoun AM, Galán M, Gonzalez AA, Ait-Aissa K, Abidi AH, Kassan A, Kassan M. The Beneficial Effect of Lomitapide on the Cardiovascular System in LDLr -/- Mice with Obesity. Antioxidants (Basel) 2023; 12:1287. [PMID: 37372017 PMCID: PMC10295391 DOI: 10.3390/antiox12061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVES Homozygous familial hypercholesteremia (HoFH) is a rare, life-threatening metabolic disease, mainly caused by a mutation in the LDL receptor. If untreated, HoFH causes premature death from acute coronary syndrome. Lomitapide is approved by the FDA as a therapy to lower lipid levels in adult patients with HoFH. Nevertheless, the beneficial effect of lomitapide in HoFH models remains to be defined. In this study, we investigated the effect of lomitapide on cardiovascular function using LDL receptor-knockout mice (LDLr-/-). METHODS Six-week-old LDLr-/- mice were fed a standard diet (SD) or a high-fat diet (HFD) for 12 weeks. Lomitapide (1 mg/Kg/Day) was given by oral gavage for the last 2 weeks in the HFD group. Body weight and composition, lipid profile, blood glucose, and atherosclerotic plaques were measured. Vascular reactivity and markers for endothelial function were determined in conductance arteries (thoracic aorta) and resistance arteries (mesenteric resistance arteries (MRA)). Cytokine levels were measured by using the Mesoscale discovery V-Plex assays. RESULTS Body weight (47.5 ± 1.5 vs. 40.3 ± 1.8 g), % of fat mass (41.6 ± 1.9% vs. 31.8 ± 1.7%), blood glucose (215.5 ± 21.9 vs. 142.3 ± 7.7 mg/dL), and lipid levels (cholesterol: 600.9 ± 23.6 vs. 451.7 ± 33.4 mg/dL; LDL/VLDL: 250.6 ± 28.9 vs. 161.1 ± 12.24 mg/dL; TG: 299.5 ± 24.1 vs. 194.1 ± 28.1 mg/dL) were significantly decreased, and the % of lean mass (56.5 ± 1.8% vs. 65.2 ± 2.1%) was significantly increased in the HFD group after lomitapide treatment. The atherosclerotic plaque area also decreased in the thoracic aorta (7.9 ± 0.5% vs. 5.7 ± 0.1%). After treatment with lomitapide, the endothelium function of the thoracic aorta (47.7 ± 6.3% vs. 80.7 ± 3.1%) and mesenteric resistance artery (66.4 ± 4.3% vs. 79.5 ± 4.6%) was improved in the group of LDLr-/- mice on HFD. This was correlated with diminished vascular endoplasmic (ER) reticulum stress, oxidative stress, and inflammation. CONCLUSIONS Treatment with lomitapide improves cardiovascular function and lipid profile and reduces body weight and inflammatory markers in LDLr-/- mice on HFD.
Collapse
Affiliation(s)
- Undral Munkhsaikhan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Bioscience Research and General Dentistry, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Young In Kwon
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Amal M. Sahyoun
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Food Science and Agriculture Chemistry, McGill University, Montreal, QC H9X 3V9, Canada
| | - María Galán
- Faculty of Health Sciences, University Rey Juan Carlos, 28922 Alcorcón, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, 28029 Madrid, Spain
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 300, Chile
| | - Karima Ait-Aissa
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
| | - Ammaar H. Abidi
- Department of Bioscience Research and General Dentistry, College of Dentistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
| | - Adam Kassan
- Department of Pharmaceutical Sciences, School of Pharmacy, West Coast University, Los Angeles, CA 91606, USA
| | - Modar Kassan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
| |
Collapse
|
2
|
Abstract
Postprandial hyperlipidaemia is an important feature of diabetic dyslipidaemia and plays an important role in the development of cardiovascular disease in individuals with type 2 diabetes. Postprandial hyperlipidaemia in type 2 diabetes is secondary to increased chylomicron production by the enterocytes and delayed catabolism of chylomicrons and chylomicron remnants. Insulin and some intestinal hormones (e.g. glucagon-like peptide-1 [GLP-1]) influence intestinal lipid metabolism. In individuals with type 2 diabetes, insulin resistance and possibly reduced GLP-1 secretion are involved in the pathophysiology of postprandial hyperlipidaemia. Several factors are involved in the overproduction of chylomicrons: (1) increased expression of microsomal triglyceride transfer protein, which is a key enzyme in chylomicron synthesis; (2) higher stability and availability of apolipoprotein B-48; and (3) increased de novo lipogenesis. Individuals with type 2 diabetes present with disorders of cholesterol metabolism in the enterocytes with reduced absorption and increased synthesis. The increased production of chylomicrons in type 2 diabetes is also associated with a reduction in their catabolism, mostly because of a reduction in activity of lipoprotein lipase. Modification of the microbiota, which is observed in type 2 diabetes, may also generate disorders of intestinal lipid metabolism, but human data remain limited. Some glucose-lowering treatments significantly influence intestinal lipid absorption and transport. Postprandial hyperlipidaemia is reduced by metformin, pioglitazone, alpha-glucosidase inhibitors, dipeptidyl peptidase 4 inhibitors and GLP-1 agonists. The most pronounced effect is observed with GLP-1 agonists, which reduce chylomicron production significantly in individuals with type 2 diabetes and have a direct effect on the intestine by reducing the expression of genes involved in intestinal lipoprotein metabolism. The effect of sodium-glucose cotransporter 2 inhibitors on intestinal lipid metabolism needs to be clarified.
Collapse
Affiliation(s)
- Bruno Vergès
- Endocrinology-Diabetology Department, University-Hospital, Dijon, France.
- Inserm UMR 1231, Medical School, University of Burgundy-Franche Comté, Dijon, France.
| |
Collapse
|
3
|
Liu SH, Feng SA, Chiu CY, Chiang MT. Influence of Dietary Chitosan Feeding Duration on Glucose and Lipid Metabolism in a Diabetic Rat Model. Molecules 2021; 26:5033. [PMID: 34443619 PMCID: PMC8400972 DOI: 10.3390/molecules26165033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
This study was designed to investigate the influence of dietary chitosan feeding-duration on glucose and lipid metabolism in diabetic rats induced by streptozotocin and nicotinamide [a non-insulin-dependent diabetes mellitus (NIDDM) model]. Male Sprague-Dawley rats were used as experimental animals and divided into short-term (6 weeks) and long-term (11 weeks) feeding durations, and each duration contained five groups: (1) control, (2) control + 5% chitosan, (3) diabetes, (4) diabetes + 0.8 mg/kg rosiglitazone (a positive control), and (5) diabetes + 5% chitosan. Whether the chitosan feeding was for 6 or 11 weeks, the chitosan supplementation decreased blood glucose and lipids levels and liver lipid accumulation. However, chitosan supplementation decreased plasma tumor necrosis factor (TNF)-α, insulin levels, alanine aminotransferase (ALT) activity, insulin resistance (HOMA-IR), and adipose tissue lipoprotein lipase activity. Meanwhile, it increased plasma high-density lipoproteins (HDL)-cholesterol level, plasma angiopoietin-like-4 protein expression, and plasma triglyceride levels (at 11-week feeding duration only). Taken together, 11-week (long-term) chitosan feeding may help to ameliorate the glucose and lipid metabolism in a NIDDM diabetic rat model.
Collapse
Affiliation(s)
- Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Shih-An Feng
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Chen-Yuan Chiu
- Center of Consultation, Center for Drug Evaluation, Taipei 115, Taiwan;
| | - Meng-Tsan Chiang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| |
Collapse
|
4
|
Iqbal J, Jahangir Z, Al-Qarni AA. Microsomal Triglyceride Transfer Protein: From Lipid Metabolism to Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:37-52. [DOI: 10.1007/978-981-15-6082-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Phillips CM, Dillon CB, Perry IJ. Replacement of Sedentary Time with Physical Activity: Effect on Lipoproteins. Med Sci Sports Exerc 2017; 50:967-976. [PMID: 29219943 DOI: 10.1249/mss.0000000000001511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Limited data on the relationship between physical activity and lipoprotein particle profiles exist. Our objective was to investigate associations between objectively measured physical activity and lipoprotein particle size and number, and specifically whether substituting daily sedentary behavior with light activity or moderate-to-vigorous physical activity (MVPA) is associated with beneficial alterations to the lipoprotein profile among adults and those at increased cardiometabolic risk (obese and insulin-resistant subjects). METHODS Sedentary behavior and physical activity intensity and duration were measured for 7 consecutive days using the GENEActiv accelerometer in a cross-sectional adult cohort (n = 396; mean age, 59.6 ± 5.5 yr). Lipoprotein particle size and subclass concentrations were determined using nuclear magnetic resonance spectroscopy. Isotemporal substitution regression modeling quantified the associations between replacing 30 min·d of sedentary behavior with equal amounts of light activity and MVPA on lipoprotein profiles. RESULTS Daily duration of MVPA was inversely associated with large VLDL particles and lipoprotein insulin resistance scores (P < 0.05, after adjustment for sedentary time and other confounding factors). Reallocating 30 min of sedentary time with MVPA, but not light activity, was associated with less large VLDL particles resulting in more favorable average VLDL particle size and improved lipoprotein insulin resistance score (P < 0.05). Analysis of high-cardiometabolic-risk groups revealed similar beneficial alterations to VLDL profiles (P < 0.05) with substitution of sedentary time for MVPA among the insulin-resistant (homeostasis model assessment for insulin resistance ≥75th percentile) but not the obese (body mass index ≥30 kg·m) individuals. CONCLUSIONS Daily MVPA duration and theoretical replacement of sedentary time with MVPA, but not light activity, were associated with less atherogenic VLDL profiles, particularly among the insulin-resistant individuals. These findings, which require further investigation, highlight the need to develop physical activity interventions aimed at improving atherogenic dyslipidemia and lowering cardiometabolic risk.
Collapse
Affiliation(s)
- Catherine M Phillips
- HRB Centre for Diet and Health Research, School of Public Health, University College Cork, Cork, IRELAND.,HRB Centre for Diet and Health Research, School of Public Health, University College Cork, Cork, IRELAND
| | - Christina B Dillon
- HRB Centre for Diet and Health Research, School of Public Health, University College Cork, Cork, IRELAND
| | - Ivan J Perry
- HRB Centre for Diet and Health Research, School of Public Health, University College Cork, Cork, IRELAND
| |
Collapse
|
6
|
Khavandi M, Duarte F, Ginsberg HN, Reyes-Soffer G. Treatment of Dyslipidemias to Prevent Cardiovascular Disease in Patients with Type 2 Diabetes. Curr Cardiol Rep 2017; 19:7. [PMID: 28132397 PMCID: PMC5503120 DOI: 10.1007/s11886-017-0818-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Current preventive and treatment guidelines for type 2 diabetes have failed to decrease the incidence of comorbidities, such as dyslipidemia and ultimately heart disease. The goal of this review is to describe the physiological and metabolic lipid alterations that develop in patients with type 2 diabetes mellitus. Questions addressed include the differences in lipid and lipoprotein metabolism that characterize the dyslipidemia of insulin resistance and type 2 diabetes mellitus. We also examine the relevance of the new AHA/ADA treatment guidelines to dyslipidemic individuals. RECENT FINDINGS In this review, we provide an update on the pathophysiology of diabetic dyslipidemia, including the role of several apolipoproteins such as apoC-III. We also point to new studies and new agents for the treatment of individuals with type 2 diabetes mellitus who need lipid therapies. Type 2 diabetes mellitus causes cardiovascular disease via several pathways, including dyslipidemia characterized by increased plasma levels of apoB-lipoproteins and triglycerides, and low plasma concentrations of HDL cholesterol. Treatments to normalize the dyslipidemia and reduce the risk for cardiovascular events include the following: lifestyle and medication, particularly statins, and if necessary, ezetimibe, to significantly lower LDL cholesterol. Other treatments, more focused on triglycerides and HDL cholesterol, are less well supported by randomized clinical trials and should be used on an individual basis. Newer agents, particularly the PCSK9 inhibitors, show a great promise for even greater lowering of LDL cholesterol, but we await the results of ongoing clinical trials.
Collapse
Affiliation(s)
- Maryam Khavandi
- College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University Medical Center, 622 West 168th Street, PH-10-305, New York, NY, 10032, USA
| | - Francisco Duarte
- College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University Medical Center, 622 West 168th Street, PH-10-305, New York, NY, 10032, USA
| | - Henry N Ginsberg
- College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University Medical Center, 622 West 168th Street, PH-10-305, New York, NY, 10032, USA
| | - Gissette Reyes-Soffer
- College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University Medical Center, 622 West 168th Street, PH-10-305, New York, NY, 10032, USA.
| |
Collapse
|
7
|
The expression of genes involved in jejunal lipogenesis and lipoprotein synthesis is altered in morbidly obese subjects with insulin resistance. J Transl Med 2015; 95:1409-17. [PMID: 26367490 DOI: 10.1038/labinvest.2015.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/03/2015] [Accepted: 07/28/2015] [Indexed: 12/28/2022] Open
Abstract
The dyslipidemia associated with type 2 diabetes mellitus (T2DM) is an important risk factor for atherosclerotic cardiovascular disease. However, until now little attention has been paid to the role that the intestine might have. The aim of this research was to determine the relation between insulin resistance and intestinal de novo lipogenesis/lipoprotein synthesis in morbidly obese subjects and to study the effect of insulin on these processes. Jejunal mRNA expression of the different genes involved in the intestinal de novo lipogenesis/lipoprotein synthesis was analyzed in three groups of morbidly obese subjects: Group 1 with low insulin resistance (MO-low-IR), group 2 with high insulin resistance (MO-high-IR), and group 3 with T2DM and treatment with metformin (MO-metf-T2DM). In addition, intestinal epithelial cells (IECs) from MO-low-IR were incubated with different doses of insulin/glucose. In Group 2 (MO-high-IR), the jejunal mRNA expression levels of apo A-IV, ATP-citrate lyase (ACLY), pyruvate dehydrogenase (lipoamide) beta (PDHB), and sterol regulatory element-binding protein-1c (SREBP-1c) were significantly higher and acetyl-CoA carboxylase alpha (ACC1) and fatty-acid synthase lower than in Group 1 (MO-low-IR). In Group 3 (MO-metf-T2DM), only the ACLY and PDHB mRNA expressions were significantly higher than in Group 1 (MO-low-IR). The mRNA expression of most of the genes studied was significantly linked to insulin and glucose levels. The incubation of IEC with different doses of insulin and glucose produced a higher expression of diacylglycerol acyltransferase 2, microsomal triglyceride transfer protein, apo A-IV, SREBP-1c, and ACC1 when both, glucose and insulin, were at a high concentration. However, with only high insulin levels, there were higher apo A-IV, PDHB and SREBP-1c expressions, and a lower ACLY expression. In conclusion, the jejunum of MO-high-IR has a decreased mRNA expression of genes involved in de novo fatty-acid synthesis and an increase of genes involved in acetyl-CoA and lipoprotein synthesis. This effect is attenuated by metformin. In addition, the expression of most of the genes studied was found to be regulated by insulin.
Collapse
|
8
|
Octreotide promotes weight loss via suppression of intestinal MTP and apoB48 expression in diet-induced obesity rats. Nutrition 2013; 29:1259-65. [PMID: 23911221 DOI: 10.1016/j.nut.2013.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The goal of this study was to investigate the effect of octreotide on the expression of intestinal fat absorption-associated apolipoproteinB48 (apoB48), microsomal triglyceride transfer protein (MTP) and apolipoproteinAIV (apoAIV) in a high-fat diet-induced obesity rat model. METHODS Sprague-Dawley rats were placed into a control or high-fat diet group. Obese rats from the high-fat diet group were further divided into an obese group and an octreotide-treated group. Rats in the octreotide-treated group were subcutaneously injected with octreotide (40 μg/kg body weight) twice daily for 8 d. Body weight, fasting plasma glucose (FPG), fasting serum insulin, triglyceride (TG), total cholesterol (TC), and high density lipoprotein-cholesterol (HDL-C) were measured. Intestinal MTP, apoB48, and apoAIV expression levels were determined by real-time polymerase chain reaction, Western blot, or enzyme-linked immunosorbent assay analysis. RESULTS We found high-fat diet-induced obesity rats express more apoB, MTP, and apoAIV mRNA as well as apoB48 and MTP protein in the intestine than normal chow-fed rats. This observation occurred along with increased body weight, FPG, TG, TC, fasting serum insulin, and Homeostatic Model Assessment value. Octreotide intervention significantly decreased body weight and blood parameters, and down-regulated expression of apoB mRNA and apoB48 protein, as well as MTP mRNA and proteins. However, apoAIV mRNA was not significantly different between obese and octreotide-treated rats although it was decreased by 47%. CONCLUSION High-fat diet-induced obesity is associated with increased expression of apoB48, MTP, and apoAIV in the intestine. Octreotide intervention inhibited the overexpression of apoB48 and MTP, and consequently brought about reduced fat absorption and weight loss.
Collapse
|
9
|
Schwarz F, Roden M, Müssig K. Neues zur Pathobiochemie der diabetischen Dyslipidämie. DIABETOLOGE 2012. [DOI: 10.1007/s11428-012-0888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Dhote V, Joharapurkar A, Kshirsagar S, Dhanesha N, Patel V, Patel A, Raval S, Jain M. Inhibition of microsomal triglyceride transfer protein improves insulin sensitivity and reduces atherogenic risk in Zucker fatty rats. Clin Exp Pharmacol Physiol 2011; 38:338-44. [PMID: 21401695 DOI: 10.1111/j.1440-1681.2011.05513.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. Insulin-resistant states are commonly associated with a significantly higher risk of atherosclerosis. Insulin resistance has also been correlated with enhanced very low-density lipoprotein (VLDL) production, which is exacerbated by increased intestinal lipid synthesis and insulin-stimulated de novo lipogenesis. Microsomal triglyceride transfer protein (MTP) catalyses the critical step in the synthesis and secretion of VLDL and chylomicrons. The purpose of the present study was to test the hypothesis that chronic inhibition of MTP with a small molecule inhibitor would improve insulin sensitivity and reduce atherogenic risk in a genetic model of diabetic dyslipidaemia. 2. The in vivo activity of BMS-201038, a potent inhibitor of MTP, was evaluated in a model of hypertriglyceridemia induced by Triton WR1339 and corn oil in Zucker fatty rats. Triglyceride secretion rate was significantly reduced by a single dose of BMS-201038 by 35% at 0.3 mg/kg and 47% at 1 mg/kg, respectively. 3. Another group of Zucker fatty rats was dosed orally with BMS-201038 (0.3 and 1 mg/kg) for 14 days. Serum levels of triglycerides were reduced by 71% and 87%, non-esterified free fatty acids were reduced by 33% and 40%, and low-density lipoproteins by 26% and 29%, by 0.3 mg/kg and 1 mg/kg dose of BMS-201038, respectively. These serum lipid changes were accompanied by significant improvements in glucose tolerance and insulin sensitivity. In addition, lipid peroxidation in liver was reduced by 59% and 61%, and superoxide dismutase activity was increased by 11% and 45% by 0.3 mg/kg and 1 mg/kg dose of BMS-201038, respectively. Similar beneficial changes were found in aorta as well. 4. The present study provides evidence that inhibition of MTP with a small molecule inhibitor significantly improves dyslipidaemia associated with insulin resistance and reduces the atherosclerotic risk.
Collapse
Affiliation(s)
- Vipin Dhote
- Departments of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, Gujarat, India
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Warnakula S, Hsieh J, Adeli K, Hussain MM, Tso P, Proctor SD. New insights into how the intestine can regulate lipid homeostasis and impact vascular disease: frontiers for new pharmaceutical therapies to lower cardiovascular disease risk. Can J Cardiol 2011; 27:183-91. [PMID: 21459267 DOI: 10.1016/j.cjca.2010.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/07/2010] [Indexed: 01/27/2023] Open
Abstract
In recent years, evidence has emerged that the intestine is a significant regulator of systemic cholesterol homeostasis and can contribute to raised plasma cholesterol concentration. In this review we provide a context for the role the intestine may have in cardiovascular disease during conditions of chronic disease (insulin resistance, obesity). In particular, we highlight the physiological role of the intestine in lipid absorption, identify novel elements in enterocyte molecular biology, review the concept that chylomicrons and their remnants contribute to atherogenesis during chronic disease, and address new principles of chylomicron overproduction during conditions of insulin resistance including the associated hormonal control of the intestine during these conditions. Finally, we raise the issue of a growing need for novel lipid-lowering pharmaceutical therapies that target intestinal lipid metabolism.
Collapse
|
12
|
Hussain MM, Nijstad N, Franceschini L. Regulation of microsomal triglyceride transfer protein. ACTA ACUST UNITED AC 2011; 6:293-303. [PMID: 21808658 DOI: 10.2217/clp.11.21] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microsomal triglyceride transfer protein (MTP) facilitates the transport of dietary and endogenous fat by the intestine and liver by assisting in the assembly and secretion of triglyceride-rich apolipoprotein B-containing lipoproteins. Higher concentrations of apolipoprotein B lipoproteins predispose individuals to various cardiovascular and metabolic diseases such as atherosclerosis, diabetes, obesity and the metabolic syndrome. These can potentially be avoided by reducing MTP activity. In this article, we discuss regulation of MTP during development, cellular differentiation and diurnal variation. Furthermore, we focus on the regulation of MTP that occurs at transcriptional, post-transcriptional and post-translational levels. Transcriptional regulation of MTP depends on a few highly conserved cis-elements in the promoter. Several transcription factors that bind to these elements and either increase or decrease MTP expression have been identified. Additionally, MTP is regulated by macronutrients, hormones and other factors. This article will address the many ways in which MTP is regulated and advance the idea that reducing MTP levels, rather than its inhibition, might be an option to lower plasma lipids.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, The State University of New York, Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
13
|
Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing lipoproteins in fructose-fed animals. J Nutr Biochem 2009; 20:901-8. [DOI: 10.1016/j.jnutbio.2008.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 11/23/2022]
|
14
|
Abstract
PURPOSE OF REVIEW Hyperglycaemia and dyslipidaemia are closely linked, yet, there has been difficulty in demonstrating that lowering blood sugar reduces cardiovascular events. The pathways linking abnormalities in fatty acid metabolism, insulin resistance and diabetes with abnormalities in cholesterol metabolism are being rapidly unravelled with new understandings of the effect of antidiabetic drugs on lipoprotein metabolism. The purpose of this review is to explore the recent literature. RECENT FINDINGS Postprandial lipoproteins are now firmly established as a postprandial risk factor. Both insulin resistance and diabetes are associated with abnormalities in chylomicron production, and clearance and regulatory genes have been identified. Metformin, the most commonly used drug in type 2 diabetes, has multiple actions affecting numerous genes. The peroxisome proliferator-activated receptor-gamma regulation of insulin sensitivity and the important effects on lipoproteins are described. The entero-insulin axis and glucagon-like peptide-1 agonists, together with inhibitors of dipeptidyl peptidase 4 may have lipoprotein implications, but the evidence at present is sparse even though glucagon-like peptide-1 is found in high concentrations in the lymph. SUMMARY Although antidiabetic drugs affect lipid metabolism, there is little evidence to suggest that these drugs can prevent atherosclerosis in diabetes and some may promote atherosclerosis through their adverse effect on lipoproteins.
Collapse
Affiliation(s)
- Gerald H Tomkin
- Diabetes Institute of Ireland, Beacon Hospital, Dublin, Ireland.
| |
Collapse
|
15
|
Abstract
Very low-density lipoproteins (VLDL) are triglyceride-rich particles. VLDL is synthesized in hepatocytes and secreted from the liver in a pathway that is tightly regulated by insulin. Hepatic VLDL production is stimulated in response to reduced insulin action, resulting in increased release of VLDL into the blood under fasting conditions. Circulating VLDL serves as a vehicle for transporting lipids to peripheral tissues for energy homeostasis. Conversely, hepatic VLDL production is suppressed in response to increased insulin release after meals. This effect is critical for preventing prolonged excursion of postprandial plasma lipid profiles in normal individuals. In subjects with obesity and type 2 diabetes, the ability of insulin to regulate VLDL production becomes impaired due to insulin resistance in the liver, resulting in excessive VLDL secretion and accumulation of triglyceride-rich particles in the blood. Such abnormality in lipid metabolism characterizes the pathogenesis of hypertriglyceridemia and accounts for increased risk of coronary artery disease in obesity and type 2 diabetes. Nevertheless, the molecular basis that links insulin resistance to VLDL overproduction remains poorly understood. Our recent studies illustrate that the forkhead transcription factor FoxO1 acts in the liver to integrate hepatic insulin action to VLDL production. Augmented FoxO1 activity in insulin resistant livers promotes hepatic VLDL overproduction and predisposes to the development of hypertriglyceridemia. These new findings raise an important question: Is FoxO1 a therapeutic target for ameliorating hypertriglyceridemia? Here we discuss this question in the context of recent advances toward our understanding of the pathophysiology of hypertriglyceridemia.
Collapse
Affiliation(s)
- Adama Kamagate
- Department of Pediatrics, Division of Immunogenetics, Rangos Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
16
|
Kamagate A, Qu S, Perdomo G, Su D, Kim DH, Slusher S, Meseck M, Dong HH. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest 2008. [PMID: 18497885 DOI: 10.1172/jci32914.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Excessive production of triglyceride-rich VLDL is attributable to hypertriglyceridemia. VLDL production is facilitated by microsomal triglyceride transfer protein (MTP) in a rate-limiting step that is regulated by insulin. To characterize the underlying mechanism, we studied hepatic MTP regulation by forkhead box O1 (FoxO1), a transcription factor that plays a key role in hepatic insulin signaling. In HepG2 cells, MTP expression was induced by FoxO1 and inhibited by exposure to insulin. This effect correlated with the ability of FoxO1 to bind and stimulate MTP promoter activity. Deletion or mutation of the FoxO1 target site within the MTP promoter disabled FoxO1 binding and resulted in abolition of insulin-dependent regulation of MTP expression. We generated mice that expressed a constitutively active FoxO1 transgene and found that increased FoxO1 activity was associated with enhanced MTP expression, augmented VLDL production, and elevated plasma triglyceride levels. In contrast, RNAi-mediated silencing of hepatic FoxO1 was associated with reduced MTP and VLDL production in adult mice. Furthermore, we found that hepatic FoxO1 abundance and MTP production were increased in mice with abnormal triglyceride metabolism. These data suggest that FoxO1 mediates insulin regulation of MTP production and that augmented MTP levels may be a causative factor for VLDL overproduction and hypertriglyceridemia in diabetes.
Collapse
Affiliation(s)
- Adama Kamagate
- Rangos Research Center, Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kamagate A, Qu S, Perdomo G, Su D, Kim DH, Slusher S, Meseck M, Dong HH. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest 2008; 118:2347-64. [PMID: 18497885 DOI: 10.1172/jci32914] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 04/16/2008] [Indexed: 01/10/2023] Open
Abstract
Excessive production of triglyceride-rich VLDL is attributable to hypertriglyceridemia. VLDL production is facilitated by microsomal triglyceride transfer protein (MTP) in a rate-limiting step that is regulated by insulin. To characterize the underlying mechanism, we studied hepatic MTP regulation by forkhead box O1 (FoxO1), a transcription factor that plays a key role in hepatic insulin signaling. In HepG2 cells, MTP expression was induced by FoxO1 and inhibited by exposure to insulin. This effect correlated with the ability of FoxO1 to bind and stimulate MTP promoter activity. Deletion or mutation of the FoxO1 target site within the MTP promoter disabled FoxO1 binding and resulted in abolition of insulin-dependent regulation of MTP expression. We generated mice that expressed a constitutively active FoxO1 transgene and found that increased FoxO1 activity was associated with enhanced MTP expression, augmented VLDL production, and elevated plasma triglyceride levels. In contrast, RNAi-mediated silencing of hepatic FoxO1 was associated with reduced MTP and VLDL production in adult mice. Furthermore, we found that hepatic FoxO1 abundance and MTP production were increased in mice with abnormal triglyceride metabolism. These data suggest that FoxO1 mediates insulin regulation of MTP production and that augmented MTP levels may be a causative factor for VLDL overproduction and hypertriglyceridemia in diabetes.
Collapse
Affiliation(s)
- Adama Kamagate
- Rangos Research Center, Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hussain MM, Rava P, Pan X, Dai K, Dougan SK, Iqbal J, Lazare F, Khatun I. Microsomal triglyceride transfer protein in plasma and cellular lipid metabolism. Curr Opin Lipidol 2008; 19:277-84. [PMID: 18460919 DOI: 10.1097/mol.0b013e3282feea85] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent advances about the role of microsomal triglyceride transfer protein in plasma and tissue lipid homeostasis. RECENT FINDINGS Microsomal triglyceride transfer protein emerged as a phospholipid transfer protein and acquired triacylglycerol transfer activity during evolution from invertebrates to vertebrates. These activities are proposed to participate in 'nucleation' and 'desorption' steps during the biosynthesis of primordial apoB-containing lipoproteins. Microsomal triglyceride transfer protein also transfers phospholipids to the glycolipid antigen presentation molecule CD1d. Under physiologic conditions, plasma apoB-containing lipoproteins and microsomal triglyceride transfer protein expression exhibit diurnal variations synchronized by food and light. Microsomal triglyceride transfer protein is regulated at the transcriptional level. HNF4alpha is critical for its transcription. Other transcription factors along with coactivators and corepressors modulate microsomal triglyceride transfer protein expression. Reductions in microsomal triglyceride transfer protein mRNA and activity are related to steatosis in HCV-3 infected patients. CCl4 induces steatosis by enhancing proteasomal degradation of microsomal triglyceride transfer protein and can be partially avoided by inhibiting this degradation. Chemical antagonists cause hepatosteatosis, but this was not seen in the absence of fatty acid binding protein. SUMMARY Microsomal triglyceride transfer protein is a target to lower plasma lipids and to reduce inflammation in certain immune disorders. More knowledge is required, however, regarding its regulation and its role in the biosynthesis of apoB-containing lipoproteins and CD1d.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Stefano JT, de Oliveira CPMS, Corrêa-Giannella ML, de Lima VMR, de Sá SV, de Oliveira EP, de Mello ES, Giannella-Neto D, Alves VAF, Carrilho FJ. Nonalcoholic steatohepatitis (NASH) in ob/ob mice treated with yo jyo hen shi ko (YHK): effects on peroxisome proliferator-activated receptors (PPARs) and microsomal triglyceride transfer protein (MTP). Dig Dis Sci 2007; 52:3448-54. [PMID: 17394061 DOI: 10.1007/s10620-007-9810-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 02/13/2007] [Indexed: 01/09/2023]
Abstract
YHK has antioxidant properties, has a hypoglycemic effect, and may reduce plasma lipid levels. In this study, we examined the hepatic expression of PPAR-alpha and -gamma and MTP in ob/ob mice receiving or not receiving YHK. Ob/ob mice were assigned to receive oral YHK (20 mg/kg/day) fed solution (methionine/choline-deficient [MCD] diet+YHK group) or vehicle (MCD group) by gavage for 4 weeks. Liver fragments were collected for histologic examination and mRNA isolation. PPAR-alpha and -gamma and MTP gene expression was examined by RT-qPCR. YHK treatment was associated with NASH prevention, weight loss, and reduction of visceral fat and of serum concentrations of aminotransferases in comparison to the MCD group. YHK promoted an increment in PPAR-alpha and MTP and a decrement in PPAR-gamma mRNA contents. These findings suggest that modulation of PPAR-alpha and -gamma and MTP RNA expression may be implicated in the protective effect of YHK in experimental NASH, limiting hepatocyte lipid accumulation.
Collapse
Affiliation(s)
- José Tadeu Stefano
- University of Sao Paulo School of Medicine, Department of Gastroenterology (LIM-07), Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pan X, Hussain MM. Diurnal regulation of microsomal triglyceride transfer protein and plasma lipid levels. J Biol Chem 2007; 282:24707-19. [PMID: 17575276 DOI: 10.1074/jbc.m701305200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma lipids are maintained within a narrow physiologic range and exhibit circadian rhythmicity. Plasma triglyceride and cholesterol levels were high in the night due to changes in apolipoprotein B-lipoproteins in ad libitum fed rats and mice maintained in a 12-h photoperiod. Absorption of [(3)H]triolein or [(3)H]cholesterol was higher at 2400 h than at 1200 h, indicating that intestinal lipoprotein production shows diurnal variation. Moreover, intestinal microsomal triglyceride transfer protein (MTP) activity, protein, mRNA, and gene transcription showed diurnal variations and were high at 2400 h. Similar to the small intestine, hepatic MTP activity, protein, and mRNA levels also changed significantly within a day. MTP was induced in fasted animals soon after refeeding. When mice were subjected to restricted feeding, MTP expression was high at the expected time of food availability. In contrast, extended exposures to light and dark completely abolished rhythmicity in MTP expression and plasma lipid levels. These studies show that MTP expression and plasma lipid undergo diurnal regulation and exhibit peaks and nadirs at similar times and suggest that diurnal modulation of MTP is a major determinant of daily changes in plasma lipids. Furthermore, environmental factors, such as food and light, play an important role in MTP regulation.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | |
Collapse
|
21
|
Oliveira CPMS, Alves VAF, Lima VMR, Stefano JT, Debbas V, Sá SV, Wakamatsu A, Corrêa-Giannella ML, de Mello ES, Havaki S, Tiniakos DG, Marinos E, de Oliveira MG, Giannella-Neto D, Laurindo FR, Caldwell S, Carrilho FJ. Modulation of hepatic microsomal triglyceride transfer protein (MTP) induced by S-nitroso-N-acetylcysteine in ob/ob mice. Biochem Pharmacol 2007; 74:290-7. [PMID: 17524368 DOI: 10.1016/j.bcp.2007.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/05/2007] [Accepted: 04/09/2007] [Indexed: 01/03/2023]
Abstract
We evaluated the effects of a potent NO donor, S-nitroso-N-acetylcysteine (SNAC), on microsomal triglyceride transfer protein (MTP) expression in ob/ob mice. NAFLD was induced in male ob/ob mice using a methionine-choline deficient diet (MCD) concomitantly with oral SNAC fed solution (n=5) or vehicle (control; n=5) by gavage daily for 4 weeks. Livers were collected for histology and for assessing MTP by RT-qPCR, Western blot, immunohistochemistry and immunogold electron microscopy analyses. Histological analysis showed diffuse macro and microvesicular steatosis, moderate hepatocellular ballooning and moderate inflammatory infiltrate in ob/ob mice fed the MCD diet. With SNAC, mice showed a marked reduction in liver steatosis (p<0.01), in parenchymal inflammation (p=0.02) and in MTP protein immunoexpression in zone III (p=0.05). Moreover, SNAC caused reduction of MTP protein in Western blot analysis (p<0.05). In contrast, MTP mRNA content was significantly higher (p<0.05) in mice receiving SNAC. Immuno-electron microscopy showed MTP localized in the rough endoplasmic reticulum of hepatocytes in both treated and untreated groups. However with SNAC treatment, MTP was also observed surrounding fat globules. Histological improvement mediated by a nitric oxide donor is associated with significantly altered expression and distribution of MTP in this animal model of fatty liver disease. Further studies are in progress to examine possible mechanisms and to develop SNAC as a possible therapy for human fatty liver disease.
Collapse
|
22
|
Lally S, Owens D, Tomkin GH. Genes that affect cholesterol synthesis, cholesterol absorption, and chylomicron assembly: the relationship between the liver and intestine in control and streptozotosin diabetic rats. Metabolism 2007; 56:430-8. [PMID: 17292734 DOI: 10.1016/j.metabol.2006.10.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 10/13/2006] [Indexed: 11/27/2022]
Abstract
Chylomicrons and very low-density lipoproteins (VLDLs) are abnormal in diabetes. The aim of this study was to compare the expression of Niemann-Pick C1-like1 (NPC1L1), adenosine triphosphate-binding cassette (ABC) proteins G5 and G8, microsomal triglyceride transfer protein (MTP), and 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase in the fasting and fed states in nondiabetic Sprague-Dawley rats fed a high-fat/cholesterol diet and to examine the messenger RNA (mRNA) expression of these proteins in the liver and intestine of diabetic and control animals using streptozotosin diabetic cholesterol-fed rats. Chylomicron and VLDL concentrations were significantly lower after a 12-hour fast in fasted compared with fed rats (P < .02). There was no change with fasting in mRNA expression of any of the genes in the intestine, but MTP level was significantly lower in the liver after the 12-hour fast (P < .01). There was a positive correlation between intestinal NPC1L1 mRNA and chylomicron cholesterol (P < .01) and between hepatic NPC1L1 mRNA and VLDL cholesterol (P < .01). The diabetic rats had significantly higher chylomicron and VLDL cholesterol, triglyceride, and apolipoprotein B-48 and B-100 levels compared with control rats (P < .0001). They had significantly increased NPC1L1 and MTP mRNA in both liver and intestine (P < .05 and P < .0005, respectively), and ABCG5 and ABCG8 mRNA were significantly reduced (P < .05). HMGCoA reductase mRNA was increased in diabetic animals (P < .01). In conclusion, fasting intestinal gene expression reflects the fed state. In diabetes, intestinal and hepatic gene expression correlates with abnormalities in chylomicron and VLDL cholesterol.
Collapse
Affiliation(s)
- Sean Lally
- Department of Diabetes and Endocrinology, Trinity College, Dublin 18, Ireland
| | | | | |
Collapse
|
23
|
Qin B, Qiu W, Avramoglu RK, Adeli K. Tumor necrosis factor-alpha induces intestinal insulin resistance and stimulates the overproduction of intestinal apolipoprotein B48-containing lipoproteins. Diabetes 2007; 56:450-61. [PMID: 17259391 DOI: 10.2337/db06-0518] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is growing evidence suggesting intestinal insulin resistance and overproduction of apolipoprotein (apo) B48-containing chylomicrons in insulin-resistant states. In the current study, we investigated the potential role of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) in the development of insulin resistance and aberrant lipoprotein metabolism in the small intestine in a Syrian golden hamster model. TNF-alpha infusion decreased whole-body insulin sensitivity, based on in vivo euglycemic clamp studies in chow-fed hamsters. Analysis of intestinal tissue in TNF-alpha-treated hamsters indicated impaired phosphorylation of insulin receptor-beta, insulin receptor substrate-1, Akt, and Shc and increased phosphorylation of p38, extracellular signal-related kinase-1/2, and Jun NH(2)-terminal kinase. TNF-alpha infusion also increased intestinal production of total apoB48, triglyceride-rich lipoprotein apoB48, and serum triglyceride levels in both fasting and postprandial (fat load) states. The effects of TNF-alpha on plasma apoB48 levels could be blocked by the p38 inhibitor SB203580. Ex vivo experiments using freshly isolated enterocytes also showed TNF-alpha-induced p38 phosphorylation and intestinal apoB48 overproduction, effects that could be blocked by SB203580. Interestingly, TNF-alpha increased the mRNA and protein mass of intestinal microsomal triglyceride transfer protein without altering apoB mRNA levels. Enterocytes were found to have detectable levels of both TNF-alpha receptor types (p55 and p75), and antibodies against either of the two TNF-alpha receptors partially blocked the stimulatory effect of TNF-alpha on apoB48 production and p38 phosphorylation. In summary, these data suggest that intestinal insulin resistance can be induced in hamsters by TNF-alpha infusion, and it is accompanied by intestinal overproduction of apoB48-containing lipoproteins. TNF-alpha-induced stimulation of intestinal lipoprotein production appears to be mediated via TNF-alpha receptors and the p38 mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Bolin Qin
- Division of Clinical Biochemistry, Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | |
Collapse
|
24
|
Lally S, Owens D, Tomkin GH. The different effect of pioglitazone as compared to insulin on expression of hepatic and intestinal genes regulating post-prandial lipoproteins in diabetes. Atherosclerosis 2006; 193:343-51. [PMID: 17109865 DOI: 10.1016/j.atherosclerosis.2006.09.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/30/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022]
Abstract
This study investigates lipoprotein composition in diabetes before and after treatment with insulin or pioglitazone and its relationship to gene expression of five genes found in liver and intestine which are involved in cholesterol homeostasis. Thirty zucker diabetic fatty fa/fa and 10 lean rats were examined. mRNA for 3-hydroxy3-methylglutaryl coenzyme A reductase (HMGCoA), microsomal triglyceride transfer protein (MTTP), Niemann Pick C1-like 1 (NPC1L1) and ATP binding cassette transporters (ABC) G5 and G8 was determined using real-time, reverse transcriptase (RT-PCR). Cholesterol, triglyceride, apo B48 and apo B100 were elevated in chylomicrons and very low density lipoproteins (VLDL) of untreated diabetic animals (p<0.02). For similar blood glucose pioglitazone was more effective than insulin in normalising the lipoproteins. In diabetic animals, HMGCoA reductase, MTTP and NPC1L1 mRNA were significantly elevated (p<0.02) and ABCG5 and ABCG8 were significantly reduced (p<0.02) in the liver. Pioglitazone significantly reduced hepatic MTTP and NPC1L1 mRNA (p<0.0001) and significantly increased ABCG5 and G8 mRNA (p<0.0001) as compared to insulin. In conclusion diabetes was associated with major changes in mRNA levels of proteins involved in the regulation of post-prandial lipoproteins. Pioglitazone and insulin have different effects on post-prandial lipoprotein metabolism in part due their effect on genes regulating cholesterol synthesis and lipoprotein assembly.
Collapse
Affiliation(s)
- S Lally
- Department of Diabetes and Endocrinology, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
25
|
Allister EM, James AP, Watts GF, Barrett PHR, Mamo JCL. Effect of an acute hyperinsulinaemic clamp on post-prandial lipaemia in subjects with insulin resistance. Eur J Clin Invest 2006; 36:489-96. [PMID: 16796606 DOI: 10.1111/j.1365-2362.2006.01651.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Obese, insulin-resistant individuals have raised levels of intestinal and hepatic lipoproteins. Insulin decreases the production of hepatic lipoproteins in vivo and so this study aimed to investigate whether an acute hyperinsulinaemic, euglycaemic clamp could correct fasting and post-prandial dyslipidaemia. SUBJECTS AND METHODS In a randomized, cross-over design, post-prandial lipaemia was compared in subjects infused either with insulin to achieve a steady-state concentration of 100 mU L(-1) or with saline. Nine obese (Body Mass Index > 26 kg m(-2); waist : hip > 1.0) insulin-resistant (Homeostatic Model Assessment score > 2.0) male subjects were given an oral fat load 3 h after the infusions began, and sampling continued for 6 h. Plasma apoB-48, triglyceride and nonesterified fatty acid (NEFA) were measured hourly. RESULTS Average steady-state serum insulin levels during the hyperinsulinaemic clamp were 123 +/- 4.4 mU L(-1). A paired analysis showed no net effect of insulin on post-prandial chylomicron metabolism when calculated as the (apoB-48) incremental area under the curve (IAUC). However, there was a trend towards a delay in the apoB-48 peak, consistent with possible changes in the rates of chylomicron biogenesis, lipolysis and/or clearance. Similarly, post-prandial lipaemia (depicted as triglyceride IAUC) was similar for subjects infused with insulin or saline, but the peak post-prandial response was delayed during insulin infusion. The NEFA were rapidly decreased by 83% after 3 h of insulin infusion. CONCLUSIONS In obesity and insulin resistance, short-term changes in plasma insulin do not appreciably exert a regulatory effect on exogenously-derived post-prandial lipoproteins. The data suggest that hyperchylomicronaemia in insulin-resistant subjects is a result of chronic aberrations in insulin-mediated regulation of post-prandial lipid metabolism.
Collapse
Affiliation(s)
- E M Allister
- ATN Centre for Metabolic Fitness, Division of Health Sciences, Curtin University of Technology, Kent Street, Bentley, Western Australia 6102
| | | | | | | | | |
Collapse
|
26
|
Lally S, Tan CY, Owens D, Tomkin GH. Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein. Diabetologia 2006; 49:1008-16. [PMID: 16518588 DOI: 10.1007/s00125-006-0177-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 12/03/2005] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS The aim of the present study was to examine the relationship between chylomicron composition and expression of genes that regulate chylomicron production in the intestine. We examined expression of the following: (1) Niemann-Pick C1-like 1 (NPC1L1), which regulates cholesterol absorption; (2) ATP-binding cassette transporters G5 and G8 (ABCG5, ABCG8), which regulate cholesterol homeostasis through their ability to excrete enterocyte cholesterol back into the lumen of the intestine; and (3) microsomal triglyceride transfer protein (MTTP), which packages the chylomicron particle by assembling cholesterol, triglyceride, phospholipids and apolipoprotein B48. SUBJECTS, MATERIALS AND METHODS Type 2 diabetic (26) and non-diabetic (21) patients were examined. Levels of NPC1L1, ABCG5 and ABCG8 and MTTP mRNA were measured in duodenal biopsies by real-time PCR. Lipoproteins were isolated by sequential ultracentrifugation. RESULTS Diabetic patients had more NPC1L1 mRNA than the control subjects (p<0.02). Expression of ABCG5 and ABCG8 mRNA was lower in the diabetic patients (p<0.05) and MTTP expression was increased (p<0.05). There was a positive correlation between NPLC1L1 and MTTP mRNA (p<0.01) and a negative correlation between NPC1L1 and ABCG5 mRNA (p<0.001). Diabetic patients on statin therapy had increased ABCG5 and ABCG8 mRNA compared to those not on statin (p<0.02 and p<0.05) and less MTTP mRNA than those not on statin (p<0.05). CONCLUSIONS/INTERPRETATION This study demonstrates that in type 2 diabetes there are important alterations to the expression of intestinal genes that regulate cholesterol absorption and chylomicron synthesis. In diabetic patients statin therapy is associated with reduced MTTP expression and increased ABCG5 and ABCG8 mRNA. The study suggests new mechanisms to explain postprandial diabetic dyslipidaemia and the beneficial effect of statins.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Adenosine Triphosphate/metabolism
- Aged
- Biopsy
- Carrier Proteins/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/physiopathology
- Eating
- Fasting
- Female
- Gastroscopy
- Gene Expression Regulation
- Glycated Hemoglobin/analysis
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Lipoproteins, LDL/blood
- Male
- Membrane Proteins/genetics
- Membrane Transport Proteins
- Middle Aged
- Polymerase Chain Reaction
- Postprandial Period
- RNA, Messenger/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- S Lally
- Department of Diabetes and Endocrinology, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
27
|
Phillips C, Mullan K, Owens D, Tomkin GH. Intestinal microsomal triglyceride transfer protein in type 2 diabetic and non-diabetic subjects: the relationship to triglyceride-rich postprandial lipoprotein composition. Atherosclerosis 2005; 187:57-64. [PMID: 16183064 DOI: 10.1016/j.atherosclerosis.2005.08.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2005] [Revised: 08/12/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Microsomal triglyceride transfer protein (MTP) is responsible for the assembly of the triglyceride-rich lipoproteins (TRLs) and is increased in diabetic animal models. Human intestinal MTP expression has not been previously reported. This study examined the relationship between intestinal MTP gene expression and postprandial TRL composition in diabetic and non-diabetic subjects. Since the MTP promoter region has a sterol response element the effect of statins on intestinal MTP mRNA was analysed. METHODS Twenty-seven diabetic and 24 non-diabetic subjects were examined. Duodenal biopsies were taken during gastroscopy and MTP mRNA was measured by RNase protection assay. Postprandial lipoprotein composition was determined. RESULTS Diabetic subjects had significantly higher MTP mRNA than non-diabetic subjects. Statin therapy was associated with lower MTP mRNA in both groups. In the untreated diabetic patients compared to the untreated non-diabetic patients MTP mRNA was 25.0 +/- 25.1 amol/microg versus 13.1 +/- 5.6 amol/microg total RNA (p < 0.05). In the statin-treated diabetic group compared to statin-treated non-diabetic group MTP mRNA was 17.7 +/- 8.6 amol/microg versus 5.8 +/- 4.1 amol/microg total RNA (p < 0.05). In the whole group there was a positive correlation between the MTP mRNA and postprandial chylomicron cholesterol/B48 (r = 0.36, p < 0.01). CONCLUSIONS This is the first study to demonstrate increased MTP expression in diabetic subjects. MTP mRNA expression was lower in statin-treated patients confirming the suggestion that the insulin and sterol response elements of the MTP gene are important regulators of MTP transcription in diabetes. Our results show that MTP plays a central role in regulating the cholesterol content of the chylomicron particle.
Collapse
Affiliation(s)
- Catherine Phillips
- Department of Diabetes and Endocrinology, Trinity College Dublin and The Adelaide and Meath Hospital, Diabetes Research Foundation, Clontra, Shankill, Dublin, Ireland
| | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The assembly of intestinal lipoproteins is critical for the transport of fat and fat-soluble vitamins. In this review we propose a nomenclature for these lipoproteins and have summarized recent data about their intracellular assembly and factors that modulate their secretion. RECENT FINDINGS The assembly and secretion of intestinal lipoproteins increases with the augmented synthesis of apoB, apoAIV and lipids. Chylomicron assembly begins with the formation of primordial, phospholipid-rich particles in the membrane, and their conversion to large chylomicrons occurs in the lumen of the smooth endoplasmic reticulum. Chylomicrons are transported from the endoplasmic reticulum via specialized vesicles to the Golgi for secretion. The identification of genetic mutations in chylomicron retention disease indicates that Sar1b may play a critical role in this process. In addition to chylomicron assembly, intestinal cells have been shown to transport dietary cholesterol via apoB-independent pathways, such as efflux. SUMMARY Understanding the mechanisms involved in the intracellular transport of chylomicrons and chylomicron-independent secretion pathways are expected to be the next frontiers in the field of intestinal lipoprotein assembly and secretion.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA.
| | | | | | | |
Collapse
|
29
|
Takase H, Shoji K, Hase T, Tokimitsu I. Effect of diacylglycerol on postprandial lipid metabolism in non-diabetic subjects with and without insulin resistance. Atherosclerosis 2005; 180:197-204. [PMID: 15823293 DOI: 10.1016/j.atherosclerosis.2004.11.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2003] [Revised: 11/22/2004] [Accepted: 11/22/2004] [Indexed: 11/19/2022]
Abstract
The effects of diacylglycerol ingestion on postprandial lipid metabolism in non-diabetic subjects with and without insulin resistance were investigated. This was single dose ingestion study, in a double blind cross over manner and postprandial lipid concentrations were compared between diacylglycerol oil (DAG) and triacylglycerol oil (TAG) ingestion. The subjects were 18 male volunteers and homeostasis model assessment (HOMA-R) was used to classify them into insulin sensitive (IS, n=10, HOMA-R<2.0) and insulin resistant (IR, n=8, HOMA-R> or =2.0) groups. Fasting serum triglycerides (TG) and remnant-like particle cholesterol (RLP-C) correlated with HOMA-R and were significantly higher in the IR as compared to the IS group. Postprandial increments of TG and RLP-C after DAG ingestion were significantly lower as compared to those after TAG ingestion. In a case of TAG ingestion, their increments positively correlated with HOMA-R and were significantly higher in the IR as compared with the IS group. In contrast, their increments remained constant after DAG ingestion in both groups. In the IR group, the postprandial lipidemia were reduced after DAG ingestion to about half of those after TAG ingestion. In conclusion, DAG reduced postprandial lipidemia especially in subjects with insulin resistance and may be beneficial in preventing atherosclerosis and related diseases.
Collapse
Affiliation(s)
- Hideto Takase
- Health Care Products Research Laboratories No. 1, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan.
| | | | | | | |
Collapse
|
30
|
Lewis GF, Uffelman K, Naples M, Szeto L, Haidari M, Adeli K. Intestinal lipoprotein overproduction, a newly recognized component of insulin resistance, is ameliorated by the insulin sensitizer rosiglitazone: studies in the fructose-fed Syrian golden hamster. Endocrinology 2005; 146:247-55. [PMID: 15486228 DOI: 10.1210/en.2004-1143] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated whether intestinal lipoprotein overproduction in a fructose-fed, insulin-resistant hamster model is prevented with insulin sensitization. Syrian Golden hamsters were fed either chow, 60% fructose for 5 wk, chow for 5 wk with the insulin sensitizer rosiglitazone added for the last 3 wk, or 60% fructose plus rosiglitazone. In vivo Triton studies showed a 2- to 3-fold increase in the large (Svedberg unit > 400) and smaller (Sf 100-400) triglyceride-rich lipoprotein particle apolipoprotein B48 (apoB48) but not triglyceride secretion with fructose feeding in the fasted state (P < 0.01) and partial normalization with rosiglitazone in fructose-fed hamsters. Ex vivo pulse-chase labeling of enterocytes confirmed the oversecretion of apoB48 lipoproteins with fructose feeding. Intestinal lipoprotein oversecretion was associated with increased expression of microsomal triglyceride transfer protein expression. With rosiglitazone treatment of fructose-fed hamsters, there was approximately 50% reduction in apoB48 secretion from primary cultured enterocytes and amelioration of the elevated microsomal triglyceride transfer protein mass and activity in fructose-fed hamsters. In contrast, in the postprandial state, the major differences between nutritional and drug intervention protocols were evident in triglyceride-rich lipoprotein triglyceride and not apoB48 secretion rates. The data suggest that intestinal lipoprotein overproduction can be ameliorated with the insulin sensitizer rosiglitazone.
Collapse
Affiliation(s)
- Gary F Lewis
- Department of Medicine, Division of Endocrinology and Metabolism, Hospital for Sick Children, Univeristy of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
31
|
Ueshima K, Akihisa-Umeno H, Sawada M, Nagayoshi A, Ozaki T, Takakura S, Manda T, Mutoh S. Possible involvement of enhanced intestinal microsomal triglyceride transfer protein (MTP) gene expression in acceleration of lipid absorption by a western-type diet in apolipoprotein E knockout mice. Life Sci 2004; 76:179-90. [PMID: 15519363 DOI: 10.1016/j.lfs.2004.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 05/15/2004] [Indexed: 11/25/2022]
Abstract
Evidence has been accumulating that triglyceride (TG)-rich lipoproteins are atherogenic. Microsomal TG transfer protein (MTP) is essential for the synthesis of both chylomicron in the intestine and very low density lipoprotein in the liver. To investigate whether a western-type diet, a so-called atherogenic diet, alters intestinal lipid absorption via change in intestinal MTP expression, the effects of two different diet regimes in apolipoprotein-E knockout (apoE KO) mice were examined. Male apoE KO mice aged 6 weeks were fed a western-type diet or a chow diet for 5 weeks. Then, measurement of plasma TG levels after oral fat-loading and analysis of jejunal MTP gene expression were performed. Both the maximum level and the 0-8 h area under the curve (AUC) of the increase in TG levels in the western-type diet-fed mice were almost three times greater than those in the chow diet-fed mice. MTP gene expression, determined by reverse transcriptase-polymerase chain reaction (RT-PCR), was obviously enhanced in the western-type diet-fed mice compared to the chow diet-fed mice. These results suggest that the enhancement of intestinal MTP gene expression is involved in the accelerated lipid absorption in the western-type diet-fed mice.
Collapse
Affiliation(s)
- Koji Ueshima
- Medicinal Biology Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Kashima 2-1-6, Yodogawa-ku, Osaka 532-8514, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lewis GF, Naples M, Uffelman K, Leung N, Szeto L, Adeli K. Intestinal lipoprotein production is stimulated by an acute elevation of plasma free fatty acids in the fasting state: studies in insulin-resistant and insulin-sensitized Syrian golden hamsters. Endocrinology 2004; 145:5006-12. [PMID: 15271878 DOI: 10.1210/en.2003-1559] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is not known whether intestinal lipoprotein production is stimulated by an acute elevation of plasma free fatty acids (FFA). We examined the effect of an intralipid and heparin infusion on the intestinal lipoprotein production rate (PR) in insulin-sensitive [chow-fed (CHOW)], insulin-resistant [60% fructose (FRUC) or 60% fat-fed (FAT)], and insulin-sensitized [FRUC or FAT plus rosiglitazone (RSG)-treated] Syrian Golden hamsters. After 5 wk of treatment, overnight-fasted hamsters underwent in vivo Triton WR-1339 studies for measurement of apolipoprotein B48 (apoB48) PR in large (Svedberg unit, >400) and small (Svedberg unit, 100-400) lipoprotein fractions, with an antecedent 90-min infusion of 20% intralipid and heparin (IH) to raise plasma FFA levels approximately 5- to 8-fold vs. those in the saline control study. IH markedly increased apoB48 PR in CHOW by 3- to 5-fold, which was confirmed ex vivo in pulse-chase experiments in primary cultured hamster enterocytes. Oleate, but not glycerol, infusion was associated with a similar elevation of apoB48 PR as IH. In FRUC and FAT, basal (saline control) apoB48 PR was approximately 4-fold greater than that in CHOW; there was no additional stimulation with IH in vivo and only minimal additional stimulation ex vivo. RSG partially normalized basal apoB48 PR in FAT and FRUC, and PR was markedly stimulated with IH. We conclude that intestinal lipoprotein production is markedly stimulated by an acute elevation of plasma FFAs in insulin-sensitive hamsters, in which basal production is low, but minimally in insulin-resistant hamsters, in which basal production is already elevated. With RSG treatment, basal PR is partially normalized, and they become more susceptible to the acute FFA stimulatory effect.
Collapse
Affiliation(s)
- Gary F Lewis
- Toronto General Hospital, 200 Elizabeth Street, EN11-229, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Phillips C, Mullan K, Owens D, Tomkin GH. Microsomal triglyceride transfer protein polymorphisms and lipoprotein levels in type 2 diabetes. QJM 2004; 97:211-8. [PMID: 15028851 DOI: 10.1093/qjmed/hch040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Microsomal triglyceride transfer protein (MTP) regulates the assembly of chylomicrons in the intestine and very-low-density lipoprotein (VLDL) in the liver. Common polymorphisms have been described that do not affect lipoproteins in non-diabetic subjects. Their effect in diabetes has not been described in a Caucasian population. AIM To investigate the association of these three common polymorphisms with lipoproteins in type 2 diabetes. METHODS Eighty-two patients consumed a high-fat test meal. Chylomicron and VLDL apoB48, apoB100, cholesterol, triglycerides and phospholipids were measured fasting, and at 4 and 6 h postprandially. MTP genotyping was performed by PCR-RFLP. RESULTS Thirty-three subjects were heterozygous for the -493 G/T substitution. These patients had significantly lower LDL cholesterol (3.0 +/- 0.2 vs. 3.5 +/- 0.1 mmol/l, p < 0.02). In the postprandial period, they had higher levels of apoB48 in the VLDL fraction (4 h, 7.0 +/- 1.4 vs. 2.9 +/- 0.4 microg/ml plasma, p < 0.002; 6 h, 6.4 +/- 1.0 vs. 3.5 +/- 0.5 microg/ml plasma, p < 0.05). In the VLDL fraction there was significantly less cholesterol at 4 and 6 h (p < 0.05). The -400 A/T substitution gave very similar lipoprotein results, but there was significant linkage dysequilibrium between the two polymorphisms. No association was found between the -164 T/C polymorphism and either plasma lipids or the postprandial lipid profile. ApoE genotype was also examined, but did not influence the above results. DISCUSSION The common -493 G/T MTP polymorphism is associated with changes in VLDL and LDL in Type 2 diabetic patients. The importance of the changes in apoB48-containing small particles requires further investigation. The significantly lower LDL cholesterol suggests that this polymorphism may confer protection against atherosclerosis in type 2 diabetes.
Collapse
Affiliation(s)
- C Phillips
- Department of Diabetes and Endocrinology, Trinity College Dublin and The Adelaide and Meath Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
34
|
Johanson EH, Jansson PA, Gustafson B, Lönn L, Smith U, Taskinen MR, Axelsen M. Early alterations in the postprandial VLDL1 apoB-100 and apoB-48 metabolism in men with strong heredity for type 2 diabetes. J Intern Med 2004; 255:273-9. [PMID: 14746565 DOI: 10.1046/j.1365-2796.2003.01281.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To study the postprandial triglyceride-rich lipoprotein (TRL) metabolism, specifically the concentrations of very low-density lipoproteins (VLDL); from intestine (apoB-48) and liver (apoB-100), in men with normal fasting triglycerides but at increased risk of developing type 2 diabetes. DESIGN Cross-sectional study. SUBJECTS AND SETTINGS Sixteen healthy men with at least two first-degree relatives with type 2 diabetes were individually matched with 16 control subjects without known diabetes heredity for: age, body mass index, and fasting triglyceride level. They underwent an 8-h meal tolerance test (919 kcal, 51 g fat) during which lipoproteins were separated by density gradient ultracentrifugation. They were characterized by euglycaemic hyperinsulinaemic clamp, peak VO2, 7-day diet registration and computed tomography. RESULTS The relatives were, as expected, more insulin resistant than the controls and had increased concentration of postprandial VLDL1 particles (49% higher for VLDL1 apoB-48, P = 0.04 and 21% higher for VLDL1 apoB-100, P = 0.048). The elevation was related to insulin sensitivity, but not to lifestyle and body composition. Moreover, the concentration of postprandial triglycerides in VLDL1 fraction was inversely related to low-density lipoprotein (LDL) size in both relatives (rs = -0.60, P = 0.03) and controls (rs = -0.72, P = 0.004). There were no differences in the concentration of triglycerides or apoB-48 and apoB-100 particles in the other fractions (plasma, chylomicron or VLDL2). CONCLUSION Increased postprandial concentration of TRLs in the VLDL1 fraction seems to be present at an early stage in the development of diabetes and probably contributes to the excess risk of future coronary events in insulin-resistant men.
Collapse
Affiliation(s)
- E H Johanson
- The Lundberg Laboratory for Diabetes Research, Department of Internal Medicine, Sahlgrenska Academy at Göteborg University, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
35
|
Améen C, Oscarsson J. Sex difference in hepatic microsomal triglyceride transfer protein expression is determined by the growth hormone secretory pattern in the rat. Endocrinology 2003; 144:3914-21. [PMID: 12933665 DOI: 10.1210/en.2003-0518] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microsomal triglyceride transfer protein (MTP) is essential and rate limiting for the assembly and secretion of apoB-containing lipoproteins. The aim of this study was to investigate whether gender and GH influence hepatic MTP expression. We used intact, gonadectomized, or hypophysectomized (Hx) adult Sprague Dawley rats. Gonadal steroids and insulin were given as a daily sc injection for 7 d. GH was given for 7 d either as a continuous infusion or as two daily injections (2 x GH) to mimic the feminine and masculine GH secretory patterns, respectively. MTP mRNA and MTP and protein disulfide isomerase protein expression was measured. MTP mRNA, and protein expression was higher in females than in males. Gonadectomy abolished the sex difference, and treatment with gonadal steroids restored the sex difference in MTP mRNA levels. MTP mRNA expression was not influenced in either sex by 2 wk of cholesterol (1% wt/wt) feeding. Hx decreased MTP mRNA in females but not in males. A continuous GH infusion increased MTP mRNA and protein expression in intact males but not in females. A continuous GH infusion to Hx females normalized MTP mRNA and protein expression, but 2 x GH had no effect. Also, insulin treatment had no effect. In summary, MTP expression is sex differentiated and regulated by the sexually dimorphic secretory pattern of GH at the level of mRNA. These results are important for the understanding of the effects of gender and GH in the regulation of very low-density lipoprotein assembly and secretion.
Collapse
Affiliation(s)
- Caroline Améen
- Department of Physiology and Pharmacology and Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden.
| | | |
Collapse
|
36
|
Chen SPL, Tan KCB, Lam KSL. Effect of the microsomal triglyceride transfer protein -493 G/T polymorphism and type 2 diabetes mellitus on LDL subfractions. Atherosclerosis 2003; 167:287-92. [PMID: 12818411 DOI: 10.1016/s0021-9150(03)00004-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genetic variation in the microsomal triglyceride transfer protein (MTP) affects the secretion pattern and plasma concentration of apolipoprotein (aopB)-containing lipoproteins and a common functional -493 G/T polymorphism has been reported to influence plasma lipids levels. Recent data suggest that carriers of the T allele might be more sensitive to detrimental factors such as features of the insulin resistance syndrome. Since type 2 diabetes is associated with obesity and insulin resistance, the present study investigated the effect of this polymorphism on plasma lipids, apoB and LDL subfractions in 281 Chinese type 2 diabetic subjects and 364 non-diabetic controls. The frequency of the rare T allele was 0.162 and 0.126 in subjects with and without diabetes respectively. There were no differences in the effect of the polymorphism on plasma lipids and apoB in the two groups. However, the TT genotype was associated with a higher concentration of small dense LDL-III than the GT or GG variants in the diabetic subjects (P=0.01) whereas no such effect was observed in the controls. In the diabetic patients, age, plasma triglyceride and the MTP genotype were independent determinants of LDL-III concentrations in linear regression analysis (R(2)=10%, P=0.04) whereas in the controls, only plasma triglyceride and age were important determinants (R(2)=15%, P=0.01). In conclusion, the -493 G/T polymorphism only has a minor effect on LDL subfraction pattern in Chinese and the effect is only apparent in the presence of type 2 diabetes.
Collapse
Affiliation(s)
- S P L Chen
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | |
Collapse
|
37
|
Abstract
The three major components of dyslipidemia associated with the metabolic syndrome are increased fasting and postprandial triglyceride-rich lipoproteins (TRLs), decreased high-density lipoprotein (HDL), and increased small, dense low-density lipoprotein (LDL) particles. Insulin resistance and compensatory hyperinsulinemia lead to overproduction of very low-density lipoprotein particles. A relative deficiency of lipoprotein lipase, an insulin-sensitive enzyme, is partly responsible for the decreased clearance of fasting and postprandial TRLs, and the decreased production of HDL particles. The resulting increased concentration of cholesteryl ester-rich fasting and postprandial TRLs is the central lipoprotein abnormality of the metabolic syndrome. The increase of small, dense LDL particles, and decrease of large, buoyant HDL particles are consequential events. All these lipoprotein defects contribute largely to the increased cardiovascular disease risk in individuals with insulin resistance. Peroxisome proliferator-activated receptor (PPAR)a, PPARg, and PPARd agonists seem to improve dyslipidemia of the metabolic syndrome by regulating the expression of important genes involved in the deranged lipoprotein metabolism associated with insulin resistance.
Collapse
Affiliation(s)
- Giacomo Ruotolo
- Penn Medical Laboratory, MedStar Research Institute, 108 Irving Street NW, Washington, DC 20010, USA.
| | | |
Collapse
|
38
|
Tomkin GH. Hyperglycaemia: the relation to dyslipidaemia and atherosclerosis. Ir J Med Sci 2002; 171:161-4. [PMID: 15736358 DOI: 10.1007/bf03170507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G H Tomkin
- Department of Diabetes and Endocrinology, Trinity College Dublin, The Adelaide and Meath Hospital, Dublin, Ireland.
| |
Collapse
|
39
|
Tomkin GH. Robert Graves Memorial Lecture. Diabetes and atherosclerosis--a gut review. Ir J Med Sci 2002; 171:105-9. [PMID: 12173881 DOI: 10.1007/bf03168963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- G H Tomkin
- Department of Medicine, The Adelaide and Meath Hospital, Trinity College, Dublin, Ireland
| |
Collapse
|