1
|
Falnes PØ, Małecki JM, Herrera MC, Bengtsen M, Davydova E. Human seven-β-strand (METTL) methyltransferases - conquering the universe of protein lysine methylation. J Biol Chem 2023; 299:104661. [PMID: 36997089 DOI: 10.1016/j.jbc.2023.104661] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
|
2
|
cKMT1 is a new lysine methyltransferase that methylates the ferredoxin-NADP(+) oxidoreductase (FNR) and regulates energy transfer in cyanobacteria. Mol Cell Proteomics 2023; 22:100521. [PMID: 36858286 PMCID: PMC10090440 DOI: 10.1016/j.mcpro.2023.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Lysine methylation is a conserved and dynamic regulatory post-translational modification performed by lysine methyltransferases (KMTs). KMTs catalyze the transfer of mono-, di-, or tri-methyl groups to substrate proteins and play a critical regulatory role in all domains of life. To date, only one KMT has been identified in cyanobacteria. Here, we tested all of the predicted KMTs in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and we biochemically characterized sll1526 that we termed cKMT1 (cyanobacterial lysine methyltransferase 1), and determined that it can catalyze lysine methylation both in vivo and in vitro. Loss of cKMT1 alters photosynthetic electron transfer in Synechocystis. We analyzed cKMT1-regulated methylation sites in Synechocystis using a timsTOF Pro instrument. We identified 305 class I lysine methylation sites within 232 proteins, and of these, 80 methylation sites in 58 proteins were hypomethylated in ΔcKMT1 cells. We further demonstrated that cKMT1 could methylate ferredoxin-NADP(+) oxidoreductase (FNR) and its potential sites of action on FNR were identified. Amino acid residues H118 and Y219 were identified as key residues in the putative active site of cKMT1 as indicated by structure simulation, site-directed mutagenesis, and KMT activity measurement. Using mutations that mimic the unmethylated forms of FNR, we demonstrated that the inability to methylate K139 residues results in a decrease in the redox activity of FNR and affects energy transfer in Synechocystis. Together, our study identified a new KMT in Synechocystis and elucidated a methylation-mediated molecular mechanism catalyzed by cKMT1 for the regulation of energy transfer in cyanobacteria.
Collapse
|
3
|
Basu R, Dutta S, Pal A, Sengupta M, Chattopadhyay S. Calmodulin7: recent insights into emerging roles in plant development and stress. PLANT MOLECULAR BIOLOGY 2021; 107:1-20. [PMID: 34398355 DOI: 10.1007/s11103-021-01177-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/27/2021] [Indexed: 05/25/2023]
Abstract
Analyses of the function of Arabidopsis Calmodulin7 (CAM7) in concert with multiple regulatory proteins involved in various signal transduction processes. Calmodulin (CaM) plays various regulatory roles in multiple signaling pathways in eukaryotes. Arabidopsis CALMODULIN 7 (CAM7) is a unique member of the CAM family that works as a transcription factor in light signaling pathways. CAM7 works in concert with CONSTITUTIVE PHOTOMORPHOGENIC 1 and ELONGATED HYPOCOTYL 5, and plays an important role in seedling development. Further, it is involved in the regulation of the activity of various Ca2+-gated channels such as cyclic nucleotide gated channel 6 (CNGC6), CNGC14 and auto-inhibited Ca2+ ATPase 8. Recent studies further indicate that CAM7 is also an integral part of multiple signaling pathways including hormone, immunity and stress. Here, we review the recent advances in understanding the multifaceted role of CAM7. We highlight the open-ended questions, and also discuss the diverse aspects of CAM7 characterization that need to be addressed for comprehensive understanding of its cellular functions.
Collapse
Affiliation(s)
- Riya Basu
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Siddhartha Dutta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Abhideep Pal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Mandar Sengupta
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
4
|
Rather GM, Pramono AA, Szekely Z, Bertino JR, Tedeschi PM. In cancer, all roads lead to NADPH. Pharmacol Ther 2021; 226:107864. [PMID: 33894275 DOI: 10.1016/j.pharmthera.2021.107864] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells require increased levels of NADPH for increased nucleotide synthesis and for protection from ROS. Recent studies show that increased NADPH is generated in several ways. Activated AKT phosphorylates NAD kinase (NADK), increasing its activity. NADP formed, is rapidly converted to NADPH by glucose 6-phosphate dehydrogenase and malic enzymes, overexpressed in tumor cells with mutant p53. Calmodulin, overexpressed in some cancers, also increases NADK activity. Also, in IDH1/2 mutant cancer, NADPH serves as the cofactor to generate D-2 hydroxyglutarate, an oncometabolite. The requirement of cancer cells for elevated levels of NADPH provides an opportunity to target its synthesis for cancer treatment.
Collapse
Affiliation(s)
- Gulam Mohmad Rather
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Alvinsyah Adhityo Pramono
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Zoltan Szekely
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Joseph R Bertino
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Department of Medicine and Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| | - Philip Michael Tedeschi
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
5
|
Chen W, Shen Z, Asteriti S, Chen Z, Ye F, Sun Z, Wan J, Montell C, Hardie RC, Liu W, Zhang M. Calmodulin binds to Drosophila TRP with an unexpected mode. Structure 2020; 29:330-344.e4. [PMID: 33326749 DOI: 10.1016/j.str.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 11/20/2020] [Indexed: 02/04/2023]
Abstract
Drosophila TRP is a calcium-permeable cation channel essential for fly visual signal transduction. During phototransduction, Ca2+ mediates both positive and negative feedback regulation on TRP channel activity, possibly via binding to calmodulin (CaM). However, the molecular mechanism underlying Ca2+ modulated CaM/TRP interaction is poorly understood. Here, we discover an unexpected, Ca2+-dependent binding mode between CaM and TRP. The TRP tail contains two CaM binding sites (CBS1 and CBS2) separated by an ∼70-residue linker. CBS1 binds to the CaM N-lobe and CBS2 recognizes the CaM C-lobe. Structural studies reveal the lobe-specific binding of CaM to CBS1&2. Mutations introduced in both CBS1 and CBS2 eliminated CaM binding in full-length TRP, but surprisingly had no effect on the response to light under physiological conditions, suggesting alternative mechanisms governing Ca2+-mediated feedback on the channel activity. Finally, we discover that TRPC4, the closest mammalian paralog of Drosophila TRP, adopts a similar CaM binding mode.
Collapse
Affiliation(s)
- Weidi Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zeyu Shen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sabrina Asteriti
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, UK; Department of Neurosciences, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Zijing Chen
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ziling Sun
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Roger C Hardie
- Department of Physiology, Development and Neuroscience, Cambridge University, Downing St, Cambridge CB2 3EG, UK
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Mingjie Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Shen W, Gao C, Cueto R, Liu L, Fu H, Shao Y, Yang WY, Fang P, Choi ET, Wu Q, Yang X, Wang H. Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biol 2020; 28:101322. [PMID: 31605963 PMCID: PMC6812029 DOI: 10.1016/j.redox.2019.101322] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Homocysteine-Methionine (HM) cycle produces universal methyl group donor S-adenosylmethione (SAM), methyltransferase inhibitor S-adenosylhomocysteine (SAH) and homocysteine (Hcy). Hyperhomocysteinemia (HHcy) is established as an independent risk factor for cardiovascular disease (CVD) and other degenerative disease. We selected 115 genes in the extended HM cycle (31 metabolic enzymes and 84 methyltransferases), examined their protein subcellular location/partner protein, investigated their mRNA levels and mapped their corresponding histone methylation status in 35 disease conditions via mining a set of public databases and intensive literature research. We have 6 major findings. 1) All HM metabolic enzymes are located only in the cytosol except for cystathionine-β-synthase (CBS), which was identified in both cytosol and nucleus. 2) Eight disease conditions encountered only histone hypomethylation on 8 histone residues (H3R2/K4/R8/K9/K27/K36/K79 and H4R3). Nine disease conditions had only histone hypermethylation on 8 histone residues (H3R2/K4/K9/K27/K36/K79 and H4R3/K20). 3) We classified 9 disease types with differential HM cycle expression pattern. Eleven disease conditions presented most 4 HM cycle pathway suppression. 4) Three disease conditions had all 4 HM cycle pathway suppression and only histone hypomethylation on H3R2/K4/R8/K9/K36 and H4R3. 5) Eleven HM cycle metabolic enzymes interact with 955 proteins. 6) Five paired HM cycle proteins interact with each other. We conclude that HM cycle is a key metabolic sensor system which mediates receptor-independent metabolism-associated danger signal recognition and modulates SAM/SAH-dependent methylation in disease conditions and that hypomethylation on frequently modified histone residues is a key mechanism for metabolic disorders, autoimmune disease and CVD. We propose that HM metabolism takes place in the cytosol, that nuclear methylation equilibration requires a nuclear-cytosol transfer of SAM/SAH/Hcy, and that Hcy clearance is essential for genetic protection.
Collapse
Affiliation(s)
- Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China; Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Chao Gao
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Lu Liu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hangfei Fu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Ying Shao
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Pu Fang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Eric T Choi
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Division of Vascular & Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Liu H, Li Z, Yang Q, Liu W, Wan J, Li J, Zhang M. Substrate docking-mediated specific and efficient lysine methylation by the SET domain-containing histone methyltransferase SETD7. J Biol Chem 2019; 294:13355-13365. [PMID: 31324717 DOI: 10.1074/jbc.ra119.009630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Indexed: 11/06/2022] Open
Abstract
Lysine methylation of cellular proteins is catalyzed by dozens of lysine methyltransferases (KMTs), occurs in thousands of different histone and nonhistone proteins, and regulates diverse biological processes. Dysregulation of KMT-mediated lysine methylations underlies many human diseases. A key unanswered question is how proteins, nonhistone proteins in particular, are specifically methylated by each KMT. Here, using several biochemical approaches, including analytical gel filtration chromatography, isothermal titration calorimetry, and in vitro methylation assays, we discovered that SET domain-containing 7 histone lysine methyltransferase (SETD7), a KMT capable of methylating both histone and nonhistone proteins, uses its N-terminal membrane occupation and recognition nexus (MORN) repeats to dock its substrates and subsequently juxtapose their Lys methylation motif for efficient and specific methylation by the catalytic SET domain. Such docking site-mediated methylation mechanism rationalizes binding and methylation of previously known substrates and predicts new SETD7 substrates. Our findings further suggest that other KMTs may also use docking-mediated substrate recognition mechanisms to achieve their catalytic specificity and efficiency.
Collapse
Affiliation(s)
- Haiyang Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Zhiwei Li
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Qingqing Yang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jun Wan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Cell, Developmental, and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| |
Collapse
|
8
|
Tai L, Li BB, Nie XM, Zhang PP, Hu CH, Zhang L, Liu WT, Li WQ, Chen KM. Calmodulin Is the Fundamental Regulator of NADK-Mediated NAD Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:681. [PMID: 31275331 PMCID: PMC6593290 DOI: 10.3389/fpls.2019.00681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/06/2019] [Indexed: 05/02/2023]
Abstract
Calcium (Ca2+) signaling and nicotinamide adenine dinucleotide (NAD) signaling are two basic signal regulation pathways in organisms, playing crucial roles in signal transduction, energy metabolism, stress tolerance, and various developmental processes. Notably, calmodulins (CaMs) and NAD kinases (NADKs) are important hubs for connecting these two types of signaling networks, where CaMs are the unique activators of NADKs. NADK is a key enzyme for NADP (including NADP+ and NADPH) biosynthesis by phosphorylating NAD (including NAD+ and NADH) and therefore, maintains the balance between NAD pool and NADP pool through an allosteric regulation mode. In addition, the two respective derivatives from NAD+ (substrate of NADK) and NADP+ (product of NADK), cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), have been considered to be the important messengers for intracellular Ca2+ homeostasis which could finally influence the combination between CaM and NADK, forming a feedback regulation mechanism. In this review article, we briefly summarized the major research advances related to the feedback regulation pathway, which is activated by the interaction of CaM and NADK during plant development and signaling. The theories and fact will lay a solid foundation for further studies related to CaM and NADK and their regulatory mechanisms as well as the NADK-mediated NAD signaling behavior in plant development and response to stress.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiu-Min Nie
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
- Department of General Biology, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Area/College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Serre NBC, Alban C, Bourguignon J, Ravanel S. An outlook on lysine methylation of non-histone proteins in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4569-4581. [PMID: 29931361 DOI: 10.1093/jxb/ery231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein methylation is a very diverse, widespread, and important post-translational modification affecting all aspects of cellular biology in eukaryotes. Methylation on the side-chain of lysine residues in histones has received considerable attention due to its major role in determining chromatin structure and the epigenetic regulation of gene expression. Over the last 20 years, lysine methylation of non-histone proteins has been recognized as a very common modification that contributes to the fine-tuned regulation of protein function. In plants, our knowledge in this field is much more fragmentary than in yeast and animal cells. In this review, we describe the plant enzymes involved in the methylation of non-histone substrates, and we consider historical and recent advances in the identification of non-histone lysine-methylated proteins in photosynthetic organisms. Finally, we discuss our current knowledge about the role of protein lysine methylation in regulating molecular and cellular functions in plants, and consider challenges for future research.
Collapse
Affiliation(s)
- Nelson B C Serre
- Univ. Grenoble Alpes, INRA, CEA, CNRS, BIG, PCV, Grenoble, France
| | - Claude Alban
- Univ. Grenoble Alpes, INRA, CEA, CNRS, BIG, PCV, Grenoble, France
| | | | - Stéphane Ravanel
- Univ. Grenoble Alpes, INRA, CEA, CNRS, BIG, PCV, Grenoble, France
| |
Collapse
|
10
|
Li BB, Wang X, Tai L, Ma TT, Shalmani A, Liu WT, Li WQ, Chen KM. NAD Kinases: Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development. FRONTIERS IN PLANT SCIENCE 2018; 9:379. [PMID: 29662499 PMCID: PMC5890153 DOI: 10.3389/fpls.2018.00379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 03/07/2018] [Indexed: 05/03/2023]
Abstract
NAD(H) and NADP(H) are essential co-enzymes which dominantly control a number of fundamental biological processes by acting as reducing power and maintaining the intracellular redox balance of all life kingdoms. As the only enzymes that catalyze NAD(H) and ATP to synthesize NADP(H), NAD Kinases (NADKs) participate in many essential metabolic reactions, redox sensitive regulation, photosynthetic performance and also reactive oxygen species (ROS) homeostasis of cells and therefore, play crucial roles in both development and stress responses of plants. NADKs are highly conserved enzymes in amino acid sequences but have multiple subcellular localization and diverse functions. They may function as monomers, dimers or multimers in cells but the enzymatic properties in plants are not well elucidated yet. The activity of plant NADK is regulated by calcium/calmodulin and plays crucial roles in photosynthesis and redox co-enzyme control. NADK genes are expressed in almost all tissues and developmental stages of plants with specificity for different members. Their transcripts can be greatly stimulated by a number of environmental factors such as pathogenic attack, irritant applications and abiotic stress treatments. Using transgenic approaches, several studies have shown that NADKs are involved in chlorophyll synthesis, photosynthetic efficiency, oxidative stress protection, hormone metabolism and signaling regulation, and therefore contribute to the growth regulation and stress tolerance of plants. In this review, the enzymatic properties and functional mechanisms of plant NADKs are thoroughly investigated based on literature and databases. The results obtained here are greatly advantageous for further exploration of NADK function in plants.
Collapse
|
11
|
Protein lysine methylation by seven-β-strand methyltransferases. Biochem J 2017; 473:1995-2009. [PMID: 27407169 DOI: 10.1042/bcj20160117] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/24/2016] [Indexed: 11/17/2022]
Abstract
Methylation of biomolecules is a frequent biochemical reaction within the cell, and a plethora of highly specific methyltransferases (MTases) catalyse the transfer of a methyl group from S-adenosylmethionine (AdoMet) to various substrates. The posttranslational methylation of lysine residues, catalysed by numerous lysine (K)-specific protein MTases (KMTs), is a very common and important protein modification, which recently has been subject to intense studies, particularly in the case of histone proteins. The majority of KMTs belong to a class of MTases that share a defining 'SET domain', and these enzymes mostly target lysines in the flexible tails of histones. However, the so-called seven-β-strand (7BS) MTases, characterized by a twisted beta-sheet structure and certain conserved sequence motifs, represent the largest MTase class, and these enzymes methylate a wide range of substrates, including small metabolites, lipids, nucleic acids and proteins. Until recently, the histone-specific Dot1/DOT1L was the only identified eukaryotic 7BS KMT. However, a number of novel 7BS KMTs have now been discovered, and, in particular, several recently characterized human and yeast members of MTase family 16 (MTF16) have been found to methylate lysines in non-histone proteins. Here, we review the status and recent progress on the 7BS KMTs, and discuss these enzymes at the levels of sequence/structure, catalytic mechanism, substrate recognition and biological significance.
Collapse
|
12
|
Abeykoon AH, Noinaj N, Choi BE, Wise L, He Y, Chao CC, Wang G, Gucek M, Ching WM, Chock PB, Buchanan SK, Yang DCH. Structural Insights into Substrate Recognition and Catalysis in Outer Membrane Protein B (OmpB) by Protein-lysine Methyltransferases from Rickettsia. J Biol Chem 2016; 291:19962-74. [PMID: 27474738 DOI: 10.1074/jbc.m116.723460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 11/06/2022] Open
Abstract
Rickettsia belong to a family of Gram-negative obligate intracellular infectious bacteria that are the causative agents of typhus and spotted fever. Outer membrane protein B (OmpB) occurs in all rickettsial species, serves as a protective envelope, mediates host cell adhesion and invasion, and is a major immunodominant antigen. OmpBs from virulent strains contain multiple trimethylated lysine residues, whereas the avirulent strain contains mainly monomethyllysine. Two protein-lysine methyltransferases (PKMTs) that catalyze methylation of recombinant OmpB at multiple sites with varying sequences have been identified and overexpressed. PKMT1 catalyzes predominantly monomethylation, whereas PKMT2 catalyzes mainly trimethylation. Rickettsial PKMT1 and PKMT2 are unusual in that their primary substrate appears to be limited to OmpB, and both are capable of methylating multiple lysyl residues with broad sequence specificity. Here we report the crystal structures of PKMT1 from Rickettsia prowazekii and PKMT2 from Rickettsia typhi, both the apo form and in complex with its cofactor S-adenosylmethionine or S-adenosylhomocysteine. The structure of PKMT1 in complex with S-adenosylhomocysteine is solved to a resolution of 1.9 Å. Both enzymes are dimeric with each monomer containing an S-adenosylmethionine binding domain with a core Rossmann fold, a dimerization domain, a middle domain, a C-terminal domain, and a centrally located open cavity. Based on the crystal structures, residues involved in catalysis, cofactor binding, and substrate interactions were examined using site-directed mutagenesis followed by steady state kinetic analysis to ascertain their catalytic functions in solution. Together, our data reveal new structural and mechanistic insights into how rickettsial methyltransferases catalyze OmpB methylation.
Collapse
Affiliation(s)
- Amila H Abeykoon
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907,
| | - Bok-Eum Choi
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| | - Lindsay Wise
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| | - Yi He
- Laboratory of Biochemistry and
| | - Chien-Chung Chao
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910
| | | | | | - Wei-Mei Ching
- Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910
| | | | - Susan K Buchanan
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - David C H Yang
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057,
| |
Collapse
|
13
|
Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJM, Conrath U. ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. THE NEW PHYTOLOGIST 2016; 209:294-306. [PMID: 26315018 DOI: 10.1111/nph.13582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/30/2015] [Indexed: 05/20/2023]
Abstract
Nonhost resistance (NHR) is the most prevalent form of plant immunity. In Arabidopsis, NHR requires membrane-localized ATP-binding cassette (ABC) transporter PENETRATION (PEN) 3. Upon perception of pathogen-associated molecular patterns, PEN3 becomes phosphorylated, suggestive of PEN3 regulation by post-translational modification. Here, we investigated the PEN3 protein interaction network. We probed the Arabidopsis protein microarray AtPMA-5000 with the N-terminal cytoplasmic domain of PEN3. Several of the proteins identified to interact with PEN3 in vitro represent cellular Ca(2+) sensors, including calmodulin (CaM) 3, CaM7 and several CaM-like proteins, pointing to the importance of Ca(2+) sensing to PEN3-mediated NHR. We demonstrated co-localization of PEN3 and CaM7, and we confirmed PEN3-CaM interaction in vitro and in vivo by PEN3 pull-down with CaM Sepharose, CaM overlay assay and bimolecular fluorescence complementation. We also show that just like in pen3, NHR to the nonadapted fungal pathogens Phakopsora pachyrhizi and Blumeria graminis f.sp. hordei is compromised in the Arabidopsis cam7 and pen3 cam7 mutants. Our study discloses CaM7 as a PEN3-interacting protein crucial to Arabidopsis NHR and emphasizes the importance of Ca(2+) sensing to plant immunity.
Collapse
Affiliation(s)
- Ruth Campe
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Franz Leissing
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - George V Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
- National Institute for Laser, Plasma & Radiation Physics, Str. Atomistilor, Nr. 409, Magurele, 077125, Bucharest, Romania
| | - Sorina C Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
| | - Katharina Goellner
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Gerold J M Beckers
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| |
Collapse
|
14
|
Azevedo C, Saiardi A. Why always lysine? The ongoing tale of one of the most modified amino acids. Adv Biol Regul 2015; 60:144-150. [PMID: 26482291 DOI: 10.1016/j.jbior.2015.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 11/26/2022]
Abstract
The complex physiology of living organisms must be finely-tuned to permit the flexibility required to respond to the changing environment. Evolution has provided an interconnected and intricate array of regulatory mechanisms to facilitate this fine-tuning. The number of genes cannot alone explain the complexity of these mechanisms. Rather, signalling is regulated at multiple levels, from genomic to transcriptional, translational and post-translational. Post-translational modification (PTM) of proteins offers an additional level of regulation after protein synthesis that allows a rapid, controlled and reversible response to environmental cues. Many amino acid side chains are post-translationally modified. These modifications can either be enzymatic, such as the phosphorylation of serine, threonine and tyrosine residues, or non-enzymatic, such as the nitrosylation of cysteine residues. Strikingly, lysine residues are targeted by a particularly high number of PTMs including acetylation, methylation, ubiquitination and sumoylation. Additionally, lysines have recently been identified as the target of the non-enzymatic PTM polyphosphorylation. This novel PTM sees linear chains of inorganic polyphosphates (polyP) covalently attached to lysine residues. Interestingly, polyphosphorylation is indirectly dependent on inositol pyrophosphates, a class of cellular messengers. The attachment of polyP to lysine occurs through the phosphoramidate bond, which, unlike the phosphester bond, is unstable under the conditions used in common mass spectroscopy. This characteristic, together with the diversity of lysine PTMs, suggests that many other lysine modifications may still remain unidentified, raising the intriguing possibility that lysine PTMs may be the major means by which signalling pathways modify protein behaviour.
Collapse
Affiliation(s)
- Cristina Azevedo
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Virdi AS, Singh S, Singh P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:809. [PMID: 26528296 PMCID: PMC4604306 DOI: 10.3389/fpls.2015.00809] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 05/20/2023]
Abstract
Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Amardeep S. Virdi
- Texture Analysis Laboratory, Department of Food Science & Technology, Guru Nanak Dev UniversityAmritsar, India
| | - Supreet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| | - Prabhjeet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| |
Collapse
|
16
|
Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond. SPRINGERPLUS 2015; 4:147. [PMID: 25830085 PMCID: PMC4377136 DOI: 10.1186/s40064-015-0927-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/15/2015] [Indexed: 01/10/2023]
Abstract
Improving feed efficiency of pigs with dietary application of amino acids (AAs) is becoming increasingly important because this practice can not only secure the plasma AA supply for muscle growth but also protect the environment from nitrogen discharge with feces and urine. Lysine, the first limiting AA in typical swine diets, is a substrate for generating body proteins, peptides, and non-peptide molecules, while excess lysine is catabolized as an energy source. From a regulatory standpoint, lysine is at the top level in controlling AA metabolism, and lysine can also affect the metabolism of other nutrients. The effect of lysine on hormone production and activities is reflected by the change of plasma concentrations of insulin and insulin-like growth factor 1. Lysine residues in peptides are important sites for protein post-translational modification involved in epigenetic regulation of gene expression. An inborn error of a cationic AA transporter in humans can lead to a lysinuric protein intolerance condition. Dietary deficiency of lysine will impair animal immunity and elevate animal susceptibility to infectious diseases. Because lysine deficiency has negative impact on animal health and growth performance and it appears that dietary lysine is non-toxic even at a high dose of supplementation, nutritional emphasis should be put on lysine supplementation to avoid its deficiency rather than toxicity. Improvement of muscle growth of monogastric animals such as pigs via dietary lysine supply may be due to a greater increase in protein synthesis rather than a decrease in protein degradation. Nevertheless, the underlying metabolic and molecular mechanisms regarding lysine effect on muscle protein accretion merits further clarification. Future research undertaken to fully elucidate the metabolic and regulatory mechanisms of lysine nutrition could provide a sound scientific foundation necessary for developing novel nutritional strategies to enhance the muscle growth and development of meat animals.
Collapse
|
17
|
Colón-Bolea P, Crespo P. Lysine methylation in cancer: SMYD3-MAP3K2 teaches us new lessons in the Ras-ERK pathway. Bioessays 2014; 36:1162-9. [PMID: 25382779 DOI: 10.1002/bies.201400120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lysine methylation has been traditionally associated with histones and epigenetics. Recently, lysine methyltransferases and demethylases - which are involved in methylation of non-histone substrates - have been frequently found deregulated in human tumours. In this realm, a new discovery has unveiled the methyltransferase SMYD3 as an enhancer of Ras-driven cancer. SMYD3 is up-regulated in different types of tumours. SMYD3-mediated methylation of MAP3K2 increases mutant K-Ras-induced activation of ERK1/2. Methylation of MAP3K2 prevents it from binding to the phosphatase PP2A, thereby impeding the impact of this negative regulator on Ras-ERK1/2 signals, leading to the formation of lung and pancreatic adenocarcinomas. Furthermore, depletion of SMYD3 synergises with a MEK inhibitor, currently in clinical trials, to block Ras-driven pancreatic neoplasia. These results underscore the importance of lysine methylation in the regulation of signalling pathways relevant for tumourigenesis and endorse the development of drugs targeting unregulated lysine methylation as therapeutic agents in the struggle against cancer.
Collapse
Affiliation(s)
- Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander, Spain
| | | |
Collapse
|
18
|
Lanouette S, Mongeon V, Figeys D, Couture JF. The functional diversity of protein lysine methylation. Mol Syst Biol 2014; 10:724. [PMID: 24714364 PMCID: PMC4023394 DOI: 10.1002/msb.134974] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Large‐scale characterization of post‐translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, has highlighted their importance in the regulation of a myriad of signaling events. While high‐throughput technologies have tremendously helped cataloguing the proteins modified by these PTMs, the identification of lysine‐methylated proteins, a PTM involving the transfer of one, two or three methyl groups to the ε‐amine of a lysine side chain, has lagged behind. While the initial findings were focused on the methylation of histone proteins, several studies have recently identified novel non‐histone lysine‐methylated proteins. This review provides a compilation of all lysine methylation sites reported to date. We also present key examples showing the impact of lysine methylation and discuss the circuitries wired by this important PTM.
Collapse
Affiliation(s)
- Sylvain Lanouette
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | | | | | | |
Collapse
|
19
|
Abeykoon A, Wang G, Chao CC, Chock PB, Gucek M, Ching WM, Yang DCH. Multimethylation of Rickettsia OmpB catalyzed by lysine methyltransferases. J Biol Chem 2014; 289:7691-701. [PMID: 24497633 PMCID: PMC3953280 DOI: 10.1074/jbc.m113.535567] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/30/2014] [Indexed: 01/05/2023] Open
Abstract
Methylation of rickettsial OmpB (outer membrane protein B) has been implicated in bacterial virulence. Rickettsial methyltransferases RP789 and RP027-028 are the first biochemically characterized methyltransferases to catalyze methylation of outer membrane protein (OMP). Methylation in OMP remains poorly understood. Using semiquantitative integrated liquid chromatography-tandem mass spectroscopy, we characterize methylation of (i) recombinantly expressed fragments of Rickettsia typhi OmpB exposed in vitro to trimethyltransferases of Rickettsia prowazekii RP027-028 and of R. typhi RT0101 and to monomethyltransferases of R. prowazekii RP789 and of R. typhi RT0776, and (ii) native OmpBs purified from R. typhi and R. prowazekii strains Breinl, RP22, and Madrid E. We found that in vitro trimethylation occurs at relatively specific locations in OmpB with consensus motifs, KX(G/A/V/I)N and KT(I/L/F), whereas monomethylation is pervasive throughout OmpB. Native OmpB from virulent R. typhi contains mono- and trimethyllysines at locations well correlated with methylation in recombinant OmpB catalyzed by methyltransferases in vitro. Native OmpBs from highly virulent R. prowazekii strains Breinl and RP22 contain multiple clusters of trimethyllysine in contrast to a single cluster in OmpB from mildly virulent R. typhi. Furthermore, OmpB from the avirulent strain Madrid E contains mostly monomethyllysine and no trimethyllysine. The native OmpB from Madrid E was minimally trimethylated by RT0101 or RP027-028, consistent with a processive mechanism of trimethylation. This study provides the first in-depth characterization of methylation of an OMP at the molecular level and may lead to uncovering the link between OmpB methylation and rickettsial virulence.
Collapse
Affiliation(s)
- Amila Abeykoon
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| | - Guanghui Wang
- the Proteomics Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Chien-Chung Chao
- the Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910, and
| | - P. Boon Chock
- the Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892
| | - Marjan Gucek
- the Proteomics Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei-Mei Ching
- the Viral and Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910, and
| | - David C. H. Yang
- From the Department of Chemistry, Georgetown University, Washington, D. C. 20057
| |
Collapse
|
20
|
Zörb C, Brunner KD, Perbandt M, Betzel C, Wagner G. Cloning, Recombinant Expression and Characterization of Wild Type-105-Trp-Calmodulin of the Green AlgaMougeotia scalaris. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1998.tb00719.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Bartholdi D, Asadollahi R, Oneda B, Schmitt-Mechelke T, Tonella P, Baumer A, Rauch A. Further delineation of genotype-phenotype correlation in homozygous 2p21 deletion syndromes: first description of patients without cystinuria. Am J Med Genet A 2013; 161A:1853-9. [PMID: 23794250 DOI: 10.1002/ajmg.a.35994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/28/2013] [Indexed: 02/04/2023]
Abstract
Homozygous contiguous gene deletion syndromes are rare. On 2p21, however, several overlapping homozygous gene deletion syndromes have been described, all presenting with cystinuria but otherwise distinct phenotypes. Hypotonia-cystinuria syndrome (HCS, OMIM606407) is characterized by infantile hypotonia, poor feeding, and growth hormone deficiency. Affected individuals carry homozygous deletions including the cystinuria gene SLC3A1 and the adjacent PREPL gene. Larger homozygous deletions in this region encompassing the PPM1B, SLC3A1, PREPL, and C2orf34 (CAMKMT) genes result in a more severe phenotype, the 2p21 deletion syndrome. A phenotype intermediate to HCS and the 2p21 deletion syndrome is termed atypical HCS and is caused by deletion of SLC3A1, PREPL, and C2orf34 (CAMKMT). Using high resolution SNP array molecular karyotyping we identified two siblings with a homozygous deletion of 83 kb partially encompassing the genes PREPL and C2orf34 (CAMKMT), but not the SLC3A1 gene. The affected siblings display a recognizable phenotype which is similar to atypical HCS with regard to growth failure and neuro-muscular features, but is characterized by lack of cystinuria. The patients also exhibit features which have not been reported to date such as cleft palate and genital abnormalities. In conclusion, we report the first patients with a homozygous 2p21 deletion syndrome without cystinuria and further delineate the complex genotype-phenotype correlations of homozygous microdeletion syndromes of this region.
Collapse
Affiliation(s)
- Deborah Bartholdi
- Institute of Medical Genetics, University of Zurich, Schwerzenbach, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Human calmodulin methyltransferase: expression, activity on calmodulin, and Hsp90 dependence. PLoS One 2012; 7:e52425. [PMID: 23285036 PMCID: PMC3527508 DOI: 10.1371/journal.pone.0052425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022] Open
Abstract
Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34) has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2nd known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes.
Collapse
|
23
|
Haiech J, Audran E, Fève M, Ranjeva R, Kilhoffer MC. Revisiting intracellular calcium signaling semantics. Biochimie 2011; 93:2029-37. [DOI: 10.1016/j.biochi.2011.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
|
24
|
Egorova KS, Olenkina OM, Olenina LV. Lysine methylation of nonhistone proteins is a way to regulate their stability and function. BIOCHEMISTRY (MOSCOW) 2010; 75:535-48. [PMID: 20632931 DOI: 10.1134/s0006297910050019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review is devoted to the dramatically expanding investigations of lysine methylation on nonhistone proteins and its functional importance. Posttranslational covalent modifications of proteins provide living organisms with ability to rapidly change protein activity and function in response to various stimuli. Enzymatic protein methylation at different lysine residues was evaluated in histones as a part of the "histone code". Histone methyltransferases methylate not only histones, but also many nuclear and cytoplasmic proteins. Recent data show that the regulatory role of lysine methylation on proteins is not restricted to the "histone code". This modification modulates activation, stabilization, and degradation of nonhistone proteins, thus influencing numerous cell processes. In this review we particularly focused on methylation of transcription factors and other nuclear nonhistone proteins. The methylated lysine residues serve as markers attracting nuclear "reader" proteins that possess different chromatin-modifying activities.
Collapse
Affiliation(s)
- K S Egorova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | | | | |
Collapse
|
25
|
Takemori N, Komori N, Thompson JN, Yamamoto MT, Matsumoto H. Novel eye-specific calmodulin methylation characterized by protein mapping in Drosophila melanogaster. Proteomics 2007; 7:2651-8. [PMID: 17610210 DOI: 10.1002/pmic.200700343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Post-translational methylation of the epsilon-amino group of lysine residues regulates a number of protein functions. Calmodulin, a key modulator of intracellular calcium signaling, is methylated on lysine 115 in many species. Although the amino acid sequence of calmodulin is highly conserved in eukaryotes, it has been shown that lysine 115 is not methylated in Drosophila calmodulin and no other methylation site has been reported. In this study, we characterized in vivo modification states of Drosophila calmodulin using proteomic methodology involving the protein mapping of microdissected Drosophila tissues on 2-D gels. We found that Drosophila calmodulin was highly expressed in methylated forms in the compound eye, whereas its methylation was hardly detected in other tissues. We identified that lysine 94 located in an EF-hand III is the methylation site in Drosophila calmodulin. The predominance of methylated calmodulin in the compound eye may imply the involvement of calmodulin in photoreceptor-specific functions through methylation.
Collapse
Affiliation(s)
- Nobuaki Takemori
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | | | | | |
Collapse
|
26
|
Dirk LMA, Trievel RC, Houtz RL. 7 Non-histone protein lysine methyltransferases: Structure and catalytic roles. Enzymes 2007; 24:179-228. [PMID: 26718041 DOI: 10.1016/s1874-6047(06)80009-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Non-histone protein lysine methyltransferases (PKMTs) represent an exceptionally diverse and large group of PKMTs. Even accepting the possibility of multiple protein substrates, if the number of different proteins with methylated lysyl residues and the number of residues modified is indicative of individual PKMTs there are well over a hundred uncharacterized PKMTs. Astoundingly, only a handful of PKMTs have been studied, and of these only a few with identifiable and well-characterized structure and biochemical properties. Four representative PKMTs responsible for trimethyllysyl residues in ribosomal protein LI 1, calmodulin, cytochrome c, and Rubisco are herein examined for enzymological properties, polypeptide substrate specificity, functional significance, and structural characteristics. Although representative of non-histone PKMTs, and enzymes for whichcollectively there is a large amount of information, individually each of the PKMTs discussed in this chapter suffers from a lack of at least some critical information. Other than the obvious commonality in the AdoMet substrate cofactor and methyl group transfer, these enzymes do not have common structural features, polypeptide substrate specificity, or protein sequence. However, there may be a commonality that supports the hypothesis that methylated lysyl residues act as global determinants regulating specific protein-protein interactions.
Collapse
Affiliation(s)
- Lynnette M A Dirk
- Department of Horticulture University of Kentucky 407 Plant Science Building Lexington, KY 40546, USA
| | - Raymond C Trievel
- Department of Biological Chemistry University of Michigan Medical School Medical Science Building 1 Ann Arbor, MI 48109, USA
| | - Robert L Houtz
- Department of Horticulture University of Kentucky 407 Plant Science Building Lexington, KY 40546, USA
| |
Collapse
|
27
|
Li DF, Li J, Ma L, Zhang L, Lu YT. Calmodulin isoform-specific activation of a rice calmodulin-binding kinase conferred by only three amino-acids of OsCaM61. FEBS Lett 2006; 580:4325-31. [PMID: 16842786 DOI: 10.1016/j.febslet.2006.06.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 06/29/2006] [Indexed: 11/29/2022]
Abstract
The kinase activity of a Ca(2+)/calmodulin (CaM)-binding serine/threonine protein kinase from rice (Oryza sativa) (OsCBK) has been reported to be unaffected by OsCaM1 binding. In this study, we examined whether other rice CaMs can stimulate OsCBK. It was observed that OsCaM61 stimulated OsCBK in a Ca(2+)-dependent manner. In addition, Ala(111), Gly(123) and Ser(127) were identified as critical residues for OsCBK activation. Mutational study and fluorescent spectroscopy analysis indicated that CaM-binding affinity does not correlate with the kinase activity and that these key amino-acids in OsCaM61 play a vital role in suitable changes of OsCBK conformation for kinase activation.
Collapse
Affiliation(s)
- Dian-Fan Li
- Key Lab of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
28
|
Hunt L, Lerner F, Ziegler M. NAD - new roles in signalling and gene regulation in plants. THE NEW PHYTOLOGIST 2004; 163:31-44. [PMID: 33873776 DOI: 10.1111/j.1469-8137.2004.01087.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pyridine nucleotides, NAD+ , NADH, NADP+ , and NADPH have long-established and well-characterised roles as redox factors in processes such as oxidative phosphorylation, the TCA cycle, and as electron acceptors in photosynthesis. Recent years have seen an increase in the number of signalling and gene regulatory processes where NAD+ or NADP+ are metabolised. Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are metabolites of NAD+ and NADP+ , respectively, and now have widely accepted roles as potent intracellular calcium releasing agents in animals, but are less well characterised in plants. NAD kinases catalyse the transfer of a phosphate group from ATP to NAD to form NADP and are well characterised in plants in their requirement for the calcium binding protein calmodulin, thereby putatively linking their regulation to stress-induced intracellular calcium release. A second group of proteins unrelated to those above, the sirtuins (Sir2) and poly ADP-ribose polymerases (PARPs), cleave NAD and transfer the ADP-ribose group to acetyl groups and proteins, respectively. These have roles in transcriptional control and DNA repair in eukaryotes. Contents Summary I. Introduction 32 II. NAD synthesis and breakdown 32 III. cADPR in plants 34 IV. NAADP in plants 35 V. NAD kinases 35 VI. NAD and gene regulation 37 VII. Sir2 is an NAD dependant histone deacetylase 37 VIII. Nicotinamidases 38 IX. Poly ADP-ribosylation 39 X. Poly(ADP-ribose) glycohydrolase (PARG) 40 XI. Subcellular compartmentation of NAD and NADP in plants 41 XII. Conclusions 41 Acknowledgements 41 References 41.
Collapse
Affiliation(s)
- Lee Hunt
- Molecular Biology & Biotechnology Department, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Felicitas Lerner
- Freie Universität Berlin, Institut für Biochemie, Thielallee 63, 14195 Berlin, Germany
| | - Mathias Ziegler
- Freie Universität Berlin, Institut für Biochemie, Thielallee 63, 14195 Berlin, Germany
- Present address: University of Bergen, Department Molecular Biology, N-5020 Bergen, Norway
| |
Collapse
|
29
|
Snedden WA, Fromm H. Calmodulin as a versatile calcium signal transducer in plants. THE NEW PHYTOLOGIST 2001; 151:35-66. [PMID: 33873389 DOI: 10.1046/j.1469-8137.2001.00154.x] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The complexity of Ca2+ patterns observed in eukaryotic cells, including plants, has led to the hypothesis that specific patterns of Ca2+ propagation, termed Ca2+ signatures, encode information and relay it to downstream elements (effectors) for translation into appropriate cellular responses. Ca2+ -binding proteins (sensors) play a key role in decoding Ca2+ signatures and transducing signals by activating specific targets and pathways. Calmodulin is a Ca2+ sensor known to modulate the activity of many mammalian proteins, whose targets in plants are now being actively characterized. Plants possess an interesting and rapidly growing list of calmodulin targets with a variety of cellular roles. Nevertheless, many targets appear to be unique to plants and remain uncharacterized, calling for a concerted effort to elucidate their functions. Moreover, the extended family of calmodulin-related proteins in plants consists of evolutionarily divergent members, mostly of unknown function, although some have recently been implicated in stress responses. It is hoped that advances in functional genomics, and the research tools it generates, will help to explain themultiplicity of calmodulin genes in plants, and to identify their downstream effectors. This review summarizes current knowledge of the Ca2+ -calmodulin messenger system in plants and presents suggestions for future areas of research. Contents I. Introduction 36 II. CaM isoforms and CaM-like proteins 37 III. CaM-target proteins 42 IV. CaM and nuclear functions 46 V. Regulation of ion transport 49 VI. CaM and plant responses to environmental stimuli 52 VII. Conclusions and future studies 58 Acknowledgements 59 References 59.
Collapse
Affiliation(s)
- Wayne A Snedden
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Hillel Fromm
- Centre for Plant Sciences, Leeds Institute for Biotechnology and Agriculture (LIBA), School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
30
|
Vaillancourt P, Zheng CF, Hoang DQ, Breister L. Affinity purification of recombinant proteins fused to calmodulin or to calmodulin-binding peptides. Methods Enzymol 2001; 326:340-62. [PMID: 11036652 DOI: 10.1016/s0076-6879(00)26064-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Vaillancourt
- Stratagene Cloning Systems, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
31
|
Cobb JA, Roberts DM. Structural requirements for N-trimethylation of lysine 115 of calmodulin. J Biol Chem 2000; 275:18969-75. [PMID: 10766755 DOI: 10.1074/jbc.m002332200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin is trimethylated at lysine 115 by a highly specific methyltransferase that utilizes S-adenosylmethionine as a co-substrate. Lysine 115 is found within a highly conserved six-amino acid loop (LGEKLT) that forms a 90 degrees turn between EF-hand III and EF-hand IV in the carboxyl-terminal lobe. In the present work a mutagenesis approach was used to investigate the structural features of the carboxyl-terminal lobe that lead to the specificity of calmodulin methylation. Three structural regions within the carboxyl-terminal lobe appear to be involved in methyltransferase recognition: the highly conserved six-amino acid loop-turn region that contains lysine 115 as well as the adjacent alpha-helices (helix 6 and helix 7) from EF-hands III and IV. Site-directed mutagenesis of residues in the loop show that three residues, glycine 113, glutamate 114, and leucine 116 are essential for methylation. In addition, subdomain (individual helix or Ca(2+) binding loop) exchange mutants show that the substitutions of either helix 6 (EF-hand III) with helix 2 (EF-hand I) or helix 7 (EF-hand IV) with helix 3 (EF-hand II) compromises methylation. Charge-to-alanine mutations in helix 7 show that substitution of conserved charged residues at positions 118, 120, 122, 126, and 127 reduced lysine 115 methylation rates, suggesting possible electrostatic interactions between this helix and the methyltransferase. Single substitutions in helix 6 did not affect calmodulin methylation, suggesting this region may play a more indirect role in stabilizing the conformation of the methyltransferase recognition sequence.
Collapse
Affiliation(s)
- J A Cobb
- Department of Biochemistry, Cellular, and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | | |
Collapse
|
32
|
Abstract
Calmodulin is a small Ca2+-binding protein that acts to transduce second messenger signals into a wide array of cellular responses. Plant calmodulins share many structural and functional features with their homologs from animals and yeast, but the expression of multiple protein isoforms appears to be a distinctive feature of higher plants. Calmodulin acts by binding to short peptide sequences within target proteins, thereby inducing structural changes, which alters their activities in response to changes in intracellular Ca2+ concentration. The spectrum of plant calmodulin-binding proteins shares some overlap with that found in animals, but a growing number of calmodulin-regulated proteins in plants appear to be unique. Ca2+-binding and enzymatic activation properties of calmodulin are discussed emphasizing the functional linkages between these processes and the diverse pathways that are dependent on Ca2+ signaling.
Collapse
Affiliation(s)
- Raymond E. Zielinski
- Department of Plant Biology and the Physiological and Molecular Plant Biology Program, University of Illinois, 1201 W. Gregory Drive, Urbana, Illinois 61801; e-mail:
| |
Collapse
|
33
|
Landar A, Hall TL, Cornwall EH, Correia JJ, Drohat AC, Weber DJ, Zimmer DB. The role of cysteine residues in S100B dimerization and regulation of target protein activity. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1343:117-29. [PMID: 9428666 DOI: 10.1016/s0167-4838(97)00126-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies have demonstrated that the two cysteine residues in the calcium-binding protein S100B are required for its extracellular functions. In the present study, a recombinant S100B protein and mutant S100Bs containing one or no cysteine residue(s) have been used to determine the contribution of cysteine residues to S100B dimerization and interaction with the intracellular target proteins aldolase, phosphoglucomutase, and the microtubule associated tau protein. Mutation of C68 to a valine or C84 to a serine, C68 to valine and C84 to serine, or C68 to valine and C84 to alanine did not significantly alter S100B activation of aldolase. However, mutation of C84 to serine resulted in calcium-independent S100B activation of phosphoglucomutase and a loss of S100B inhibition of tau phosphorylation by Ca2+/calmodulin-dependent protein kinase II. The altered functionality of the C84S mutant with phosphoglucomutase and tau was not due to altered physical properties or dimerization state. All of the mutants exhibited heat stability and calcium dependent conformational changes which were identical to recombinant S100B. In addition, S100B proteins containing two, one or no cysteine residues behaved as dimers in size exclusion chromatography experiments in the presence or absence of calcium as well as in the presence or absence of reducing agent. Dynamic light scattering and analytical ultracentrifugation experiments confirmed that dimerization was not affected by calcium or reducing agent. Altogether these results demonstrate that S100B dimerization is not calcium- or sulfhydryl-dependent. In summary, cysteine residues are not necessary for the noncovalent dimerization of S100B, but are important in certain S100B target protein-interactions.
Collapse
Affiliation(s)
- A Landar
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile 36688, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Lee SH, Seo HY, Kim JC, Heo WD, Chung WS, Lee KJ, Kim MC, Cheong YH, Choi JY, Lim CO, Cho MJ. Differential activation of NAD kinase by plant calmodulin isoforms. The critical role of domain I. J Biol Chem 1997; 272:9252-9. [PMID: 9083059 DOI: 10.1074/jbc.272.14.9252] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
NAD kinase is a Ca2+/calmodulin (CaM)-dependent enzyme capable of converting cellular NAD to NADP. The enzyme purified from pea seedlings can be activated by highly conserved soybean CaM, SCaM-1, but not by the divergent soybean CaM isoform, SCaM-4 (Lee, S. H., Kim, J. C., Lee, M. S., Heo, W. D., Seo, H. Y., Yoon, H. W., Hong, J. C., Lee, S. Y., Bahk, J. D., Hwang, I., and Cho, M. J. (1995) J. Biol. Chem. 270, 21806-21812). To determine which domains were responsible for this differential activation of NAD kinase, a series of chimeric SCaMs were generated by exchanging functional domains between SCaM-4 and SCaM-1. SCaM-4111, a chimeric SCaM-1 that contains the first domain of SCaM-4, was severely impaired (only 40% of maximal) in its ability to activate NAD kinase. SCaM-1444, a chimeric SCaM-4 that contains the first domain of SCaM-1 exhibited nearly full ( approximately 70%) activation of NAD kinase. Only chimeras containing domain I of SCaM-1 produced greater than half-maximal activation of NAD kinase. To define the amino acid residue(s) in domain I that were responsible for this differential activation, seven single residue substitution mutants of SCaM-1 were generated and tested for NAD kinase activation. Among these mutants, only K30E and G40D showed greatly reduced NAD kinase activation. Also a double residue substitution mutant, K30E/G40D, containing these two mutations in combination was severely impaired in its NAD kinase-activating potential, reaching only 20% of maximal activation. Furthermore, a triple mutation, K30E/M36I/G40D, completely abolished NAD kinase activation. Thus, our data suggest that domain I of CaM plays a key role in the differential activation of NAD kinase exhibited by SCaM-1 and SCaM-4. Further, the residues Lys30 and Glu40 of SCaM-1 are critical for this function.
Collapse
Affiliation(s)
- S H Lee
- Department of Biochemistry, Gyeongsang National University, Chinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee SH, Kim JC, Lee MS, Heo WD, Seo HY, Yoon HW, Hong JC, Lee SY, Bahk JD, Hwang I. Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J Biol Chem 1995; 270:21806-12. [PMID: 7665602 DOI: 10.1074/jbc.270.37.21806] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calmodulin plays pivotal roles in the transduction of various Ca(2+)-mediated signals and is one of the most highly conserved proteins in eukaryotic cells. In plants, multiple calmodulin isoforms with minor amino acid sequence differences were identified but their functional significances are unknown. To investigate the biological function of calmodulins in the regulation of calmodulin-dependent enzymes, we cloned cDNAs encoding calmodulins in soybean. Among the five cDNAs isolated from soybean, designated as SCaM-1 to -5, SCaM-4 and -5 encoded very divergent calmodulin isoforms which have 32 amino acid substitutions from the highly conserved calmodulin, SCaM-1 encoded by SCaM-1 and SCaM-3. SCaM-4 protein produced in Escherichia coli showed typical characteristics of calmodulin such as Ca(2+)-dependent electrophoretic mobility shift and the ability to activate phosphodiesterase. However, the extent of mobility shift and antigenicity of SCaM-4 were different from those of SCaM-1. Moreover, SCaM-4 did not activate NAD kinase at all in contrast to SCaM-1. Also there were differences in the expression pattern of SCaM-1 and SCaM-4. Expression levels of SCaM-4 were approximately 5-fold lower than those of SCaM-1 in apical and elongating regions of hypocotyls. In addition, SCaM-4 transcripts were barely detectable in root whereas SCaM-1 transcripts were as abundant as in apical and elongating regions of hypocotyls. In conclusion, the different biochemical properties together with differential expression of SCaM-4 suggest that this novel calmodulin may have different functions in plant cells.
Collapse
Affiliation(s)
- S H Lee
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Klein RR, Houtz RL. Cloning and developmental expression of pea ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit N-methyltransferase. PLANT MOLECULAR BIOLOGY 1995; 27:249-61. [PMID: 7888616 DOI: 10.1007/bf00020181] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit (LS) N-methyltransferase (protein methylase III, Rubisco LSMT, EC 2.1.1.43) catalyzes methylation of the epsilon-amino group of Lys-14 in the LS of Rubisco. With limited internal amino acid sequence information obtained from HPLC-purified peptic polypeptides from Rubisco LSMT, a full-length cDNA clone was isolated utilizing polymerase chain reaction-based technology and conventional bacteriophage library screening. The 1802 bp cDNA of Rubisco LSMT encodes a 489 amino acid polypeptide with a predicted molecular mass of ca. 55 kDa. A derived N-terminal amino acid sequence with features common to chloroplast transit peptides was identified. The deduced sequence of Rubisco LSMT did not exhibit regions of significant homology with other protein methyltransferases. Southern blot analysis of pea genomic DNA indicated a low gene copy number of Rubisco LSMT in pea. Northern analysis revealed a single mRNA species of about 1.8 kb encoding for Rubisco LSMT which was predominately located in leaf tissue. Illumination of etiolated pea seedlings showed that the accumulation of Rubisco LSMT mRNA is light-dependent. Maximum accumulation of Rubisco LSMT transcripts occurred during the initial phase of light-induced leaf development which preceded the maximum accumulation of rbcS and rbcL mRNA. Transcript levels of Rubisco LSMT in mature light-grown tissue were similar to transcript levels in etiolated tissues indicating that the light-dependent accumulation of Rubisco LSMT mRNA is transient. This is the first reported DNA and amino acid sequence for a protein methylase III enzyme.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Plant/analysis
- Gene Dosage
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/radiation effects
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/radiation effects
- Genes, Plant/genetics
- Histone-Lysine N-Methyltransferase/chemistry
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/isolation & purification
- Light
- Molecular Sequence Data
- Molecular Weight
- Pisum sativum/enzymology
- Pisum sativum/genetics
- RNA, Messenger/analysis
- RNA, Plant/analysis
- Sequence Alignment
- Sequence Analysis
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- R R Klein
- United States Department of Agriculture-Agriculture Research Service, Lexington, KY
| | | |
Collapse
|
37
|
Zimmer DB, Cornwall EH, Landar A, Song W. The S100 protein family: history, function, and expression. Brain Res Bull 1995; 37:417-29. [PMID: 7620916 DOI: 10.1016/0361-9230(95)00040-2] [Citation(s) in RCA: 692] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The S100 family of calcium binding proteins contains approximately 16 members each of which exhibits a unique pattern of tissue/cell type specific expression. Although the distribution of these proteins is not restricted to the nervous system, the implication of several members of this family in nervous system development, function, and disease has sparked new interest in these proteins. We now know that the original two members of this family, S100A1 and S100B, can regulate a diverse group of cellular functions including cell-cell communication, cell growth, cell structure, energy metabolism, contraction and intracellular signal transduction. Although some members of the family may function extracellularly, most appear to function as intracellular calcium-modulated proteins and couple extracellular stimuli to cellular responses via interaction with other cellular proteins called target proteins. Interaction of these proteins with target proteins appear to involve cysteine residues (one in S100A1 and two in S100B), as well as a stretch of 13 amino acids, in the middle of the molecule called the linker region, which connects the two EF-hand calcium binding domains. In addition to the amino acid sequence and secondary structures of these proteins, the structures of the genes encoding these proteins are highly conserved. Studies on the expression of these proteins have demonstrated that a complex mixture of transcriptional and postranscriptional mechanisms regulate S100 expression. Further analysis of the function and expression of these proteins in both nervous and nonnervous tissues will provide important information regarding the role of altered S100 expression in nervous system development, function and disease.
Collapse
Affiliation(s)
- D B Zimmer
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile 36688, USA
| | | | | | | |
Collapse
|
38
|
Harris E, Watterson DM, Thorner J. Functional consequences in yeast of single-residue alterations in a consensus calmodulin. J Cell Sci 1994; 107 ( Pt 11):3235-49. [PMID: 7699020 DOI: 10.1242/jcs.107.11.3235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A synthetic gene encoding a ‘consensus’ calmodulin (synCaM) was able to substitute for the Saccharomyces cerevisiae calmodulin gene (CMDI), even though synCaM is only 60% identical in primary amino acid sequence to yeast Cmd1. Twelve different synCaM mutants were also expressed in yeast. Seven of the 12 mutant synCaMs supported germination and growth of Cmd1-deficient spores. Five of the 12 mutant synCaMs were incapable of supporting germination of Cmd1-deficient spores and, of these, four were also incapable of supporting vegetative growth of Cmd1-deficient haploid cells. The five nonfunctional synCaM mutants were expressed at levels equivalent to, or higher than, the seven synCaM mutants that were able to substitute for Cmd1; thus, the inability to function was not simply due to inadequate expression or rapid degradation. All nonfunctional synCaM mutants shared a single charge reversal mutation in the central helix (E84K), which was found to be sufficient to confer the lethal phenotype. The ability of another mutant synCaM (S101F) to support growth of Cmd1-deficient cells was dependent on cell ploidy. Another mutant (K115Y) supported spore germination and vegetative growth, but not meiosis and sporulation. The terminal phenotype of cells lacking a functional calmodulin included a dramatic accumulation of polymerized microtubules.
Collapse
Affiliation(s)
- E Harris
- Department of Molecular and Cell Biology, University of California at Berkeley 94720-3202
| | | | | |
Collapse
|
39
|
Mavri J, Vogel HJ. Ion pair formation involving methylated lysine side chains: a theoretical study. Proteins 1994; 18:381-9. [PMID: 8208729 DOI: 10.1002/prot.340180408] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lysine residues with one, two, or three methyl groups substituted on the epsilon-nitrogen atom are found in many proteins. To evaluate the effect of the posttranslational methylation on ion-pair formation we have performed semiempirical and ab initio molecular orbital calculations, using the AM1 method and the 6-31G* basis set, respectively. Combinations of various methylated forms of methylamine and ethylamine with formate, acetate, and dimethyl phosphate were studied as model compounds. This approach allowed us to obtain information relevant to the interaction of the modified Lys residues with carboxylate groups of proteins, and the backbone of nucleic acids. We have found that the interaction energy decreases with an increasing number of methyl groups. Inclusion of a solvent reaction field in the semiempirical calculations gave reasonable values for the interaction energy in aqueous solution, when formate and acetate were the counterions. These studies suggest that, in addition to other factors, a weakening of ionic interactions contributes to the various physiological effects of lysine methylation.
Collapse
Affiliation(s)
- J Mavri
- Department of Biological Sciences, University of Calgary, Canada
| | | |
Collapse
|
40
|
Pech LL, Nelson DL. Purification and characterization of calmodulin (lysine 115) N-methyltransferase from Paramecium tetraurelia. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1199:183-94. [PMID: 8123667 DOI: 10.1016/0304-4165(94)90114-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Calmodulin (lysine 115) N-methyltransferase was purified from the cytosolic fraction of Paramecium tetraurelia by sequential dialysis, cellulose phosphate chromatography, Reactive Red 120 agarose chromatography, and calmodulin-Sepharose affinity chromatography. The enzyme was purified 6800-fold with a 15% yield. SDS-PAGE analysis of the purified enzyme invariably revealed a major protein of 37 kDa that was reproducibly obtained and minor proteins of 35 and 28 kDa that were sometimes obtained in variable yields. The enzyme formed a mixture of mono-, di-, and trimethyllysine residues at lysine 115 of calmodulin in vitro, had a Km for the methyl donor, S-adenosyl methionine (AdoMet), of about 1 microM and a pH optimum of about 7.5. The purified enzyme had an absolute requirement for the reductant DTT for activity, whereas the enzyme in crude fractions did not. The enzyme is a monomer with an estimated molecular mass of 33 kDa. Ca2+, Mg2+, Mn2+, and Ni2+ stimulated calmodulin N-methyltransferase activity but Zn2+ did not. Calmodulin N-methyltransferase was inhibited by its reaction product S-adenosyl homocysteine (SAH), but not by sinefungin and tubercidin. The calmodulin antagonists calmidazolium and mellitin were inhibitory but W7 was not. The enzyme was not stimulated by Triton X-100 nor by NaCl. Only calmodulins with an unmethylated lysine at residue 115, including cam2 calmodulin, were substrates. Histones and calcium-binding proteins from Paramecium other than calmodulin did not act as substrates for the purified calmodulin N-methyltransferase and no other substrates in the cytosolic fraction were observed.
Collapse
Affiliation(s)
- L L Pech
- Department of Biochemistry, University of Wisconsin-Madison 53706
| | | |
Collapse
|
41
|
Zhang M, Huque E, Vogel H. Characterization of trimethyllysine 115 in calmodulin by 14N and 13C NMR spectroscopy. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37660-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Han CH, Richardson J, Oh SH, Roberts DM. Isolation and kinetic characterization of the calmodulin methyltransferase from sheep brain. Biochemistry 1993; 32:13974-80. [PMID: 8268175 DOI: 10.1021/bi00213a030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The methyltransferase that catalyzes the trimethylation of lysine 115 in calmodulin has been purified from sheep brain. The enzyme is a monomer with an apparent molecular weight of 38,000 on the basis of gel filtration chromatography and SDS-polyacrylamide electrophoresis. In the presence of calcium the methyltransferase exhibited a Km of 100 nM for unmethylated calmodulin and a kcat of 0.0278 s-1. The enzyme was able to use calcium-depleted calmodulin as a substrate, albeit with less efficiency. The methylation of calcium-depleted calmodulin was inhibited by increases in ionic strength, whereas methylation of calcium-saturated calmodulin was not affected. This suggests a difference in the mode of interaction of calcium-saturated and calcium-depleted calmodulins with the enzyme. As with calmodulin's interactions with other calmodulin-dependent enzymes, the oxidation of the methionines of calmodulin by performic acid treatment decreases the ability of the methyltransferase to recognize and methylate calmodulin. A calmodulin-binding peptide based on the calmodulin-dependent protein kinase II sequence and the naphthalenesulfonamide W-7 inhibit the calmodulin methyltransferase-calmodulin interaction in a calcium-dependent manner. Removal of the NH2-terminal lobe (residues 1-77) does not affect the ability of the calmodulin methyltransferase to recognize and methylate lysine 115. Thus, the determinants for calmodulin methyltransferase binding reside solely in the COOH-terminal lobe of calmodulin. Further, structural features within this region, in particular, the hydrophobic cleft, that are manifested upon calcium binding may contribute to the interaction of calmodulin with the enzyme.
Collapse
Affiliation(s)
- C H Han
- Department of Biochemistry, University of Tennessee, Knoxville 37996-0840
| | | | | | | |
Collapse
|
43
|
Abstract
Proteins can be enzymatically modified in several ways by the addition of methyl groups from S-adenosylmethionine. Reactions forming methyl esters on carboxyl groups are potentially reversible and can modulate the activity of the target protein; in the past year, advances have been made in understanding the physiological roles of four distinct systems that modify normal and abnormal carboxyl groups on proteins. On the other hand, methylation reactions occurring on nitrogen atoms in N-terminal and side-chain positions are generally irreversible. These reactions create new types of amino acid residues and can expand the repertoire of chemistry that a protein can perform.
Collapse
Affiliation(s)
- S Clarke
- University of California, Los Angeles
| |
Collapse
|
44
|
Abstract
Synaptosomes from five regions of adult rat brain were isolated, analyzed for methyl acceptor proteins, and probed for methyltransferases by photoaffinity labeling. Methylated proteins of 17 and 35 kDa were observed in all regions, but cerebellar synaptosomes were enriched in a 21-26-kDa family of methyl acceptor proteins and contained a unique major methylated protein of 52 kDa and a protein of 50 kDa, which was methylated only in the presence of EGTA. When cerebellar and liver subcellular fractions were compared, the cytosolic fractions of each tissue contained methylated proteins of 17 and 35 kDa; liver membrane fractions contained few methylated proteins, whereas cerebellar microsomes had robust methylation of the 21-26-kDa group. Differential centrifugation of lysed cerebellar synaptosomes localized the 17- and 35-kDa methyl acceptor proteins to the synaptoplasm, the 21-26-kDa family to the synaptic membranes, and the 52-kDa to synaptic vesicles. The 21-26-kDa family was identified as GTP-binding proteins by [alpha-32P]GTP overlay assay; these proteins contained a putative methylated carboxyl cysteine, based on the presence of volatile methyl esters and the inhibition of methylation by acetylfarnesylcysteine. The 52-kDa methylated protein also contained volatile methyl esters, but did not bind [alpha-32P]GTP. When synaptosomes were screened for putative methyltransferases by S-adenosyl-L-[methyl-3H]methionine photoaffinity labeling, a protein of 24 kDa was detected only in cerebellum, and this labeled protein was localized to synaptic membranes.
Collapse
Affiliation(s)
- L S Wright
- Department of Pediatrics, University of Wisconsin Medical School, Madison 53705
| | | |
Collapse
|
45
|
Abstract
Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.
Collapse
Affiliation(s)
- B W Poovaiah
- Department of Horticulture, Washington State University, Pullman
| | | |
Collapse
|
46
|
Jackson GR, Werrbach-Perez K, Ezell EL, Post JF, Perez-Polo JR. Nerve growth factor effects on pyridine nucleotides after oxidant injury of rat pheochromocytoma cells. Brain Res 1992; 592:239-48. [PMID: 1450913 DOI: 10.1016/0006-8993(92)91681-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurotrophic factors regulate neuronal survival and neurite growth in development and following injury. Oxidative stress produced in neurons as a consequence of primary injury, or during reperfusion following ischemia, may contribute to cell death. Here, the effects of nerve growth factor (NGF) on the response to H2O2 injury were examined in the PC12 rat pheochromocytoma cell line. Specifically, the effect of NGF on cell viability after H2O2 injury was measured. Pretreatment with NGF enhanced survival after H2O2 treatment, as measured by Trypan blue dye exclusion, radiolabeled amino acid incorporation, tetrazolium salt reduction, or cytoplasmic enzyme release. One early event associated with H2O2 treatment was a rapid decrease in NAD+. Although initial decreases in NAD+ levels were similar in control and NGF-treated cells, the latter recovered more rapidly and extensively. The decline in total NAD observed after NGF treatment was almost equal in magnitude to the measured increase in NADP. Inhibition of poly(ADP-ribose) polymerase also enhanced viability following H2O2 injury. Treatment with both NGF and an inhibitor of this enzyme resulted in a greater reduction of H2O2 toxicity than was observed with either agent alone. These data suggest that NGF protection is multifactorial and that a significant component of the NGF effect is due to its regulatory role in the metabolism of pyridine nucleotides.
Collapse
Affiliation(s)
- G R Jackson
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555
| | | | | | | | | |
Collapse
|
47
|
Wang C, Lin JM, Lazarides E. Methylations of 70,000-Da heat shock proteins in 3T3 cells: alterations by arsenite treatment, by different stages of growth and by virus transformation. Arch Biochem Biophys 1992; 297:169-75. [PMID: 1322111 DOI: 10.1016/0003-9861(92)90656-h] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have characterized the basic amino acid methylation of three members of the 70,000-Da heat shock protein superfamily, hsp68, hsc70, and BiP, in Balb/c 3T3 cells. It appears that a lysyl residue is the only methylation site in BiP and that both lysyl and arginyl residues are methylated in hsp68 and hsc70. In all cases, epsilon-N-trimethyllysine is the predominant methyllysine species. Both NG-monomethylarginine and NG,NG-dimethylarginine are identified as the methylarginine species. The stoichiometry of the methylation is indirectly determined by using the amount of actin methylation as a reference. Three, four, and four methyl groups are incorporated into lysyl residues of hsp68, hsc70, and BiP, respectively. The level of lysyl methylation in hsc70 remains unchanged under different growth conditions. On the other hand, the arginyl methylation in hsc70 varies considerably. In confluent Balb/c 3T3 cells, there are 1.8 and 1.3 methyl groups in dimethylarginine and monomethyl-arginine, respectively. In nonconfluent cells, the amount of monomethylarginine is similar to that in confluent cells, but dimethylarginine is not detectable. Furthermore, in both confluent and nonconfluent cells, the level of monomethylarginine is reduced 5- to 10-fold after arsenite treatment. However, in 3T3 cells transformed by Rous sarcoma virus (SR-RSV 3T3 cells), the level of arginine methylation is constitutively lower and cannot be reduced further by arsenite.
Collapse
Affiliation(s)
- C Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
48
|
Oh SH, Steiner HY, Dougall DK, Roberts DM. Modulation of calmodulin levels, calmodulin methylation, and calmodulin binding proteins during carrot cell growth and embryogenesis. Arch Biochem Biophys 1992; 297:28-34. [PMID: 1637181 DOI: 10.1016/0003-9861(92)90636-b] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Carrot cell cultures were used to study the dynamics of calmodulin protein levels, calmodulin methylation, and calmodulin-binding proteins during plant growth and development. Comparisons of proliferating and nonproliferating wild carrot cells show that, while calmodulin protein levels does not vary significantly, substantial variation in post-translational methylation of calmodulin on lysine-115 is observed. Calmodulin methylation is low during the lag and early exponential stages, but increases substantially as exponential growth proceeds and becomes maximal in the postexponential phase. Unmethylated calmodulin quickly reappears within 12 h of reinoculation of cells into fresh media, suggesting that the process is regulated according to the cell growth state. Calmodulin and calmodulin-binding proteins were also analyzed during the formation and germination of domestic carrot embryos in culture. Neither calmodulin methylation nor calmodulin protein levels varied significantly during somatic embryogenesis. However, upon germination of embryos, the level of calmodulin protein doubled. By calmodulin overlay analysis, we have detected a major 54,000 M(r) calmodulin-binding protein that also increased during embryo germination. This protein was purified from carrot embryo extracts by calmodulin-Sepharose chromatography. Overall, the data suggest that calmodulin methylation is regulated depending upon the state of cell growth and that calmodulin and its target proteins are modulated during early plant development.
Collapse
Affiliation(s)
- S H Oh
- Center for Legume Research, University of Tennessee, Knoxville 37996
| | | | | | | |
Collapse
|
49
|
Ling KY, Preston RR, Burns R, Kink JA, Saimi Y, Kung C. Primary mutations in calmodulin prevent activation of the Ca(++)-dependent Na+ channel in Paramecium. Proteins 1992; 12:365-71. [PMID: 1315966 DOI: 10.1002/prot.340120408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Paramecium tetraurelia behavioral mutant cam12 displays a "fast-2" behavioral phenotype: it fails to respond to Na+ stimuli. Electrophysiologically, it lacks a Ca(++)-dependent Na+ current. Genetics and DNA sequencing showed the primary defect of cam12 to be in the calmodulin gene (Kink et al., 1990). To correlate calmodulin structure and function in Paramecium, we elucidated the primary structure of cam12 calmodulin. Peptide sequencing confirmed the two point mutations predicted by the DNA sequence: a glycine-to-glutamate substitution at position 40 and an aspartate-to-asparagine substitution at position 50. Our results further showed that lysine 13 and lysine 115 were methylated normally in cam12. It is likely that the electrophysiological abnormalities of cam12 are a direct reflection of the amino-acid substitutions, as opposed to improper posttranslational modification.
Collapse
Affiliation(s)
- K Y Ling
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706
| | | | | | | | | | | |
Collapse
|
50
|
Scheibel LW. Role of calcium/calmodulin-mediated processes in protozoa. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 134:165-242. [PMID: 1582773 DOI: 10.1016/s0074-7696(08)62029-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- L W Scheibel
- Department of Preventive Medicine, Uniformed Services University of the Health Sciences School of Medicine, Bethesda, Maryland 20814
| |
Collapse
|