1
|
Shafaq-Zadah M, Dransart E, Johannes L. Clathrin-independent endocytosis, retrograde trafficking, and cell polarity. Curr Opin Cell Biol 2020; 65:112-121. [PMID: 32688213 PMCID: PMC7588825 DOI: 10.1016/j.ceb.2020.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 10/29/2022]
Abstract
Several mechanisms allow for cargo internalization into cells within membrane-bound endocytic carriers. How these internalization processes couple to specific pathways of intracellular distribution remains poorly explored. Here, we review uptake reactions that are independent of the conventional clathrin machinery. We discuss how these link to retrograde trafficking from endosomes to the Golgi apparatus and exemplify biological situations in which the polarized secretion capacity of the Golgi apparatus allows for retrograde cargoes to be delivered to specialized areas of the plasma membrane, such as the leading edge of migratory cells or the immunological synapse of immune cells. We also address the evidence that allows to position apicobasal polarity of epithelial cells in this context. The underlying theme is thereby the functional coupling between specific types of endocytosis to intracellular retrograde trafficking for protein cargoes that need to be localized in a highly polarized and dynamic manner to plasmalemmal subdomains.
Collapse
Affiliation(s)
- Massiullah Shafaq-Zadah
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Estelle Dransart
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Cellular and Chemical Biology Unit, INSERM U1143, CNRS UMR3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| |
Collapse
|
2
|
Li D, Hérault K, Zylbersztejn K, Lauterbach MA, Guillon M, Oheim M, Ropert N. Astrocyte VAMP3 vesicles undergo Ca2+ -independent cycling and modulate glutamate transporter trafficking. J Physiol 2015; 593:2807-32. [PMID: 25864578 DOI: 10.1113/jp270362] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/07/2015] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Mouse cortical astrocytes express VAMP3 but not VAMP2. VAMP3 vesicles undergo Ca(2+) -independent exo- and endocytotic cycling at the plasma membrane. VAMP3 vesicle traffic regulates the recycling of plasma membrane glutamate transporters. cAMP modulates VAMP3 vesicle cycling and glutamate uptake. ABSTRACT Previous studies suggest that small synaptic-like vesicles in astrocytes carry vesicle-associated vSNARE proteins, VAMP3 (cellubrevin) and VAMP2 (synaptobrevin 2), both contributing to the Ca(2+) -regulated exocytosis of gliotransmitters, thereby modulating brain information processing. Here, using cortical astrocytes taken from VAMP2 and VAMP3 knock-out mice, we find that astrocytes express only VAMP3. The morphology and function of VAMP3 vesicles were studied in cultured astrocytes at single vesicle level with stimulated emission depletion (STED) and total internal reflection fluorescence (TIRF) microscopies. We show that VAMP3 antibodies label small diameter (∼80 nm) vesicles and that VAMP3 vesicles undergo Ca(2+) -independent exo-endocytosis. We also show that this pathway modulates the surface expression of plasma membrane glutamate transporters and the glutamate uptake by astrocytes. Finally, using pharmacological and optogenetic tools, we provide evidence suggesting that the cytosolic cAMP level influences astrocytic VAMP3 vesicle trafficking and glutamate transport. Our results suggest a new role for VAMP3 vesicles in astrocytes.
Collapse
Affiliation(s)
- Dongdong Li
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France.,INSERM U603, Paris, F-75006 France; CNRS UMR 8154, Paris, F-75006 France, Neurophysiology and New Microscopies Laboratory, 45 rue des Saints Pères, Paris, F-75006, France
| | - Karine Hérault
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France
| | - Kathleen Zylbersztejn
- INSERM ERL U950, Paris, F-75013, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75013, France.,CNRS, UMR 7592, Institut Jacques Monod, Paris, F-75013, France
| | - Marcel A Lauterbach
- Neurophotonics Laboratory, CNRS UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France
| | - Marc Guillon
- Neurophotonics Laboratory, CNRS UMR 8250, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France
| | - Martin Oheim
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France.,INSERM U603, Paris, F-75006 France; CNRS UMR 8154, Paris, F-75006 France, Neurophysiology and New Microscopies Laboratory, 45 rue des Saints Pères, Paris, F-75006, France
| | - Nicole Ropert
- CNRS UMR 8118, Paris, F-75006 France; Brain Physiology Laboratory, Saints-Pères Research in Neurosciences Federation, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, Paris, F-75006, France.,INSERM U603, Paris, F-75006 France; CNRS UMR 8154, Paris, F-75006 France, Neurophysiology and New Microscopies Laboratory, 45 rue des Saints Pères, Paris, F-75006, France
| |
Collapse
|
3
|
Carpentier S, N'Kuli F, Grieco G, Van Der Smissen P, Janssens V, Emonard H, Bilanges B, Vanhaesebroeck B, Gaide Chevronnay HP, Pierreux CE, Tyteca D, Courtoy PJ. Class III phosphoinositide 3-kinase/VPS34 and dynamin are critical for apical endocytic recycling. Traffic 2013; 14:933-48. [PMID: 23621784 DOI: 10.1111/tra.12079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 12/27/2022]
Abstract
Recycling is a limiting step for receptor-mediated endocytosis. We first report three in vitro or in vivo evidences that class III PI3K/VPS34 is the key PI3K isoform regulating apical recycling. A substractive approach, comparing in Opossum Kidney (OK) cells a pan-class I/II/III PI3K inhibitor (LY294002) with a class I/II PI3K inhibitor (ZSTK474), suggested that class III PI3K/VPS34 inhibition induced selective apical endosome swelling and sequestration of the endocytic receptor, megalin/LRP-2, causing surface down-regulation. GFP-(FYVE)x2 overexpression to sequester PI(3)P caused undistinguishable apical endosome swelling. In mouse kidney proximal tubular cells, conditional Vps34 inactivation also led to vacuolation and intracellular megalin redistribution. We next report that removal of LY294002 from LY294002-treated OK cells induced a spectacular burst of recycling tubules and restoration of megalin surface pool. Acute triggering of recycling tubules revealed recruitment of dynamin-GFP and dependence of dynamin-GTPase, guidance directionality by microtubules, and suggested that a microfilamentous net constrained endosomal swelling. We conclude that (i) besides its role in endosome fusion, PI3K-III is essential for endosome fission/recycling; and (ii) besides its role in endocytic entry, dynamin also supports tubulation of recycling endosomes. The unleashing of recycling upon acute reversal of PI3K inhibition may help study its dynamics and associated machineries.
Collapse
Affiliation(s)
- Sarah Carpentier
- CELL Unit, Université catholique de Louvain & de Duve Institute, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Shahidi-Noghabi S, Van Damme EJM, De Vos WH, Smagghe G. Internalization of Sambucus nigra agglutinins I and II in insect midgut CF-203 cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 76:211-222. [PMID: 21254203 DOI: 10.1002/arch.20405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/02/2010] [Indexed: 05/30/2023]
Abstract
In this project, the uptake mechanisms and localization of two lectins from Sambucus nigra, further referred to as S. nigra agglutinin (SNA)-I and SNA-II, into insect midgut CF-203 cells were studied. SNA-I is a chimeric lectin belonging to the class of ribosome-inactivating proteins, whereas SNA-II is a hololectin devoid of enzymatic activity. Internalization of the fluorescein isothiocyanate-labeled lectin was investigated using confocal microscopy. Both lectins were internalized into the cytoplasm of CF-203 cells at similar rates. Preexposure of the insect midgut cells to specific inhibitors of clathrin- and caveolae-mediated endocytosis resulted in an inhibition of lectin uptake in CF-203 cells and caspase-induced cytotoxicity caused by SNA-I and SNA-II, confirming the involvement of both endocytosis pathways. Further studies demonstrated that the uptake mechanism(s) for both lectins required phosphoinositide 3-kinases, but did not depend on the actin cytoskeleton. Since the hololectin SNA-II apparently uses a similar endocytosis pathway as the chimerolectin SNA-I, it can be concluded that the endocytosis process mainly relies on the carbohydrate-binding activity of the lectins under investigation. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shahnaz Shahidi-Noghabi
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
5
|
Wojtal KA, Hoekstra D, van Ijzendoorn SCD. cAMP-dependent protein kinase A and the dynamics of epithelial cell surface domains: moving membranes to keep in shape. Bioessays 2008; 30:146-55. [PMID: 18200529 DOI: 10.1002/bies.20705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) and cAMP-dependent protein kinase A (PKA) are evolutionary conserved molecules with a well-established position in the complex network of signal transduction pathways. cAMP/PKA-mediated signaling pathways are implicated in many biological processes that cooperate in organ development including the motility, survival, proliferation and differentiation of epithelial cells. Cell surface polarity, here defined as the anisotropic organisation of cellular membranes, is a critical parameter for most of these processes. Changes in the activity of cAMP/PKA elicit a variety of effects on intracellular membrane dynamics, including membrane sorting and trafficking. One of the most intriguing aspects of cAMP/PKA signaling is its evolutionary conserved abundance on the one hand and its precise spatial-temporal actions on the other. Here, we review recent developments with regard to the role of cAMP/PKA in the regulation of intracellular membrane trafficking in relation to the dynamics of epithelial surface domains.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
6
|
Sandvig K, Torgersen ML, Raa HA, van Deurs B. Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochem Cell Biol 2008; 129:267-76. [PMID: 18193449 PMCID: PMC2248609 DOI: 10.1007/s00418-007-0376-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2007] [Indexed: 10/29/2022]
Abstract
Today it is generally accepted that there are several endocytic mechanisms, both the clathrin-dependent one and mechanisms which operate without clathrin and with different requirements when it comes to dynamin, small GTP-binding proteins of the Rho family and specific lipids. It should be noted that clathrin-independent endocytosis can occur even when the cholesterol level in the membrane has been reduced to so low levels that caveolae are gone and clathrin-coated membrane areas are flat. Although new investigators in the field take it for granted that there is a multitude of entry mechanisms, it has taken a long time for this to become accepted. However, more work needs to be done, because one can still ask the question: How many endocytic mechanisms does a cell have, what are their function, and how are they regulated? This article describes some of the history of endocytosis research and attempts to give an overview of the complexity of the mechanisms and their regulation.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Centre for Cancer Biomedicine, University of Oslo and Department of Biochemistry, The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| | | | | | | |
Collapse
|
7
|
Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 2008; 440:15-33. [PMID: 18369934 DOI: 10.1007/978-1-59745-178-9_2] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Eukaryotic cells constantly form and internalize plasma membrane vesicles in a process known as endocytosis. Endocytosis serves a variety of housekeeping and specialized cellular functions, and it can be mediated by distinct molecular pathways. Among them, internalization via clathrin-coated pits, lipid raft/caveolae-mediated endocytosis and macropinocytosis/phagocytosis are the most extensively characterized. The major endocytic pathways are usually distinguished on the basis of their differential sensitivity to pharmacological/chemical inhibitors, although the possibility of nonspecific effects of such inhibitors is frequently overlooked. This review provides a critical evaluation of the selectivity of the most widely used pharmacological inhibitors of clathrin-mediated, lipid raft/caveolae-mediated endocytosis and macropinocytosis/phagocytosis. The mechanisms of actions of these agents are described with special emphasis on their reported side effects on the alternative internalization modes and the actin cytoskeleton. The most and the least-selective inhibitors of each major endocytic pathway are highlighted.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Medicine, Gastroenterology and Hepatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
8
|
Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1745:273-86. [PMID: 16046009 DOI: 10.1016/j.bbamcr.2005.06.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 01/06/2023]
Abstract
A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added.
Collapse
Affiliation(s)
- Matthew Kirkham
- Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia
| | | |
Collapse
|
9
|
Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1746:349-63. [PMID: 16440447 DOI: 10.1016/j.bbamcr.2005.11.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added.
Collapse
Affiliation(s)
- Matthew Kirkham
- Institute for Molecular Bioscience, University of Queensland, 4072, Australia
| | | |
Collapse
|
10
|
Köhler K, Zahraoui A. Tight junction: a co-ordinator of cell signalling and membrane trafficking. Biol Cell 2005; 97:659-65. [PMID: 16033326 DOI: 10.1042/bc20040147] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing evidence indicates that the tight junction plays a role in membrane transport. Various signalling and trafficking molecules localize to the sites of cell-cell junctions in epithelial cells, including Rab proteins, a family of small GTPases that regulate different steps of vesicular transport along the endocytic and exocytic pathways. We have recently shown that Rab13 controls protein kinase A activity, demonstrating a clear biochemical and functional link between Rab13 and protein kinase A signalling during tight junction assembly in epithelial cells. The present article focuses on how protein kinase A signalling and protein trafficking events could be integrated at tight junctions in epithelial cells.
Collapse
Affiliation(s)
- Katja Köhler
- Laboratory of Morphogenesis and Cell Signalling, UMR144 CNRS, Institut Curie, Paris, France
| | | |
Collapse
|
11
|
Abstract
A number of protein toxins of bacterial and plant origin have cytosolic targets, and knowledge about these toxins have provided us with essential information about mechanisms that can be used to gain access to the cytosol as well as detailed knowledge about endocytosis and intracellular sorting. Such toxins include those that have two moieties, one (the B-moiety) that binds to cell surface receptors and another (the A-moiety) with enzymatic activity that enters the cytosol, as well as molecules that only have the enzymatically active moiety and therefore are inefficient in cell entry. The toxins discussed in the present article include bacterial toxins such as Shiga toxin and diphtheria toxin, as well as plant toxins such as ricin and ribosome-inactivating proteins without a binding moiety, such as gelonin. Toxins with a binding moiety can be used as vectors to translocate epitopes, intact proteins, and even nucleotides into the cytosol. The toxins fall into two main groups when it comes to cytosolic entry. Some toxins enter from endosomes in response to low endosomal pH, whereas others, including Shiga toxin and ricin, are transported all the way to the Golgi apparatus and the ER before they are translocated to the cytosol. Plant proteins such as gelonin that are without a binding moiety are taken up only by fluid-phase endocytosis, and normally they have a low toxicity. However, they can be used to test for disruption of endosomal membranes leading to cytosolic access of internalized molecules. Similarly to toxins with a binding moiety they are highly toxic when reaching the cytosol, thereby providing the investigator with an efficient tool to study endosomal disruption and induced transport to the cytosol. In conclusion, the protein toxins are useful tools to study transport and cytosolic translocation, and they can be used as vectors for transport to the interior of the cell.
Collapse
Affiliation(s)
- K Sandvig
- Institute for Cancer Research, The Norwegian Radium Hospital, University of Oslo, Montebello
| | | |
Collapse
|
12
|
Khoursandi S, Scharlau D, Herter P, Kuhnen C, Martin D, Kinne RKH, Kipp H. Different modes of sodium-D-glucose cotransporter-mediated D-glucose uptake regulation in Caco-2 cells. Am J Physiol Cell Physiol 2004; 287:C1041-7. [PMID: 15201142 DOI: 10.1152/ajpcell.00197.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported that a considerable amount of the sodium-d-glucose cotransporter SGLT1 present in Caco-2 cells, a model for human enterocytes, is located in intracellular compartments attached to microtubules. A similar distribution pattern was also observed in enterocytes in thin sections from human jejunum, highlighting the validity of the Caco-2 cell model. Fluorescent surface labeling of live Caco-2 cells revealed that the intracellular compartments containing SGLT1 were accessible by endocytosis. To elucidate the role of endosomal SGLT1 in the regulation of sodium-dependent d-glucose uptake into enterocytes, we compared SGLT1-mediated D-glucose uptake into Caco-2 cells with the subcellular distribution of SGLT1 after challenging the cells with different stimuli. Incubation (90 min) of Caco-2 cells with mastoparan (50 microM), a drug that enhances apical endocytosis, shifted a large amount of SGLT1 from the apical membrane to intracellular sites and significantly reduced sodium-dependent alpha-[(14)C]methyl-D-glucose uptake (-60%). We also investigated the effect of altered extracellular D-glucose levels. Cells preincubated (1 h) with d-glucose-free medium exhibited significantly higher sodium-dependent alpha-[(14)C]methyl-D-glucose uptake (+45%) than did cells preincubated with high d-glucose medium (100 mM, 1 h). Interestingly, regulation of SGLT1-mediated d-glucose uptake into Caco-2 cells by extracellular D-glucose levels occurred without redistribution of cellular SGLT1. These data suggest that, pharmacologically, d-glucose uptake can be regulated by a shift of SGLT1 between the plasma membrane and the endosomal pool; however, regulation by the physiological substrate d-glucose can be explained only by an alternative mechanism.
Collapse
Affiliation(s)
- Saeed Khoursandi
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Medeiros MN, Mendonça LH, Hunter AL, Paiva-Silva GO, Mello FG, Henze IP, Masuda H, Maya-Monteiro CM, Machado EA. The role of lipoxygenase products on the endocytosis of yolk proteins in insects: participation of cAMP. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 55:178-187. [PMID: 15027072 DOI: 10.1002/arch.10129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The participation of eicosanoids and second messengers in the regulation of endocytosis by the ovaries was investigated using the uptake of Rhodnius heme binding protein (RHBP) as an experimental model. The rate of RHBP uptake decreased up to 40% in the presence of BWA4C and NDGA, 5 and 12-lipoxygenase inhibitors, respectively, suggesting the involvement of lipoxygenase products in endocytosis regulation. Addition of Leukotriene B4 (LTB(4); one product of the 5 lipoxygenase pathway) increased in vitro the uptake of RHBP by 30%. The content of cAMP in the Rhodnius' ovaries were monitored after treatment with different eicosanoids and inhibitors of eicosanoids synthesis. The amount of cAMP decreased in the presence of indomethacin (by 50%), while treatment with PGE(2) induced an increase of 85% of this messenger in the ovaries. The presence of LTB(4) in the medium inhibited in 60% the content of cAMP in the ovaries, while BWA4C induced a 100% increase of this messenger in the ovaries. Addition of 1 microM DBcAMP in the medium resulted in a 30% decrease in the rate of RHBP uptake. Taken together, these data show that cyclooxygenase and lipoxygenase products participate in the control of protein internalization by modulation of cAMP levels.
Collapse
Affiliation(s)
- M N Medeiros
- Laboratório de Entomologia Médica do Programa de Parasitologia e Biologia Celular, IBCCF, CCS, UFRJ, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kusner L, Carlin C. Potential role for a novel AP180-related protein during endocytosis in MDCK cells. Am J Physiol Cell Physiol 2003; 285:C995-1008. [PMID: 14532018 DOI: 10.1152/ajpcell.00079.2003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clathrin assembly protein, AP180, was originally identified as a brain-specific protein localized to the presynaptic junction. AP180 acts to limit vesicle size and maintain a pool of releasable synaptic vesicles during rapid recycling. In this study, we show that polarized epithelial Madin-Darby canine kidney (MDCK) cells express two AP180-related proteins: the ubiquitously expressed 62-kDa clathrin assembly lymphoid myeloid leukemia (CALM, AP180-2) protein and a novel high-molecular-weight homolog that we have named AP180-3. Sequence analysis of AP180-3 expressed in MDCK cells shows high homology to AP180 from rat brain. AP180-3 contains conserved motifs found in brain-specific AP180, including the epsin NH2-terminal homology (ENTH) domain, the binding site for the α-subunit of AP-2, and DLL repeats. Our studies show that AP180-3 from MDCK cells forms complexes with AP-2 and clathrin and that membrane recruitment of these complexes is modulated by phosphorylation. We demonstrate by immunohistochemistry that AP180-3 is localized to cytoplasmic vesicles in MDCK cells and is also present in tubule epithelial cells from mouse kidney. We observed by immunodetection that a high-molecular-weight AP180-related protein is expressed in numerous cells in addition to MDCK cells.
Collapse
Affiliation(s)
- Linda Kusner
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA
| | | |
Collapse
|
15
|
Chan SA, Smith C. Low frequency stimulation of mouse adrenal slices reveals a clathrin-independent, protein kinase C-mediated endocytic mechanism. J Physiol 2003; 553:707-17. [PMID: 14500763 PMCID: PMC2343636 DOI: 10.1113/jphysiol.2003.053918] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Evidence suggests that chromaffin cells employ separate mechanisms for evoked endocytosis and granule recycling when stimulated at basal (approximately 0.5 Hz) and stress-activated (approximately 15 Hz) rates. Previous studies have focused mainly on elucidating the cellular mechanisms responsible for membrane recycling under conditions similar to the stress-activated state and indicate a clathrin/dephosphin-mediated retrieval via coated pits. However, the mechanism for membrane internalisation at basal stimulus intensity remains largely unexplored. We electrically stimulated chromaffin cells in adrenal tissue slices at the sympathetic basal firing rate and measured cell capacitance in the perforated voltage clamp configuration. A new method for the separation of non-secretory from secretory cell capacitance signals is presented. Simultaneous catecholamine release was measured electrochemically to isolate the exocytic from endocytic components of the capacitance responses. Using this approach we demonstrate that firing patterns that mimic basal sympathetic input results in rapid and graded membrane retrieval. We show that block of the calcium-mediated protein phosphatase 2B, a common step in clathrin-mediated processes, did not alter endocytosis elicited at basal firing levels. We further blocked clathrin-mediated retrieval with a clathrin/dephosphin-disrupting peptide (PP-19) and found endocytosis to be blocked at 15 Hz stimulation but complete and indistinguishable from control cells at 0.5 Hz stimulation. Lastly, pharmacological treatments show that conventional isoforms of protein kinase C (cPKC) are required for the 0.5 Hz-evoked retrieval mechanism. From these data we conclude that unlike endocytosis evoked under stress conditions, basal firing activity results in a clathrin-independent rapid membrane retrieval mediated through conventional isoforms of PKC.
Collapse
Affiliation(s)
- Shyue-An Chan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | |
Collapse
|
16
|
Abstract
A large number of protein toxins having enzymatically active A- and B-moieties that bind to cell surface receptors must be endocytosed before the A-moiety is translocated into the cytosol where it exerts its cytotoxic action. The accumulated information about the most well-studied toxins has provided a detailed picture of how they exploit the membrane trafficking systems of cells, and studies of toxin trafficking have revealed the existence of new pathways. The complexity of different endocytic mechanisms, as well as the multiple routes between endosomes and the Golgi apparatus and retrogradely to the endoplasmic reticulum (ER), are being unravelled by investigations of how toxins gain access to their targets. With increasing information about the internalization and intracellular trafficking of these opportunistic toxins, new avenues have been opened for their application in areas of medicine such as drug delivery and therapy.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | |
Collapse
|
17
|
Birkeli KA, Llorente A, Torgersen ML, Keryer G, Taskén K, Sandvig K. Endosome-to-Golgi transport is regulated by protein kinase A type II alpha. J Biol Chem 2003; 278:1991-7. [PMID: 12419802 DOI: 10.1074/jbc.m209982200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of RII alpha-deficient B lymphoid cells and stable transfectants expressing the type II alpha regulatory subunit (RII alpha) of cAMP-dependent protein kinase (PKA), which is targeted to the Golgi-centrosomal area, reveal that the presence of a Golgi-associated pool of PKA type II alpha mediates a change in intracellular transport of the plant toxin ricin. The transport of ricin from endosomes to the Golgi apparatus, measured as sulfation of a modified ricin (ricin sulf-1), increased in RII alpha-expressing cells when PKA was activated. However, not only endosome-to-Golgi transport, but also retrograde ricin transport to the endoplasmic reticulum (ER), measured as sulfation and N-glycosylation of another modified ricin (ricin sulf-2), seemed to be increased in cells expressing RII alpha in the presence of a cAMP analog, 8-(4-chlorophenylthio)-cAMP. Thus, PKA type II alpha seems to be involved in both endosome-to-Golgi and Golgi-to-ER transport. Because ricin, after being retrogradely transported to the ER, is translocated to the cytosol, where it inhibits protein synthesis, we also investigated the influence of RII alpha expression on ricin toxicity. In agreement with the other data obtained, 8-(4-chlorophenylthio)-cAMP and RII alpha were found to sensitize cells to ricin, indicating an increased transport of ricin to the cytosol. In conclusion, our results demonstrate that transport of ricin from endosomes to the Golgi apparatus and further to the ER is regulated by PKA type II alpha isozyme.
Collapse
Affiliation(s)
- Kim Are Birkeli
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
18
|
Hui EKW, Nayak DP. Role of G protein and protein kinase signalling in influenza virus budding in MDCK cells. J Gen Virol 2002; 83:3055-3066. [PMID: 12466482 DOI: 10.1099/0022-1317-83-12-3055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, we have shown that influenza virus budding in MDCK cells is regulated by metabolic inhibitors of ATP and ATP analogues (Hui & Nayak, Virology 290, 329-341, 2001 ). In this report, we demonstrate that G protein signalling stimulators such as sodium fluoride, aluminium fluoride, compound 48/80 and mastoparan stimulated the budding and release of influenza virus. In contrast, G protein signalling blockers such as suramin and NF023 inhibited virus budding. Furthermore, in filter-grown lysophosphatidylcholine-permeabilized virus-infected MDCK cells, membrane-impermeable GTP analogues, such as guanosine 5'-O-(3-thiotriphosphate) or 5'-guanylylimidodiphosphate caused an increase in virus budding, which could be competitively inhibited by adding an excess of GTP. These results suggest that the G protein is involved in the regulation of influenza virus budding. We also determined the role of different protein kinases in influenza virus budding. We observed that specific inhibitors or activators of protein kinase A (H-89 and 8-bromoadenosine 3',5'-cyclic monophosphate) or of protein kinase C (bisindolylmaleimide I and Ro-32-0432) or of phosphatidylinositol 3-kinase (LY294002 and wortmannin) did not affect influenza virus budding. However, the casein kinase 2 (CK2) inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole decreased virus budding. We further observed an increase in the CK2 activity during the replication cycle of influenza virus, although Western blot analysis did not reveal any increase in the amount of CK2 protein in virus-infected cells. Also, in digitonin-permeabilized MDCK cells, the introduction of CK2 substrate peptides caused a down-regulation of virus budding. These results suggest that CK2 activity also regulates influenza virus budding.
Collapse
Affiliation(s)
- Eric Ka-Wai Hui
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center (JCCC), UCLA School of Medicine, Los Angeles, CA 90095-1747, USA1
| | - Debi P Nayak
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center (JCCC), UCLA School of Medicine, Los Angeles, CA 90095-1747, USA1
| |
Collapse
|
19
|
Reinhardt J, Kosch M, Lerner M, Bertram H, Lemke D, Oberleithner H. Stimulation of protein kinase C pathway mediates endocytosis of human nongastric H+-K+-ATPase, ATP1AL1. Am J Physiol Renal Physiol 2002; 283:F335-43. [PMID: 12110518 DOI: 10.1152/ajprenal.00226.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human nongastric H+-K+-ATPase, ATP1AL1, shown to reabsorb K+ in exchange for H+ or Na+, is localized in the luminal plasma membrane of renal epithelial cells. It is presumed that renal H+-K+-ATPases can be regulated by endocytosis. However, little is known about the molecular mechanisms that control plasma membrane expression of renal H+-K+-ATPases. In our study, activation of protein kinase C (PKC) using phorbol esters (phorbol 12-myristate 13-acetate) leads to clathrin-dependent internalization and intracellular accumulation of the ion pump in stably transfected Madin-Darby canine kidney cells. Functional inactivation of the H+-K+-ATPase by PKC activation is shown by intracellular pH measurements. Proton extrusion capacity of ATP1AL1-transfected cells is drastically reduced after phorbol 12-myristate 13-acetate incubation and can be prevented with the PKC blocker bisindolylmaleimide. Ion pump internalization and inactivation are specifically mediated by the PKC pathway, whereas activation of the protein kinase A pathway has no influence. Our results show that the nongastric H+-K+-ATPase is a specific target for the PKC pathway. Therefore, PKC-mediated phosphorylation is a potential regulatory mechanism for apical nongastric H+-K+-ATPase plasma membrane expression.
Collapse
Affiliation(s)
- J Reinhardt
- Institute of Physiology, University of Münster, D-48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Medeiros MN, Oliveira DMP, Paiva-Silva GO, Silva-Neto MAC, Romeiro A, Bozza M, Masuda H, Machado EA. The role of eicosanoids on Rhodnius heme-binding protein (RHBP) endocytosis by Rhodnius prolixus ovaries. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:537-545. [PMID: 11891130 DOI: 10.1016/s0965-1748(01)00132-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The participation of eicosanoids and second messengers on the regulation of RHBP endocytosis by the ovaries was investigated, using [(125)I]RHBP in experiments in vivo and in vitro. Addition of PGE(2) (one of the products of the cyclooxygenase pathway) decreased in vitro the uptake of RHBP by 35%. The rate of RHBP endocytosis increased in the presence of indomethacin, a potent cyclooxigenase inhibitor, up to 50% in vitro and up to 55% in vivo, thus giving support to the role of cyclooxygenase derivatives on endocytosis regulation. The amount of PGE(2) secreted to the culture medium by the cells of Rhodnius prolixus ovaries was 1.1 ng/ovary following RHBP uptake assay. The amount of PGE(2) decreases approximately 25% in the presence of 5 microM indomethacin. Using a scanning electron microscope we have observed that neither the surface area nor the patencies of follicle cells were affected by treatment with indomethacin, thus suggesting that, its effect is elicited in the oocyte. Finally, we have identified two ovarian peptides that were dephosphorylated after the indomethacin treatment (18 and 25 kDa). Taken together these data show that local mediators such as eicosanoids act upon the oocytes controlling RHBP endocytosis, perhaps using the protein phosphorylation signal transduction pathway.
Collapse
Affiliation(s)
- Marcelo N Medeiros
- Laboratório de Entomologia Médica do Programa de Parasitologia e Biologia Celular, IBCCF, CCS, UFRJ, Cidade Universitária, Ilha do Fundão, 21,941-590, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Neuhaus EM, Almers W, Soldati T. Morphology and dynamics of the endocytic pathway in Dictyostelium discoideum. Mol Biol Cell 2002; 13:1390-407. [PMID: 11950947 PMCID: PMC102277 DOI: 10.1091/mbc.01-08-0392] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2001] [Revised: 12/27/2001] [Accepted: 01/18/2002] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium discoideum is a genetically and biochemically tractable social amoeba belonging to the crown group of eukaryotes. It performs some of the tasks characteristic of a leukocyte such as chemotactic motility, macropinocytosis, and phagocytosis that are not performed by other model organisms or are difficult to study. D. discoideum is becoming a popular system to study molecular mechanisms of endocytosis, but the morphological characterization of the organelles along this pathway and the comparison with equivalent and/or different organelles in animal cells and yeasts were lagging. Herein, we used a combination of evanescent wave microscopy and electron microscopy of rapidly frozen samples to visualize primary endocytic vesicles, vesicular-tubular structures of the early and late endo-lysosomal system, such as multivesicular bodies, and the specialized secretory lysosomes. In addition, we present biochemical and morphological evidence for the existence of a micropinocytic pathway, which contributes to the uptake of membrane along side macropinocytosis, which is the major fluid phase uptake process. This complex endosomal compartment underwent continuous cycles of tubulation/vesiculation as well as homo- and heterotypic fusions, in a way reminiscent of mechanisms and structures documented in leukocytes. Finally, egestion of fluid phase from the secretory lysosomes was directly observed.
Collapse
Affiliation(s)
- Eva M Neuhaus
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
22
|
Heisler I, Keller J, Tauber R, Sutherland M, Fuchs H. A colorimetric assay for the quantitation of free adenine applied to determine the enzymatic activity of ribosome-inactivating proteins. Anal Biochem 2002; 302:114-22. [PMID: 11846384 DOI: 10.1006/abio.2001.5527] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenine quantitation is required for a variety of applications. To date, the prevalent method for quantifying free adenine, in a variety of applications, is the detection of fluorescent-derivatized adenine by HPLC. For the present study, we developed a high-throughput, nonradioactive, enzyme-based colorimetric adenine quantitation assay that is performed in one multireaction incubation step. The assay does not require adenine derivatization and is designed for microplates. The key step is the conversion of adenine to adenosine monophosphate by adenine phosphoribosyl transferase. Subsequent reactions finally produce three inorganic phosphate ions per adenine molecule. Phosphate is quantitated by the color-generating phosphorylysis of a particular purine derivate. Ribosome-inactivating proteins that release adenine from polynucleotides are often used to investigate intracellular protein trafficking and are important for the design of immunotoxins. We therefore used ricin, dianthin, saporin, and a variety of saporin fusion proteins to show that this method is suitable for quantifying adenine release using different substrates. The measured rate of adenine release and substrate specificity are comparable to those determined by HPLC and radioactive detection techniques.
Collapse
Affiliation(s)
- Iring Heisler
- Institut für Klinische Chemie und Pathobiochemie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin, D-12200, Germany
| | | | | | | | | |
Collapse
|
23
|
Abstract
All cells experience and respond to mechanical stimuli, such as changes in plasma membrane tension, shear stress, hydrostatic pressure, and compression. This review is an examination of the changes in membrane traffic that occur in response to mechanical forces. The plasma membrane has an associated tension that modulates both exocytosis and endocytosis. As membrane tension increases, exocytosis is stimulated, which acts to decrease membrane tension. In contrast, increased membrane tension slows endocytosis, whereas decreased tension stimulates internalization. In most cases, secretion is stimulated by external mechanical stimuli. However, in some cells mechanical forces block secretion. External stimuli also enhance membrane and fluid endocytosis in several cell types. Transduction of mechanical stimuli into changes in exocytosis/endocytosis may involve the cytoskeleton, stretch-activated channels, integrins, phospholipases, tyrosine kinases, and cAMP.
Collapse
Affiliation(s)
- Gerard Apodaca
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
24
|
Nielsen K, Boston RS. RIBOSOME-INACTIVATING PROTEINS: A Plant Perspective. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:785-816. [PMID: 11337416 DOI: 10.1146/annurev.arplant.52.1.785] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate the universally conserved alpha-sarcin loop of large rRNAs. This depurination inactivates the ribosome, thereby blocking its further participation in protein synthesis. RIPs are widely distributed among different plant genera and within a variety of different tissues. Recent work has shown that enzymatic activity of at least some RIPs is not limited to site-specific action on the large rRNAs of ribosomes but extends to depurination and even nucleic acid scission of other targets. Characterization of the physiological effects of RIPs on mammalian cells has implicated apoptotic pathways. For plants, RIPs have been linked to defense by antiviral, antifungal, and insecticidal properties demonstrated in vitro and in transgenic plants. How these effects are brought about, however, remains unresolved. At the least, these results, together with others summarized here, point to a complex biological role. With genetic, genomic, molecular, and structural tools now available for integrating different experimental approaches, we should further our understanding of these multifunctional proteins and their physiological functions in plants.
Collapse
Affiliation(s)
- Kirsten Nielsen
- Department of Botany, North Carolina State University, Raleigh, North Carolina 27695-7612; e-mail: ;
| | | |
Collapse
|
25
|
Abstract
The cytoskeleton is required for multiple cellular events including endocytosis and the transfer of cargo within the endocytic system. Polarized epithelial cells are capable of endocytosis at either of their distinct apical or basolateral plasma membrane domains. Actin plays a role in internalization at both cell surfaces. Microtubules and actin are required for efficient transcytosis and delivery of proteins to late endosomes and lysosomes. Microtubules are also important in apical recycling pathways and, in some polarized cell types, basolateral recycling requires actin. The microtubule motor proteins dynein and kinesin and the class I unconventional myosin motors play a role in many of these trafficking steps. This review examines the endocytic pathways of polarized epithelial cells and focuses on the emerging roles of the actin cytoskeleton in these processes.
Collapse
Affiliation(s)
- G Apodaca
- Renal-Electrolyte Division of the Department of Medicine, Laboratory of Epithelial Biology, and Department of Cell Biology and Physiology, University of Pittsburgh, PA 15261, USA.
| |
Collapse
|
26
|
Garred Ø, Rodal SK, van Deurs B, Sandvig K. Reconstitution of clathrin-independent endocytosis at the apical domain of permeabilized MDCK II cells: requirement for a Rho-family GTPase. Traffic 2001; 2:26-36. [PMID: 11208166 DOI: 10.1034/j.1600-0854.2001.020105.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This paper studies the endocytosis of ricin at the apical pole of polarized MDCK II cells after permeabilization of the cells basolaterally with streptolysin O. Ricin endocytosis after the addition of cytosol with an ATP-regenerating system was 2-3-fold higher than after the addition of a transport medium. A similar increase in ricin endocytosis was obtained by reconstitution of dialyzed cytosol with the nonhydrolyzable GTP analog, GTP gamma S, in the presence of an ATP-regenerating system. The nonhydrolyzable GDP analog, GDP beta S, did not increase ricin uptake. In contrast to the data obtained with ricin, GTP gamma S was found to inhibit apical transferrin uptake in MDCK II cells transfected with the human transferrin receptor, and the data thus imply that GTP gamma S supports clathrin-independent endocytosis. Electron microscopy (EM) demonstrated that free endocytic vesicles were formed from the apical pole of permeabilized MDCK II cells in the presence of GTP gamma S and that both a ricin-HRP conjugate, HRP, and cationized gold were endocytosed. Ricin endocytosis in the presence of intact cytosol, as well as GTP gamma S-stimulated ricin uptake, was inhibited by Clostridium botulinum C3 transferase, an enzyme found to inactivate Rho proteins. The data demonstrate that apical clathrin-independent endocytosis functions in the presence of GTP gamma S, and suggest that one or more of the small GTP binding proteins of the Rho family is involved in regulation of the apical clathrin-independent endocytosis in MDCK II cells.
Collapse
Affiliation(s)
- Ø Garred
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
27
|
Sandvig K, Grimmer S, Iversen TG, Rodal K, Torgersen ML, Nicoziani P, van Deurs B. Ricin transport into cells: studies of endocytosis and intracellular transport. Int J Med Microbiol 2000; 290:415-20. [PMID: 11111920 DOI: 10.1016/s1438-4221(00)80055-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
The plant toxin ricin binds to both glycoproteins and glycolipids with terminal galactose, and the toxin will therefore be endocytosed by the different mechanisms operating in a given cell. After endocytosis the toxin is transported to the Golgi apparatus by a process that differs from the Rab9-dependent transport of mannose-6-phosphate receptors. Retrograde toxin transport from the Golgi apparatus to the endoplasmic reticulum (ER) seems to be a requirement for subsequent toxin translocation to the cytosol where the toxin inhibits protein synthesis enzymatically. By using ricin we have characterized different types of endocytosis and the transport steps used by this toxin.
Collapse
Affiliation(s)
- K Sandvig
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo.
| | | | | | | | | | | | | |
Collapse
|
28
|
Gibson GA, Hill WG, Weisz OA. Evidence against the acidification hypothesis in cystic fibrosis. Am J Physiol Cell Physiol 2000; 279:C1088-99. [PMID: 11003589 DOI: 10.1152/ajpcell.2000.279.4.c1088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pleiotropic effects of cystic fibrosis (CF) result from the mislocalization or inactivity of an apical membrane chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR may also modulate intracellular chloride conductances and thus affect organelle pH. To test the role of CFTR in organelle pH regulation, we developed a model system to selectively perturb the pH of a subset of acidified compartments in polarized cells and determined the effects on various protein trafficking steps. We then tested whether these effects were observed in cells lacking wild-type CFTR and whether reintroduction of CFTR affected trafficking in these cells. Our model system involves adenovirus-mediated expression of the influenza virus M2 protein, an acid-activated ion channel. M2 expression selectively slows traffic through the trans-Golgi network (TGN) and apical endocytic compartments in polarized Madin-Darby canine kidney (MDCK) cells. Expression of M2 or treatment with other pH perturbants also slowed protein traffic in the CF cell line CFPAC, suggesting that the TGN in this cell line is normally acidified. Expression of functional CFTR had no effect on traffic and failed to rescue the effect of M2. Our results argue against a role for CFTR in the regulation of organelle pH and protein trafficking in epithelial cells.
Collapse
Affiliation(s)
- G A Gibson
- Laboratory of Epithelial Cell Biology, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
29
|
Sandvig K, Llorente A, Rodal SK, Eker P, Garred O, Stahlhut M, van Deurs B. Apical macropinocytosis in polarized MDCK cells: regulation by N-ethylmaleimide-sensitive proteins. Eur J Cell Biol 2000; 79:447-57. [PMID: 10961444 DOI: 10.1078/0171-9335-00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In cells tested so far endocytosis seems to be dependent on N-ethylmaleimide (NEM)-sensitive proteins, and treatment with NEM results in a complete block of endocytosis. We here demonstrate that treatment of polarized MDCK I cells with NEM strongly increased endocytosis of ricin and horseradish peroxidase at the apical side, and electron microscopy revealed NEM-induced formation of large macropinosomes at the apical pole. The NEM-stimulated apical endocytosis seemed to involve phosphatidylinositol-3 kinase, protein kinase C and phospholipase D and it was dependent on ATP. Moreover, in contrast to endocytosis in nonpolarized cells ricin endocytosis at the basolateral side continued in the presence of NEM whereas endocytosis of transferrin was blocked. Furthermore, recycling of ricin endocytosed in the absence of NEM was not inhibited on either side upon addition of NEM demonstrating the existence of a NEM-resistant fusion machinery. The results suggest that the fusogenic property of both the apical and the basolateral plasma membrane of MDCK cells differs from that typically observed in cells unable to polarize.
Collapse
Affiliation(s)
- K Sandvig
- Institute for Cancer Research, The Norwegian Radium Hospital, Department of Biochemistry, Montebello, Oslo.
| | | | | | | | | | | | | |
Collapse
|
30
|
Martin ME, Hidalgo J, Rosa JL, Crottet P, Velasco A. Effect of protein kinase A activity on the association of ADP-ribosylation factor 1 to golgi membranes. J Biol Chem 2000; 275:19050-9. [PMID: 10858454 DOI: 10.1074/jbc.275.25.19050] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTP-binding protein ADP-ribosylation factor 1 (ARF1) is an essential component of the molecular machinery that catalyzes the formation of membrane-bound transport intermediates. By using an in vitro assay that reproduces recruitment of cytosolic proteins onto purified, high salt-washed Golgi membranes, we have analyzed the role of cAMP-dependent protein kinase A (PKA) on ARF1 incorporation. Addition to this assay of either pure catalytic subunits of PKA (C-PKA) or cAMP increased ARF1 binding. By contrast, ARF1 association was inhibited following C-PKA inactivation with either PKA inhibitory peptide or RIIalpha as well as after cytosol depletion of C-PKA. C-PKA also stimulated recruitment and activation of a recombinant form of human ARF1 in the absence of additional cytosolic components. The binding step could be dissociated from the activation reaction and found to be independent of guanine nucleotides and saturable. This step was stimulated by C-PKA in an ATP-dependent manner. Dephosphorylated Golgi membranes exhibited a decreased ability to recruit ARF1, and this effect was reverted by addition of C-PKA. Following an increase in the intracellular level of cAMP, ARF proteins redistributed from cytosol to the perinuclear Golgi region of intact cells. Collectively, the results show that PKA exerts a key regulatory role in the recruitment of ARF1 onto Golgi membranes. In contrast, PKA modulators did not affect recruitment of beta-COP onto Golgi membranes containing prebound ARF1.
Collapse
Affiliation(s)
- M E Martin
- Department of Cell Biology, University of Seville, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
31
|
Park HS, Lee SY, Kim YH, Kim JY, Lee SJ, Choi M. Membrane perturbation by mastoparan 7 elicits a broad alteration in lipid composition of L1210 cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1484:151-62. [PMID: 10760465 DOI: 10.1016/s1388-1981(00)00002-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mastoparan 7 (Mas-7), an amphiphilic peptide possessing membrane perturbing activity, has been known to selectively stimulate some lipases. To examine changes in the lipid composition induced by Mas-7, we carried out systemic lipid analysis of L1210 cells after Mas-7 treatment. The total lipid was determined by HPLC, gas-liquid chromatography, and electrospray ionization mass spectrometry in conjunction with differential radiolabelling with [(32)P]orthophosphate, [(3)H]myristic acid, and [(3)H]arachidonic acid. The lipid analysis revealed multiple changes in more than 10 lipid classes. Free fatty acids (FFAs) and phosphatidylethanol (PEt), the phospholipase D product in the presence of ethanol, were increased significantly and phosphatidylcholine (PC) was decreased. Digitonin, a membrane permeabilizing reagent, similarly affected the lipid composition of L1210. The FFA released showed a very broad distribution of saturated, monounsaturated, and polyunsaturated fatty acids, implying that phospholipase A(2) alone could not account for all of the FFAs released. By comparing the molecular species of PEt with those of endogenous PC, we showed that phospholipase D in L1210 cells appeared to act selectively on diacyl-PC. The perturbation-induced alterations in the lipid composition brought about by Mas-7 might play a crucial role in the physiology of the affected cells.
Collapse
Affiliation(s)
- H S Park
- Department of Chemistry and Center for Molecular Catalysis, Seoul National University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
32
|
Llorente A, van Deurs B, Garred O, Eker P, Sandvig K. Apical endocytosis of ricin in MDCK cells is regulated by the cyclooxygenase pathway. J Cell Sci 2000; 113 ( Pt 7):1213-21. [PMID: 10704372 DOI: 10.1242/jcs.113.7.1213] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Addition of arachidonic acid or stimulation of arachidonic acid production by secretory phospholipase A2 selectively upregulated apical endocytosis of ricin in MDCK cells without affecting basolateral endocytosis. Electron microscopic studies revealed that MDCK cells treated with secretory phospholipase A2 and incubated with horseradish peroxidase had an increased number of normal appearing peroxidase-labeled endosomes and no sign of membrane ruffling. Moreover, inhibition of basal arachidonic acid release, either by decreasing the cytosolic phospholipase A(2) activity or the diacylglycerol lipase activity, reduced the rate of apical endocytosis. Furthermore, indomethacin, an inhibitor of the cyclooxygenase pathway, counteracted the stimulation of endocytosis seen with both secretory phospholipase A2 and arachidonic acid, suggesting that formation of eicosanoids such as prostaglandins could be essential for the regulation. This idea was supported by the finding that prostaglandin E2, the predominant prostaglandin formed in kidney, also upregulated ricin uptake. The regulatory effect of the cyclooxygenase pathway on apical endocytosis of ricin was found to be independent of protein kinases A and C, which are known to selectively control apical clathrin-independent endocytosis in polarized cells.
Collapse
Affiliation(s)
- A Llorente
- Institute for Cancer Research at The Norwegian Radium Hospital, Montebello, Norway
| | | | | | | | | |
Collapse
|
33
|
Martín ME, Hidalgo J, Vega FM, Velasco A. Trimeric G proteins modulate the dynamic interaction of PKAII with the Golgi complex. J Cell Sci 1999; 112 ( Pt 22):3869-78. [PMID: 10547348 DOI: 10.1242/jcs.112.22.3869] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Golgi complex represents a major subcellular location of protein kinase A (PKA) concentration in mammalian cells where it has been previously shown to be involved in vesicle-mediated protein transport processes. We have studied the factors that influence the interaction of PKA typeII subunits with the Golgi complex. In addition to the cytosol, both the catalytic (Calpha) and regulatory (RIIalpha) subunits of PKAII were detected at both sides of the Golgi stack, particularly in elements of the cis- and trans-Golgi networks. PKAII subunits, in contrast, were practically absent from the middle Golgi cisternae. Cell treatment with either brefeldin A, AlF(4-) or at low temperature induced PKAII dissociation from the Golgi complex and redistribution to the cytosol. This suggested the existence of a cycle of association/dissociation of PKAII holoenzyme to the Golgi. The interaction of purified RIIalpha with Golgi membranes was studied in vitro and found not to be affected by brefeldin A while it was sensitive to modulators of heterotrimeric G proteins such as AlF(4-), GTPgammaS, beta(gamma) subunits and mastoparan. RII(alphaa) binding was stimulated by recombinant, myristoylated Galpha(i3) subunit and inhibited by cAMP. Pretreatment of Golgi membranes with bacterial toxins known to catalyze ADP-ribosylation of selected Galpha subunits also modified RIIalpha binding. Taken together the data support a regulatory role for Golgi-associated Galpha proteins in PKAII recruitment from the cytosol.
Collapse
Affiliation(s)
- M E Martín
- Department of Cell Biology, Faculty of Biology, University of Seville, Spain
| | | | | | | |
Collapse
|
34
|
Decorti G, Malusà N, Furlan G, Candussio L, Klugmann FB. Endocytosis of gentamicin in a proximal tubular renal cell line. Life Sci 1999; 65:1115-24. [PMID: 10503927 DOI: 10.1016/s0024-3205(99)00345-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanisms by which aminoglycosides are accumulated in renal proximal tubular cells remain unclear. Adsorptive mediated endocytosis, via a common pathway for cationic proteins, or receptor endocytosis, mediated by the glycoprotein 330/megalin, have been proposed to be involved in gentamicin transport in renal cells. We used the LLC-PK1 cell line, derived from the pig proximal tubule, to explore further the regulation of gentamicin endocytosis in these cells and to determine the role of clathrin mediated endocytosis and G proteins in this function. Gentamicin endocytosis was strictly temperature dependent, whereas total uptake (endocytosis plus binding) did not significantly differ at 4 or 37 degrees C. Substances that suppress receptor mediated, clathrin dependent endocytosis, such as monensin, phenylarsine oxide and dansylcadaverine, or inhibit caveolae mediated endocytosis, such as nystatin, did not affect gentamicin entrance in LLC-PK1 cells. Among substances that disrupt the actin cytoskeleton, only cytochalasin D, that is active also on fluid phase endocytosis, significantly reduced the intracellular concentrations of the aminoglycoside. Other maneuvers that perturb clathrin dependent endocytosis without affecting clathrin independent pathway, such as acidification of cytosol or incubation in hypertonic medium, were also without effect. Mastoparan, a well known stimulator of heterotrimeric G proteins, strongly increased endocytosis of gentamicin, and the same effect was evident with two other G protein stimulators, aluminum fluoride and fluoride alone; however the effect seems not to be mediated by an activation of adenylyl cyclase. In conclusion, gentamicin endocytosis in LLC-PK1 cells is probably clathrin independent, limited by cytochalasin D, which interacts with cytoskeleton, and increased by substances like mastoparan and aluminum fluoride, which activate heterotrimeric G proteins.
Collapse
Affiliation(s)
- G Decorti
- Department of Biomedical Sciences, University of Trieste, Italy.
| | | | | | | | | |
Collapse
|
35
|
Abstract
The plant toxin ricin has proven valuable as a membrane marker in studies of endocytosis as well as studies of different intracellular transport steps. The toxin, which consists of two polypeptide chains, binds by one chain (the B-chain) to both glycolipids and glycoproteins with terminal galactose at the cell surface. The other chain (the A-chain) enters the cytosol and inhibits protein synthesis enzymatically. After binding the toxin is endocytosed by different mechanisms, and it is transported via endosomes to the Golgi apparatus and the endoplasmic reticulum before translocation of the A-chain to the cytosol. The different transport steps have been analyzed by studying trafficking of ricin as well as modified ricin molecules.
Collapse
Affiliation(s)
- K Sandvig
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo.
| | | |
Collapse
|
36
|
Keryer G, Skålhegg BS, Landmark BF, Hansson V, Jahnsen T, Taskén K. Differential localization of protein kinase A type II isozymes in the Golgi-centrosomal area. Exp Cell Res 1999; 249:131-46. [PMID: 10328961 DOI: 10.1006/excr.1999.4447] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Selectivity in the action of cAMP may be mediated by compartmentalized pools of cyclic AMP-dependent protein kinase (PKA). PKA type II is directed to different subcellular loci by interaction of the type II regulatory subunits (RIIalpha, RIIbeta) with A-kinase anchoring proteins. In order to separately investigate the subcellular localization of PKA type II isozymes, monospecific antibodies to human RIIalpha and RIIbeta subunits of PKA were developed. We demonstrate that centrosomes bind both RIIalpha and RIIbeta. Centrosomes were the preferred intracellular anchoring site for RIIbeta. However, centrosomal localization of RIIbeta was observed only in some highly differentiated cells such as keratinocytes, granulosa cells, and macrophages and in all neoplastic cell lines examined. Centrosomal localization of RIIbeta was not observed in normal undifferentiated cells such as fibroblasts, myoblasts, and T and B cells. In contrast, RIIalpha was abundant in the Golgi area and in the trans-Golgi network (TGN). Furthermore, although RIIalpha appeared to colocalize with microtubules in the Golgi/TGN, extractions with nonionic detergent demonstrated that RIIalpha was mainly membrane-associated. In addition, alterations of microtubule dynamics with Nocodazole or Taxol affected the distribution of the detergent-extractable pool of RIIalpha, indicating that RIIalpha may localize with microtubule-associated vesicles. Thus, RIIalpha and RIIbeta clearly localize differently in the Golgi-centrosomal region. This indicates specific roles for PKA isozymes containing either RIIalpha or RIIbeta.
Collapse
Affiliation(s)
- G Keryer
- Faculté des Sciences Pharmaceutiques et Biologiques, INSERM Unité 427, Paris Cedex 06, F-75270, France
| | | | | | | | | | | |
Collapse
|
37
|
Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 1999; 10:961-74. [PMID: 10198050 PMCID: PMC25220 DOI: 10.1091/mbc.10.4.961] [Citation(s) in RCA: 806] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The importance of cholesterol for endocytosis has been investigated in HEp-2 and other cell lines by using methyl-beta-cyclodextrin (MbetaCD) to selectively extract cholesterol from the plasma membrane. MbetaCD treatment strongly inhibited endocytosis of transferrin and EGF, whereas endocytosis of ricin was less affected. The inhibition of transferrin endocytosis was completely reversible. On removal of MbetaCD it was restored by continued incubation of the cells even in serum-free medium. The recovery in serum-free medium was inhibited by addition of lovastatin, which prevents cholesterol synthesis, but endocytosis recovered when a water-soluble form of cholesterol was added together with lovastatin. Electron microscopical studies of MbetaCD-treated HEp-2 cells revealed that typical invaginated caveolae were no longer present. Moreover, the invagination of clathrin-coated pits was strongly inhibited, resulting in accumulation of shallow coated pits. Quantitative immunogold labeling showed that transferrin receptors were concentrated in coated pits to the same degree (approximately sevenfold) after MbetaCD treatment as in control cells. Our results therefore indicate that although clathrin-independent (and caveolae-independent) endocytosis still operates after removal of cholesterol, cholesterol is essential for the formation of clathrin-coated endocytic vesicles.
Collapse
Affiliation(s)
- S K Rodal
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
38
|
Freedman SD, Katz MH, Parker EM, Gelrud A. Endocytosis at the apical plasma membrane of pancreatic acinar cells is regulated by tyrosine kinases. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C306-11. [PMID: 9950757 DOI: 10.1152/ajpcell.1999.276.2.c306] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown that endocytosis at the apical plasma membrane of pancreatic acinar cells is regulated by the pH of the acinar lumen and is associated with cleavage of GP2, a glycosyl phosphatidylinositol-anchored protein. The aim of this study was to determine the transduction pathway by which endocytosis is activated. Apical endocytosis was studied in rat pancreatic acini by prestimulation with cholecystokinin followed by measurement of horseradish peroxidase (HRP) uptake. Lanthanum, staurosporine, and forskolin had no effect on HRP uptake. Cytochalasin D significantly inhibited endocytosis, indicating a dependence on actin filament integrity. Genistein and the specific tyrphostin inhibitor B42 also inhibited HRP uptake, implicating tyrosine kinases in the regulation of HRP uptake. With the use of an Src kinase-specific substrate, Src kinase activity was temporally related to activation of endocytosis. The tyrosine-dependent phosphorylation of an 85-kDa substrate in both rat and mouse pancreatic acini correlated with Src kinase activation and pH-dependent regulation of HRP uptake. These results indicate that apical endocytosis in acinar cells is associated with tyrosine kinase activation and is dependent on the actin cytoskeleton.
Collapse
Affiliation(s)
- S D Freedman
- The Pancreas Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
39
|
Vilhardt F, Nielsen M, Sandvig K, van Deurs B. Urokinase-type plasminogen activator receptor is internalized by different mechanisms in polarized and nonpolarized Madin-Darby canine kidney epithelial cells. Mol Biol Cell 1999; 10:179-95. [PMID: 9880335 PMCID: PMC25162 DOI: 10.1091/mbc.10.1.179] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin-Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0 degreesC, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5-10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy.
Collapse
Affiliation(s)
- F Vilhardt
- Structural Cell Biology Unit, Department of Medical Anatomy, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
40
|
Veithen A, Amyere M, Van Der Smissen P, Cupers P, Courtoy PJ. Regulation of macropinocytosis in v-Src-transformed fibroblasts: cyclic AMP selectively promotes regurgitation of macropinosomes. J Cell Sci 1998; 111 ( Pt 16):2329-35. [PMID: 9683628 DOI: 10.1242/jcs.111.16.2329] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable transformation of Rat-1 fibroblasts by the v-Src oncoprotein results into the constitutive formation of macropinosomes. In the present report, we found that macropinosomes do not fuse with transferrin-containing endosomes and investigated the effects of cyclic AMP as a regulator of macropinocytosis in this cell system. The permeant analogs dibutyryl cyclic AMP and 8-bromo-cyclic AMP, as well as the pharmacological activator of adenylate cyclase forskolin, similarly decreased by about 35% the net endocytic accumulation of the fluid-phase tracer horseradish peroxidase at intervals >5 minutes in v-Src-transformed cells but not in the non-transformed parental Rat-1 cell line. However, and in contrast to the phospholipase C inhibitor 2-nitro-4-carboxyphenyl-N, N-diphenylcarbamate or the phosphatidylinositol 3-kinase inhibitor wortmannin, dibutyryl cyclic AMP neither returned the peroxidase accumulation rate of v-Src-transformed cells to that of parental Rat-1/control cells, nor prevented macropinosome formation, as shown by confocal microscopy. Detailed analysis of the kinetics of tracer entry and efflux in transformed cells revealed that dibutyryl cyclic AMP inhibited peroxidase accumulation only after intervals >5 minutes, due to accelerated peroxidase regurgitation, but did not alter the rate of transferrin recycling. Taken together, these data indicate that, in v-Src-transformed fibroblasts, macropinocytosis and micropinocytosis serve different pathways and that cyclic AMP affects neither micropinocytosis nor the formation of macropinosomes, but selectively promotes regurgitation therefrom.
Collapse
Affiliation(s)
- A Veithen
- Cell Biology Unit, University of Louvain Medical School and Christian de Duve Institute of Cellular Pathology (ICP), Avenue Hippocrate, 1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
41
|
Llorente A, van Deurs B, Sandvig K. Transport of apically but not basolaterally internalized ricin to the Golgi apparatus is stimulated by 8-Br-cAMP in MDCK cells. FEBS Lett 1998; 431:200-4. [PMID: 9708902 DOI: 10.1016/s0014-5793(98)00754-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plant toxin ricin has to be transported to the Golgi apparatus after endocytosis to exert its toxic effect. In this study we show that transport of apically endocytosed ricin to the Golgi apparatus is stimulated by 8-Br-cAMP in polarized MDCK cells. This stimulation is counteracted by the PKA inhibitor H-89. In contrast, there is no increase in the transport to the Golgi apparatus of ricin internalized from the basolateral membrane. These results suggest that protein kinase A selectively regulates endosome to Golgi transport in these cells.
Collapse
Affiliation(s)
- A Llorente
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | | | | |
Collapse
|
42
|
Houslay MD, Sullivan M, Bolger GB. The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1998; 44:225-342. [PMID: 9547887 DOI: 10.1016/s1054-3589(08)60128-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M D Houslay
- Division of Biochemistry and Molecular Biology, University of Glasgow, Scotland, UK
| | | | | |
Collapse
|
43
|
Shurety W, Stewart NL, Stow JL. Fluid-phase markers in the basolateral endocytic pathway accumulate in response to the actin assembly-promoting drug Jasplakinolide. Mol Biol Cell 1998; 9:957-75. [PMID: 9529391 PMCID: PMC25321 DOI: 10.1091/mbc.9.4.957] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin-Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.
Collapse
Affiliation(s)
- W Shurety
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
44
|
Okamoto CT, Karam SM, Jeng YY, Forte JG, Goldenring JR. Identification of clathrin and clathrin adaptors on tubulovesicles of gastric acid secretory (oxyntic) cells. Am J Physiol Cell Physiol 1998; 274:C1017-29. [PMID: 9575799 DOI: 10.1152/ajpcell.1998.274.4.c1017] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
gamma-Adaptin and clathrin heavy chain were identified on tubulovesicles of gastric oxyntic cells with the anti-gamma-adaptin monoclonal antibody (MAb) 100/3 and an anti-clathrin heavy chain MAb (MAb 23), respectively. In Western blots, crude gastric microsomes from rabbit and rat and density gradient-purified, H-K-ATPase-rich microsomes from these same species were immunoreactive for gamma-adaptin and clathrin. In immunofluorescent labeling of isolated rabbit gastric glands, anti-gamma-adaptin and anti-clathrin heavy chain immunoreactivity appeared to be concentrated in oxyntic cells. In primary cultures of rabbit oxyntic cells, the immunocytochemical distribution of gamma-adaptin immunoreactivity was similar to that of the tubulovesicular membrane marker in oxyntic cells, the H-K-ATPase. Further biochemical characterization of the tubulovesicular gamma-adaptin-containing complex suggested that it has a subunit composition that is typical of that for a clathrin adaptor: in addition to the gamma-adaptin subunit, it contains a beta-adaptin subunit and other subunits of apparent molecular masses of 50 kDa and 19 kDa. From solubilized gastric microsomes from rabbit, gamma-adaptin could be copurified with the major cargo protein of tubulovesicles, the H-K-ATPase. Thus this tubulovesicular coat may bind directly to the H-K-ATPase and may thereby mediate the regulated trafficking of the H-K-ATPase at the apical membrane of the oxyntic cell during the gastric acid secretory cycle. Given the similarities of the regulated trafficking of the H-K-ATPase with recycling of cargo through the apical recycling endosome of many epithelial cells, we propose that tubulovesicular clathrin and adaptors may regulate some part of an apical recycling pathway in other epithelial cells.
Collapse
Affiliation(s)
- C T Okamoto
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles 90033, USA
| | | | | | | | | |
Collapse
|
45
|
Low SH, Roche PA, Anderson HA, van Ijzendoorn SC, Zhang M, Mostov KE, Weimbs T. Targeting of SNAP-23 and SNAP-25 in polarized epithelial cells. J Biol Chem 1998; 273:3422-30. [PMID: 9452464 DOI: 10.1074/jbc.273.6.3422] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
SNAP-23 is the ubiquitously expressed homologue of the neuronal SNAP-25, which functions in synaptic vesicle fusion. We have investigated the subcellular localization of SNAP-23 in polarized epithelial cells. In hepatocyte-derived HepG2 cells and in Madin-Darby canine kidney (MDCK) cells, the majority of SNAP-23 was present at both the basolateral and apical plasma membrane domains with little intracellular localization. This suggests that SNAP-23 does not function in intracellular fusion events but rather as a general plasma membrane t-SNARE. Canine SNAP-23 is efficiently cleaved by the botulinum neurotoxin E, suggesting that it is the toxin-sensitive factor previously found to be involved in plasma membrane fusion in MDCK cells. The localization of SNAP-25 in transfected MDCK cells was studied for comparison and was found to be identical to SNAP-23 with the exception that SNAP-25 was transported to the primary cilia protruding from the apical plasma membrane, which suggests that subtle differences in the targeting signals of both proteins exist. In contrast to its behavior in neurons, the distribution of SNAP-25 in MDCK cells remained unaltered by treatment with dibutyryl cAMP or forskolin, which, however, caused an increased growth of the primary cilia. Finally, we found that SNAP-23/25 and syntaxin 1A, when co-expressed in MDCK cells, do not stably interact with each other but are independently targeted to the plasma membrane and lysosomes, respectively.
Collapse
Affiliation(s)
- S H Low
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0452, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Vesicular coat proteins mediate the formation of nascent vesicles and select the cargo to be incorporated therein. As additional coat proteins are discovered that regulate vesicular traffic along very specific intracellular pathways, the possibility looms of regulating the intracellular trafficking and targeting of therapeutic agents by modulation of the action of vesicular coat proteins. Examples are provided of coat proteins thought to regulate the trafficking of pharmaceutically relevant molecules via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and transcytosis.
Collapse
Affiliation(s)
- CT Okamoto
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles CA 90033, USA
| |
Collapse
|
47
|
Foti M, Mangasarian A, Piguet V, Lew DP, Krause KH, Trono D, Carpentier JL. Nef-mediated clathrin-coated pit formation. J Biophys Biochem Cytol 1997; 139:37-47. [PMID: 9314527 PMCID: PMC2139808 DOI: 10.1083/jcb.139.1.37] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The sequence of events leading to clathrin-coated pit (CCP) nucleation on the cell surface and to the incorporation of receptors into these endocytic structures is still imperfectly understood. In particular, the question remains as to whether receptor tails initiate the assembly of the coat proteins or whether receptors migrate into preformed CCP. This question was approached through a dissection of the mechanisms implemented by Nef, an early protein of human and simian immunodeficiency virus (HIV and SIV, respectively), to accelerate the endocytosis of cluster of differentiation antigen type 4 (CD4), the major receptor for these viruses. Results collected showed that: (a) Nef promotes CD4 internalization via an increased association of CD4 with CCP; (b) the Nef-mediated increase of CD4 association with CCP is related to a doubling of the plasma membrane area occupied by clathrin-coated structures; (c) this increased CCP number at the plasma membrane has functional consequences preferentially on CD4 uptake and does not significantly affect transferrin receptor internalization or fluid-phase endocytosis; (d) the presence of a CD4 cytoplasmic tail including a critical dileucine motif is required to induce CCP formation via Nef; and (e) when directly anchored to the cytoplasmic side of the plasma membrane, Nef itself can promote CCP formation. Taken together, these observations lead us to propose that CD4 can promote CCP generation via the connector molecule Nef. In this model, Nef interacts on one side with CD4 through a dileucine-based motif present on CD4 cytoplasmic tail and on the other side with components of clathrin-coated surface domain (i.e., adaptins). These Nef-generated complexes would then initiate the nucleation of CCP.
Collapse
Affiliation(s)
- M Foti
- Department of Morphology, Centre Médical Universitaire, University of Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
48
|
Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Biophys Biochem Cytol 1997; 138:877-89. [PMID: 9265653 PMCID: PMC2138047 DOI: 10.1083/jcb.138.4.877] [Citation(s) in RCA: 405] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lipoprotein transport across the blood-brain barrier (BBB) is of critical importance for the delivery of essential lipids to the brain cells. The occurrence of a low density lipoprotein (LDL) receptor on the BBB has recently been demonstrated. To examine further the function of this receptor, we have shown using an in vitro model of the BBB, that in contrast to acetylated LDL, which does not cross the BBB, LDL is specifically transcytosed across the monolayer. The C7 monoclonal antibody, known to interact with the LDL receptor-binding domain, totally blocked the transcytosis of LDL, suggesting that the transcytosis is mediated by the receptor. Furthermore, we have shown that cholesterol-depleted astrocytes upregulate the expression of the LDL receptor at the BBB. Under these conditions, we observed that the LDL transcytosis parallels the increase in the LDL receptor, indicating once more that the LDL is transcytosed by a receptor-mediated mechanism. The nondegradation of the LDL during the transcytosis indicates that the transcytotic pathway in brain capillary endothelial cells is different from the LDL receptor classical pathway. The switch between a recycling receptor to a transcytotic receptor cannot be explained by a modification of the internalization signals of the cytoplasmic domain of the receptor, since we have shown that LDL receptor messengers in growing brain capillary ECs (recycling LDL receptor) or differentiated cells (transcytotic receptor) are 100% identical, but we cannot exclude posttranslational modifications of the cytoplasmic domain, as demonstrated for the polymeric immunoglobulin receptor. Preliminary studies suggest that caveolae are likely to be involved in the potential transport of LDL from the blood to the brain.
Collapse
Affiliation(s)
- B Dehouck
- Institut National de la Santé et de la Recherche Médicale U325, Department of Atherosclerosis Institut Pasteur, Lille, France
| | | | | | | | | | | |
Collapse
|
49
|
Zegers MM, Hoekstra D. Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity: a correlation with cell polarity in HepG2 cells. J Cell Biol 1997; 138:307-21. [PMID: 9230073 PMCID: PMC2138192 DOI: 10.1083/jcb.138.2.307] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The regulation of sphingolipid transport to the bile canalicular apical membrane in the well differentiated HepG2 hepatoma cells was studied. By employing fluorescent lipid analogs, trafficking in a transcytosis-dependent pathway and a transcytosis-independent ('direct') route between the trans-Golgi network and the apical membrane were examined. The two lipid transport routes were shown to operate independently, and both were regulated by kinase activity. The kinase inhibitor staurosporine inhibited the direct lipid transport route but slightly stimulated the transcytosis-dependent route. The protein kinase C (PKC) activator phorbol-12 myristate-13 acetate (PMA) inhibited apical lipid transport via both transport routes, while a specific inhibitor of this kinase stimulated apical lipid transport. Activation of protein kinase A (PKA) had opposing effects, in that a stimulation of apical lipid transport via both transport routes was seen. Interestingly, the regulatory effects of either kinase activity in sphingolipid transport correlated with changes in cell polarity. Stimulation of PKC activity resulted in a disappearance of the bile canalicular structures, as evidenced by the redistribution of several apical markers upon PMA treatment, which was accompanied by an inhibition of apical sphingolipid transport. By contrast, activation of PKA resulted in an increase in the number and size of bile canaliculi and a concomitant enhancement of apical sphingolipid transport. Taken together, our data indicate that apical membrane-directed sphingolipid transport in HepG2 cells is regulated by kinases, which could play a role in the biogenesis of the apical plasma membrane domain.
Collapse
Affiliation(s)
- M M Zegers
- Department of Physiological Chemistry, Faculty of Medical Sciences, University of Groningen, The Netherlands
| | | |
Collapse
|
50
|
Goretzki L, Mueller BM. Receptor-mediated endocytosis of urokinase-type plasminogen activator is regulated by cAMP-dependent protein kinase. J Cell Sci 1997; 110 ( Pt 12):1395-402. [PMID: 9217325 DOI: 10.1242/jcs.110.12.1395] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Internalization of the urokinase-type plasminogen activator (uPA) requires two receptors, the uPA receptor (uPAR) and the low density lipoprotein receptor-related protein (LRP)/alpha2-macroglobulin (alpha2M) receptor. Here, we address whether protein kinases are involved in the internalization of uPA by human melanoma cells. Initially, we found that the internalization of uPA was significantly inhibited by the serine/threonine protein kinase inhibitors staurosporine, K-252a and H-89, but not by the tyrosine kinase inhibitors, genistein and lavendustin A. Internalization of uPA was also inhibited by a pseudosubstrate peptide for cAMP-dependent protein kinase (PKA), but not by a pseudosubstrate peptide for protein kinase C. We confirmed a requirement for PKA-activity and implicated a specific isoform by using an antisense oligonucleotide against the regulatory subunit RI alpha of PKA which suppresses PKA-I activity. Exposure of cells to this oligonucleotide led to a specific, dose-dependent decrease in RI alpha protein and to a significant inhibition in the rate of uPA internalization. We further demonstrate that treatment of melanoma cells with either H-89 or PKA RI alpha antisense oligonucleotides also resulted in a decreased internalization of two other ligands of LRP, activated alpha2M and lactoferrin, indicating that PKA activity is associated with LRP. Finally, we demonstrate that PKA activity is also required for the internalization of transferrin, but not for the internalization of the epidermal growth factor or adenovirus 2, suggesting that in melanoma cells, PKA activity is not generally required for clathrin-mediated endocytosis, but is rather associated with specific internalization receptors.
Collapse
Affiliation(s)
- L Goretzki
- The Scripps Research Institute, Department of Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|