1
|
Burton C, Bitaraf A, Snyder K, Zhang C, Yoder SJ, Avram D, Du D, Yu X, Lau EK. The functional role of L-fucose on dendritic cell function and polarization. Front Immunol 2024; 15:1353570. [PMID: 38646527 PMCID: PMC11026564 DOI: 10.3389/fimmu.2024.1353570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/21/2024] [Indexed: 04/23/2024] Open
Abstract
Despite significant advances in the development and refinement of immunotherapies administered to combat cancer over the past decades, a number of barriers continue to limit their efficacy. One significant clinical barrier is the inability to mount initial immune responses towards the tumor. As dendritic cells are central initiators of immune responses in the body, the elucidation of mechanisms that can be therapeutically leveraged to enhance their functions to drive anti-tumor immune responses is urgently needed. Here, we report that the dietary sugar L-fucose can be used to enhance the immunostimulatory activity of dendritic cells (DCs). L-fucose polarizes immature myeloid cells towards specific DC subsets, specifically cDC1 and moDC subsets. In vitro, L-fucose treatment enhances antigen uptake and processing of DCs. Furthermore, our data suggests that L-fucose-treated DCs increase stimulation of T cell populations. Consistent with our functional assays, single-cell RNA sequencing of intratumoral DCs from melanoma- and breast tumor-bearing mice confirmed transcriptional regulation and antigen processing as pathways that are significantly altered by dietary L-fucose. Together, this study provides the first evidence of the ability of L-fucose to bolster DC functionality and provides rational to further investigate how L-fucose can be used to leverage DC function in order to enhance current immunotherapy.
Collapse
Affiliation(s)
- Chase Burton
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, United States
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Amirreza Bitaraf
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, United States
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Kara Snyder
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| | - Chaomei Zhang
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Sean J. Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Dorina Avram
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Eric K. Lau
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
2
|
Pallar RM, Pingle SK, Gaikwad AS, Yennam NS, Raju N, Kumar P, Adepu VK, Tumane RG, Veeranjaneyulu C, Matte K. Lectin: A Molecular Tool in Cancer Diagnosis and Therapy with Special Reference to Reproductive Cancers. Mol Biotechnol 2024:10.1007/s12033-024-01086-w. [PMID: 38456960 DOI: 10.1007/s12033-024-01086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
The prevalence of cancer deaths globally and domestically is higher especially due to the deferment of diagnosis and lack of facilities for women's reproductive cancers. The present review focussed to explore the application of lectins in cancer theranostics. Though there is cancer diagnostic and treatment available there is no promising early diagnostic tool and effective treatment available for the cancer which is the major concern. Lectins are cellulose-binding proteins that are strongly determined in saccharide groups of glycans, glycopeptides, or glycolipids. In the concomitance of events in cells, carbohydrates, and proteins, lectins play an important role. Lectins bind superiorly to the cancer cell membrane and their receptors induce the cytotoxic effect, which results in caspase-mediated cell death, and prohibits tumour development. Lectin snuffing also reveals polyamine stocks and impedes the growth of cancerous cells. They affect the cell cycle by non-apoptotic aggregation, seizure of the cell cycle phase G2, M, and the mediation of caspases. It can also adversely affect the action of telomerase and hinder vascularisation. They promote immunomodulation and adversely limit protein synthesis. Their easy availability and its characteristics support its use in cancer diagnosis and therapy, despite their small corollary effects. Future investigations recommend focussing more on the key applications of lectin by reducing its concurrent effects and carrying out more in-vitro investigations. However, the use of lectin formulations for cancer theranostics is a new area in cancer detection and treatment. In this review, plant lectin appears to be a potential target for cancer research in the fields of diagnosis and theranostics.
Collapse
Affiliation(s)
- Rachna M Pallar
- D Y Patil Deemed to be University, School of Biotechnology and Bioinformatics, Navi Mumbai, Maharashtra, 400614, India
| | - Shubhangi K Pingle
- Department of Biochemistry, Regional Occupational Health Centre (Southern), NIOH, ICMR Complex, Kannamangala PO, Poojanahalli Road, Devanahalli Taluk, Bengaluru, Karnataka, 562110, India.
| | - Avinash Shivaji Gaikwad
- Department of Hygiene, ICMR - Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Naveen S Yennam
- D Y Patil Deemed to be University, School of Biotechnology and Bioinformatics, Navi Mumbai, Maharashtra, 400614, India
| | - N Raju
- Department of Biochemistry, ICMR- Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Panja Kumar
- Department of Hygiene, ICMR - Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Vinay Kumar Adepu
- Department of Biochemistry, ICMR- Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Rajani G Tumane
- Department of Biochemistry, ICMR- Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Chennuru Veeranjaneyulu
- Department of Biochemistry, ICMR- Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| | - Kartikey Matte
- Department of Biochemistry, ICMR- Regional Occupational Health Centre (Southern), NIOH, Bengaluru, Karnataka, 562110, India
| |
Collapse
|
3
|
Nakao T, Otaki S, Kominami Y, Watanabe S, Ito M, Aizawa T, Akahori Y, Ushio H. L-Fucose Suppresses Lipid Accumulation via the AMPK Pathway in 3T3-L1 Adipocytes. Nutrients 2023; 15:nu15030503. [PMID: 36771210 PMCID: PMC9919779 DOI: 10.3390/nu15030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
L-fucose (Fuc), a monosaccharide with different biological functions in various organisms, exhibits potent anti-obesity effects in obese mice. However, the mechanisms underlying its anti-obesity effects remain largely unknown. In this study, we aimed to investigate the effects of Fuc on lipid metabolism and insulin signaling in 3T3-L1 adipocytes. We found that Fuc treatment suppressed lipid accumulation during adipocyte differentiation. Additionally, Fuc treatment enhanced the phosphorylation of AMP-activated kinase (AMPK) and its downstream pathways, responsible for the regulation of fatty acid oxidation and lipolysis. Furthermore, Fuc-induced activation of the AMPK pathway was diminished by the AMPK inhibitor Compound C, and Fuc treatment considerably promoted glucose uptake via Akt activation in an insulin-resistant state. These findings provide a basis for elucidating the mechanism underlying the anti-obesity effect of Fuc, which may, in the future, be considered as a therapeutic compound for treating obesity and related diseases.
Collapse
Affiliation(s)
- Tomohiko Nakao
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Shiro Otaki
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yuri Kominami
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Miho Ito
- Yaizu Suisankagaku Industry Co., Ltd., 5-8-13 Kogawa-shimmachi, Yaizu, Shizuoka 425-8570, Japan
| | - Teruki Aizawa
- Yaizu Suisankagaku Industry Co., Ltd., 5-8-13 Kogawa-shimmachi, Yaizu, Shizuoka 425-8570, Japan
| | - Yusuke Akahori
- Yaizu Suisankagaku Industry Co., Ltd., 5-8-13 Kogawa-shimmachi, Yaizu, Shizuoka 425-8570, Japan
| | - Hideki Ushio
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
- Correspondence: ; Tel.: +81-3-5841-7520
| |
Collapse
|
4
|
Skurska E, Szulc B, Maszczak-Seneczko D, Wiktor M, Wiertelak W, Makowiecka A, Olczak M. Incorporation of fucose into glycans independent of the GDP-fucose transporter SLC35C1 preferentially utilizes salvaged over de novo GDP-fucose. J Biol Chem 2022; 298:102206. [PMID: 35772493 PMCID: PMC9304781 DOI: 10.1016/j.jbc.2022.102206] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Mutations in the SLC35C1 gene encoding the Golgi GDP-fucose transporter are known to cause leukocyte adhesion deficiency II. However, improvement of fucosylation in leukocyte adhesion deficiency II patients treated with exogenous fucose suggests the existence of an SLC35C1-independent route of GDP-fucose transport, which remains a mystery. To investigate this phenomenon, we developed and characterized a human cell–based model deficient in SLC35C1 activity. The resulting cells were cultured in the presence/absence of exogenous fucose and mannose, followed by examination of fucosylation potential and nucleotide sugar levels. We found that cells displayed low but detectable levels of fucosylation in the absence of SLC35C1. Strikingly, we show that defects in fucosylation were almost completely reversed upon treatment with millimolar concentrations of fucose. Furthermore, we show that even if fucose was supplemented at nanomolar concentrations, it was still incorporated into glycans by these knockout cells. We also found that the SLC35C1-independent transport preferentially utilized GDP-fucose from the salvage pathway over the de novo biogenesis pathway as a source of this substrate. Taken together, our results imply that the Golgi systems of GDP-fucose transport discriminate between substrate pools obtained from different metabolic pathways, which suggests a functional connection between nucleotide sugar transporters and nucleotide sugar synthases.
Collapse
Affiliation(s)
- Edyta Skurska
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | - Bożena Szulc
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | | | - Maciej Wiktor
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | - Wojciech Wiertelak
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | | | - Mariusz Olczak
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland.
| |
Collapse
|
5
|
Misaki R, Iwasaki M, Takechi H, Yamano-Adachi N, Ohashi T, Kajiura H, Fujiyama K. Establishment of serum-free adapted Chinese hamster ovary cells with double knockout of GDP-mannose-4,6-dehydratase and GDP-fucose transporter. Cytotechnology 2022; 74:163-179. [PMID: 35185292 PMCID: PMC8817005 DOI: 10.1007/s10616-021-00501-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/11/2021] [Indexed: 02/03/2023] Open
Abstract
Although antibodies have attracted attention as next-generation biopharmaceuticals, the costs of purifying the products and of arranging the environment for cell cultivation are high. Therefore, there is a need to increase antibody efficacy and improve product quality as much as possible. Since antibodies are glycoproteins, their glycan structures have been found to affect the function of antibodies. Especially, afucosylation of the N-linked glycan in the Fc region is known to significantly increase antibody-dependent cellular cytotoxicity. In this study, we established a double-mutant ΔGMDΔGFT in which GDP-mannose 4,6-dehydratase and GDP-fucose transporter were knocked out in Chinese hamster ovary cells, a platform for biopharmaceutical protein production. By adapting ΔGMDΔGFT cells to serum-free medium and constructing suspension-cultured cells, we established host CHO cells with no detected fucosylated glycans and succeeded in production of afucosylated antibodies. We also demonstrated that, in culture in the presence of serum, fucosylation occurs due to contamination from serum components. Furthermore, we found that afucosylation of glycans does not affect cell growth after adaptation to serum-free medium as compared to wild-type CHO cells growth and does not significantly affect the expression levels of other endogenous fucose metabolism-related enzyme genes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-021-00501-3.
Collapse
Affiliation(s)
- Ryo Misaki
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Masashi Iwasaki
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Hiroki Takechi
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Yamada-oka 2-1, Suita, Osaka 565-0871 Japan
- MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Rudloff S, Kuntz S, Borsch C, Vazquez E, Buck R, Reutzel M, Eckert GP, Kunz C. Fucose as a Cleavage Product of 2'Fucosyllactose Does Not Cross the Blood-Brain Barrier in Mice. Mol Nutr Food Res 2021; 65:e2100045. [PMID: 34139057 DOI: 10.1002/mnfr.202100045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/31/2021] [Indexed: 01/22/2023]
Abstract
SCOPE To further examine the role of the human milk oligosaccharide 2'fucosyllactose (2´FL) and fucose (Fuc) in cognition. Using 13 C-labeled 2'FL,thestudy previously showed in mice that 13 C-enrichment of the brain is not caused by 13 C1 -2´FL itself, but rather by microbial metabolites. Here, the study applies 13 C1 -Fuc in the same mouse model to investigate its uptake into the brain. METHODS AND RESULTS Mice received 13 C1 -Fuc via oral gavage (2 mmol 13 C1 -Fuc/kg-1 body weight) or intravenously (0.4 mmol/kg-1 body weight). 13 C-enrichment is measured in organs, including various brain regions, biological fluids and excrements. By EA-IRMS, the study observes an early rise of 13 C-enrichment in plasma, 30 min after oral dosing. However, 13 C-enrichment in the brain does not occur until 3-5 h post-dosing, when the 13 C-Fuc bolus has already reached the lower gut. Therefore, the researcher assume that 13 C-Fuc is absorbed in the upper small intestine but cannot cross the blood-brain barrier which is also observed after intravenous application of 13 C1 -Fuc. CONCLUSIONS Late 13 C-enrichment in the rodent brain may be derived from 13 C1 -Fuc metabolites derived from bacterial fermentation. The precise role that Fuc or 2´FL metabolites might play in gut-brain communication needs to be investigated in further studies.
Collapse
Affiliation(s)
- Silvia Rudloff
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany.,Department of Pediatrics, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Sabine Kuntz
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Christian Borsch
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | | | - Rachael Buck
- Discovery R&D, Abbott Nutrition, Columbus, OH, 43219, USA
| | - Martina Reutzel
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Gunter Peter Eckert
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| | - Clemens Kunz
- Institute of Nutritional Sciences, Justus-Liebig University Giessen, Giessen, 35392, Germany
| |
Collapse
|
7
|
Abstract
In this review, we focus on the metabolism of mammalian glycan-associated monosaccharides, where the vast majority of our current knowledge comes from research done during the 1960s and 1970s. Most monosaccharides enter the cell using distinct, often tissue specific transporters from the SLC2A family. If not catabolized, these monosaccharides can be activated to donor nucleotide sugars and used for glycan synthesis. Apart from exogenous and dietary sources, all monosaccharides and their associated nucleotide sugars can be synthesized de novo, using mostly glucose to produce all nine nucleotide sugars present in human cells. Today, monosaccharides are used as treatment options for a small number of rare genetic disorders and even some common conditions. Here, we cover therapeutic applications of these sugars and highlight biochemical gaps that must be revisited as we go forward.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
8
|
Keeley TS, Yang S, Lau E. The Diverse Contributions of Fucose Linkages in Cancer. Cancers (Basel) 2019; 11:E1241. [PMID: 31450600 PMCID: PMC6769556 DOI: 10.3390/cancers11091241] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fucosylation is a post-translational modification of glycans, proteins, and lipids that is responsible for many biological processes. Fucose conjugation via α(1,2), α(1,3), α(1,4), α(1,6), and O'- linkages to glycans, and variations in fucosylation linkages, has important implications for cancer biology. This review focuses on the roles that fucosylation plays in cancer, specifically through modulation of cell surface proteins and signaling pathways. How L-fucose and serum fucosylation patterns might be used for future clinical diagnostic, prognostic, and therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Tyler S Keeley
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
- University of South Florida Cancer Biology Graduate Program, Tampa, FL 33602, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA.
| |
Collapse
|
9
|
Shinchi H, Nakamura T, Ota H, Nishihara S, Wakao M, Suda Y. Cell Profiling Based on Sugar‐Chain–Cell Binding Interaction and Its Application to Typing and Quality Verification of Cells. Chembiochem 2019; 20:1810-1816. [DOI: 10.1002/cbic.201900028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Hiroyuki Shinchi
- Graduate School of Science and Engineering Kagoshima University 1-21-40 Kohrimoto Kagoshima 890-0065 Japan
| | - Tomoya Nakamura
- Graduate School of Science and Engineering Kagoshima University 1-21-40 Kohrimoto Kagoshima 890-0065 Japan
| | - Hayato Ota
- Graduate School of Engineering Soka University, 1-236 Tangi-machi Hachioji Tokyo 192-8577 Japan
| | - Shoko Nishihara
- Graduate School of Engineering Soka University, 1-236 Tangi-machi Hachioji Tokyo 192-8577 Japan
| | - Masahiro Wakao
- Graduate School of Science and Engineering Kagoshima University 1-21-40 Kohrimoto Kagoshima 890-0065 Japan
| | - Yasuo Suda
- Graduate School of Science and Engineering Kagoshima University 1-21-40 Kohrimoto Kagoshima 890-0065 Japan
- SUDx-Biotec Corporation 1-42-1 Shiroyama Kagoshima 890-0013 Japan
| |
Collapse
|
10
|
Schneider M, Al-Shareffi E, Haltiwanger RS. Biological functions of fucose in mammals. Glycobiology 2018; 27:601-618. [PMID: 28430973 DOI: 10.1093/glycob/cwx034] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Fucose is a 6-deoxy hexose in the l-configuration found in a large variety of different organisms. In mammals, fucose is incorporated into N-glycans, O-glycans and glycolipids by 13 fucosyltransferases, all of which utilize the nucleotide-charged form, GDP-fucose, to modify targets. Three of the fucosyltransferases, FUT8, FUT12/POFUT1 and FUT13/POFUT2, are essential for proper development in mice. Fucose modifications have also been implicated in many other biological functions including immunity and cancer. Congenital mutations of a Golgi apparatus localized GDP-fucose transporter causes leukocyte adhesion deficiency type II, which results in severe developmental and immune deficiencies, highlighting the important role fucose plays in these processes. Additionally, changes in levels of fucosylated proteins have proven as useful tools for determining cancer diagnosis and prognosis. Chemically modified fucose analogs can be used to alter many of these fucose dependent processes or as tools to better understand them. In this review, we summarize the known roles of fucose in mammalian physiology and pathophysiology. Additionally, we discuss recent therapeutic advances for cancer and other diseases that are a direct result of our improved understanding of the role that fucose plays in these systems.
Collapse
Affiliation(s)
- Michael Schneider
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Esam Al-Shareffi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Psychiatry, Georgetown University Hospital, Washington, DC 20007, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Allen JG, Mujacic M, Frohn MJ, Pickrell AJ, Kodama P, Bagal D, San Miguel T, Sickmier EA, Osgood S, Swietlow A, Li V, Jordan JB, Kim KW, Rousseau AMC, Kim YJ, Caille S, Achmatowicz M, Thiel O, Fotsch CH, Reddy P, McCarter JD. Facile Modulation of Antibody Fucosylation with Small Molecule Fucostatin Inhibitors and Cocrystal Structure with GDP-Mannose 4,6-Dehydratase. ACS Chem Biol 2016; 11:2734-2743. [PMID: 27434622 DOI: 10.1021/acschembio.6b00460] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The efficacy of therapeutic antibodies that induce antibody-dependent cellular cytotoxicity can be improved by reduced fucosylation. Consequently, fucosylation is a critical product attribute of monoclonal antibodies produced as protein therapeutics. Small molecule fucosylation inhibitors have also shown promise as potential therapeutics in animal models of tumors, arthritis, and sickle cell disease. Potent small molecule metabolic inhibitors of cellular protein fucosylation, 6,6,6-trifluorofucose per-O-acetate and 6,6,6-trifluorofucose (fucostatin I), were identified that reduces the fucosylation of recombinantly expressed antibodies in cell culture in a concentration-dependent fashion enabling the controlled modulation of protein fucosylation levels. 6,6,6-Trifluorofucose binds at an allosteric site of GDP-mannose 4,6-dehydratase (GMD) as revealed for the first time by the X-ray cocrystal structure of a bound allosteric GMD inhibitor. 6,6,6-Trifluorofucose was found to be incorporated in place of fucose at low levels (<1%) in the glycans of recombinantly expressed antibodies. A fucose-1-phosphonate analog, fucostatin II, was designed that inhibits fucosylation with no incorporation into antibody glycans, allowing the production of afucosylated antibodies in which the incorporation of non-native sugar is completely absent-a key advantage in the production of therapeutic antibodies, especially biosimilar antibodies. Inhibitor structure-activity relationships, identification of cellular and inhibitor metabolites in inhibitor-treated cells, fucose competition studies, and the production of recombinant antibodies with varying levels of fucosylation are described.
Collapse
Affiliation(s)
- John G. Allen
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Mirna Mujacic
- Process Development − Drug Substance
Technologies, Amgen Inc., 1201 Amgen Court W., Seattle, Washington 98119, United States
| | - Michael J. Frohn
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Alex J. Pickrell
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Paul Kodama
- Process Development − Drug Substance
Technologies, Amgen Inc., 1201 Amgen Court W., Seattle, Washington 98119, United States
| | - Dhanashri Bagal
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Tisha San Miguel
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - E. Allen Sickmier
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Steve Osgood
- Process Development − Attribute
Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Aleksander Swietlow
- Process Development − Attribute
Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Vivian Li
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - John B. Jordan
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Ki-Won Kim
- Cardiometabolic
Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Anne-Marie C. Rousseau
- Therapeutic
Innovations Unit, Amgen Inc., 1201 Amgen Court W., Seattle, Washington 98119, United States
| | - Yong-Jae Kim
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Seb Caille
- Process Development
− Drug Substance Technologies, Amgen Inc., One Amgen Center
Drive, Thousand Oaks, California 91320, United States
| | - Mike Achmatowicz
- Process Development
− Drug Substance Technologies, Amgen Inc., One Amgen Center
Drive, Thousand Oaks, California 91320, United States
| | - Oliver Thiel
- Process Development
− Drug Substance Technologies, Amgen Inc., One Amgen Center
Drive, Thousand Oaks, California 91320, United States
| | - Christopher H. Fotsch
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| | - Pranhitha Reddy
- Process Development − Drug Substance
Technologies, Amgen Inc., 1201 Amgen Court W., Seattle, Washington 98119, United States
| | - John D. McCarter
- Therapeutic Discovery, Amgen Inc., One Amgen
Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
12
|
Osuga T, Takimoto R, Ono M, Hirakawa M, Yoshida M, Okagawa Y, Uemura N, Arihara Y, Sato Y, Tamura F, Sato T, Iyama S, Miyanishi K, Takada K, Hayashi T, Kobune M, Kato J. Relationship Between Increased Fucosylation and Metastatic Potential in Colorectal Cancer. J Natl Cancer Inst 2016; 108:djw210. [DOI: 10.1093/jnci/djw210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/10/2016] [Indexed: 11/13/2022] Open
|
13
|
Maroni L, van de Graaf SFJ, Hohenester SD, Oude Elferink RPJ, Beuers U. Fucosyltransferase 2: a genetic risk factor for primary sclerosing cholangitis and Crohn's disease--a comprehensive review. Clin Rev Allergy Immunol 2015; 48:182-91. [PMID: 24828903 DOI: 10.1007/s12016-014-8423-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fucosyltransferase 2 (FUT2) mediates the inclusion of fucose in sugar moieties of glycoproteins and glycolipids. ABO blood group antigens and host-microbe interactions are influenced by FUT2 activity. About 20 % of the population has a "non-secretor" status caused by inactivating variants of FUT2 on both alleles. The non-sense mutation G428A and the missense mutation A385T are responsible for the vast majority of the non-secretor status in Caucasians, Africans, and Asians, respectively. Non-secretor individuals do not secrete fucose-positive antigens and lack fucosylation in epithelia. They also appear to be protected against a number of infectious diseases, such as Norovirus and Rotavirus infections. In recent years, genome-wide association studies (GWAS) identified inactivating variants at the FUT2 locus to be associated with primary sclerosing cholangitis (PSC), Crohn's disease (CD), and biochemical markers of biliary damage. These associations are intriguing given the important roles of fucosylated glycans in host-microbe interactions and membrane stability. Non-secretors have a reduced fecal content of Bifidobacteria. The intestinal bacterial composition of CD patients resembles the one of non-secretors, with an increase in Firmicutes and decreases in Proteobacteria and Actinobacteria. Non-secretor individuals lack fucosylated glycans at the surface of biliary epithelium and display a different bacterial composition of bile compared to secretors. Notably, an intact biliary epithelial glycocalix is relevant for a stable 'biliary HCO3 (-) umbrella' to protect against toxic effects of hydrophobic bile salt monomers. Here, the biology of FUT2 will be discussed as well as hypotheses to explain the role of FUT2 in the pathophysiology of PSC and Crohn's disease.
Collapse
Affiliation(s)
- Luca Maroni
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Yoshida M, Takimoto R, Murase K, Sato Y, Hirakawa M, Tamura F, Sato T, Iyama S, Osuga T, Miyanishi K, Takada K, Hayashi T, Kobune M, Kato J. Targeting anticancer drug delivery to pancreatic cancer cells using a fucose-bound nanoparticle approach. PLoS One 2012; 7:e39545. [PMID: 22808043 PMCID: PMC3394772 DOI: 10.1371/journal.pone.0039545] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/22/2012] [Indexed: 01/05/2023] Open
Abstract
Owing to its aggressiveness and the lack of effective therapies, pancreatic ductal adenocarcinoma has a dismal prognosis. New strategies to improve treatment and survival are therefore urgently required. Numerous fucosylated antigens in sera serve as tumor markers for cancer detection and evaluation of treatment efficacy. Increased expression of fucosyltransferases has also been reported for pancreatic cancer. These enzymes accelerate malignant transformation through fucosylation of sialylated precursors, suggesting a crucial requirement for fucose by pancreatic cancer cells. With this in mind, we developed fucose-bound nanoparticles as vehicles for delivery of anticancer drugs specifically to cancer cells. L-fucose-bound liposomes containing Cy5.5 or Cisplatin were effectively delivered into CA19-9 expressing pancreatic cancer cells. Excess L-fucose decreased the efficiency of Cy5.5 introduction by L-fucose-bound liposomes, suggesting L-fucose-receptor-mediated delivery. Intravenously injected L-fucose-bound liposomes carrying Cisplatin were successfully delivered to pancreatic cancer cells, mediating efficient tumor growth inhibition as well as prolonging survival in mouse xenograft models. This modality represents a new strategy for pancreatic cancer cell-targeting therapy.
Collapse
Affiliation(s)
- Makoto Yoshida
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Clinical Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Rishu Takimoto
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Clinical Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Kazuyuki Murase
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasushi Sato
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Hirakawa
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Clinical Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Fumito Tamura
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Clinical Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Tsutomu Sato
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Satoshi Iyama
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Osuga
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Miyanishi
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Hayashi
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masayoshi Kobune
- Division of Molecular Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
| | - Junji Kato
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Division of Clinical Oncology, Sapporo Medical University Graduate School of Medicine, chuo-ku, Sapporo, Japan
- * E-mail:
| |
Collapse
|
15
|
Mun JY, Lee KJ, Kim YJ, Kwon O, Kim SJ, Lee SG, Park WS, Heo WD, Oh DB. Development of fluorescent probes for the detection of fucosylated N-glycans using an Aspergillus oryzae lectin. Appl Microbiol Biotechnol 2011; 93:251-60. [PMID: 21892597 DOI: 10.1007/s00253-011-3549-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 08/13/2011] [Indexed: 10/17/2022]
Abstract
The α(1,6)-fucose attached to the core N-glycan (core fucose) of glycoproteins has been known to play essential roles in various pathophysiological events, including oncogenesis and metastasis. Aspergillus oryzae lectin (AOL) encoded by the fleA gene has been reported to bind to N-glycans containing core fucose. The fleA gene encoding AOL was cloned into an Escherichia coli expression vector and then fused with genes of fluorescent proteins for production of fusion proteins. The resulting FleA-fluorescent fusion proteins were expressed well in E. coli and shown to detect glycoproteins containing N-glycans with core fucose by lectin blot assay. It was also shown to bind to the surface of cancer cells highly expressing the fucosyltransferase VIII for attachment of core fucose. Surprisingly, we found that FleA-fluorescent fusion proteins could be internalized into the intracellular compartment, early endosome, when applied to live cells. This internalization was shown to occur through a clathrin-mediated pathway by endocytosis inhibitor assay. Taken together, these results suggest that FleA-fluorescent fusion proteins can be employed as a valuable fluorescent probe for the detection of fucosylated glycans and/or a useful vehicle for delivery of substances to the inside of cells.
Collapse
Affiliation(s)
- Ji-Young Mun
- Integrative Omics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Honas BJ, Glassman UM, Wiese TJ. Enzymatic activity of alpha-L-fucosidase and L-fucokinase across vertebrate animal species. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:359-64. [PMID: 19394435 PMCID: PMC3413248 DOI: 10.1016/j.cbpb.2009.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/19/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
The oligosaccharide portion of glycoproteins is known to modulate protein structure, function, and turnover. Our laboratory is interested in the metabolism of L-fucose, a normal constituent of eukaryotic glycoproteins. L-fucose is unique in that it is the only levorotatory sugar utilized in mammalian systems. There is considerable interest in understanding the controls which determine the level of L-fucose attached to proteins, in order to generate stable and active glycoforms of protein for the treatment of disease. As part of a program to determine the controls on protein L-fucosylation, we have systematically determined the tissue distribution of the enzymes L-fucokinase and alpha-L-fucosidase in species across the vertebrate animal kingdom. In general, the level of alpha-L-fucosidase is higher than L-fucokinase level. The tissue with highest enzyme activity cannot be generalized, regardless of which enzyme is of interest. Furthermore, there is not a correlation between synthetic and catabolic enzyme activity within a tissue. L-fucokinase can be detected in all tissues examined. Interestingly, we have also detected ss-D-fucosidase activity, present in extraordinary levels in the liver and small intestine of snake. Whether this is due to a specific enzyme or whether it represents a broad specificity of the alpha-L-fucosidase is currently being investigated.
Collapse
Affiliation(s)
| | | | - Thomas J. Wiese
- Department of Chemistry, Fort Hays State University, Hays, KS 67601 USA
| |
Collapse
|
17
|
Barrows BD, Haslam SM, Bischof LJ, Morris HR, Dell A, Aroian RV. Resistance to Bacillus thuringiensis toxin in Caenorhabditis elegans from loss of fucose. J Biol Chem 2006; 282:3302-11. [PMID: 17135259 DOI: 10.1074/jbc.m606621200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mutation in the Caenorhabditis elegans bre-1 gene was isolated in a screen for Bacillus thuringiensis toxin-resistant (bre) mutants to the Cry5B crystal toxin made by B. thuringiensis. bre-1 mutant animals are different from the four other cloned bre mutants in that their level of resistance is noticeably lower. bre-1 animals also display a significantly reduced brood size at 25 degrees C. Here we cloned the bre-1 gene and characterized the bre-1 mutant phenotype. bre-1 encodes a protein with significant homology to a GDP-mannose 4,6-dehydratase, which catalyzes the first step in the biosynthesis of GDP-fucose from GDP-mannose. Injection of GDP-fucose but not fucose into C. elegans intestinal cells rescues bre-1 mutant phenotypes. Thus, C. elegans lacks a functional fucose salvage pathway. Furthermore, we demonstrate that bre-1 mutant animals are defective in production of fucosylated glycolipids and that bre-1 mutant animals make quantitatively reduced levels of glycolipid receptors for Cry5B. We finally show that bre-1 mutant animals, although viable, show a lack of fucosylated N- and O-glycans, based on mass spectrometric evidence. Thus, C. elegans can survive with little fucose and can develop resistance to crystal toxin by loss of a monosaccharide biosynthetic pathway.
Collapse
Affiliation(s)
- Brad D Barrows
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093-0349, USA
| | | | | | | | | | | |
Collapse
|
18
|
Leck JR, Wiese TJ. Purification and characterization of the L-fucose transporter. Protein Expr Purif 2005; 37:288-93. [PMID: 15358349 DOI: 10.1016/j.pep.2004.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 04/30/2004] [Indexed: 10/26/2022]
Abstract
L-Fucose is a monosaccharide present in low levels in the serum. It is, however, a common structural component of glycoproteins. L-Fucose is accumulated in eukaryotic cells by a specific, facilitative diffusion transport system which has been designated the fucose transporter. In this study, purification of the transporter from mouse brain was performed by detergent extraction followed by ion-exchange and reactive dye ligand column chromatography. Purification was followed using a transport assay into reconstituted liposomes. A 111-fold purification with 5% yield was achieved from the crude homogenate. The apparent molecular weight of the protein was 57 kDa. Transport was found to be saturable. The K(m) and V(max) values are estimated at 3 microM and 275 pmol/min/mg, respectively. The tissue distribution of fucose transport was examined in liver, kidney, heart, lung, spleen, brain, muscle, adipose, ovary, pancreas, and thymus. Some fucose transport was found in all tissues examined. Very low levels were observed in the liver relative to all other tissues examined. The only monosaccharide which could inhibit the uptake of L-[5,6-(3)H]fucose was fucose itself.
Collapse
Affiliation(s)
- Joshua R Leck
- Department of Chemistry, Fort Hays State University 600 Park Street, Hays, KS 67601, USA
| | | |
Collapse
|
19
|
Miller EN, Rupp AL, Lindberg MK, Wiese TJ. Tissue distribution of l-fucokinase in rodents. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:513-20. [PMID: 15694600 DOI: 10.1016/j.cbpc.2004.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 11/19/2004] [Accepted: 11/19/2004] [Indexed: 10/26/2022]
Abstract
L-fucose (fucose) is a monosaccharide normally present in mammals and is unique in being the only levorotatory sugar that can be synthesized and utilized by mammals. The metabolism of fucose is incompletely understood, but fucose can be synthesized de novo or salvaged. The utilization of fucose in the salvage pathway begins with phosphorylation by fucokinase. As part of an investigation of fucose metabolism in normal and disease states, we began an investigation of this enzyme. In this report, we present the tissue distribution of the enzyme in rat and mouse. The highest amount of activity was present in brain of both species. Some activity was found in all tissues examined (liver, kidney, heart, lung, spleen, brain, muscle, thymus, white adipose, testes, eye, aorta, small intestine, and submaxillary gland). Very low levels were found in small intestine. Varying levels in the tissues seems most likely to be the result of varying amounts of fucokinase protein as no difference in the Km values of crude enzyme could be shown. Protein-bound fucose levels were determined using the L-cysteine-phenol-sulfuric acid (CPS) assay. There is not a good correlation between fucokinase activity and protein-bound fucose, suggesting some tissues are more active in synthesis of fucose than others.
Collapse
Affiliation(s)
- Erin N Miller
- Department of Chemistry, Fort Hays State University, 600 Park St., Hays, KS 67601, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Fucose is a deoxyhexose that is present in a wide variety of organisms. In mammals, fucose-containing glycans have important roles in blood transfusion reactions, selectin-mediated leukocyte-endothelial adhesion, host-microbe interactions, and numerous ontogenic events, including signaling events by the Notch receptor family. Alterations in the expression of fucosylated oligosaccharides have also been observed in several pathological processes, including cancer and atherosclerosis. Fucose deficiency is accompanied by a complex set of phenotypes both in humans with leukocyte adhesion deficiency type II (LAD II; also known as congenital disorder of glycosylation type IIc) and in a recently generated strain of mice with a conditional defect in fucosylated glycan expression. Fucosylated glycans are constructed by fucosyltransferases, which require the substrate GDP-fucose. Two pathways for the synthesis of GDP-fucose operate in mammalian cells, the GDP-mannose-dependent de novo pathway and the free fucose-dependent salvage pathway. In this review, we focus on the biological functions of mammalian fucosylated glycans and the biosynthetic processes leading to formation of the fucosylated glycan precursor GDP-fucose.
Collapse
Affiliation(s)
- Daniel J Becker
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, MSRB I, room 3510, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0650, USA.
| | | |
Collapse
|
21
|
Smith PL, Myers JT, Rogers CE, Zhou L, Petryniak B, Becker DJ, Homeister JW, Lowe JB. Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus. J Cell Biol 2002; 158:801-15. [PMID: 12186857 PMCID: PMC2174027 DOI: 10.1083/jcb.200203125] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycoprotein fucosylation enables fringe-dependent modulation of signal transduction by Notch transmembrane receptors, contributes to selectin-dependent leukocyte trafficking, and is faulty in leukocyte adhesion deficiency (LAD) type II, also known as congenital disorder of glycosylation (CDG)-IIc, a rare human disorder characterized by psychomotor defects, developmental abnormalities, and leukocyte adhesion defects. We report here that mice with an induced null mutation in the FX locus, which encodes an enzyme in the de novo pathway for GDP-fucose synthesis, exhibit a virtually complete deficiency of cellular fucosylation, and variable frequency of intrauterine demise determined by parental FX genotype. Live-born FX(-/-) mice exhibit postnatal failure to thrive that is suppressed with a fucose-supplemented diet. FX(-/-) adults suffer from an extreme neutrophilia, myeloproliferation, and absence of leukocyte selectin ligand expression reminiscent of LAD-II/CDG-IIc. Contingent restoration of leukocyte and endothelial selectin ligand expression, general cellular fucosylation, and normal postnatal physiology is achieved by modulating dietary fucose to supply a salvage pathway for GDP-fucose synthesis. Conditional control of fucosylation in FX(-/-) mice identifies cellular fucosylation events as essential concomitants to fertility, early growth and development, and leukocyte adhesion.
Collapse
Affiliation(s)
- Peter L Smith
- Howard Hughes Medical Institute, The University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Sugar pills are usually placebos, but Smith et al. (2002, this issue) use one to rescue designer mice unable to make GDP-Fucose. Dietary fucose enters a salvage pathway and spares the mice. Sound simple? Not so. Unknown genetic factors determine life or death.
Collapse
Affiliation(s)
- Hudson H Freeze
- The Burnham Institute, La Jolla Cancer Research Center, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
|
24
|
Listinsky JJ, Listinsky CM, Alapati V, Siegal GP. Cell surface fucose ablation as a therapeutic strategy for malignant neoplasms. Adv Anat Pathol 2001; 8:330-7. [PMID: 11707624 DOI: 10.1097/00125480-200111000-00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The sugar alpha-L-fucose is overexpressed in many human malignancies, especially on specific glycoproteins, glycolipids, certain mucins, and putative cell adhesion ligands found on cancer cell surfaces. Many of these molecules are known or suspected mediators of cell-cell adhesion, cell signaling, motility, or invasion. As knowledge of fucose metabolism evolves and specific mechanisms of its distribution and incorporation are more exactly documented, modulation of fucose expression in cancer is becoming increasingly more feasible. The authors propose that cancer cell surface alpha-L-fucose is a logical target for selective therapeutic ablation. Reduction of fucose content on the surfaces of malignant cells should effectively cripple the cells' physiologic functions by altering or dysregulating cell-cell or cell-matrix interactions, critical for maintaining the malignant phenotype. Significant therapeutic benefits might include modulation of adhesion abnormalities in the cancer cells, reduction of cancer cell motility or invasiveness, reexposure to immune surveillance, or a combination of these events.
Collapse
Affiliation(s)
- J J Listinsky
- Department of Radiology, University of Alabama at Birmingham, 35233, USA
| | | | | | | |
Collapse
|
25
|
Oetke C, Hinderlich S, Brossmer R, Reutter W, Pawlita M, Keppler OT. Evidence for efficient uptake and incorporation of sialic acid by eukaryotic cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4553-61. [PMID: 11502217 DOI: 10.1046/j.1432-1327.2001.02379.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sialic acids are the most abundant terminal carbohydrate moiety on cell surface glycoconjugates in eukaryotic cells and are of functional importance for many biological ligand-receptor interactions. It is a widely accepted view that sialic acids cannot be efficiently taken up from the extracellular space by eukaryotic cells. To test this assumption, we cultivated two recently identified human hematopoetic cell lines which are hyposialylated due to a deficiency in de novo sialic acid biosynthesis in the presence of N-acetylneuraminic acid (NeuAc), the most frequently found sialic acid. Surprisingly, NeuAc medium supplementation rapidly and potently compensated for the endogenous hyposialylation in a concentration-dependent manner, resulting in the presentation of cell surface sialoglycans involved in cell adhesion, virus infection and signal transduction. We provide several lines of experimental evidence that all suggest that NeuAc was neither extracellularly incorporated nor degraded to a less complex sugar before uptake. Importantly, NeuAc induced a marked increase in intracellular CMP-NeuAc levels in both human cell lines and in primary cells regardless of the prior sialylation status of the cells. Studies employing 9-[3H]NeuAc revealed an uptake consistent with the observed incorporation of unlabeled NeuAc. We propose the existence of an efficient uptake mechanism for NeuAc in eukaryotic cells.
Collapse
Affiliation(s)
- C Oetke
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Metzler DE, Metzler CM, Sauke DJ. Lipids, Membranes, and Cell Coats. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Abstract
Leukocyte adhesion deficiency type II (LAD II) is a rare disorder characterized by recurrent infections, persistent leukocytosis, and severe mental and growth retardation. LAD II neutrophils are deficient in expression of selectin ligand activity, and exhibit a correspondingly diminished ability to roll on endothelium and to traffic to inflammatory sites in vivo. LAD II patients exhibit a deficiency in the expression of cell surface fucosylated glycan structures that include the H and Lewis blood group determinants and the sialyl Lewis x epitope, yet the corresponding fucosyltransferase activities responsible for synthesis of these structures are expressed at normal levels. The molecular defect in LAD II has been localized to the pathway that synthesizes GDP-fucose from GDP-mannose. However, the two known component enzymes in this GDP-fucose biosynthetic pathway are normal in sequence and in expression levels in LAD II cells. The genetic lesion in LAD II that accounts for the generalized fucosylation defect in LAD II patients remains to be determined.
Collapse
Affiliation(s)
- D J Becker
- Cellular and Molecular Biology Program, Howard Hughes Medical Institute, Department of Pathology, University of Michigan Medical School, Ann Arbor 48109-0650, USA
| | | |
Collapse
|
28
|
Abstract
Some genetic defects in protein glycosylation can be treated effectively with dietary supplements of monosaccharides. An easy screening test and non-toxic therapy for potentially lethal disorders should encourage physicians to search for more patients with glycosylation disorders. It should also stimulate research on the occurrence and availability of monosaccharides used for glycoconjugate synthesis and for vertebrate models to study their utilization.
Collapse
Affiliation(s)
- H H Freeze
- The Burnham Institute, La Jolla, California 92037, USA
| |
Collapse
|
29
|
Martin A, Rambal C, Berger V, Perier S, Louisot P. Availability of specific sugars for glycoconjugate biosynthesis: a need for further investigations in man. Biochimie 1998; 80:75-86. [PMID: 9587665 DOI: 10.1016/s0300-9084(98)80059-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We review the metabolism of specific sugars used for protein glycosylation, focusing on the fate of exogenously provided sugars. Theoretically, all glycoprotein sugars can derive from glucose, but previous studies show that other exogenous sugars can be incorporated into glycoproteins. From data obtained in congenital galactosemia, exogenous galactose may be important for correct glycosylation. Contrary to galactose, the metabolism of other sugars seems to depend on insulin regulation: stimulation of their endogenous production in diabetic subjects might participate in some diabetic complications, precluding the need for an exogenous supply. The metabolic fate of these sugars is different according to the administration route and exogenous supply may be important either in enteral nutrition or in some clinical situations as has been suggested for sialic acid in the newborn. Data in man are too sparse to reach firm conclusions, implying a need for further investigations. Our preliminary results in animals and man demonstrate that stable isotope methodology allows one to trace glycoprotein sugar metabolism in nutritionally relevant conditions with accuracy and sensitivity, using doses of specific sugars well below toxic levels.
Collapse
Affiliation(s)
- A Martin
- INSERM-CNRS U189, Lyon-Sub Medical School, Oullins, France
| | | | | | | | | |
Collapse
|
30
|
Fernández J, Rodríguez-Berrocal FJ, de Carlos A, de Castro G, de la Cadena MP. Nonradioactive immunoquantification of alpha-L-fucosidase protein in human colon tissues. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1996; 31:39-47. [PMID: 8926337 DOI: 10.1016/0165-022x(95)00037-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
alpha-L-Fucosidase is a glycosidase involved in the degradation of fucoglycoconjugates and has a diagnostic significance because it has been described to be altered in several known diseases. However, in vitro studies on enzymatic activities may not reflect the real protein levels in tissues. This paper describes a simple method to quantify alpha-L-fucosidase protein levels in human crude extracts, combining the slot-blot technique and a nonradioactive immunoassay. Taking advantage of the similarities in different mammalian fucosidases, a polyclonal antiserum was raised against commercial purified alpha-L-fucosidase from bovine kidney that cross-reacted with the human colon enzyme. The method is able to detect as little as 0.75 ng alpha-L-fucosidase. To illustrate the direct application of this technique, we analysed and quantified alpha-L-fucosidase protein levels in 18 human colon crude samples. This technique could prove useful in clinical pathology, allowing fast and accurate measurement of alpha-L-fucosidase in crude extracts.
Collapse
Affiliation(s)
- J Fernández
- Departamento de Bioloxía Fundamental, Universidade de Vigo, Spain
| | | | | | | | | |
Collapse
|
31
|
Yorek MA, Conner CE, Spanheimer RG. L-fucose reduces collagen and noncollagen protein production in cultured cerebral microvessel endothelial cells. J Cell Physiol 1995; 165:658-66. [PMID: 7593246 DOI: 10.1002/jcp.1041650325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
L-fucose is a monosaccharide which is present in low concentrations in normal serum but is increased in diabetes, cancer, and inflammatory diseases. The contribution that abnormal L-fucose levels make to the progression of these disorders is unknown. In a previous study we showed that increased L-fucose concentration reduced proliferation and proteoglycan production by cultured cerebral microvessel endothelial cells. In the present study we show that exposing cerebral microvessel endothelial cells for 2 weeks to medium containing an increased concentration of L-fucose causes a significant decrease in collagen and to a lesser extent noncollagen protein production. The effect of L-fucose on collagen and noncollagen protein production is concentration-dependent: 1 mM L-fucose causes a significant decrease in collagen production but has no effect on noncollagen protein production; a 5 mM L-fucose concentration causes a maximum decrease in both collagen and noncollagen protein production. This defect is unrelated to the reduction in myo-inositol uptake caused by L-fucose and is not prevented by aminoguanidine. Collagen production can be improved by restoring L-fucose-conditioned cells to normal medium. Culturing cells for 2 weeks in medium containing 10 mM L-fucose resulted in a 50% decrease in collagen production, which was restored to 75% of control after cells were transferred to normal medium for 7 days. In contrast, noncollagen protein production was totally restored after 3 days in normal medium. Increasing levels of L-fucose in serum of rats also resulted in a decrease in collagen production. Collagenase digestible incorporation of L-[2,3,4,5-3H]proline into protein of the articular cartilage from rats fed a diet containing 20% L-fucose for 3 weeks was reduced by about 40% compared to rats fed a normal diet. The decrease in collagen production in L-fucose fed rats was less than the reduction that occurred in streptozotocin-induced diabetic rats. These data suggest that changes in L-fucose concentration itself may be a factor in the regulation of collagen production.
Collapse
Affiliation(s)
- M A Yorek
- Department of Internal Medicine, Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | | | | |
Collapse
|