1
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Yamamoto K, Hakoi H, Nomura S, Murakami M. The Roles of sPLA 2s in Skin Homeostasis and Disease. Biomolecules 2023; 13:biom13040668. [PMID: 37189415 DOI: 10.3390/biom13040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Among the phospholipase A2 (PLA2) family, the secreted PLA2 (sPLA2) family in mammals contains 11 members that exhibit unique tissue or cellular distributions and enzymatic properties. Current studies using knockout and/or transgenic mice for a nearly full set of sPLA2s, in combination with comprehensive lipidomics, have revealed the diverse pathophysiological roles of sPLA2s in various biological events. Individual sPLA2s exert specific functions within tissue microenvironments, likely through the hydrolysis of extracellular phospholipids. Lipids are an essential biological component for skin homeostasis, and disturbance of lipid metabolism by deletion or overexpression of lipid-metabolizing enzymes or lipid-sensing receptors often leads to skin abnormalities that are easily visible on the outside. Over the past decades, our studies using knockout and transgenic mice for various sPLA2s have uncovered several new aspects of these enzymes as modulators of skin homeostasis and disease. This article summarizes the roles of several sPLA2s in skin pathophysiology, providing additional insight into the research fields of sPLA2s, lipids, and skin biology.
Collapse
Affiliation(s)
- Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Haruka Hakoi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Saki Nomura
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo (UTokyo), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
3
|
Hydrolysis of three different head groups phospholipids by chicken group V phospholipase A2 using the monomolecular film technique. Biosci Rep 2020; 40:221815. [PMID: 31919493 PMCID: PMC6974423 DOI: 10.1042/bsr20192053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022] Open
Abstract
The kinetic aspects of lipolysis by pulmonary phospholipase A2 (ChPLA2-V), chicken intestinal phospholipase A2 (ChPLA2-IIA) and chicken pancreatic phospholipase A2 (ChPLA2-IB), from chicken have been compared using the monomolecular films technique, on short-chain phospholipids (with three different head groups) and on long-chain phospholipids. The main conclusions from our experimental data indicate that the maximum catalytic activities of ChPLA2-V on 1,2 phosphatidylcholine and 1,2 phosphatidylethanolamine reached 15.26 and 36.12 moles/cm2.min.mM, respectively, at a pressure of 15 and 35 dynes/cm, respectively. Whereas, those of ChPLA2-IB were 3.58 (at the pressure of 20 dynes/cm) and 4.9 moles/cm2.min.mM. However, hydrolysis of phosphatidylglycerol monolayers (C12PG), were very much higher compared with all the substrates tested with 122 moles/cm2.min. Surprisingly, the hydrolysis rate of ChPLA2-V on long-chain phosphatidylglycerol (C18PG) was very low (1.45 moles/cm2.min) compared with all tested substrates, even with the use of p-cyclodextrin. And thus, the fatty acid preference of ChPLA2-V was 2-decanoyl > 2-oleoyl with a PG head group. In order to gain significant correlations between enzyme’s structures and their relative functions, we tried to examine the surface electrostatic potentials of the various secreted phospholipase 2 (sPLA2) from chicken. In the present study, we detailed that the substrate affinity, specificity and the hydrolysis rates of sPLA2 at each interface is governed by the surface electrostatic potentials and hydrophobic interactions operative at this surface.
Collapse
|
4
|
Murakami M, Miki Y, Sato H, Murase R, Taketomi Y, Yamamoto K. Group IID, IIE, IIF and III secreted phospholipase A 2s. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:803-818. [PMID: 30905347 PMCID: PMC7106514 DOI: 10.1016/j.bbalip.2018.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 12/02/2022]
Abstract
Among the 11 members of the secreted phospholipase A2 (sPLA2) family, group IID, IIE, IIF and III sPLA2s (sPLA2-IID, -IIE, -IIF and -III, respectively) are “new” isoforms in the history of sPLA2 research. Relative to the better characterized sPLA2s (sPLA2-IB, -IIA, -V and -X), the enzymatic properties, distributions, and functions of these “new” sPLA2s have remained obscure until recently. Our current studies using knockout and transgenic mice for a nearly full set of sPLA2s, in combination with comprehensive lipidomics, have revealed unique and distinct roles of these “new” sPLA2s in specific biological events. Thus, sPLA2-IID is involved in immune suppression, sPLA2-IIE in metabolic regulation and hair follicle homeostasis, sPLA2-IIF in epidermal hyperplasia, and sPLA2-III in male reproduction, anaphylaxis, colonic diseases, and possibly atherosclerosis. In this article, we overview current understanding of the properties and functions of these sPLA2s and their underlying lipid pathways in vivo.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Remi Murase
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Yamamoto
- PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan; Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
5
|
Paillamanque J, Sanchez-Tusie A, Carmona EM, Treviño CL, Sandoval C, Nualart F, Osses N, Reyes JG. Arachidonic acid triggers [Ca2+]i increases in rat round spermatids by a likely GPR activation, ERK signalling and ER/acidic compartments Ca2+ release. PLoS One 2017; 12:e0172128. [PMID: 28192519 PMCID: PMC5305069 DOI: 10.1371/journal.pone.0172128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/31/2017] [Indexed: 12/27/2022] Open
Abstract
Arachidonic acid (AA), a compound secreted by Sertoli cells (SC) in a FSH-dependent manner, is able to induce the release of Ca2+ from internal stores in round spermatids and pachytene spermatocytes. In this study, the possible site(s) of action of AA in round spermatids, the signalling pathways associated and the intracellular Ca2+ stores targeted by AA-induced signalling were pharmacologically characterized by measuring intracellular Ca2+ using fluorescent Ca2+ probes. Our results suggest that AA acts by interacting with a fatty acid G protein coupled receptor, initiating a G protein signalling cascade that may involve PLA2 and ERK activation, which in turn opens intracellular ryanodine-sensitive channels as well as NAADP-sensitive channels in acidic intracellular Ca2+ stores. The results presented here also suggest that AMPK and PKA modulate this AA-induced Ca2+ release from intracellular Ca2+ stores in round spermatids. We propose that unsaturated free fatty acid lipid signalling in the seminiferous tubule is a novel regulatory component of rat spermatogenesis.
Collapse
Affiliation(s)
- Joaquin Paillamanque
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Sanchez-Tusie
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, México
| | - Emerson M. Carmona
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Autónoma de México, Cuernavaca, México
| | - Carolina Sandoval
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan G. Reyes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- * E-mail:
| |
Collapse
|
6
|
Murakami M, Yamamoto K, Miki Y, Murase R, Sato H, Taketomi Y. The Roles of the Secreted Phospholipase A 2 Gene Family in Immunology. Adv Immunol 2016; 132:91-134. [PMID: 27769509 PMCID: PMC7112020 DOI: 10.1016/bs.ai.2016.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within the phospholipase A2 (PLA2) family that hydrolyzes phospholipids to yield fatty acids and lysophospholipids, secreted PLA2 (sPLA2) enzymes comprise the largest group containing 11 isoforms in mammals. Individual sPLA2s exhibit unique tissue or cellular distributions and enzymatic properties, suggesting their distinct biological roles. Although PLA2 enzymes, particularly cytosolic PLA2 (cPLA2α), have long been implicated in inflammation by driving arachidonic acid metabolism, the precise biological roles of sPLA2s have remained a mystery over the last few decades. Recent studies employing mice gene-manipulated for individual sPLA2s, in combination with mass spectrometric lipidomics to identify their target substrates and products in vivo, have revealed their roles in diverse biological events, including immunity and associated disorders, through lipid mediator-dependent or -independent processes in given microenvironments. In this review, we summarize our current knowledge of the roles of sPLA2s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- M Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| | - K Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Y Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - R Murase
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - H Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Y Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
7
|
Murakami M, Sato H, Miki Y, Yamamoto K, Taketomi Y. A new era of secreted phospholipase A₂. J Lipid Res 2015; 56:1248-61. [PMID: 25805806 DOI: 10.1194/jlr.r058123] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Among more than 30 members of the phospholipase A2 (PLA2) superfamily, secreted PLA2 (sPLA2) enzymes represent the largest family, being Ca(2+)-dependent low-molecular-weight enzymes with a His-Asp catalytic dyad. Individual sPLA2s exhibit unique tissue and cellular distributions and enzymatic properties, suggesting their distinct biological roles. Recent studies using transgenic and knockout mice for nearly a full set of sPLA2 subtypes, in combination with sophisticated lipidomics as well as biochemical and cell biological studies, have revealed distinct contributions of individual sPLA2s to various pathophysiological events, including production of pro- and anti-inflammatory lipid mediators, regulation of membrane remodeling, degradation of foreign phospholipids in microbes or food, or modification of extracellular noncellular lipid components. In this review, we highlight the current understanding of the in vivo functions of sPLA2s and the underlying lipid pathways as revealed by a series of studies over the last decade.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
8
|
Zhan C, Wang J, Kolko M. Diverse Regulation of Retinal Pigment Epithelium Phagocytosis of Photoreceptor Outer Segments by Calcium-Independent Phospholipase A2, Group VIA and Secretory Phospholipase A2, Group IB. Curr Eye Res 2012; 37:930-40. [DOI: 10.3109/02713683.2012.691598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Kishimura H. Enzymatic properties of starfish phospholipase A2 and its application. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 65:437-456. [PMID: 22361205 DOI: 10.1016/b978-0-12-416003-3.00029-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Industrial phospholipase A2 (PLA2) mainly produced from porcine pancreas is used for production of lysolecithin which is well known as an excellent natural emulsifier for food, cosmetic, and pharmaceutical industries. Since the outbreak of bovine spongiform encephalopathy (BSE) or religious tradition, it is hoped that the new sources of PLA2, as well as other enzymes and proteins, will be developed instead of mammal. From these backgrounds, we studied for PLA2 from marine organisms and found that starfish Asterina pectinifera PLA2 possesses extremely high activity and characteristic polar-group specificity comparing with commercially available PLA2 from porcine pancreas. Therefore, it was suggested that the starfish A. pectinifera would be a potential source of PLA2, and the PLA2 can be utilized as alternative enzyme of mammalian PLA2.
Collapse
|
10
|
Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem 2011; 150:233-55. [PMID: 21746768 DOI: 10.1093/jb/mvr088] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. So far, more than 30 enzymes that possess PLA(2) or related activity have been identified in mammals. About one third of these enzymes belong to the secreted PLA(2) (sPLA(2)) family, which comprises low molecular weight, Ca(2+) requiring, secreted enzymes with a His/Asp catalytic dyad. Individual sPLA(2)s display distinct localizations and enzymatic properties, suggesting their specialized biological roles. However, in contrast to intracellular PLA(2)s, whose roles in signal transduction and membrane homoeostasis have been well documented, the biological roles of sPLA(2)s in vivo have remained obscure until recently. Over the past decade, information fuelled by studies employing knockout and transgenic mice as well as specific inhibitors, in combination with lipidomics, has clarified when and where the different sPLA(2) isoforms are expressed, which isoforms are involved in what types of pathophysiology, and how they exhibit their specific functions. In this review, we highlight recent advances in PLA(2) research, focusing mainly on the physiological functions of sPLA(2)s and their modes of action on 'extracellular' phospholipid targets versus lipid mediator production.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | |
Collapse
|
11
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Murakami M, Taketomi Y, Girard C, Yamamoto K, Lambeau G. Emerging roles of secreted phospholipase A2 enzymes: Lessons from transgenic and knockout mice. Biochimie 2010; 92:561-82. [PMID: 20347923 DOI: 10.1016/j.biochi.2010.03.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/18/2010] [Indexed: 11/15/2022]
Abstract
Among the emerging phospholipase A(2) (PLA(2)) superfamily, the secreted PLA(2) (sPLA(2)) family consists of low-molecular-mass, Ca(2+)-requiring extracellular enzymes with a His-Asp catalytic dyad. To date, more than 10 sPLA(2) enzymes have been identified in mammals. Individual sPLA(2)s exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Despite numerous enzymatic and cell biological studies on this enzyme family in the past two decades, their precise in vivo functions still remain largely obscure. Recent studies using transgenic and knockout mice for several sPLA(2) enzymes, in combination with lipidomics approaches, have opened new insights into their distinct contributions to various biological events such as food digestion, host defense, inflammation, asthma and atherosclerosis. In this article, we overview the latest understanding of the pathophysiological functions of individual sPLA(2) isoforms fueled by studies employing transgenic and knockout mice for several sPLA(2)s.
Collapse
Affiliation(s)
- Makoto Murakami
- Biomembrane Signaling Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
13
|
Muñoz NM, Meliton AY, Meliton LN, Dudek SM, Leff AR. Secretory group V phospholipase A2 regulates acute lung injury and neutrophilic inflammation caused by LPS in mice. Am J Physiol Lung Cell Mol Physiol 2009; 296:L879-87. [PMID: 19286925 DOI: 10.1152/ajplung.90580.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We investigated the regulatory role of 14-kDa secretory group V phospholipase A(2) (gVPLA(2)) in the development of acute lung injury (ALI) and neutrophilic inflammation (NI) caused by intratracheal administration of LPS. Experiments were conducted in gVPLA(2) knockout (pla2g5(-/-)) mice, which lack the gene, and gVPLA(2) wild-type littermate control (pla2g5(+/+)) mice. Indices of pulmonary injury were evaluated 24 h after intratracheal administration of LPS. Expression of gVPLA(2) in microsections of airways and mRNA content in lung homogenates were increased substantially in pla2g5(+/+) mice after LPS-administered compared with saline-treated pla2g5(+/+) mice. By contrast, expression of gVPLA(2) was neither localized in LPS- nor saline-treated pla2g5(-/-) mice. LPS also caused 1) reduced transthoracic static compliance, 2) lung edema, 3) neutrophilic infiltration, and 4) increased neutrophil myeloperoxidase activity in pla2g5(+/+) mice. These events were attenuated in pla2g5(-/-) mice exposed to LPS or in pla2g5(+/+) mice receiving MCL-3G1, a neutralizing MAb directed against gVPLA(2), before LPS administration. Our data demonstrate that gVPLA(2) is an inducible protein in pla2g5(+/+) mice but not in pla2g5(-/-) mice within 24 h after LPS treatment. Specific inhibition of gVPLA(2) with MCL-3G1 or gene-targeted mice lacking gVPLA(2) blocks ALI and attenuates NI caused by LPS.
Collapse
Affiliation(s)
- Nilda M Muñoz
- Dept. of Medicine, M6076, Univ. of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
14
|
Mayer RJ, Marshall LA. Section Review: Pulmonary-Allergy, Dermatological, Gastrointestinal & Arthritis: Therapeutic regulation of 14 kDa phospholipase A2(s). Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.5.535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Moon TC, Quan Z, Kim J, Kim HP, Kudo I, Murakami M, Park H, Chang HW. Inhibitory effect of synthetic C-C biflavones on various phospholipase A(2)s activity. Bioorg Med Chem 2007; 15:7138-43. [PMID: 17826099 DOI: 10.1016/j.bmc.2007.07.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 07/02/2007] [Accepted: 07/06/2007] [Indexed: 01/25/2023]
Abstract
Several prototypes of C-C biflavones (a-f) were synthesized and evaluated their inhibitory activity against phospholipase A(2)s (PLA(2)s) activity. The synthetic C-C biflavones (a-f) showed rather different inhibitory activity against various PLA(2)s. Most synthetic C-C biflavonoids exhibited potent and broad inhibitory activity against various sPLA(2)s and cPLA(2) tested regardless of their structural array. In particular, of natural and synthetic biflavonoids tested, the synthetic C-C biflavonoid (d) only showed inhibitory activity against sPLA(2) X. None of the natural and synthetic biflavonoids tested showed inhibitory activity against sPLA(2) IB. Further chemical modification of these basic structures will be carried out in order to investigate the synthetic C-C biflavones which possess more selective inhibitory activity against isozymes of PLA(2).
Collapse
Affiliation(s)
- Tae Chul Moon
- College of Pharmacy, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Helmy FM, Aikins A, Hughes J, Belfield C, Juracka A. Studies on the endogenous phospholipids of chick embryo myocardium and theirin vitro hydrolysis by endogenous phospholipases during embryogenesis. Cell Biochem Funct 2007; 25:571-9. [PMID: 17579340 DOI: 10.1002/cbf.1422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The phospholipid profiles of the myocardium (from 10- and 18-day old chick embryos and 13-day old chick) and their in vitro response to the endogenous lipolytic enzymes (mainly of the phospholipase group) at pH 7.4 and 38 degrees C for 60 min were analyzed by TLC technology and densitometry. Cardiolipin (CL) was shown to be one of the major phospholipids of the chick embryo myocardium and its concentration increased as the chick embryo advanced in development. Monolysocardiolipin (MLCL) was produced subsequent to in vitro incubation of whole tissue homogenates in all myocardia studied as well as a concurrent reduction in CL. This deacylation of CL increased in magnitude as the chick embryo advanced in development indicating its age relatedness. The level of phosphatidyl ethanolamine (PE) plasmalogen was also high in all myocardia studied. Lyso alkenyl PE (LPE) was produced subsequent to in vitro incubation and its level increased as the chick embryo advanced in development, indicating PLA(2) action on the sn-2 fatty acid of PE. Phosphatidyl choline (PC) plasmalogen was also present in the chick embryo myocardium and its level increased gradually as the chick embryo advanced in development. In contrast, yolk-sac membrane contains very minute amounts of CL and PE. No PC was detected and no LPE was formed following in vitro incubation. The yolk of the unfertilized chicken egg has no CL and has very minute amounts of PE, no PC and no lysophospholipids were detected following in vitro incubation in all samples analyzed.
Collapse
Affiliation(s)
- Fatma M Helmy
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA.
| | | | | | | | | |
Collapse
|
17
|
Levy R. The role of cytosolic phospholipase A2-alfa in regulation of phagocytic functions. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1323-34. [PMID: 17046321 DOI: 10.1016/j.bbalip.2006.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 08/14/2006] [Accepted: 09/06/2006] [Indexed: 11/16/2022]
Abstract
Phospholipase A2(s) (PLA2(s)) are a family of enzymes that is present in a variety of mammalian and nonmammalian sources. Phagocytic cells contain cytosolic PLA2 (cPLA2) as well as several types of secreted PLA2, all of which have the potential to produce proinflammatory lipid mediators. The role of the predominant form of cPLA2 present in neutrophils is cPLA2alpha was studied by many groups. By modulating its expression in a variety of phagocytes it was found that it plays a major role in formation of eicosanoids. In addition, it was reported that cPLA2alpha also regulates the NADPH oxidase activation. The specificity of its effect on the NADPH oxidase is evident by results demonstrating that the differentiation process as well as other phagocytic functions are normal in cPLA2alpha-deficient PLB cell model. The novel dual subcellular localization of cPLA2alpha in different compartments, in the plasma membranes and in the nucleus, provides a molecular mechanism for the participation of cPLA2alpha in different processes (stimulation of NADPH oxidase and formation of eicosanoids) in the same cells.
Collapse
Affiliation(s)
- Rachel Levy
- Infectious Diseases Laboratory, Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Soroka Medical Center, Beer Sheva 84105, Israel.
| |
Collapse
|
18
|
Helmy FM. On the differential lipolytic capabilities of rat spleen and cardiac muscle. An in vitro incubation in conjunction with chromatographic and densitometric analysis. Cell Biochem Funct 2006; 25:233-43. [PMID: 16929472 DOI: 10.1002/cbf.1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The phospholipid profiles of newborn, young adult and aged rat heart and spleen and their in vitro response to endogenous phospholipases at pH 7.4 and 38 degrees C for 60 min were analysed by thin layer chromatography (TLC) technology and densitometry measurement. The noticeable high level of cardiolipin (CL) and its preferential deacylation, as detected by the formation of monolysocardiolipin (MLCL) and concurrent reduction of CL level were the most prevalent lipolytic events of rat cardiac muscle (newborn, young adult and aged) but the least prevalent in rat spleen. The level of ethanolamine plasmalogen (PE) was high in both the rat spleen and cardiac muscle (newborn, young adult and aged). Following in vitro incubation, the reduction in the level of PE and the high level of lyso alkenyl PE produced were most conspicuous in rat spleen (newborn, young adult and aged) and noticeably less in rat cardiac muscle. These data clearly illustrate the differential response of the endogenous substrates (phospholipids) to the endogenous phospholipases of these two tissues, and probably are related to their physiological activities in vivo.
Collapse
Affiliation(s)
- Fatma M Helmy
- Department of Biological Sciences, Delaware State University, Dover, DE, USA.
| |
Collapse
|
19
|
Eerola LI, Surrel F, Nevalainen TJ, Gelb MH, Lambeau G, Laine VJO. Analysis of expression of secreted phospholipases A2 in mouse tissues at protein and mRNA levels. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:745-56. [PMID: 16757211 DOI: 10.1016/j.bbalip.2006.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 04/10/2006] [Accepted: 04/10/2006] [Indexed: 11/19/2022]
Abstract
Secreted phospholipases A(2) (sPLA(2)) form a group of low-molecular weight enzymes that catalyze the hydrolysis of phospholipids. Some sPLA(2)s are likely to play a role in inflammation, cancer, and as antibacterial enzymes in innate immunity. We developed specific and sensitive time-resolved fluroimmunoassays (TR-FIA) for mouse group (G) IB, GIIA, GIID, GIIE, GIIF, GV and GX sPLA(2)s and measured their concentrations in mouse serum and tissues obtained from both Balb/c and C57BL/6J mice. We also analyzed the mRNA expression of the sPLA(2)s by quantitative real-time reverse transcriptase PCR (qPCR). In most tissues, the concentrations of sPLA(2) proteins corresponded to the expression of sPLA(2)s at the mRNA level. With a few exceptions, the sPLA(2) proteins were found in the gastrointestinal tract. The qPCR results showed that GIB sPLA(2) is synthesized widely in the gastrointestinal tract, including esophagus and colon, in addition to stomach and pancreas. Our results also suggest that the loss of GIIA sPLA(2) in the intestine of GIIA sPLA(2)-deficient C57BL/6J mice is not compensated by other sPLA(2)s under normal conditions. Outside the gastrointestinal tract, sPLA(2)s were expressed occasionally in a number of tissues. The TR-FIAs developed in the current study may serve as useful tools to measure the levels of sPLA(2) proteins in mouse serum and tissues in various experimental settings.
Collapse
Affiliation(s)
- Leena I Eerola
- Department of Pathology, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
20
|
Masuda S, Murakami M, Mitsuishi M, Komiyama K, Ishikawa Y, Ishii T, Kudo I. Expression of secretory phospholipase A2 enzymes in lungs of humans with pneumonia and their potential prostaglandin-synthetic function in human lung-derived cells. Biochem J 2005; 387:27-38. [PMID: 15509193 PMCID: PMC1134929 DOI: 10.1042/bj20041307] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although a number of sPLA2 (secretory phospholipase A2) enzymes have been identified in mammals, the localization and functions of individual enzymes in human pathologic tissues still remain obscure. In the present study, we have examined the expression and function of sPLA2s in human lung-derived cells and in human lungs with pneumonia. Group IID, V and X sPLA2s were expressed in cultured human bronchial epithelial cells (BEAS-2B) and normal human pulmonary fibroblasts with distinct requirement for cytokines (interleukin-1b, tumour necrosis factor a and interferon-g). Lentivirus- or adenovirus-mediated transfection of various sPLA2s into BEAS-2B or normal human pulmonary fibroblast cells revealed that group V and X sPLA2s increased arachidonate release and prostaglandin production in both cell types, whereas group IIA and IID sPLA2s failed to do so. Immunohistochemistry of human lungs with pneumonia demonstrated that group V and X sPLA2s were widely expressed in the airway epithelium, interstitium and alveolar macrophages, in which group IID sPLA2 was also positive, whereas group IIA sPLA2 was restricted to the pulmonary arterial smooth muscle layers and bronchial chondrocytes, and group IIE and IIF sPLA2s were minimally detected. These results suggest that group V and X sPLA2s affect lung pathogenesis by facilitating arachidonate metabolism or possibly through other functions.
Collapse
Affiliation(s)
- Seiko Masuda
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Makoto Murakami
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- To whom correspondence should be addressed (email )
| | - Michiko Mitsuishi
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kazuo Komiyama
- †Department of Pathology, Division of Immunology and Patho-Biology at Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Yukio Ishikawa
- ‡Department of Pathology, Toho University, School of Medicine, 5-21-16 Omori-Nishi, Ohta-ku, Tokyo 143-8540, Japan
| | - Toshiharu Ishii
- ‡Department of Pathology, Toho University, School of Medicine, 5-21-16 Omori-Nishi, Ohta-ku, Tokyo 143-8540, Japan
| | - Ichiro Kudo
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
21
|
Masuda S, Murakami M, Komiyama K, Ishihara M, Ishikawa Y, Ishii T, Kudo I. Various secretory phospholipase A2 enzymes are expressed in rheumatoid arthritis and augment prostaglandin production in cultured synovial cells. FEBS J 2005; 272:655-72. [PMID: 15670148 DOI: 10.1111/j.1742-4658.2004.04489.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although group IIA secretory phospholipase A2 (sPLA2-IIA) is known to be abundantly present in the joints of patients with rheumatoid arthritis (RA), expression of other sPLA2s in this disease has remained unknown. In this study, we examined the expression and localization of six sPLA2s (groups IIA, IID, IIE, IIF, V and X) in human RA. Immunohistochemistry of RA sections revealed that sPLA2-IIA was generally located in synovial lining and sublining cells and cartilage chondrocytes, sPLA2-IID in lymph follicles and capillary endothelium, sPLA2-IIE in vascular smooth muscle cells, and sPLA2-V in interstitial fibroblasts. Expression levels of these group II subfamily sPLA2s appeared to be higher in severe RA than in inactive RA. sPLA2-X was detected in synovial lining cells and interstitial fibers in both active and inactive RA sections. Expression of sPLA2-IIF was partially positive, yet its correlation with disease states was unclear. Expression of sPLA2 transcripts was also evident in cultured normal human synoviocytes, in which sPLA2-IIA and -V were induced by interleukin-1 and sPLA2-X was expressed constitutively. Adenovirus-mediated expression of sPLA2s in cultured synoviocytes resulted in increased prostaglandin E2 production at low ng x mL(-1) concentrations. Thus, multiple sPLA2s are expressed in human RA, in which they may play a role in the augmentation of arachidonate metabolism or exhibit other cell type-specific functions.
Collapse
Affiliation(s)
- Seiko Masuda
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Masuda S, Murakami M, Matsumoto S, Eguchi N, Urade Y, Lambeau G, Gelb MH, Ishikawa Y, Ishii T, Kudo I. Localization of various secretory phospholipase A2 enzymes in male reproductive organs. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1686:61-76. [PMID: 15522823 DOI: 10.1016/j.bbalip.2004.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/12/2004] [Accepted: 08/25/2004] [Indexed: 11/15/2022]
Abstract
Current evidence suggests the presence of transcripts for several secretory phospholipase A(2) (sPLA(2)) enzymes in male genital organs. In this study, we examined by immunohistochemistry the localization of group IIA, IIC, IID, IIE, IIF, V and X sPLA(2)s in male genital organs. In sPLA(2)-IIA-deficient C57BL/6 mouse testis, sPLA(2)-IIC, -IID, -IIE, -IIF, -V and -X were diversely expressed in spermatogenic cells within the seminiferous tubules. Immunoblotting revealed the presence of these sPLA(2)s in mouse spermatozoa. In addition, sPLA(2)-IIF, -V and -X were localized in the interstitial Leydig cells. The same set of sPLA(2)s was detected in a mouse cultured Leydig cell line, and adenovirus-mediated transfer of these sPLA(2)s into Leydig cells resulted in increased prostaglandin production. sPLA(2)-IIC, -IID, -IIE, -IIF, -V and -X were also detected diversely in the epithelium of the epididymis, vas deferens, seminal vesicles, and prostate. In a sPLA(2)-IIA-positive FVB strain, weak expression of sPLA(2)-IIA was detected in Leydig cells. Notable differences in the sPLA(2) expression profiles were found in the seminal vesicles and prostate between mice and humans. Taken together, individual sPLA(2)s exhibit distinct or partially overlapping localizations in male reproductive organs, suggesting both specific and redundant functions.
Collapse
Affiliation(s)
- Seiko Masuda
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Saiga A, Uozumi N, Ono T, Seno K, Ishimoto Y, Arita H, Shimizu T, Hanasaki K. Group X secretory phospholipase A2 can induce arachidonic acid release and eicosanoid production without activation of cytosolic phospholipase A2 alpha. Prostaglandins Other Lipid Mediat 2005; 75:79-89. [PMID: 15789617 DOI: 10.1016/j.prostaglandins.2004.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice. We found that Pyrrophenone, a cPLA2alpha-specific inhibitor, did not suppress the sPLA2-X-induced potent AA release and prostaglandin E2 formation in mouse spleen cells. Furthermore, the amount of AA released by sPLA2-X from spleen cells was not significantly altered by cPLA2alpha deficiency. These results suggest that sPLA2-X induces potent AA release without activation of cPLA2a, which might be relevant to eicosanoid production in some pathological states where cPLA2a is not activated.
Collapse
Affiliation(s)
- Akihiko Saiga
- Shionogi Research Laboratories, Shionogi and Co. Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Satake Y, Diaz BL, Balestrieri B, Lam BK, Kanaoka Y, Grusby MJ, Arm JP. Role of group V phospholipase A2 in zymosan-induced eicosanoid generation and vascular permeability revealed by targeted gene disruption. J Biol Chem 2004; 279:16488-94. [PMID: 14761945 PMCID: PMC1201398 DOI: 10.1074/jbc.m313748200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conclusions regarding the contribution of low molecular weight secretory phospholipase A2 (sPLA2) enzymes in eicosanoid generation have relied on data obtained from transfected cells or the use of inhibitors that fail to discriminate between individual members of the large family of mammalian sPLA2 enzymes. To elucidate the role of group V sPLA2, we used targeted gene disruption to generate mice lacking this enzyme. Zymosan-induced generation of leukotriene C4 and prostaglandin E2 was attenuated approximately 50% in peritoneal macrophages from group V sPLA2-null mice compared with macrophages from wild-type littermates. Furthermore, the early phase of plasma exudation in response to intraperitoneal injection of zymosan and the accompanying in vivo generation of cysteinyl leukotrienes were markedly attenuated in group V sPLA2-null mice compared with wild-type controls. These data provide clear evidence of a role for group V sPLA2 in regulating eicosanoid generation in response to an acute innate stimulus of the immune response both in vitro and in vivo, suggesting a role for this enzyme in innate immunity.
Collapse
Affiliation(s)
- Yoshiyuki Satake
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
| | - Bruno L. Diaz
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
- Divisão de Biologia Celular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Barbara Balestrieri
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
| | - Bing K. Lam
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
| | - Yoshihide Kanaoka
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
| | - Michael J. Grusby
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115
| | - Jonathan P. Arm
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
- Partners Asthma Center, Brigham and Women’s Hospital, Boston, MA 02115
- §§ To whom correspondence should be addressed: Brigham and Women’s Hospital, Smith Research Building, Room 638B, 1, Jimmy Fund Way, Boston, MA 02115. Tel.: 617-525-1305; Fax: 617-525-1310; E-Mail:
| |
Collapse
|
26
|
Hamaguchi K, Kuwata H, Yoshihara K, Masuda S, Shimbara S, Oh-ishi S, Murakami M, Kudo I. Induction of distinct sets of secretory phospholipase A(2) in rodents during inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1635:37-47. [PMID: 14642775 DOI: 10.1016/j.bbalip.2003.10.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although the expression of the prototypic secretory phospholipase A(2) (sPLA(2)), group IIA (sPLA(2)-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA(2) enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA(2)s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA(2)-V, and to a lesser extent that of sPLA(2)-IID, -IIE, and -IIF, were increased, whereas that of sPLA(2)-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA(2)-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA(2)-IIA inhibitor that turned out to inhibit sPLA(2)-IID, -IIE, -V and -X as well. In contrast, sPLA(2)-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA(2)s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.
Collapse
Affiliation(s)
- Katsuhiko Hamaguchi
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Tokyo 142-8555, Shinagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Secretory phospholipase A2 (sPLA2) is a growing family of structurally related, disulfide-rich, low molecular weight, lipolytic enzymes with a His-Asp catalytic dyad. sPLA2s are distributed in a wide variety of vertebrate and invertebrate animals, plants, bacteria, and viruses, and there are 10 catalytically active sPLA2 isozymes in mammals. Although the structural bases for mammalian sPLA2s have been well documented, their physiological functions are still subject to debate. Individual mammalian sPLA2s have distinct enzymatic properties and display distinct tissue expression patterns, suggesting that each enzyme acts on distinct phospholipid membrane moieties in vivo. In this article, we briefly review our latest understanding of the possible physiological functions of sPLA2s, in keeping with their diverse actions on mammalian and nonmammalian cell membranes.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | |
Collapse
|
28
|
Helmy FM. Comparative studies of the endogenous phospholipids and theirin vitro hydrolysis by endogenous phospholipases of various tissues from 7-day-old chicks: a thin layer chromatographic and densitometric analysis. Cell Biochem Funct 2004; 22:389-98. [PMID: 15376232 DOI: 10.1002/cbf.1170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The phospholipid profiles of heart, kidney, and pectoral muscle of 7-day-old chicks and their in vitro response to the endogenous lipolytic enzymes (mainly in the phospholipase group) at pH 7.4 and 38 degrees C for 60 min were analysed by TLC technology and densitometry. The noticeable preferential deacylation of cardiolipin (CL) as detected by the formation of monolysocardiolipin (MLCL) and concurrent reduction of CL level were the most prevalent lipolytic events of chick cardiac muscle, but the least prevalent in chick pectoral muscle. Deacylation of ethanolamine plasmalogen (PE) as revealed by the formation of the corresponding lyso alkenyl derivative was also prominent in cardiac muscle, but much less so in kidney and none at all was detected in pectoral muscle. The level of sphingomyelin (SM) was much higher in kidney than heart and pectoral muscle. Following in vitro incubation, the reduction in the level of SM and the high level of ceramide (Cer) production were most conspicuous in kidney, less in cardiac muscle and least in pectoral muscle. The hydrolysis of PE and SM confirm the action of endogenous PLA(2) and endogenous sphingomyelinase on PE and SM respectively. These data clearly illustrate the differential response of the endogenous substrates (phospholipids) to the endogenous phospholipases of the tissues studied and are probably related to their physiological activities in vivo.
Collapse
Affiliation(s)
- Fatma M Helmy
- Department of Biological Sciences, Delaware State University, 1200 N. Dupont Highway, Dover, DE 19901, USA.
| |
Collapse
|
29
|
Meroni SB, Riera MF, Pellizzari EH, Schteingart HF, Cigorraga SB. Possible role of arachidonic acid in the regulation of lactate production in rat Sertoli cells. ACTA ACUST UNITED AC 2003; 26:310-7. [PMID: 14511220 DOI: 10.1046/j.1365-2605.2003.00432.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the study was to determine whether arachidonic acid (AA) is involved in the regulation of Sertoli cell lactate production and if this fatty acid participates in follicle-stimulating hormone (FSH) regulation of Sertoli cell function. In a first set of experiments the effect of AA and porcine pancreas phospholipase A2 (PLA2) on lactate production, glucose uptake, lactate dehydrogenase (LDH) activity and LDH A mRNA levels in Sertoli cell cultures obtained from 20-day-old rats was evaluated. In a second set of experiments the effect of two PLA2 inhibitors--quinacrine (Q) and AACOCF3--on FSH stimulation of the above-mentioned parameters of Sertoli cell function was investigated. Treatment with PLA2 and AA increased Sertoli cell lactate production. The observed action of exogenously added PLA2 involved its catalytic properties responsible for AA release. PLA2 and AA treatments also stimulated Sertoli cell glucose uptake, LDH activity and LDH A mRNA levels. In order to determine whether AA participates in FSH regulation of Sertoli cell lactate production cells were incubated with FSH in the absence or presence of the PLA2 inhibitors Q and AACOCF3. Both drugs partially inhibited the ability of FSH to stimulate lactate production, glucose uptake and LDH activity. The present investigation suggests that AA is involved in the regulation of lactate production, glucose transport, LDH activity and LDH A mRNA levels. In addition, these results suggest that cytosolic PLA2 and AA may participate in FSH-regulation of Sertoli cell energetic metabolism.
Collapse
Affiliation(s)
- Silvina B Meroni
- Centro de Investigaciones Endocrinológicas (CEDIE), Hospital de Niños R. Gutiérrez, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
30
|
Abstract
Considerable progress has been made in characterizing the individual participant enzymes and their relative contributions in the generation of eicosanoids, lipid mediators derived from arachidonic acid, such as prostaglandins and leukotrienes. However, the role of individual phospholipase (PL) A(2) enzymes in providing arachidonic acid to the downstream enzymes for eicosanoid generation in biologic processes has not been fully elucidated. In this review, we will provide an overview of the classification of the families of PLA(2) enzymes, their putative mechanisms of action, and their role(s) in eicosanoid generation and inflammation.
Collapse
Affiliation(s)
- Bruno L Diaz
- Division of Cell Biology, National Cancer Institute-INCA, R André Cavalcanti 37, Centro, Rio de Janeiro 20231-050, Brazil.
| | | |
Collapse
|
31
|
Yaoi Y, Suzuki M, Tomura H, Sasayama Y, Kikuyama S, Tanaka S. Molecular cloning of otoconin-22 complementary deoxyribonucleic acid in the bullfrog endolymphatic sac: effect of calcitonin on otoconin-22 messenger ribonucleic acid levels. Endocrinology 2003; 144:3287-96. [PMID: 12865304 DOI: 10.1210/en.2002-0181] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anuran amphibians have a special organ called the endolymphatic sac (ELS), containing many calcium carbonate crystals, which is believed to have a calcium storage function. The major protein of aragonitic otoconia, otoconin-22, which is considered to be involved in the formation of calcium carbonate crystals, has been purified from the saccule of the Xenopus inner ear. In this study, we cloned a cDNA encoding otoconin-22 from the cDNA library constructed for the paravertebral lime sac (PVLS) of the bullfrog, Rana catesbeiana, and sequenced it. The bullfrog otoconin-22 encoded a protein consisting of 147 amino acids, including a signal peptide of 20 amino acids. The protein had cysteine residues identical in a number and position to those conserved among the secretory phospholipase A(2) family. The mRNA of bullfrog otoconin-22 was expressed in the ELS, including the PVLS and inner ear. This study also revealed the presence of calcitonin receptor-like protein in the ELS, with the putative seven-transmembrane domains of the G protein-coupled receptors. The ultimobranchialectomy induced a prominent decrease in the otoconin-22 mRNA levels of the bullfrog PVLS. Supplementation of the ultimobranchialectomized bullfrogs with synthetic salmon calcitonin elicited a significant increase in the mRNA levels of the sac. These findings suggest that calcitonin secreted from the ultimobranchial gland, regulates expression of bullfrog otoconin-22 mRNA via calcitonin receptor-like protein on the ELS, thereby stimulating the formation of calcium carbonate crystals in the lumen of the ELS.
Collapse
Affiliation(s)
- Yuichi Yaoi
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Scott KF, Graham GG, Bryant KJ. Secreted phospholipase A2 enzymes as therapeutic targets. Expert Opin Ther Targets 2003; 7:427-40. [PMID: 12783578 DOI: 10.1517/14728222.7.3.427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Homology cloning through in silico database search analysis has led to the definition of ten structurally-related mammalian secreted phospholipase A(2) (sPLA(2)) enzyme forms at present, each expressed in a species-, genotype- and cell-type-specific manner and with different enzymatic properties. These studies have shown that models based on the premise that there is only one PLA(2) drug target are now inadequate. Type IIA sPLA(2) remains the most advanced clinical target, with rationally designed inhibitors in Phase II clinical trials. However, progress in our understanding of the functional role of the ten secreted enzymes in phospholipid (PL) metabolism and in eicosanoid-mediated disorders, together with their emerging activity-independent and receptor-mediated functions, is likely to significantly impact on current and future drug development efforts.
Collapse
Affiliation(s)
- Kieran F Scott
- St Vincent's Hospital Clinical School, School of Medical Sciences, The University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
33
|
Balboa MA, Varela-Nieto I, Killermann Lucas K, Dennis EA. Expression and function of phospholipase A(2) in brain. FEBS Lett 2002; 531:12-7. [PMID: 12401195 DOI: 10.1016/s0014-5793(02)03481-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase A(2) (PLA(2)) appears to play a fundamental role in cell injury in the central nervous system. We have investigated PLA(2) expression in the astrocytoma cell line 1231N1, and found that GIVA, GIVB, GIVC and GVI PLA(2) messages are expressed. PLA(2) activity is increased by inflammatory/injury stimuli such as interleukin-1beta and lipopolysaccharide in these cells but with very different time courses. The arachidonic acid liberated is converted to prostaglandin E(2), possibly by cyclooxygenase-2, which is induced by inflammatory stimuli. This cell system emerges as a model to study injury/inflammation-related activation of the new PLA(2) forms GIVB and GIVC.
Collapse
Affiliation(s)
- María A Balboa
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (AA), a precursor of eicosanoids including prostaglandins and leukotrienes. The same reaction also produces lysophosholipids, which represent another class of lipid mediators. So far, at least 19 enzymes that possess PLA2 activity have been identified and cloned in mammals. The secretory PLA2 (sPLA2) family, in which 10 isozymes have been identified, consists of low-molecular weight, Ca2+-requiring secretory enzymes that have been implicated in a number of biological processes, such as modification of eicosanoid generation, inflammation, and host defense. The cytosolic PLA2 (cPLA2) family consists of three enzymes, among which cPLA2alpha has been paid much attention by researchers as an essential component of the initiation of AA metabolism. The activation of cPLA2alpha is tightly regulated by Ca2+ and phosphorylation. The Ca2+-independent PLA2 (iPLA2) family contains two enzymes and may play a major role in phospholipid remodeling. The platelet-activating factor (PAF) acetylhydrolase (PAF-AH) family contains four enzymes that exhibit unique substrate specificity toward PAF and/or oxidized phospholipids. Degradation of these bioactive phospholipids by PAF-AHs may lead to the termination of inflammatory reaction and atherosclerosis.
Collapse
Affiliation(s)
- Ichiro Kudo
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | |
Collapse
|
35
|
Talvinen KA, Nevalainen TJ. Cloning of a novel phospholipase A2 from the cnidarian Adamsia carciniopados. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:571-8. [PMID: 12091102 DOI: 10.1016/s1096-4959(02)00073-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PLA2 catalytic activity was detected in homogenised tissues, including tentacles and acontia (structures for preying and defence, respectively), of the sea anemone Adamsia carciniopados. Nested reverse transcription polymerase chain reaction (RT PCR) with degenerate primers and rapid amplification of cDNA ends (RACE) were used to clone a novel phospholipase A2 from Adamsia carciniopados (AcPLA2). AcPLA2 contains a putative prepropeptide of 37 residues, ending with a basic doublet followed by a mature protein of 119 amino acids, including 12 cysteines. AcPLA2 displays only 30-42% similarity with other known secretory PLA2s (sPLA2). C-terminal extension, typical of groups II and X PLA2s, is absent. Predicted molecular weight and pI of the mature protein are 13.5 kDa and 9.1, respectively. Structural features and phylogenetic analysis set AcPLA2 apart from the known sPLA2s and define this molecule in the ancient metazoan phylum Cnidaria as a member of a new class of sPLA2s.
Collapse
Affiliation(s)
- Kati A Talvinen
- Department of Pathology, University of Turku, Kiinamyllynkatu 10, FIN-20520, Turku, Finland
| | | |
Collapse
|
36
|
Jaross W, Eckey R, Menschikowski M. Biological effects of secretory phospholipase A(2) group IIA on lipoproteins and in atherogenesis. Eur J Clin Invest 2002; 32:383-93. [PMID: 12059982 DOI: 10.1046/j.1365-2362.2002.01000.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Secretory phospholipase A(2) group IIA(sPLA(2) IIA) can be produced and secreted by various cell types either constitutionally or as an acute-phase reactant upon stimulation by proinflammatory cytokines. The enzyme prefers phosphatidylethanolamine and phosphatidylserine as substrates. One important biological function may be the hydrolytic destruction of bacterial membranes. It has been demonstrated, however, that sPLA(2) can also hydrolyse the phospholipid monolayers of high density lipoprotein (HDL) and low density lipoprotein (LDL) in vitro. Secretory phospholipase A(2)-modified LDL show increased affinity to glycosaminoglycans and proteoglycans, a tendency to aggregate, and an enhanced ability to deliver cholesterol to cells. Incubation of cultured macrophages with PLA(2)-treated LDL and HDL is associated with increased intracellular lipid accumulation, resulting in the formation of foam cells. Elevated sPLA(2)(IIA) activity in blood serum leads to an increased clearance of serum cholesterol. Secretory phospholipase A(2)(IIA) can also be detected in the intima, adventitia and media of the atherosclerotic wall not only in developed lesions but also in very early stages of atherosclerosis. The presence of DNA of Chlamydia pneumoniae, herpes simplex virus, and cytomegalovirus was found to be associated with sPLA(2)(IIA) expression and other signs of local inflammation. Thus, sPLA(2)(IIA) appears to be one important link between the lipid and the inflammation hypothesis of atherosclerosis.
Collapse
Affiliation(s)
- Werner Jaross
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technical University of Dresden, Germany.
| | | | | |
Collapse
|
37
|
Murakami M, Yoshihara K, Shimbara S, Sawada M, Inagaki N, Nagai H, Naito M, Tsuruo T, Moon TC, Chang HW, Kudo I. Group IID heparin-binding secretory phospholipase A(2) is expressed in human colon carcinoma cells and human mast cells and up-regulated in mouse inflammatory tissues. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2698-707. [PMID: 12047378 DOI: 10.1046/j.1432-1033.2002.02938.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Group IID secretory phospholipase A(2) (sPLA(2)-IID), a heparin-binding sPLA(2) that is closely related to sPLA(2)-IIA, augments stimulus-induced cellular arachidonate release in a manner similar to sPLA(2)-IIA. Here we identified the residues of sPLA(2)-IID that are responsible for heparanoid binding, are and therefore essential for cellular function. Mutating four cationic residues in the C-terminal portion of sPLA(2)-IID resulted in abolition of its ability to associate with cell surface heparan sulfate and to enhance stimulus-induced delayed arachidonate release, cyclooxygenase-2 induction, and prostaglandin generation in 293 cell transfectants. As compared with several other group II subfamily sPLA(2)s, which were equally active on A23187- and IL-1-primed cellular membranes, sPLA(2)-IID showed apparent preference for A23187-primed membranes. Several human colon carcinoma cell lines expressed sPLA(2)-IID and sPLA(2)-X constitutively, the former of which was negatively regulated by IL-1. sPLA(2)-IID, but not other sPLA(2) isozymes, was expressed in human cord blood-derived mast cells. The expression of sPLA(2)-IID was significantly altered in several tissues of mice with experimental inflammation. These results indicate that sPLA(2)-IID may be involved in inflammation in cell- and tissue-specific manners under particular conditions.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Murakami M, Yoshihara K, Shimbara S, Lambeau G, Gelb MH, Singer AG, Sawada M, Inagaki N, Nagai H, Ishihara M, Ishikawa Y, Ishii T, Kudo I. Cellular arachidonate-releasing function and inflammation-associated expression of group IIF secretory phospholipase A2. J Biol Chem 2002; 277:19145-55. [PMID: 11877435 DOI: 10.1074/jbc.m112385200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here we report the cellular arachidonate (AA)-releasing function of group IIF secretory phospholipase A(2) (sPLA(2)-IIF), a sPLA(2) enzyme uniquely containing a longer C-terminal extension. sPLA(2)-IIF increased spontaneous and stimulus-dependent release of AA, which was supplied to downstream cyclooxygenases and 5-lipoxygenase for eicosanoid production. sPLA(2)-IIF also enhanced interleukin 1-stimulated expression of cyclooxygenase-2 and microsomal prostaglandin E synthase. AA release by sPLA(2)-IIF was facilitated by oxidative modification of cellular membranes. Cellular actions of sPLA(2)-IIF occurred independently of the heparan sulfate proteoglycan glypican, which acts as a functional adaptor for other group II subfamily sPLA(2)s. Confocal microscopy revealed the location of sPLA(2)-IIF on the plasma membrane. The unique C-terminal extension was crucial for its plasma membrane localization and optimal cellular functions. sPLA(2)-IIF expression was increased in various tissues from lipopolysaccharide-treated mice and in ears of mice with experimental atopic dermatitis. In human rheumatoid arthritic joints, sPLA(2)-IIF was detected in synovial lining cells, capillary endothelial cells, and plasma cells. These results suggest that sPLA(2)-IIF is a potent regulator of AA metabolism and participates in the inflammatory process under certain conditions.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mizenina O, Musatkina E, Yanushevich Y, Rodina A, Krasilnikov M, de Gunzburg J, Camonis JH, Tavitian A, Tatosyan A. A novel group IIA phospholipase A2 interacts with v-Src oncoprotein from RSV-transformed hamster cells. J Biol Chem 2001; 276:34006-12. [PMID: 11427522 DOI: 10.1074/jbc.m011320200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a novel isoform of phospholipase A(2). This enzyme was designated srPLA(2) because it was discovered while analyzing the proteins interacting with different forms of the v-Src oncoproteins isolated from Rous sarcoma virus-transformed hamster cells. It contains all the functional regions of the PLA(2) group IIA proteins but differs at its C-terminal end where there is an additional stretch of 8 amino acids. The SrPLA(2) isoform was detected as a 17-kDa precursor in cells and as a mature 14-kDa form secreted in culture medium. A direct interaction of the 17-kDa precursor with the Src protein was observed in lysates of transformed cells. Both the 17- and 14-kDa forms were found to be phosphorylated on tyrosine. To our knowledge, this is the first report of a PLA(2) group II protein that is tyrosine phosphorylated. We surmise that srPLA(2) interacts with the Src protein at the cell membrane during the process of its maturation.
Collapse
Affiliation(s)
- O Mizenina
- Institute of Carcinogenesis, Cancer Research Center, Kashirskoye shosse, 24, 115 478, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | |
Collapse
|
41
|
Anthonsen MW, Solhaug A, Johansen B. Functional coupling between secretory and cytosolic phospholipase A2 modulates tumor necrosis factor-alpha- and interleukin-1beta-induced NF-kappa B activation. J Biol Chem 2001; 276:30527-36. [PMID: 11390371 DOI: 10.1074/jbc.m008481200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta are potent activators of the transcription factor NF-kappaB, induced during inflammatory conditions. We have previously shown that both secretory and cytosolic phospholipase A(2) (PLA(2)) are involved in TNF-alpha- and IL-1beta-induced NF-kappaB activation. In this study, we have addressed the mechanism of PLA(2) involvement with respect to downstream arachidonic acid (AA) metabolites and the functional coupling between PLA(2)s mediating NF-kappaB activation. We show that in addition to inhibitors of secretory and cytosolic PLA(2)s, 5-lipoxygenase inhibitors attenuate TNF-alpha- and IL-1beta-stimulated NF-kappaB activation. Exogenous addition of leukotriene B(4) (LTB(4)) restored NF-kappaB activation reduced by 5-lipoxygenase inhibitors or an LTB(4) receptor antagonist, thus identifying LTB(4) as a mediator in signaling to NF-kappaB. TNF-alpha- and IL-1beta-induced AA release from cellular membranes was accompanied by phosphorylation of cytosolic PLA(2). Inhibitors of secretory PLA(2) and of 5-lipoxygenase/LTB(4) functionality markedly reduced AA release and nearly completely abolished cytosolic PLA(2) phosphorylation. This demonstrates that secretory PLA(2), through 5-lipoxygenase metabolites, is an essential upstream regulator of cytosolic PLA(2) and AA release. Our results therefore suggest the existence of a functional link between secretory and cytosolic PLA(2) in cytokine-activated keratinocytes, providing a molecular explanation for the participation of both secretory and cytosolic PLA(2) in arachidonic acid signaling and NF-kappaB activation in response to proinflammatory cytokines.
Collapse
Affiliation(s)
- M W Anthonsen
- UNIGEN Center for Molecular Biology, Faculty of Chemistry and Biology, Norwegian University of Science and Technology, N-7489 Trondheim, Norway.
| | | | | |
Collapse
|
42
|
Zhang Y, Abe J, Siddiq A, Nakagawa H, Honda S, Wada T, Ichida S. UT841 purified from sea urchin (Toxopneustes pileolus) venom inhibits time-dependent (45)Ca(2+) uptake in crude synaptosome fraction from chick brain. Toxicon 2001; 39:1223-9. [PMID: 11306134 DOI: 10.1016/s0041-0101(00)00267-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To clarify the mechanism by which the toxic abstract from Toxopneustes pileolus inhibits time-dependent (Time-dep.) Ca(2+) uptake in crude synaptosome fraction, the effective component from pedicellarial venom of the sea urchin was purified. The crude extracts were purified by a series of steps including ion exchange (DEAE-sephadex-A25 gel), gel filtration (with Superdex-2000 and Superdex-peptide columns) and reversed-phase chromatography (Sephasil-C18 column). The effective component that inhibited Time-dep. 45Ca(2+) uptake was purified and named UT841. Its IC(50) was determined to be lower than 35ng/ml. UT841 is an acidic protein with an apparent molecular weight of about 18,000. The N-terminal sequence (40 amino acids) was almost identical to that of Contractin A (a protein purified from the same kind of venom which induces smooth muscle contraction). Even though it is unclear whether or not UT841 is Contractin A, Ca(2+) mobilization in nerve cells was shown to be influenced by UT841. This investigation also revealed that a donor of nitric oxide, arachidonic acid and an inhibitor of phospholipase C selectively inhibit Time-dep. (45)Ca(2+) uptake. These results suggest that UT841 purified from sea urchin venom may affect Time-dep. (45)Ca(2+) uptake through the metabolism of some lipids and nitric oxide.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, 577-8502, Higashi-Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Capper EA, Marshall LA. Mammalian phospholipases A(2): mediators of inflammation, proliferation and apoptosis. Prog Lipid Res 2001; 40:167-97. [PMID: 11275266 DOI: 10.1016/s0163-7827(01)00002-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- E A Capper
- SmithKline Beecham Pharmaceuticals, Department of Immunology, Upper Merion, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | |
Collapse
|
44
|
Murakami M, Koduri RS, Enomoto A, Shimbara S, Seki M, Yoshihara K, Singer A, Valentin E, Ghomashchi F, Lambeau G, Gelb MH, Kudo I. Distinct arachidonate-releasing functions of mammalian secreted phospholipase A2s in human embryonic kidney 293 and rat mastocytoma RBL-2H3 cells through heparan sulfate shuttling and external plasma membrane mechanisms. J Biol Chem 2001; 276:10083-96. [PMID: 11106649 DOI: 10.1074/jbc.m007877200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed the ability of a diverse set of mammalian secreted phospholipase A(2) (sPLA(2)) to release arachidonate for lipid mediator generation in two transfected cell lines. In human embryonic kidney 293 cells, the heparin-binding enzymes sPLA(2)-IIA, -IID, and -V promote stimulus-dependent arachidonic acid release and prostaglandin E(2) production in a manner dependent on the heparan sulfate proteoglycan glypican. In contrast, sPLA(2)-IB, -IIC, and -IIE, which bind weakly or not at all to heparanoids, fail to elicit arachidonate release, and addition of a heparin binding site to sPLA(2)-IIC allows it to release arachidonate. Heparin nonbinding sPLA(2)-X liberates arachidonic acid most likely from the phosphatidylcholine-rich outer plasma membrane in a glypican-independent manner. In rat mastocytoma RBL-2H3 cells that lack glypican, sPLA(2)-V and -X, which are unique among sPLA(2)s in being able to hydrolyze phosphatidylcholine-rich membranes, act most likely on the extracellular face of the plasma membrane to markedly augment IgE-dependent immediate production of leukotriene C(4) and platelet-activating factor. sPLA(2)-IB, -IIA, -IIC, -IID, and -IIE exert minimal effects in RBL-2H3 cells. These results are also supported by studies with sPLA(2) mutants and immunocytostaining and reveal that sPLA(2)-dependent lipid mediator generation occur by distinct (heparanoid-dependent and -independent) mechanisms in HEK293 and RBL-2H3 cells.
Collapse
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:1-19. [PMID: 11080672 DOI: 10.1016/s1388-1981(00)00105-0] [Citation(s) in RCA: 992] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phospholipase A(2) (PLA(2)) superfamily consists of a broad range of enzymes defined by their ability to catalyze the hydrolysis of the middle (sn-2) ester bond of substrate phospholipids. The hydrolysis products of this reaction, free fatty acid and lysophospholipid, have many important downstream roles, and are derived from the activity of a diverse and growing superfamily of PLA(2) enzymes. This review updates the classification of the various PLA(2)'s now described in the literature. Four criteria have been employed to classify these proteins into one of the 11 Groups (I-XI) of PLA(2)'s. First, the enzyme must catalyze the hydrolysis of the sn-2 ester bond of a natural phospholipid substrate, such as long fatty acid chain phospholipids, platelet activating factor, or short fatty acid chain oxidized phospholipids. Second, the complete amino acid sequence of the mature protein must be known. Third, each PLA(2) Group should include all of those enzymes that have readily identifiable sequence homology. If more than one homologous PLA(2) gene exists within a species, then each paralog should be assigned a Subgroup letter, as in the case of Groups IVA, IVB, and IVC PLA(2). Homologs from different species should be classified within the same Subgroup wherever such assignments are possible as is the case with zebra fish and human Group IVA PLA(2) orthologs. The current classification scheme does allow for historical exceptions of the highly homologous Groups I, II, V, and X PLA(2)'s. Fourth, catalytically active splice variants of the same gene are classified as the same Group and Subgroup, but distinguished using Arabic numbers, such as for Group VIA-1 PLA(2) and VIA-2 PLA(2)'s. These four criteria have led to the expansion or realignment of Groups VI, VII and VIII, as well as the addition of Group XI PLA(2) from plants.
Collapse
Affiliation(s)
- D A Six
- Department of Chemistry and Biochemistry, MC 0601, Revelle College and School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
46
|
Valentin E, Lambeau G. Increasing molecular diversity of secreted phospholipases A(2) and their receptors and binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:59-70. [PMID: 11080677 DOI: 10.1016/s1388-1981(00)00110-4] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secreted phospholipases A(2) (sPLA(2)s) form a large family of structurally related enzymes which are widespread in nature. Snake venoms are known for decades to contain a tremendous molecular diversity of sPLA(2)s which can exert a myriad of toxic and pharmacological effects. Recent studies indicate that mammalian cells also express a variety of sPLA(2)s with ten distinct members identified so far, in addition to the various other intracellular PLA(2)s. Furthermore, scanning of nucleic acid databases fueled by the different genome projects indicates that several sPLA(2)s are also present in invertebrate animals like Drosophila melanogaster as well as in plants. All of these sPLA(2)s catalyze the hydrolysis of glycerophospholipids at the sn-2 position to release free fatty acids and lysophospholipids, and thus could be important for the biosynthesis of biologically active lipid mediators. However, the recent identification of a variety of membrane and soluble proteins that bind to sPLA(2)s suggests that the sPLA(2) enzymes could also function as high affinity ligands. So far, most of the binding data have been accumulated with venom sPLA(2)s and group IB and IIA mammalian sPLA(2)s. Collectively, venom sPLA(2)s have been shown to bind to membrane and soluble mammalian proteins of the C-type lectin superfamily (M-type sPLA(2) receptor and lung surfactant proteins), to pentraxin and reticulocalbin proteins, to factor Xa and to N-type receptors. Venom sPLA(2)s also associate with three distinct types of sPLA(2) inhibitors purified from snake serum that belong to the C-type lectin superfamily, to the three-finger protein superfamily and to proteins containing leucine-rich repeats. On the other hand, mammalian group IB and IIA sPLA(2)s can bind to the M-type receptor, and group IIA sPLA(2)s can associate with lung surfactant proteins, factor Xa and proteoglycans including glypican and decorin, a mammalian protein containing a leucine-rich repeat.
Collapse
Affiliation(s)
- E Valentin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, 660 route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | | |
Collapse
|
47
|
Aarsman AJ, Neys FW, van der Helm HA, Kuypers FA, van den Bosch H. Sera of patients suffering from inflammatory diseases contain group IIA but not group V phospholipase A(2). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:257-63. [PMID: 11040450 DOI: 10.1016/s0925-4439(00)00050-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During recent years, the high phospholipase A(2) (PLA(2)) concentrations at sites of inflammation and in circulation in several life-threatening diseases, such as sepsis, multi-organ dysfunction and acute respiratory distress syndrome, has generally been ascribed to the non-pancreatic group IIA PLA(2). Recently the family of secreted low molecular mass PLA(2) enzymes has rapidly expanded. In some cases, a newly described enzyme appeared to be cross-reactive with antibodies against the group IIA enzyme. For this reason, reports describing the expression of group IIA PLA(2) during inflammatory conditions need to be reevaluated. Here we describe the identification of the PLA(2) activity in sera of acute chest syndrome patients and in sera of trauma victims. In both cases, the PLA(2) activity was identified as group IIA. This classification was based upon cross-reactivity with monoclonal antibodies against group IIA PLA(2) which do not recognize the recombinant human group V enzyme. Moreover, purification of the enzymatic activity from the two sera followed by N-terminal amino acid sequence analyses revealed only the presence of group IIA enzyme.
Collapse
Affiliation(s)
- A J Aarsman
- Center for Biomembranes and Lipid Enzymology, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Morioka Y, Saiga A, Yokota Y, Suzuki N, Ikeda M, Ono T, Nakano K, Fujii N, Ishizaki J, Arita H, Hanasaki K. Mouse group X secretory phospholipase A2 induces a potent release of arachidonic acid from spleen cells and acts as a ligand for the phospholipase A2 receptor. Arch Biochem Biophys 2000; 381:31-42. [PMID: 11019817 DOI: 10.1006/abbi.2000.1977] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Group X secretory phospholipase A2 (sPLA2-X) has recently been shown to possess a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Here, we report the purification of mouse pro- and mature forms of sPLA2-X, as well as its expression and biological functions. Purified pro-sPLA2-X was found to possess a propeptide of 11 amino acid residues attached at the NH2-terminals of the mature protein, and showed as little as 8% of the PLA2 activity of the mature form. Limited proteolysis of pro-sPLA2-X with trypsin resulted in the appearance of the mature form with a concomitant increase in PLA2 activity, suggesting a requirement of proteolytic removal of the propeptide for the optimal activity. The expression of sPLA2-X mRNA was detected in various tissues including the lung, thymus, and spleen, and immunohistochemical analysis revealed its expression in splenic macrophages. In the spleen cells, mature sPLA2-X elicited a prompt release of arachidonic acid with significant production of prostaglandin E2 more efficiently than group IB and IIA sPLA2s. In addition, sPLA2-X was identified as a high-affinity ligand for both native and recombinant form of mouse PLA2 receptor (PLA2R). However, there was no significant difference in the sPLA2-X-induced arachidonic acid release responses in the spleen cells between wild-type and PLA2R-deficient mice. These findings strongly suggest that sPLA2-X possesses two distinct biological functions in mice: it elicits a marked release of arachidonic acid from membrane phospholipids leading to the production of lipid mediators based on its enzymatic potency, and it acts as a natural ligand for the PLA2R that has been shown to play a critical role in the production of inflammatory cytokines during endotoxic shock.
Collapse
Affiliation(s)
- Y Morioka
- Shionogi Research Laboratories, Shionogi & Co., Ltd, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kishimura H, Ojima T, Hayashi K, Nishita K. cDNA cloning and sequencing of phospholipase A2 from the pyloric ceca of the starfish Asterina pectinifera. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:579-86. [PMID: 11026670 DOI: 10.1016/s0305-0491(00)00227-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three cDNA from the pyloric ceca of the starfish Asterina pectinifera, (namely, cDNA 1, 2, and 3), encoding phospholipase A2 (PLA2), were isolated and sequenced. These cDNAs were composed of 415 bp with an open reading frame of 414 bp at nucleotide positions 1-414, which encodes 138 amino acids including N-terminal Met derived from the PCR primer. The amino acid sequence deduced from the cDNA 1 was completely consistent with the sequence determined with the starfish PLA2 protein, while those deduced from cDNA 2 and cDNA 3 differed at one and twelve amino acid residual positions, respectively, from the sequence of the PLA2 protein, suggesting the presence of multiple forms in the starfish PLA2. All of the sequences deduced from cDNA 1, 2, and 3 required two amino acid deletions in pancreatic loop region, and sixteen insertions and three deletions in beta-wing region when aligned with the sequence of mammalian pancreatic PLA2. In phylogenetic tree, the starfish PLA2 should be classified into an independent group, but hardly to the established groups IA and IB. The characteristic structure in the pancreatic loop and beta-wing regions may account for the specific properties of the starfish PLA2, e.g. the higher activity and characteristic substrate specificity compared with commercially available PLA2 from porcine pancreas.
Collapse
Affiliation(s)
- H Kishimura
- Department of Marine Bioresources Chemistry, Faculty of Fisheries, Hokkaido University, Hakodate, Japan.
| | | | | | | |
Collapse
|
50
|
Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 2000; 275:22293-9. [PMID: 10801788 DOI: 10.1074/jbc.m000248200] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the nuclear receptor superfamily and mediates the biological effects of peroxisome proliferators. To determine the physiological role of PPARalpha in cardiac fatty acid metabolism, we examined the regulation of expression of cardiac fatty acid-metabolizing proteins using PPARalpha-null mice. The capacity for constitutive myocardial beta-oxidation of the medium and long chain fatty acids, octanoic acid and palmitic acid, was markedly reduced in the PPARalpha-null mice as compared with the wild-type mice, indicating that mitochondrial fatty acid catabolism is impaired in the absence of PPARalpha. In contrast, constitutive beta-oxidation of the very long chain fatty acid, lignoceric acid, did not differ between the mice, suggesting that the constitutive expression of enzymes involved in peroxisomal beta-oxidation is independent of PPARalpha(.) Indeed, PPARalpha-null mice had normal levels of the peroxisomal beta-oxidation enzymes except the D-type bifunctional protein. At least seven mitochondrial fatty acid-metabolizing enzymes were expressed at much lower levels in the PPARalpha-null mice, whereas other fatty acid-metabolizing enzymes were present at similar or slightly lower levels in the PPARalpha-null, as compared with wild-type mice. Additionally, lower constitutive mRNA expression levels of fatty acid transporters were found in the PPARalpha-null mice, suggesting a role for PPARalpha in fatty acid transport and catabolism. Indeed, in fatty acid metabolism experiments in vivo, myocardial uptake of iodophenyl 9-methylpentadecanoic acid and its conversion to 3-methylnonanoic acid were reduced in the PPARalpha-null mice. Interestingly, a decreased ATP concentration after exposure to stress, abnormal cristae of the mitochondria, abnormal caveolae, and fibrosis were observed only in the myocardium of the PPARalpha-null mice. These cardiac abnormalities appeared to proceed in an age-dependent manner. Taken together, the results presented here indicate that PPARalpha controls constitutive fatty acid oxidation, thus establishing a role for the receptor in cardiac fatty acid homeostasis. Furthermore, altered expression of fatty acid-metabolizing proteins seems to lead to myocardial damage and fibrosis, as inflammation and abnormal cell growth control can cause these conditions.
Collapse
Affiliation(s)
- K Watanabe
- Department of Clinical Pharmacology, Niigata College of Pharmacy, Niigata, Niigata 950-2081, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|