1
|
Qiao X, Hu Z, Xiong F, Yang Y, Peng C, Wang D, Li X. Lipid metabolism reprogramming in tumor-associated macrophages and implications for therapy. Lipids Health Dis 2023; 22:45. [PMID: 37004014 PMCID: PMC10064535 DOI: 10.1186/s12944-023-01807-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The tumormicroenvironment (TME) plays a key role in tumor progression. Tumor-associated macrophages (TAMs), which are natural immune cells abundantin the TME, are mainly divided into the anti-tumor M1 subtype and pro-tumor M2 subtype. Due to the high plasticity of TAMs, the conversion of the M1 to M2 phenotype in hypoxic and hypoglycemic TME promotes cancer progression, which is closely related to lipid metabolism. Key factors of lipid metabolism in TAMs, including peroxisome proliferator-activated receptor and lipoxygenase, promote the formation of a tumor immunosuppressive microenvironment and facilitate immune escape. In addition, tumor cells promote lipid accumulation in TAMs, causing TAMs to polarize to the M2 phenotype. Moreover, other factors of lipid metabolism, such as abhydrolase domain containing 5 and fatty acid binding protein, have both promoting and inhibiting effects on tumor cells. Therefore, further research on lipid metabolism in tumors is still required. In addition, statins, as core drugs regulating cholesterol metabolism, can inhibit lipid rafts and adhesion of tumor cells, which can sensitize them to chemotherapeutic drugs. Clinical studies on simvastatin and lovastatin in a variety of tumors are underway. This article provides a comprehensive review of the role of lipid metabolism in TAMs in tumor progression, and provides new ideas for targeting lipid metabolism in tumor therapy.
Collapse
Affiliation(s)
- Xuehan Qiao
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhangmin Hu
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Xiong
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yufei Yang
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Peng
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Xiaoqin Li
- Department of Medical Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
2
|
Gudgeon J, Marín-Rubio JL, Trost M. The role of macrophage scavenger receptor 1 (MSR1) in inflammatory disorders and cancer. Front Immunol 2022; 13:1012002. [PMID: 36325338 PMCID: PMC9618966 DOI: 10.3389/fimmu.2022.1012002] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Macrophage scavenger receptor 1 (MSR1), also named CD204, holds key inflammatory roles in multiple pathophysiologic processes. Present primarily on the surface of various types of macrophage, this receptor variably affects processes such as atherosclerosis, innate and adaptive immunity, lung and liver disease, and more recently, cancer. As highlighted throughout this review, the role of MSR1 is often dichotomous, being either host protective or detrimental to the pathogenesis of disease. We will discuss the role of MSR1 in health and disease with a focus on the molecular mechanisms influencing MSR1 expression, how altered expression affects disease process and macrophage function, the limited cell signalling pathways discovered thus far, the emerging role of MSR1 in tumour associated macrophages as well as the therapeutic potential of targeting MSR1.
Collapse
Affiliation(s)
| | - José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
3
|
Xie Y, Jia Y, Li Z, Hu F. Scavenger receptor A in immunity and autoimmune diseases: Compelling evidence for targeted therapy. Expert Opin Ther Targets 2022; 26:461-477. [PMID: 35510370 DOI: 10.1080/14728222.2022.2072729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Scavenger receptor A (SR-A) is reported to be involved in innate and adaptive immunity and in recent years, the soluble form of SR-A has also been identified. Intriguingly, SR-A displays double-edged sword features in different diseases. Moreover, targeted therapy on SR-A, including genetic modulation, small molecule inhibitor, inhibitory peptides, fucoidan, and blocking antibodies, provides potential strategies for treatment. Currently, therapeutics targeting SR-A are in preclinical studies and clinical trials, revealing great perspectives in future immunotherapy. AREAS COVERED Through searching PubMed (January 1979-March 2022) and clinicaltrials.gov, we review most of the research and clinical trials involving SR-A. This review briefly summarizes recent study advances on SR-A, with particular concern on its role in immunity and autoimmune diseases. EXPERT OPINION Given the emerging evidence of SR-A in immunity, its targeted therapy has been studied in various diseases, especially autoimmune diseases. However, many challenges still remain to be overcome, such as the double-sworded effects and the specific isoform targeting. For further clinical success of SR-A targeted therapy, the crystal structure illustration and the dual function discrimination of SR-A should be further investigated. Nevertheless, although challenging, targeting SR-A would be a potential effective strategy in the treatment of autoimmune diseases and other immune-related diseases.
Collapse
Affiliation(s)
- Yang Xie
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Peking, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, Peking, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Peking, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, Peking, China
| |
Collapse
|
4
|
Moore KJ, Koplev S, Fisher EA, Tabas I, Björkegren JLM, Doran AC, Kovacic JC. Macrophage Trafficking, Inflammatory Resolution, and Genomics in Atherosclerosis: JACC Macrophage in CVD Series (Part 2). J Am Coll Cardiol 2019; 72:2181-2197. [PMID: 30360827 DOI: 10.1016/j.jacc.2018.08.2147] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is characterized by the retention of modified lipoproteins in the arterial wall. These modified lipoproteins activate resident macrophages and the recruitment of monocyte-derived cells, which differentiate into mononuclear phagocytes that ingest the deposited lipoproteins to become "foam cells": a hallmark of this disease. In this Part 2 of a 4-part review series covering the macrophage in cardiovascular disease, we critically review the contributions and relevant pathobiology of monocytes, macrophages, and foam cells as relevant to atherosclerosis. We also review evidence that via various pathways, a failure of the resolution of inflammation is an additional key aspect of this disease process. Finally, we consider the likely role played by genomics and biological networks in controlling the macrophage phenotype in atherosclerosis. Collectively, these data provide substantial insights on the atherosclerotic process, while concurrently offering numerous molecular and genomic candidates that appear to hold great promise for selective targeting as clinical therapies.
Collapse
Affiliation(s)
- Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, New York
| | - Simon Koplev
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Edward A Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, New York
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, New York; Department of Pathology and Cell Biology, Columbia University, New York, New York; Department of Physiology, Columbia University, New York, New York
| | - Johan L M Björkegren
- Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Amanda C Doran
- Department of Medicine, Columbia University, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
5
|
Deng JN, Li Q, Sun K, Pan CS, Li H, Fan JY, Li G, Hu BH, Chang X, Han JY. Cardiotonic Pills Plus Recombinant Human Prourokinase Ameliorates Atherosclerotic Lesions in LDLR -/- Mice. Front Physiol 2019; 10:1128. [PMID: 31551808 PMCID: PMC6747059 DOI: 10.3389/fphys.2019.01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/15/2019] [Indexed: 11/24/2022] Open
Abstract
Aim This study was to explore the protective effects of cardiotonic pills (CP) or/and recombinant human prourokinase (proUK)on the atherosclerosis and the potential underlying mechanism. Methods and Results Atherosclerosis was induced in LDLR–/– mice by high fat diet contained 20% lard and 0.5% cholesterol. Daily oral administration of CP (130 mg/kg) or/and intravenous injection of proUK (2.5 mg/kg, twice a week) began at 8 weeks after feeding with high fat diet and continued for 4 weeks. CP alone treatment markedly decreased plasma triglyceride, but did not ameliorate atherosclerosis plaque. No effect was observed for proUK alone on any endpoints tested. CP plus proUK induced a significantly reduction in the atherosclerotic lesions, along with decreased levels of total cholesterol, triglyceride in the plasma. CP plus proUK inhibited the elevated hepatic total cholesterol and triglyceride in high fat diet-fed LDLR–/– mice, up-regulating the expressions of ATP-binding cassette gene 5 and 8, and adipose triglyceride lipase. In the aorta, CP plus proUK inhibited the expression of scavenger receptor A and CD36 in LDLR–/– mice. In addition, we observed that systemic inflammation was inhibited, manifested downregulation of plasma macrophage inflammatory protein-1α and intercellular cell adhesion molecule-1. Conclusion CP plus proUK effectively attenuated atherosclerosis plaque in LDLR–/– mice, which is associated with normalizing the lipid metabolism in the liver and aorta, reducing phagocytosis of receptor-mediated modified-LDL uptake and inhibiting systemic inflammation.
Collapse
Affiliation(s)
- Jing-Na Deng
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Huan Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Gao Li
- Department of Oncology, Guizhou University of Chinese Medicine, Guiyang, China
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2018; 112:54-71. [PMID: 30115528 DOI: 10.1016/j.vph.2018.08.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.
Collapse
Affiliation(s)
- Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
7
|
CCN3 Regulates Macrophage Foam Cell Formation and Atherosclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1230-1237. [PMID: 28527710 DOI: 10.1016/j.ajpath.2017.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 01/27/2023]
Abstract
Recent studies implicate the Cyr61, CTGF, Nov (CCN) matricellular signaling protein family as emerging players in vascular biology, with NOV (alias CCN3) as an important regulator of vascular homeostasis. Herein, we examined the role of CCN3 in the pathogenesis of atherosclerosis. In response to a 15-week high-fat diet feeding, CCN3-deficient mice on the atherosclerosis-prone Apoe-/- background developed increased aortic lipid-rich plaques compared to control Apoe-/- mice, a result that was observed in the absence of alterations in plasma lipid content. To address the cellular contributor(s) responsible for the atherosclerotic phenotype, we performed bone marrow transplantation experiments. Transplantation of Apoe; Ccn3 double-knockout bone marrow into Apoe-/- mice resulted in an increase of atherosclerotic plaque burden, whereas transplantation of Apoe-/- marrow to Apoe; Ccn3 double-knockout mice caused a reduction of atherosclerosis. These results indicate that CCN3 deficiency, specifically in the bone marrow, plays a major role in the development of atherosclerosis. Mechanistically, cell-based studies in isolated peritoneal macrophages demonstrated that CCN3 deficiency leads to an increase of lipid uptake and foam cell formation, an effect potentially attributed to the increased expression of scavenger receptors CD36 and SRA1, key factors involved in lipoprotein uptake. These results suggest that bone marrow-derived CCN3 is an essential regulator of atherosclerosis and point to a novel role of CCN3 in modulating lipid accumulation within macrophages.
Collapse
|
8
|
Chistiakov DA, Melnichenko AA, Orekhov AN, Bobryshev YV. How do macrophages sense modified low-density lipoproteins? Int J Cardiol 2017; 230:232-240. [DOI: 10.1016/j.ijcard.2016.12.164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/19/2016] [Accepted: 12/25/2016] [Indexed: 01/18/2023]
|
9
|
Bai Y, Sun Q. Fine particulate matter air pollution and atherosclerosis: Mechanistic insights. Biochim Biophys Acta Gen Subj 2016; 1860:2863-8. [DOI: 10.1016/j.bbagen.2016.04.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/11/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
|
10
|
Otomo K, Amengual O, Fujieda Y, Nakagawa H, Kato M, Oku K, Horita T, Yasuda S, Matsumoto M, Nakayama KI, Hatakeyama S, Koike T, Atsumi T. Role of apolipoprotein B100 and oxidized low-density lipoprotein in the monocyte tissue factor induction mediated by anti-β2 glycoprotein I antibodies. Lupus 2016; 25:1288-98. [PMID: 26964561 DOI: 10.1177/0961203316638165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/12/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The objective of this paper is to elucidate the not yet known plasma molecule candidates involved in the induction of tissue factor (TF) expression mediated by β2GPI-dependent anticardiolipin antibody (aCL/β2GPI) on monocytes. METHODS Human serum incubated with FLAG-β2GPI was applied for affinity chromatography with anti- FLAG antibody. Immunopurified proteins were analyzed by a liquid chromatography coupled with mass spectrometry (LC-MS). TF mRNA induced by the identified molecules on monocytes was also analyzed. RESULTS Apolipoprotein B100 (APOB) was the only identified serum molecule in the MS search. Oxidized LDL, containing APOB as well as ox-Lig1 (a known ligand of β2GPI), was revealed as a β2GPI-binding molecule in the immunoprecipitation assay. TF mRNA was markedly induced by oxidized LDL/β2GPI complexes with either WBCAL-1 (monoclonal aCL/β2GPI) or purified IgG from APS patients. The activities of lipoprotein-associated phospholipase A2, one of the component molecules of oxidized LDL, were significantly higher in serum from APS patients than in those from controls. CONCLUSION APOB (or oxidized LDL) was detected as a major β2GPI binding serum molecule by LC-MS search. Oxidized LDL/aCL/β2GPI complexes significantly induced TF expressions on monocytes. These data suggest that complexes of oxidized LDL and aCL/β2GPI may have a crucial role in the pathophysiology of APS.
Collapse
Affiliation(s)
- K Otomo
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - O Amengual
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Y Fujieda
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Nakagawa
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Kato
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - K Oku
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Horita
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - S Yasuda
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Matsumoto
- Division of Proteomics, Multi-scale Research Center for Prevention of Medical Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - K I Nakayama
- Division of Proteomics, Multi-scale Research Center for Prevention of Medical Science, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - S Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Koike
- Sapporo Medical Center NTT EC, Sapporo, Japan
| | - T Atsumi
- Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
11
|
Gabunia K, Ellison S, Kelemen S, Kako F, Cornwell WD, Rogers TJ, Datta PK, Ouimet M, Moore KJ, Autieri MV. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1361-74. [PMID: 26952642 DOI: 10.1016/j.ajpath.2015.12.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 01/04/2023]
Abstract
Atherosclerosis regression is an important clinical goal, and treatments that can reverse atherosclerotic plaque formation are actively being sought. Our aim was to determine whether administration of exogenous IL-19, a Th2 cytokine, could attenuate progression of preformed atherosclerotic plaque and to identify molecular mechanisms. LDLR(-/-) mice were fed a Western diet for 12 weeks, then administered rIL-19 or phosphate-buffered saline concomitant with Western diet for an additional 8 weeks. Analysis of atherosclerosis burden showed that IL-19-treated mice were similar to baseline, in contrast to control mice which showed a 54% increase in plaque, suggesting that IL-19 halted the progression of atherosclerosis. Plaque characterization showed that IL-19-treated mice had key features of atherosclerosis regression, including a reduction in macrophage content and an enrichment in markers of M2 macrophages. Mechanistic studies revealed that IL-19 promotes the activation of key pathways leading to M2 macrophage polarization, including STAT3, STAT6, Kruppel-like factor 4, and peroxisome proliferator-activated receptor γ, and can reduce cytokine-induced inflammation in vivo. We identified a novel role for IL-19 in regulating macrophage lipid metabolism through peroxisome proliferator-activated receptor γ-dependent regulation of scavenger receptor-mediated cholesterol uptake and ABCA1-mediated cholesterol efflux. These data show that IL-19 can halt progression of preformed atherosclerotic plaques by regulating both macrophage inflammation and cholesterol homeostasis and implicate IL-19 as a link between inflammation and macrophage cholesterol metabolism.
Collapse
Affiliation(s)
- Khatuna Gabunia
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Stephen Ellison
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Sheri Kelemen
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Farah Kako
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - William D Cornwell
- Center for Inflammation, Translational, and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Thomas J Rogers
- Center for Inflammation, Translational, and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Prasun K Datta
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mireille Ouimet
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York
| | - Kathryn J Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York
| | - Michael V Autieri
- Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
12
|
Ben J, Zhu X, Zhang H, Chen Q. Class A1 scavenger receptors in cardiovascular diseases. Br J Pharmacol 2015; 172:5523-30. [PMID: 25651870 DOI: 10.1111/bph.13105] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/15/2015] [Accepted: 02/02/2015] [Indexed: 01/03/2023] Open
Abstract
Class A1 scavenger receptors (SR-A1) are membrane glycoproteins that can form homotrimers. This receptor was originally defined by its ability to mediate the accumulation of lipids in macrophages. Subsequent studies reveal that SR-A1 plays critical roles in innate immunity, cell apoptosis and proliferation. This review highlights recent advances in understanding the structure, receptor pathway and regulation of SR-A1. Although its role in atherosclerosis is disputable, recent discoveries suggest that SR-A1 function in anti-inflammatory responses by promoting an M2 macrophage phenotype in cardiovascular diseases. Therefore, SR-A1 may be a potential target for therapeutic intervention of cardiovascular diseases.
Collapse
Affiliation(s)
- Jingjing Ben
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, 210029, China
| | - Xudong Zhu
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, 210029, China
| | - Hanwen Zhang
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, 210029, China
| | - Qi Chen
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
13
|
Abstract
Monocytes and their descendant macrophages are essential to the development and exacerbation of atherosclerosis, a lipid-driven inflammatory disease. Lipid-laden macrophages, known as foam cells, reside in early lesions and advanced atheromata. Our understanding of how monocytes accumulate in the growing lesion, differentiate, ingest lipids, and contribute to disease has advanced substantially over the last several years. These cells' remarkable phenotypic and functional complexity is a therapeutic opportunity: in the future, treatment and prevention of cardiovascular disease and its complications may involve specific targeting of atherogenic monocytes/macrophages and their products.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- From the Department of Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany (I.H.); Center for Systems Biology, Massachusetts General Hospital, Boston, MA (F.K.S.); and Departments of Laboratory Medicine and Pathobiology and Immunology, Peter Munk Cardiac Centre, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada (C.S.R.).
| | - Filip K Swirski
- From the Department of Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany (I.H.); Center for Systems Biology, Massachusetts General Hospital, Boston, MA (F.K.S.); and Departments of Laboratory Medicine and Pathobiology and Immunology, Peter Munk Cardiac Centre, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada (C.S.R.)
| | - Clinton S Robbins
- From the Department of Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany (I.H.); Center for Systems Biology, Massachusetts General Hospital, Boston, MA (F.K.S.); and Departments of Laboratory Medicine and Pathobiology and Immunology, Peter Munk Cardiac Centre, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada (C.S.R.).
| |
Collapse
|
14
|
Rosenfeld ME. Macrophage proliferation in atherosclerosis: an historical perspective. Arterioscler Thromb Vasc Biol 2014; 34:e21-2. [PMID: 25169935 DOI: 10.1161/atvbaha.114.303379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael E Rosenfeld
- From the Departments of Pathology and Environmental and Occupational Health Sciences, University of Washington, Seattle
| |
Collapse
|
15
|
From proliferation to proliferation: monocyte lineage comes full circle. Semin Immunopathol 2014; 36:137-48. [PMID: 24435095 DOI: 10.1007/s00281-013-0409-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/25/2013] [Indexed: 12/15/2022]
Abstract
Monocytes are mononuclear circulating phagocytes that originate in the bone marrow and give rise to macrophages in peripheral tissue. For decades, our understanding of monocyte lineage was bound to a stepwise model that favored an inverse relationship between cellular proliferation and differentiation. Sophisticated molecular and surgical cell tracking tools have transformed our thinking about monocyte topo-ontogeny and function. Here, we discuss how recent studies focusing on progenitor proliferation and differentiation, monocyte mobilization and recruitment, and macrophage differentiation and proliferation are reshaping knowledge of monocyte lineage in steady state and disease.
Collapse
|
16
|
Naito M. Amide-adducts in atherosclerosis. Subcell Biochem 2014; 77:95-102. [PMID: 24374921 DOI: 10.1007/978-94-007-7920-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Too many hypotheses in the etiology of atherosclerosis have been proposed. Classically, lipid insudation hypothesis by Virchow and thrombogenic hypothesis by Rokitansky are famous. However, in the recent progress in the area of atherosclerosis, the response-to-injury hypothesis by Ross (Ross R Glomset JA, N Engl J Med 295:369-377, 420-425, 1976; Ross R, Arteriosclerosis 1:293-311, 1981; Ross R, N Engl J Med 314:488-500, 1986; Ross R, Nature 362:801-809, 1993; Ross R, N Engl J Med 340:115-126, 1999) has been the leading one. In this review, however, the author focuses to the recent debate on the role of oxidative modification of atherogenic lipoproteins.
Collapse
Affiliation(s)
- Michitaka Naito
- Graduate School of Life Studies, Sugiyama Jogakuen University, Nagoya, 464-8662, Japan,
| |
Collapse
|
17
|
Dai XY, Cai Y, Sun W, Ding Y, Wang W, Kong W, Tang C, Zhu Y, Xu MJ, Wang X. Intermedin inhibits macrophage foam-cell formation via tristetraprolin-mediated decay of CD36 mRNA. Cardiovasc Res 2013; 101:297-305. [PMID: 24253523 DOI: 10.1093/cvr/cvt254] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS CD36-mediated uptake of oxidized low-density lipoprotein (oxLDL) plays a pivotal role in macrophage foam-cell formation and atherogenesis. Previously we reported on intermedin (IMD), a novel member of the calcitonin gene-related peptide family, in atherosclerotic plaque reducing atherogenesis in apolipoprotein E-deficient (apoE(-/-)) mice. Here, we studied the role of IMD in CD36-mediated macrophage foam-cell formation. METHODS AND RESULTS In apoE(-/-) mice, 6-week IMD infusion reduced oxLDL uptake, intracellular cholesterol content, and foam-cell formation in peritoneal macrophages and reduced protein and mRNA levels of CD36. These in vivo results agreed with in vitro observations in primary peritoneal macrophages. Reduced CD36 protein and mRNA levels were due to an IMD-accelerated decay of CD36 mRNA. Tristetraprolin (TTP), which binds to AU-rich elements in the 3' untranslated regions (UTRs) of mRNA and promotes its degradation, mediated CD36 mRNA destabilization. TTP knockdown by short-hairpin RNA increased and TTP overexpression reduced CD36 expression, and TTP knockdown rescued IMD-reduced CD36 expression. Moreover, IMD repressed TTP phosphorylation, thereby activating TTP, for increased TTP binding to the 3'-UTR of CD36 mRNA. CONCLUSION Thus, IMD attenuates macrophage foam-cell formation via TTP-mediated degradation of CD36 mRNA. Our findings reveal a new mechanism of the anti-atherogenic role of IMD and a novel pattern for regulation of CD36 expression in macrophages.
Collapse
Affiliation(s)
- Xiao-Yan Dai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Segers FM, den Adel B, Bot I, van der Graaf LM, van der Veer EP, Gonzalez W, Raynal I, de Winther M, Wodzig WK, Poelmann RE, van Berkel TJ, van der Weerd L, Biessen EA. Scavenger Receptor-AI–Targeted Iron Oxide Nanoparticles for In Vivo MRI Detection of Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 2013; 33:1812-9. [DOI: 10.1161/atvbaha.112.300707] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Filip M.E. Segers
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Brigit den Adel
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Ilze Bot
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Linda M. van der Graaf
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Eric P. van der Veer
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Walter Gonzalez
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Isabelle Raynal
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Menno de Winther
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Will K. Wodzig
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Robert E. Poelmann
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Theo J.C. van Berkel
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Louise van der Weerd
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| | - Erik A.L. Biessen
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands (F.M.E.S., I.B., E.P.v.d.V., T.J.C.v.B., E.A.L.B.); Department of Anatomy and Embryology (B.d.A., L.M.v.d.G., R.E.P., L.v.d.W.), Department of Radiology (L.v.d.W.), and Department of Human Genetics (L.v.d.W.), Leiden University Medical Center, Leiden, The Netherlands; Department of Research, Guerbet Group, Aulnay-sous-Bois, France (W.G., I.R.); Department of Medical
| |
Collapse
|
19
|
Kitamoto S, Egashira K, Ichiki T, Han X, McCurdy S, Sakuda S, Sunagawa K, Boisvert WA. Chitinase inhibition promotes atherosclerosis in hyperlipidemic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:313-25. [PMID: 23685110 DOI: 10.1016/j.ajpath.2013.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 03/12/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
Chitinase 1 (CHIT1) is secreted by activated macrophages. Chitinase activity is raised in atherosclerotic patient sera and is present in atherosclerotic plaque. However, the role of CHIT1 in atherosclerosis is unknown. Preliminary studies of atherosclerosis in cynomolgous monkeys revealed CHIT1 to be closely correlated with areas of macrophage infiltration. Thus, we investigated the effects of a chitinase inhibitor, allosamidin, on macrophage function in vitro and on atherosclerotic development in vivo. In RAW264.7 cells, allosamidin elevated monocyte chemoattractant protein 1 and tumor necrosis factor alpha expression, and increased activator protein 1 and nuclear factor-κB transcriptional activity. Although inducible nitric oxide synthase, IL-6, and IL-1β expression were increased, Arg1 expression was decreased by chitinase inhibition, suggesting that suppression of CHIT1 activity polarizes macrophages into a M1 phenotype. Allosamidin decreased scavenger receptor AI, CD36, ABCA1, and ABCG1 expression which led to suppression of cholesterol uptake and apolipoprotein AI-mediated cholesterol efflux in macrophages. These effects were confirmed with CHIT1 siRNA transfection and CHIT1 plasmid transfection experiments in primary macrophages. Apolipoprotein E-deficient hyperlipidemic mice treated for 6 weeks with constant administration of allosamidin and fed an atherogenic diet showed aggravated atherosclerotic lesion formation. These data suggest that CHIT1 exerts protective effects against atherosclerosis by suppressing inflammatory responses and polarizing macrophages toward an M2 phenotype, and promoting lipid uptake and cholesterol efflux in macrophages.
Collapse
Affiliation(s)
- Shiro Kitamoto
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Piccolo P, Vetrini F, Mithbaokar P, Grove NC, Bertin T, Palmer D, Ng P, Brunetti-Pierri N. SR-A and SREC-I are Kupffer and endothelial cell receptors for helper-dependent adenoviral vectors. Mol Ther 2013; 21:767-74. [PMID: 23358188 DOI: 10.1038/mt.2012.287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Helper-dependent adenoviral (HDAd) vectors can mediate long-term, high-level transgene expression from transduced hepatocytes with no chronic toxicity. However, a toxic acute response with potentially lethal consequences has hindered their clinical applications. Liver sinusoidal endothelial cells (LSECs) and Kupffer cells are major barriers to efficient hepatocyte transduction. Understanding the mechanisms of adenoviral vector uptake by non-parenchymal cells may allow the development of strategies aimed at overcoming these important barriers and to achieve preferential hepatocyte gene transfer with reduced toxicity. Scavenger receptors on Kupffer cells bind adenoviral particles and remove them from the circulation, thus preventing hepatocyte transduction. In the present study, we show that HDAd particles interact in vitro and in vivo with scavenger receptor-A (SR-A) and with scavenger receptor expressed on endothelial cells-I (SREC-I) and we exploited this knowledge to increase the efficiency of hepatocyte transduction by HDAd vectors in vivo through blocking of SR-A and SREC-I with specific fragments antigen-binding (Fabs).
Collapse
|
21
|
Dai XY, Cai Y, Mao DD, Qi YF, Tang C, Xu Q, Zhu Y, Xu MJ, Wang X. Increased stability of phosphatase and tensin homolog by intermedin leading to scavenger receptor A inhibition of macrophages reduces atherosclerosis in apolipoprotein E-deficient mice. J Mol Cell Cardiol 2012; 53:509-20. [PMID: 22841663 DOI: 10.1016/j.yjmcc.2012.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/29/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
Intermedin, a novel member of calcitonin gene-related peptide family, is an endogenous cardiovascular-protective peptide. Because intermedin exists in human atherosclerotic plaque, we studied the role of intermedin in macrophage scavenger receptor A (SR-A)-mediated foam-cell formation and atherogenesis. In an in vitro foam-cell formation model (induced by acetylated low-density lipoprotein [AcLDL]) with mouse (C57BL/6J) macrophages, intermedin reduced AcLDL uptake and binding, decreased intracellular cholesterol content, and suppressed both mRNA and protein levels of SR-A. Simultaneously, intermedin increased phosphatase and tensin homolog (PTEN) protein levels by increasing PTEN phosphorylation and inhibiting ubiquitin-mediated PTEN degradation. These effects were blocked by the intermedin receptor antagonist or cAMP-protein kinase A inhibitors. PTEN overexpression mimicked the inhibitory effects of intermedin on SR-A expression and AcLDL uptake. However, knockdown of PTEN by short-hairpin RNA completely blocked all inhibitory effects of intermedin. Furthermore, in apolipoprotein E-deficient (apoE(-/-)) mice, 6-week intermedin infusion reduced AcLDL uptake and SR-A mRNA and protein levels and increased PTEN protein level in peritoneal macrophages. PTEN level was increased and SR-A expression decreased in parallel in macrophages in atherosclerotic lesions. Thus, intermedin inhibited atherosclerosis in apoE(-/-) mice. Increased stability of PTEN by intermedin leads to SR-A inhibition in macrophages, which ameliorates foam-cell formation and atherosclerosis in apoE(-/-) mice.
Collapse
Affiliation(s)
- Xiao-Yan Dai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pamukcu B, Lip GYH, Devitt A, Griffiths H, Shantsila E. The role of monocytes in atherosclerotic coronary artery disease. Ann Med 2010; 42:394-403. [PMID: 20568979 DOI: 10.3109/07853890.2010.497767] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation plays a key role in the pathogenesis of atherosclerosis. The more we discover about the molecular pathways involved in atherosclerosis, the more we perceive the importance of monocytes in this process. Circulating monocytes are components of innate immunity, and many pro-inflammatory cytokines and adhesion molecules facilitate their adhesion and migration to the vascular endothelial wall. In addition to the accumulation of lipids and formation of atherogenic 'foam' cells, monocytes may promote atherosclerotic plaque growth by production of inflammatory cytokines, matrix metalloproteinases, and reactive oxidative species. However, the contribution of monocytes to atherogenesis is not only limited to tissue destruction. Monocyte subsets are also involved in intraplaque angiogenesis and tissue reparative processes. The aim of this overview is to discuss the mechanisms of monocyte activation, the pivotal role and importance of activated monocytes in atherosclerotic coronary artery disease, their implication in the development of acute coronary events, and their potential in cardiovascular reparative processes such angiogenesis.
Collapse
Affiliation(s)
- Burak Pamukcu
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, B18 7QH, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal 2010; 13:39-75. [PMID: 19888833 PMCID: PMC2877120 DOI: 10.1089/ars.2009.2733] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/09/2009] [Accepted: 11/02/2009] [Indexed: 02/06/2023]
Abstract
Oxidative modification of LDL is known to elicit an array of pro-atherogenic responses, but it is generally underappreciated that oxidized LDL (OxLDL) exists in multiple forms, characterized by different degrees of oxidation and different mixtures of bioactive components. The variable effects of OxLDL reported in the literature can be attributed in large part to the heterogeneous nature of the preparations employed. In this review, we first describe the various subclasses and molecular composition of OxLDL, including the variety of minimally modified LDL preparations. We then describe multiple receptors that recognize various species of OxLDL and discuss the mechanisms responsible for the recognition by specific receptors. Furthermore, we discuss the contentious issues such as the nature of OxLDL in vivo and the physiological oxidizing agents, whether oxidation of LDL is a prerequisite for atherogenesis, whether OxLDL is the major source of lipids in foam cells, whether in some cases it actually induces cholesterol depletion, and finally the Janus-like nature of OxLDL in having both pro- and anti-inflammatory effects. Lastly, we extend our review to discuss the role of LDL oxidation in diseases other than atherosclerosis, including diabetes mellitus, and several autoimmune diseases, such as lupus erythematosus, anti-phospholipid syndrome, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Irena Levitan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
24
|
Han X, Kitamoto S, Wang H, Boisvert WA. Interleukin-10 overexpression in macrophages suppresses atherosclerosis in hyperlipidemic mice. FASEB J 2010; 24:2869-80. [PMID: 20354139 DOI: 10.1096/fj.09-148155] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In atherogenesis, macrophage foam cell formation is modulated by pathways involving both the uptake and efflux of cholesterol. We recently showed that interleukin-10 (IL-10) modulates lipid metabolism by enhancing both uptake and efflux of cholesterol in macrophages. However, the mechanistic details of these properties in vivo have been unclear. Thus, the purpose of this study was to determine whether expression of IL-10 in macrophages would alter susceptibility to atherosclerosis and whether IL-10 exerts its antiatherosclerotic properties by modulating lipid metabolism in macrophages. We utilized a macrophage-specific retroviral vector that allows long-term in vivo expression of IL-10 in macrophages through transplantation of retrovirally transduced bone marrow cells (BMCs). IL-10 expressed by macrophages derived from transduced BMCs inhibited atherosclerosis in LDLR(-/-) mice by reducing cholesteryl ester accumulation in atherosclerotic sites. Experiments with primary macrophages indicated that macrophage source of IL-10 stimulated both the uptake (by up-regulating scavenger receptors) and efflux of cholesterol (by activating the PPARgamma-LXR-ABCA1/ABCG1 pathway), thereby reducing inflammation and apoptosis in atherosclerosis. These findings indicate that BMC-transduced macrophage IL-10 production can act as a strong antiatherogenic agent, and they highlight a novel antiatherosclerotic therapy using a simple, yet effective, stem cell transduction system that facilitates long-term expression of IL-10 in macrophages.
Collapse
Affiliation(s)
- Xinbing Han
- Vascular Medicine Research Unit, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
25
|
Haka AS, Grosheva I, Chiang E, Buxbaum AR, Baird BA, Pierini LM, Maxfield FR. Macrophages create an acidic extracellular hydrolytic compartment to digest aggregated lipoproteins. Mol Biol Cell 2009; 20:4932-40. [PMID: 19812252 DOI: 10.1091/mbc.e09-07-0559] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A critical event in atherogenesis is the interaction of macrophages with subendothelial lipoproteins. Although most studies model this interaction by incubating macrophages with monomeric lipoproteins, macrophages in vivo encounter lipoproteins that are aggregated. The physical features of the lipoproteins require distinctive mechanisms for their uptake. We show that macrophages create an extracellular, acidic, hydrolytic compartment to carry out digestion of aggregated low-density lipoproteins. We demonstrate delivery of lysosomal contents to these specialized compartments and their acidification by vacuolar ATPase, enabling aggregate catabolism by lysosomal acid hydrolases. We observe transient sealing of portions of the compartments, allowing formation of an "extracellular" proton gradient. An increase in free cholesterol is observed in aggregates contained in these compartments. Thus, cholesteryl ester hydrolysis can occur extracellularly in a specialized compartment, a lysosomal synapse, during the interaction of macrophages with aggregated low-density lipoprotein. A detailed understanding of these processes is essential for developing strategies to prevent atherosclerosis.
Collapse
Affiliation(s)
- Abigail S Haka
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Bousette N, D'Orleans-Juste P, Kiss RS, You Z, Genest J, Al-Ramli W, Qureshi ST, Gramolini A, Behm D, Ohlstein EH, Harrison SM, Douglas SA, Giaid A. Urotensin II Receptor Knockout Mice on an ApoE Knockout Background Fed a High-Fat Diet Exhibit an Enhanced Hyperlipidemic and Atherosclerotic Phenotype. Circ Res 2009; 105:686-95, 19 p following 695. [DOI: 10.1161/circresaha.107.168799] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nicolas Bousette
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Pedro D'Orleans-Juste
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Robert S. Kiss
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Zhipeng You
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Jacques Genest
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Wisam Al-Ramli
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Salman T. Qureshi
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Anthony Gramolini
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - David Behm
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Eliot H. Ohlstein
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Stephen M. Harrison
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Stephen A. Douglas
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| | - Adel Giaid
- From the Division of Cardiology and Department of Medicine (N.B., R.S.K., Z.Y., J.G., W.A.-R., S.T.Q., A.G.), Montreal General Hospital, McGill University Health Center, Quebec, Canada; Sherbrooke Institute of Pharmacology (P.D.-J.), Quebec, Canada; Cardiovascular Pharmacology, Cardiovascular and Urogenital-CEDD (D.B., E.H.O., S.A.D.), GlaxoSmithKline, King of Prussia, Pa; the Department of Comparative Genomics (S.M.H.), GlaxoSmithKline, Harlow, UK; and the Department of Physiology (A.G.),
| |
Collapse
|
27
|
Leyva FJ, Pershouse MA, Holian A. Modified low density lipoproteins binding requires a lysine cluster region in the murine macrophage scavenger receptor class A type II. Mol Biol Rep 2009; 37:2847-52. [PMID: 19774489 DOI: 10.1007/s11033-009-9837-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/03/2009] [Indexed: 11/26/2022]
Abstract
Atherosclerosis is a consequence of lipid deposition and foam cell formation in the arterial wall. Macrophage scavenger receptor A II is involved in the uptake of modified low density lipoproteins. It contains an extracellular conserved lysine cluster which has been proposed to form a positively charged groove that interacts with acetylated low density lipoproteins (AcLDL). This study evaluated the role of the murine SRA-II and a lysine mutated SRA-II on AcLDL uptake. Fluorescence labeled AcLDL uptake was quantified using a Laser Scan Cytometer. A significant increase in fluorescence uptake was found in the cells transfected with SRA-II versus those with empty vector. Cells expressing the lysine mutated SRA-II also demonstrated a significant decrease in their uptake of AcLDL. This data supports the concept that the conserved lysine cluster in murine SRA-II is the binding region for AcLDL or contributes to the trimeric structure of SRA-II necessary for AcLDL binding.
Collapse
Affiliation(s)
- Francisco J Leyva
- Experimental Atherosclerosis Section, Translational Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 5N-111, Bethesda, MD 20892-1422, USA.
| | | | | |
Collapse
|
28
|
Leyva FJ, Pershouse MA. Quantitative and qualitative methods using fluorescence microscopy for the study of modified low density lipoproteins uptake. SCANNING 2009; 31:167-173. [PMID: 19768737 PMCID: PMC4068399 DOI: 10.1002/sca.20155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Atherosclerosis and heart disease are the main cause of death in United States. The development of atherosclerosis includes lipid deposition and foam cell formation in the artery wall. Scavenger Receptors A-I and II (SRA-I/II) have an important role of in foam cell formation and atherogenesis. Most of the SRA-I/II studies had been performed using Iodine-125-radiolabeled modified low-density lipoprotein. This report attempts to validate the use of fluorescence microscopy techniques as an alternative to obtain qualitative and quantitative information of the uptake of fluorescence-labeled acetylated low-density lipoprotein (AcLDL) in adherent CHO cells expressing SRA-I/II. After verifying the protein expression of SRA-I and II, uptake was quantified using a Laser Scan Cytometer, and images of cells containing fluorescent AcLDL were obtained. A significant increase in fluorescence was found in the cells transfected with SRA-I/II vs. those with empty vector. When SRA-I/II competitive ligands were used, the uptake of AcLDL was significantly decreased. In conclusion, the use of fluorescence microscopy techniques in obtaining qualitative and quantitative information of the uptake of fluorescence-labeled AcLDL by adherent cells, such as CHO cells, is an alternative to the traditional use of radiolabeled iodine.
Collapse
Affiliation(s)
- Francisco J Leyva
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
29
|
Manning-Tobin JJ, Moore KJ, Seimon TA, Bell SA, Sharuk M, Alvarez-Leite JI, de Winther MPJ, Tabas I, Freeman MW. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 2008; 29:19-26. [PMID: 18948635 DOI: 10.1161/atvbaha.108.176644] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The scavenger receptors SR-A and CD36 have been implicated in macrophage foam cell formation during atherogenesis and in the regulation of inflammatory signaling pathways, including those leading to lesional macrophage apoptosis and plaque necrosis. To test the impact of deleting these receptors, we generated Apoe(-/-) mice lacking both SR-A and CD36 and fed them a Western diet for 12 weeks. METHODS AND RESULTS We analyzed atheroma in mice, assessing lesion size, foam cell formation, inflammatory gene expression, apoptosis, and necrotic core formation. Aortic root atherosclerosis in Apoe(-/-)Cd36(-/-)Msr1(-/-) mice, as assessed by morphometry, electron microscopy, and immunohistochemistry, showed no decrease in lesion area or in vivo foam cell formation when compared to Apoe(-/-) mice. However, Apoe(-/-)Cd36(-/-)Msr1(-/-) lesions showed reduced expression of inflammatory genes and morphological analysis revealed a approximately 30% decrease in macrophage apoptosis and a striking approximately 50% decrease in plaque necrosis in aortic root lesions of these mice. CONCLUSIONS Although targeted deletion of SR-A and CD36 does not abrogate macrophage foam cell formation or substantially reduce atherosclerotic lesion area in Apoe(-/-) mice, loss of these pathways does reduce progression to more advanced necrotic lesions. These data suggest that targeted inhibition of these pathways in vivo may reduce lesional inflammation and promote plaque stability.
Collapse
Affiliation(s)
- Jennifer J Manning-Tobin
- Lipid Metabolism Unit, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The initiation and progression of vascular inflammation are driven by the retention of cholesterol in the artery wall, where its modification by oxidation and/or enzymes triggers the innate immune host response. Although previously considered a broad, primitive defense mechanism against invading pathogens, it has become clear that pattern recognition receptors of the innate immune system can cooperate to precisely regulate signaling pathways essential for the proper initiation of both innate and acquired immunity. Recent evidence suggests that these pattern recognition receptors may orchestrate the host response to modified endogenous ligands involved in sterile chronic inflammatory syndromes, including atherosclerosis. In this review we will summarize the current understanding of innate immune receptors and the putative ligands that regulate the numerous responses that promote this disease, including monocyte recruitment, macrophage cholesterol uptake, and pro-inflammatory signaling cascades. Specific emphasis will be placed on the potential of these innate immune targets for therapeutic interventions to retard the progression of atherosclerosis or to induce its regression.
Collapse
Affiliation(s)
- Kathryn J Moore
- Lipid Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | | |
Collapse
|
31
|
Abstract
Inflammation underpins the development of atherosclerosis. Initiation and progression of vascular inflammation involves a complex cellular network, with macrophages as major contributors. Activated macrophages produce proinflammatory mediators, bridge innate and adaptive immunity, regulate lipid retention, and participate directly in vascular repair and remodeling. Recent efforts to elucidate molecular mechanisms involved in the regulation of vascular inflammation in atherosclerosis have implicated several families of innate immune recognition receptors in inflammatory activation during the course of this disease. This article reviews our current understanding of innate immune recognition receptors, signaling pathways, and putative ligands implicated in activation of macrophages in the disease. In its final section, we propose a model for the role of macrophages in bridging inflammation and atherosclerosis from the perspective of innate immune recognition and activation.
Collapse
Affiliation(s)
- Zhong-qun Yan
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
32
|
Szanto A, Rőszer T. Nuclear receptors in macrophages: A link between metabolism and inflammation. FEBS Lett 2007; 582:106-16. [DOI: 10.1016/j.febslet.2007.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
|
33
|
Hofnagel O, Luechtenborg B, Weissen-Plenz G, Robenek H. Statins and foam cell formation: Impact on LDL oxidation and uptake of oxidized lipoproteins via scavenger receptors. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1117-24. [PMID: 17690011 DOI: 10.1016/j.bbalip.2007.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 06/18/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
The uptake of oxidized lipoproteins via scavenger receptors and the ensuing formation of foam cells are key events during atherogenesis. Foam cell formation can be reduced by treatment with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins). The efficacy of statins is evidently due not only to their cholesterol-lowering properties, but also to lipid-independent pleiotropic effects. This review focuses on lipid-independent pleiotropic effects of statins that influence foam cell formation during atherogenesis, with special emphasis on oxidative pathways and scavenger receptor expression.
Collapse
Affiliation(s)
- Oliver Hofnagel
- Department of Cell Biology and Ultrastructure Research, Leibniz Institute of Arteriosclerosis Research at the University of Münster, and Department of Cardiology and Angiology, Hospital of the University of Münster, Germany.
| | | | | | | |
Collapse
|
34
|
Lie J, Moerland M, van Gent T, van Haperen R, Scheek L, Sadeghi-Niaraki F, de Crom R, van Tol A. Sex differences in atherosclerosis in mice with elevated phospholipid transfer protein activity are related to decreased plasma high density lipoproteins and not to increased production of triglycerides. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1070-7. [PMID: 16935026 DOI: 10.1016/j.bbalip.2006.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 06/14/2006] [Accepted: 06/27/2006] [Indexed: 10/24/2022]
Abstract
Plasma phospholipid transfer protein (PLTP) has atherogenic properties in genetically modified mice. PLTP stimulates hepatic triglyceride secretion and reduces plasma levels of high density lipoproteins (HDL). The present study was performed to relate the increased atherosclerosis in PLTP transgenic mice to one of these atherogenic effects. A humanized mouse model was used which had decreased LDL receptor expression and was transgenic for human cholesterylester transfer protein (CETP) in order to obtain a better resemblance to the plasma lipoprotein profile present in humans. It is well known that female mice are more susceptible to atherosclerosis than male mice. Therefore, we compared male and female mice expressing human PLTP. The animals were fed an atherogenic diet and the effects on plasma lipids and lipoproteins, triglyceride secretion and the development of atherosclerosis were measured. The development of atherosclerosis was sex-dependent. This effect was stronger in PLTP transgenic mice, while PLTP activity levels were virtually identical. Also, the rates of hepatic secretion of triglycerides were similar. In contrast, plasma levels of HDL were about 2-fold lower in female mice than in male mice after feeding an atherogenic diet. We conclude that increased atherosclerosis caused by overexpression of PLTP is related to a decrease in HDL, rather than to elevated hepatic secretion of triglycerides.
Collapse
Affiliation(s)
- Jessica Lie
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 2006; 26:1702-11. [PMID: 16728653 DOI: 10.1161/01.atv.0000229218.97976.43] [Citation(s) in RCA: 403] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Atherosclerotic vascular disease arises as a consequence of the deposition and retention of serum lipoproteins in the artery wall. Macrophages in lesions have been shown to express > or = 6 structurally different scavenger receptors for uptake of modified forms of low-density lipoproteins (LDLs) that promote the cellular accumulation of cholesterol. Because cholesterol-laden macrophage foam cells are the primary component of the fatty streak, the earliest atherosclerotic lesion, lipid uptake by these pathways has long been considered a requisite and initiating event in the pathogenesis of atherosclerosis. Although the removal of proinflammatory modified LDLs from the artery wall via scavenger receptors would seem beneficial, the pathways distal to scavenger receptor uptake that metabolize the modified lipoproteins appear to become overwhelmed, leading to the accumulation of cholesterol-laden macrophages and establishment of a chronic inflammatory setting. These observations have led to the current dogma concerning scavenger receptors, which is that they are proatherogenic molecules. However, recent studies suggest that the effects of scavenger receptors on atherogenesis may be more complex. In addition to modified lipoprotein uptake, these proteins are now known to regulate apoptotic cell clearance, initiate signal transduction, and serve as pattern recognition receptors for pathogens, activities that may contribute both to proinflammatory and anti-inflammatory forces regulating atherogenesis. In this review, we focus on recent advances in our knowledge of scavenger receptor regulation and signal transduction, their roles in sterile inflammation and infection, and the potential impact of these pathways in regulating the balance of lipid accumulation and inflammation in the artery wall.
Collapse
Affiliation(s)
- Kathryn J Moore
- Lipid Metabolism Unit, GRJ1328, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA.
| | | |
Collapse
|
36
|
Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron 2005; 37:208-22. [PMID: 16360317 DOI: 10.1016/j.micron.2005.10.007] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/12/2005] [Accepted: 10/17/2005] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is a chronic immune-inflammatory disease in which the interactions of monocytes with activated endothelium are crucial events leading to atherosclerotic alteration of the arterial intima. In early atherosclerosis, monocytes migrate into the subendothelial layer of the intima where they differentiate into macrophages or dendritic cells. In the subendothelial space enriched with atherogenic lipoproteins, most macrophages transform into foam cells. Foam cells aggregate to form the atheromatous core and as this process progresses, the atheromatous centres of plaques become necrotic, consisting of lipids, cholesterol crystals and cell debris. This review highlights some aspects of monocyte recruitment and foam cell formation in atherosclerosis.
Collapse
Affiliation(s)
- Yuri V Bobryshev
- Surgical Professorial Unit, St Vincent's Hospital, 234 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| |
Collapse
|
37
|
Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM, McKee M, Freeman MW. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest 2005; 115:2192-201. [PMID: 16075060 PMCID: PMC1180534 DOI: 10.1172/jci24061] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 04/26/2005] [Indexed: 11/17/2022] Open
Abstract
Macrophage internalization of modified lipoproteins is thought to play a critical role in the initiation of atherogenesis. Two scavenger receptors, scavenger receptor A (SR-A) and CD36, have been centrally implicated in this lipid uptake process. Previous studies showed that these receptors mediated the majority of cholesterol ester accumulation in macrophages exposed to oxidized LDL and that mice with deletions of either receptor exhibited marked reductions in atherosclerosis. This work has contributed to an atherosclerosis paradigm: scavenger receptor-mediated oxidized lipoprotein uptake is required for foam cell formation and atherogenesis. In this study, Apoe-/- mice lacking SR-A or CD36, backcrossed into the C57BL/6 strain for 7 generations, were fed an atherogenic diet for 8 weeks. Hyperlipidemic Cd36-/-Apoe-/- and Msr1-/-Apoe-/- mice showed significant reductions in peritoneal macrophage lipid accumulation in vivo; however, in contrast with previous reports, this was associated with increased aortic sinus lesion areas. Characterization of aortic sinus lesions by electron microscopy and immunohistochemistry showed abundant macrophage foam cells, indicating that lipid uptake by intimal macrophages occurs in the absence of CD36 or SR-A. These data show that alternative lipid uptake mechanisms may contribute to macrophage cholesterol ester accumulation in vivo and suggest that the roles of SR-A and CD36 as proatherosclerotic mediators of modified LDL uptake in vivo need to be reassessed.
Collapse
Affiliation(s)
- Kathryn J Moore
- Lipid Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
van Berkel TJC, Out R, Hoekstra M, Kuiper J, Biessen E, van Eck M. Scavenger receptors: friend or foe in atherosclerosis? Curr Opin Lipidol 2005; 16:525-35. [PMID: 16148537 DOI: 10.1097/01.mol.0000183943.20277.26] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Scavenger receptors were originally defined by their ability to bind and internalize modified lipoproteins. Nowadays the family of scavenger receptors is composed of structurally different surface receptors which recognize a broad pattern of common ligands which include, besides modified lipoproteins, apoptotic cells and pathogens. This review focuses on the role of scavenger receptors in the development of atherosclerotic lesions. RECENT FINDINGS Recent studies indicate that scavenger receptor A activity can be regulated by phosphorylation, glucosidases, 8-isoprostane, high glucose and nobiletin. Modulation of these regulatory components may beneficially influence scavenger receptor A's proatherogenic function. It appears that statins do lead to a reduction in CD36 transcription and could modulate in this way CD36-mediated atherosclerotic foam cell formation. Macrophage scavenger receptor BI appears to facilitate the development of small fatty streak lesions, whereas the formation of advanced atherosclerotic lesions is reduced, indicating a unique dual role for macrophage scavenger receptor BI in the pathogenesis of atherosclerosis. SUMMARY It is proposed that the presence of scavenger receptors in macrophages is beneficial because they remove potential deleterious material from the arterial wall. Inadequate handling of the internalized material by the macrophages will lead to foam cell formation. If adequate levels of ATP-binding cassette transporters and accepting HDL are present, however, the macrophage is perfectly able to metabolize and secrete the internalized atherogenic substances whereby HDL facilitates further transport from the arterial wall to the liver, leading to release in bile.
Collapse
Affiliation(s)
- Theo J C van Berkel
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Gorlaeus Laboratories, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Atherosclerosis and its resultant cardiovascular events represent a state of heightened oxidative stress that is commonly thought to contribute to atherogenesis. The aim of this review is to summarize the data linking oxidative events to the pathogenesis of atherosclerosis. Despite abundant data supporting the presence of lipid and protein oxidation in the vascular wall, the poor performance of antioxidant strategies in limiting either atherosclerosis or cardiovascular events from atherosclerosis remain a fundamental problem for implicating oxidative stress as pathophysiologically important. Direct evidence that oxidative stress in general, and the oxidative modification of low-density lipoprotein in particular, is both necessary and sufficient for atherosclerosis has been difficult to find. There are many potential reasons for this difficulty, not the least of which is our lack of sufficient knowledge delineating the precise molecular events that beget oxidative stress in the vessel wall, and the precise mediators involved. Further investigation elucidating these oxidative events are required to provide us with the tools to limit oxidative stress at its source and ameliorate all of its secondary phenomena. Only then will we know what components of atherosclerosis are directly due to oxidative stress.
Collapse
Affiliation(s)
- R Stocker
- Centre for Vascular Research, University of New South Wales, UNSW Sydney, Australia.
| | | |
Collapse
|
40
|
Rader DJ, Puré E. Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab 2005; 1:223-30. [PMID: 16054067 DOI: 10.1016/j.cmet.2005.03.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 03/21/2005] [Accepted: 03/22/2005] [Indexed: 01/17/2023]
Abstract
Atherogenesis requires and is highly influenced by the interaction between lipoproteins and macrophages. Most of the focus to date has been on the ability of atherogenic lipoproteins (such as low-density lipoproteins, LDL) to promote and of anti-atherogenic lipoproteins (such as high-density lipoproteins, HDL) to prevent the development of the cholesteryl ester-enriched macrophage-derived foam cell. However, lipoprotein-macrophage interactions have the potential to modulate macrophage function in a variety of additional ways that may impact on atherosclerosis. These include modulating cellular cholesterol and oxysterol content, providing fatty acids as ligands for PPARs, and acting as ligands for macrophage scavenger and Toll-like receptors. We suggest that atherogenic lipoproteins promote and anti-atherogenic lipoproteins inhibit atherogenesis by modulating macrophage function in a variety of ways beyond cholesteryl ester accumulation and foam cell formation.
Collapse
Affiliation(s)
- Daniel J Rader
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
41
|
Williams KJ, Fisher EA. Oxidation, lipoproteins, and atherosclerosis: which is wrong, the antioxidants or the theory? Curr Opin Clin Nutr Metab Care 2005; 8:139-46. [PMID: 15716791 DOI: 10.1097/00075197-200503000-00006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Paradoxically, many well-established components of the heart-healthy lifestyle are pro-oxidant, including polyunsaturated fat and moderate alcohol consumption. Moreover, antioxidant supplements have failed to decrease cardiovascular risk in extensive human clinical trials to date. Recent progress in understanding the roles of oxidants in regulating VLDL secretion and as essential signaling molecules supports the concept that oxidation may be beneficial in certain circumstances but damaging in others. We summarize recent data on the roles played by oxidative metabolism in different tissues and pathways, and address whether it is currently advisable to use antioxidant supplements to reduce cardiovascular risk. RECENT FINDINGS Our recent study reported that in liver cells, polyunsaturated fatty acids increased reactive oxygen species, which in turn lowered the secretion of the atherogenic lipoprotein, VLDL, in vitro and in vivo. Antioxidant treatments prevented VLDL-lowering effects of polyunsaturated fatty acids in vitro, suggesting that supplemental antioxidants could either raise apolipoprotein-B-lipoprotein plasma levels in vivo, or impair the response to lipid-lowering therapies. The failure of antioxidants to decrease cardiovascular disease risk in many trials is also discussed in the context of current models for atherosclerosis progression and regression. SUMMARY Oxidation includes distinct biochemical reactions, and it is overly simplistic to lump them into a unitary process that affects all cell types and metabolic pathways adversely. Guidelines for diet should adhere closely to what has been clinically proved, and by this standard there is no basis to recommend antioxidant use, beyond what is inherent to the 'heart healthy' diet in order to benefit cardiovascular health.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Division of Endocrinology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
42
|
Abstract
Worldwide, more people die of the complications of atherosclerosis than of any other cause. It is not surprising, therefore, that enormous resources have been devoted to studying the pathogenesis of this condition. This article attempts to summarize present knowledge on the events that take place within the arterial wall during atherogenesis. Classical risk factors are not dealt with as they are the subjects of other parts of this book. First, we deal with the role of endothelial dysfunction and infection in initiating the atherosclerotic lesion. Then we describe the development of the lesion itself, with particular emphasis on the cell types involved and the interactions between them. The next section of the chapter deals with the events leading to thrombotic occlusion of the atherosclerotic vessel, the cause of heart attack and stroke. Finally, we describe the advantages--and limitations--of current animal models as they contribute to our understanding of atherosclerosis and its complications.
Collapse
Affiliation(s)
- P Cullen
- Institute of Arteriosclerosis Research, Münster, Germany.
| | | | | |
Collapse
|
43
|
Abstract
This review focuses on the role of oxidative processes in atherosclerosis and its resultant cardiovascular events. There is now a consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein oxidation in the vascular wall. The oxidative modification hypothesis of atherosclerosis predicts that low-density lipoprotein (LDL) oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis. In support of this hypothesis, oxidized LDL can support foam cell formation in vitro, the lipid in human lesions is substantially oxidized, there is evidence for the presence of oxidized LDL in vivo, oxidized LDL has a number of potentially proatherogenic activities, and several structurally unrelated antioxidants inhibit atherosclerosis in animals. An emerging consensus also underscores the importance in vascular disease of oxidative events in addition to LDL oxidation. These include the production of reactive oxygen and nitrogen species by vascular cells, as well as oxidative modifications contributing to important clinical manifestations of coronary artery disease such as endothelial dysfunction and plaque disruption. Despite these abundant data however, fundamental problems remain with implicating oxidative modification as a (requisite) pathophysiologically important cause for atherosclerosis. These include the poor performance of antioxidant strategies in limiting either atherosclerosis or cardiovascular events from atherosclerosis, and observations in animals that suggest dissociation between atherosclerosis and lipoprotein oxidation. Indeed, it remains to be established that oxidative events are a cause rather than an injurious response to atherogenesis. In this context, inflammation needs to be considered as a primary process of atherosclerosis, and oxidative stress as a secondary event. To address this issue, we have proposed an "oxidative response to inflammation" model as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.
Collapse
Affiliation(s)
- Roland Stocker
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia.
| | | |
Collapse
|
44
|
Tamura Y, Osuga JI, Adachi H, Tozawa RI, Takanezawa Y, Ohashi K, Yahagi N, Sekiya M, Okazaki H, Tomita S, Iizuka Y, Koizumi H, Inaba T, Yagyu H, Kamada N, Suzuki H, Shimano H, Kadowaki T, Tsujimoto M, Arai H, Yamada N, Ishibashi S. Scavenger receptor expressed by endothelial cells I (SREC-I) mediates the uptake of acetylated low density lipoproteins by macrophages stimulated with lipopolysaccharide. J Biol Chem 2004; 279:30938-44. [PMID: 15145948 DOI: 10.1074/jbc.m313088200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor expressed by endothelial cells I (SREC-I) is a novel endocytic receptor for acetylated low density lipoprotein (LDL). Here we show that SREC-I is expressed in a wide variety of tissues, including macrophages and aortas. Lipopolysaccharide (LPS) robustly stimulated the expression of SREC-I in macrophages. In an initial attempt to clarify the role of SREC-I in the uptake of modified lipoproteins as well as in the development of atherosclerosis, we generated mice with a targeted disruption of the SREC-I gene by homologous recombination in embryonic stem cells. To exclude the overwhelming effect of the type A scavenger receptor (SR-A) on the uptake of Ac-LDL, we further generated mice lacking both SR-A and SREC-I (SR-A(-/-);SREC-I(-/-)) by cross-breeding and compared the uptake and degradation of Ac-LDL in the isolated macrophages. The contribution of SR-A and SREC-I to the overall degradation of Ac-LDL was 85 and 5%, respectively, in a non-stimulated condition. LPS increased the uptake and degradation of Ac-LDL by 1.8-fold. In this condition, the contribution of SR-A and SREC-I to the overall degradation of Ac-LDL was 90 and 6%, respectively. LPS increased the absolute contribution of SR-A and SREC-I by 1.9- and 2.3-fold, respectively. On the other hand, LPS decreased the absolute contribution of other pathways by 31%. Consistently, LPS did not increase the expression of other members of the scavenger receptor family such as CD36. In conclusion, SREC-I serves as a major endocytic receptor for Ac-LDL in LPS-stimulated macrophages lacking SR-A, suggesting that it has a key role in the development of atherosclerosis in concert with SR-A.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aorta/metabolism
- Arteriosclerosis/etiology
- Arteriosclerosis/genetics
- Arteriosclerosis/metabolism
- Base Sequence
- Biological Transport, Active
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Cell Adhesion Molecules/deficiency
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- DNA Primers/genetics
- Endocytosis
- Gene Expression
- Lipopolysaccharides/pharmacology
- Lipoproteins, LDL/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, Scavenger
- Scavenger Receptors, Class A
- Tissue Distribution
Collapse
Affiliation(s)
- Yoshiaki Tamura
- Department of Metabolic Diseases, Faculty of Medicine, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jalkanen J, Leppänen P, Pajusola K, Närvänen O, Mähönen A, Vähäkangas E, Greaves DR, Büeler H, Ylä-Herttuala S. Adeno-associated virus-mediated gene transfer of a secreted decoy human macrophage scavenger receptor reduces atherosclerotic lesion formation in LDL receptor knockout mice. Mol Ther 2003; 8:903-10. [PMID: 14664792 DOI: 10.1016/j.ymthe.2003.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Macrophage scavenger receptors (MSR) promote atherosclerotic lesion formation, and modulation of MSR activity has been shown to influence atherosclerosis. Soluble receptors are effective in inhibiting receptor-mediated functions in various diseases. We have generated a secreted macrophage scavenger receptor (sMSR) that consists of the bovine growth hormone signal sequence and the human MSR A I extracellular domains. sMSR reduces degradation of atherogenic modified low-density lipoproteins and monocyte/macrophage adhesion on endothelial cells in vitro. To test long-term effects of sMSR, atherosclerosis-susceptible LDLR knockout mice were transduced via the tail vein with an adeno-associated virus (AAV) expressing sMSR or control enhanced green fluorescent protein (EGFP), and a Western-type diet was started. Gene transfer caused a temporary elevation in alkaline phosphatase and aspartate amino transferase values without a change in C-reactive protein. sMSR protein was detected in the plasma of the transduced mice by a specific ELISA 6 months after the gene transfer. AAV-mediated sMSR gene transfer reduced atherosclerotic lesion area in the aorta by 21% (P < 0.05) compared to EGFP-transduced control mice. Even though eradication of established disease was not possible, atherosclerotic lesion formation could be modified using AAV-mediated gene transfer of the decoy sMSR.
Collapse
Affiliation(s)
- Johanna Jalkanen
- A. I. Virtanen Institute, University of Kuopio, FIN-70211, Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kanters E, Pasparakis M, Gijbels MJJ, Vergouwe MN, Partouns-Hendriks I, Fijneman RJA, Clausen BE, Förster I, Kockx MM, Rajewsky K, Kraal G, Hofker MH, de Winther MPJ. Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003; 112:1176-85. [PMID: 14561702 PMCID: PMC213488 DOI: 10.1172/jci18580] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is now generally accepted as a chronic inflammatory condition. The transcription factor NF-kappaB is a key regulator of inflammation, immune responses, cell survival, and cell proliferation. To investigate the role of NF-kappaB activation in macrophages during atherogenesis, we used LDL receptor-deficient mice with a macrophage-restricted deletion of IkappaB kinase 2 (IKK2), which is essential for NF-kappaB activation by proinflammatory signals. These mice showed increased atherosclerosis as quantified by lesion area measurements. In addition, the lesions were more advanced and showed more necrosis and increased cell number in early lesions. Southern blotting revealed that deletion of IKK2 was approximately 65% in macrophages, coinciding with a reduction of 50% in NF-kappaB activation, as compared with controls. In both groups, the expression of differentiation markers, uptake of bacteria, and endocytosis of modified LDL was similar. Upon stimulation with LPS, production of TNF was reduced by approximately 50% in IKK2-deleted macrophages. Interestingly, we also found a major reduction in the anti-inflammatory cytokine IL-10. Our data show that inhibition of the NF-kappaB pathway in macrophages leads to more severe atherosclerosis in mice, possibly by affecting the pro- and anti-inflammatory balance that controls the development of atherosclerosis.
Collapse
Affiliation(s)
- Edwin Kanters
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
This review focuses on the role of monocytes in the early phase of atherogenesis, before foam cell formation. An emerging consensus underscores the importance of the cellular inflammatory system in atherogenesis. Initiation of the process apparently hinges on accumulating low-density lipoproteins (LDL) undergoing oxidation and glycation, providing stimuli for the release of monocyte attracting chemokines and for the upregulation of endothelial adhesive molecules. These conditions favor monocyte transmigration to the intima, where chemically modified, aggregated, or proteoglycan- or antibody-complexed LDL may be endocytotically internalized via scavenger receptors present on the emergent macrophage surface. The differentiating monocytes in concert with T lymphocytes exert a modulating effect on lipoproteins. These events propagate a series of reactions entailing generation of lipid peroxides and expression of chemokines, adhesion molecules, cytokines, and growth factors, thereby sustaining an ongoing inflammatory process leading ultimately to lesion formation. New data emerging from studies using transgenic animals, notably mice, have provided novel insights into many of the cellular interactions and signaling mechanisms involving monocytes/macrophages in the atherogenic processes. A number of these studies, focusing on mechanisms for monocyte activation and the roles of adhesive molecules, chemokines, cytokines and growth factors, are addressed in this review.
Collapse
Affiliation(s)
- Bjarne Osterud
- Department of Biochemistry, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Tromsø, Norway.
| | | |
Collapse
|
48
|
Sobel BE, Taatjes DJ, Schneider DJ. Intramural plasminogen activator inhibitor type-1 and coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23:1979-89. [PMID: 12920048 DOI: 10.1161/01.atv.0000091250.53231.4d] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered expression of plasminogen activator inhibitor type-1 in vessel walls, reviewed here, might affect coronary atherogenesis. Upregulation might exacerbate vasculopathy by potentiating thrombosis and by inhibiting vascular smooth muscle cell migration, resulting in attenuation of thickness of elaborated fibrous caps implicated in the vulnerability of atheroma to rupture.
Collapse
Affiliation(s)
- Burton E Sobel
- Department of Medicine, University of Vermont, Burlington, USA.
| | | | | |
Collapse
|
49
|
Kanters E, Pasparakis M, Gijbels MJ, Vergouwe MN, Partouns-Hendriks I, Fijneman RJ, Clausen BE, Förster I, Kockx MM, Rajewsky K, Kraal G, Hofker MH, de Winther MP. Inhibition of NF-κB activation in macrophages increases atherosclerosis in LDL receptor–deficient mice. J Clin Invest 2003. [DOI: 10.1172/jci200318580] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Covey SD, Krieger M, Wang W, Penman M, Trigatti BL. Scavenger receptor class B type I-mediated protection against atherosclerosis in LDL receptor-negative mice involves its expression in bone marrow-derived cells. Arterioscler Thromb Vasc Biol 2003; 23:1589-94. [PMID: 12829524 DOI: 10.1161/01.atv.0000083343.19940.a0] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Scavenger receptor class B type I (SR-BI) is a cell-surface HDL receptor that is implicated in reverse cholesterol transport and protection against atherosclerosis. We have previously demonstrated that SR-BI/apolipoprotein E double-knockout mice develop severe occlusive coronary artery disease and myocardial infarction and die at approximately 6 weeks of age. To determine if this is a general effect of a lack of SR-BI, we generated mice deficient in both SR-BI and the LDL receptor. METHODS AND RESULTS Complete ablation of SR-BI expression in LDL receptor knockout mice resulted in increased plasma cholesterol associated with HDL particles of abnormally large size and a 6-fold increase in diet-induced aortic atherosclerosis but no macroscopic evidence of early-onset coronary artery disease, cardiac pathology, or early death. Furthermore, selective elimination of SR-BI expression in bone marrow-derived cells resulted in increased diet-induced atherosclerosis in LDL receptor knockout mice without concomitant alterations in the distributions of plasma lipoprotein cholesterol. CONCLUSIONS SR-BI expression protects against atherosclerosis in LDL receptor-deficient as well as apolipoprotein E-deficient mice, and its expression in bone marrow-derived cells contributes to this protection.
Collapse
MESH Headings
- Animals
- Arteriosclerosis/prevention & control
- Bone Marrow Cells/metabolism
- Bone Marrow Transplantation
- CD36 Antigens/biosynthesis
- CD36 Antigens/genetics
- CD36 Antigens/physiology
- Diet, Atherogenic
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Receptors, Immunologic
- Receptors, LDL/deficiency
- Receptors, Lipoprotein/biosynthesis
- Receptors, Lipoprotein/genetics
- Receptors, Lipoprotein/physiology
- Receptors, Scavenger
- Scavenger Receptors, Class B
Collapse
Affiliation(s)
- Scott D Covey
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|