1
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
2
|
Ma HT, Beaven MA. Regulators of Ca(2+) signaling in mast cells: potential targets for treatment of mast cell-related diseases? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:62-90. [PMID: 21713652 DOI: 10.1007/978-1-4419-9533-9_5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A calcium signal is essential for degranulation, generation of eicosanoids and optimal production of cytokines in mast cells in response to antigen and other stimulants. The signal is initiated by phospholipase C-mediated production of inositol1,4,5-trisphosphate resulting in release of stored Ca(2+) from the endoplasmic reticulum (ER) and Golgi. Depletion of these stores activates influx of extracellular Ca(2+), usually referred to as store-operated calcium entry (SOCE), through the interaction of the Ca(2+)-sensor, stromal interacting molecule-1 (STIM1 ), in ER with Orai1(CRACM1) and transient receptor potential canonical (TRPC) channel proteins in the plasma membrane (PM). This interaction is enabled by microtubular-directed reorganization of ER to form ER/PM contact points or "punctae" in which STIM1 and channel proteins colocalize. The ensuing influx of Ca(2+) replenishes Ca(2+) stores and sustains elevated levels of cytosolic Ca(2+) ions-the obligatory signal for mast-cell activation. In addition, the signal can acquire spatial and dynamic characteristics (e.g., calcium puffs, waves, oscillations) that encode signals for specific functional outputs. This is achieved by coordinated regulation of Ca(2+) fluxes through ATP-dependent Ca(2+)-pumps and ion exchangers in mitochondria, ER and PM. As discussed in this chapter, studies in mast cells revealed much about the mechanisms described above but little about allergic and autoimmune diseases although studies in other types of cells have exposed genetic defects that lead to aberrant calcium signaling in immune diseases. Pharmacologic agents that inhibit or activate the regulatory components of calcium signaling in mast cells are also discussed along with the prospects for development of novel SOCE inhibitors that may prove beneficial in the treatment inflammatory mast-cell related diseases.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
3
|
Bournazou I, Pound JD, Duffin R, Bournazos S, Melville LA, Brown SB, Rossi AG, Gregory CD. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J Clin Invest 2008; 119:20-32. [PMID: 19033648 DOI: 10.1172/jci36226] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 10/15/2008] [Indexed: 11/17/2022] Open
Abstract
Apoptosis is a noninflammatory, programmed form of cell death. One mechanism underlying the non-phlogistic nature of the apoptosis program is the swift phagocytosis of the dying cells. How apoptotic cells attract mononuclear phagocytes and not granulocytes, the professional phagocytes that accumulate at sites of inflammation, has not been determined. Here, we show that apoptotic human cell lines of diverse lineages synthesize and secrete lactoferrin, a pleiotropic glycoprotein with known antiinflammatory properties. We further demonstrated that lactoferrin selectively inhibited migration of granulocytes but not mononuclear phagocytes, both in vitro and in vivo. Finally, we were able to attribute this antiinflammatory function of lactoferrin to its effects on granulocyte signaling pathways that regulate cell adhesion and motility. Together, our results identify lactoferrin as an antiinflammatory component of the apoptosis milieu and define what we believe to be a novel antiinflammatory property of lactoferrin: the ability to function as a negative regulator of granulocyte migration.
Collapse
Affiliation(s)
- Irini Bournazou
- The University of Edinburgh/Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Genetic disruption of p38alpha Tyr323 phosphorylation prevents T-cell receptor-mediated p38alpha activation and impairs interferon-gamma production. Blood 2008; 113:2229-37. [PMID: 19011223 DOI: 10.1182/blood-2008-04-153304] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cells possess a p38 activation alternative pathway in which stimulation via the antigen receptor (T-cell receptor [TCR]) induces phosphorylation of p38alpha and beta on Tyr323. To assess the contribution of this pathway to normal T-cell function, we generated p38alpha knockin mice in which Tyr323 was replaced with Phe (p38alpha(Y323F)). TCR-mediated stimulation failed to activate p38alpha(Y323F) as measured by phosphorylation of the Thr-Glu-Tyr activation motif and p38alpha catalytic activity. Cell-cycle entry was delayed in TCR-stimulated p38alpha(Y323F) T cells, which also produced less interferon (IFN)-gamma than wild-type T cells in response to TCR-mediated but not TCR-independent stimuli. p38alpha(Y323F) mice immunized with T-helper 1 (Th1)-inducing antigens generated normal Th1 effector cells, but these cells produced less IFN-gamma than wild-type cells when stimulated through the TCR. Thus, the Tyr323-dependent pathway and not the classic mitogen-activated protein (MAP) kinase cascade is the physiologic means of p38alpha activation through the TCR and is necessary for normal Th1 function but not Th1 generation.
Collapse
|
5
|
Crawford S, Belajic D, Wei J, Riley JP, Dunford PJ, Bembenek S, Fourie A, Edwards JP, Karlsson L, Brunmark A, Wolin RL, Blevitt JM. A novel B-RAF inhibitor blocks interleukin-8 (IL-8) synthesis in human melanoma xenografts, revealing IL-8 as a potential pharmacodynamic biomarker. Mol Cancer Ther 2008; 7:492-9. [DOI: 10.1158/1535-7163.mct-07-0307] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
|
7
|
Tucker SJ, Rae C, Littlejohn AF, Paul A, MacEwan DJ. Switching leukemia cell phenotype between life and death. Proc Natl Acad Sci U S A 2004; 101:12940-5. [PMID: 15328418 PMCID: PMC516498 DOI: 10.1073/pnas.0400949101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Indexed: 01/04/2023] Open
Abstract
Divergent life or death responses of a cell can be controlled by a single cytokine (tumor necrosis factor alpha, TNF) via the signaling pathways that respond to activation of its two receptors (TNFR1 and TNFR2). Here, we show that the choice of life or death can be controlled by manipulation of TNFR signals. In human erythroleukemia patient myeloid progenitor stem cells (TF-1) as well as chronic myelogenous leukemia cells (K562), granulocyte-macrophage colony-stimulating factor primes cells for apoptosis. These death-responsive cells show prolonged TNF stimulation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, but no NF-kappaB transcriptional activity as a consequence of receptor-interacting protein degradation by caspases. Conversely, cells of a proliferative phenotype display antiapoptotic NF-kappaB responses that antagonize c-Jun N-terminal kinase and p38 mitogen-activated protein kinase stress kinase effects. These proliferative effects of TNF are apparently due to enhanced basal expression of the caspase-8/FLICE-inhibitory protein FLIP. Manipulation of the NF-kappaB, c-Jun N-terminal kinase, or p38 mitogen-activated protein kinase signals switches leukemia cells from a proliferative to an apoptotic phenotype; consequently, these highly proliferative cells die rapidly. In addition, sodium salicylate mimics the death phenotype signals and causes selective destruction of leukemia cells. These findings reveal the signaling mechanisms underlying the phenomenon of human leukemia cell life/death switching. Additionally, through knowledge of the signals that control TNF life/death switching, we have identified several therapeutic targets for selectively killing these cells.
Collapse
Affiliation(s)
- Steven J Tucker
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Kim YJ, Kim KP, Han SK, Munoz NM, Zhu X, Sano H, Leff AR, Cho W. Group V phospholipase A2 induces leukotriene biosynthesis in human neutrophils through the activation of group IVA phospholipase A2. J Biol Chem 2002; 277:36479-88. [PMID: 12124392 DOI: 10.1074/jbc.m205399200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported previously that exogenously added human group V phospholipase A(2) (hVPLA(2)) could elicit leukotriene B(4) (LTB(4)) biosynthesis in human neutrophils (Han, S. K., Kim, K. P., Koduri, R., Bittova, L., Munoz, N. M., Leff, A. R., Wilton, D. C., Gelb, M. H., and Cho, W. (1999) J. Biol. Chem. 274, 11881-11888). To determine the mechanism of the hVPLA(2)-induced LTB(4) biosynthesis in neutrophils, we thoroughly examined the effects of hVPLA(2) and their lipid products on the activity of group IVA cytosolic PLA(2) (cPLA(2)) and LTB(4) biosynthesis under different conditions. As low as 1 nm exogenous hVPLA(2) was able to induce the release of arachidonic acid (AA) and LTB(4). Typically, AA and LTB(4) were released in two phases, which were synchronized with a rise in intracellular calcium concentration ([Ca(2+)](i)) near the perinuclear region and cPLA(2) phosphorylation. A cellular PLA(2) assay showed that hVPLA(2) acted primarily on the outer plasma membrane, liberating fatty acids and lysophosphatidylcholine (lyso-PC), whereas cPLA(2) acted on the perinuclear membrane. Lyso-PC and polyunsaturated fatty acids including AA activated cPLA(2) and 5-lipoxygenase by increasing [Ca(2+)](i) and inducing cPLA(2) phosphorylation, which then led to LTB(4) biosynthesis. The delayed phase was triggered by the binding of secreted LTB(4) to the cell surface LTB(4) receptor, which resulted in a rise in [Ca(2+)](i) and cPLA(2) phosphorylation through the activation of mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2. These results indicate that a main role of exogenous hVPLA(2) in neutrophil activation and LTB(4) biosynthesis is to activate cPLA(2) and 5-lipoxygenase primarily by liberating from the outer plasma membrane lyso-PC that induces [Ca(2+)](i) increase and cPLA(2) phosphorylation and that hVPLA(2)-induced LTB(4) production is augmented by the positive feedback activation of cPLA(2) by LTB(4).
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Berger M, Budhu S, Lu E, Li Y, Loike D, Silverstein SC, Loike JD. Different G
i
‐coupled chemoattractant receptors signal qualitatively different functions in human neutrophils. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.5.798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Miles Berger
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Sadna Budhu
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Emily Lu
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Yongmei Li
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Devora Loike
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Samuel C. Silverstein
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York
| | - John D. Loike
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
10
|
Altmann A, Fischer L, Schubert-Zsilavecz M, Steinhilber D, Werz O. Boswellic acids activate p42(MAPK) and p38 MAPK and stimulate Ca(2+) mobilization. Biochem Biophys Res Commun 2002; 290:185-90. [PMID: 11779151 DOI: 10.1006/bbrc.2001.6153] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we show that extracts of Boswellia serrata gum resins and its constituents, the boswellic acids (BAs), activate the mitogen-activated protein kinases (MAPK) p42(MAPK) and p38 in isolated human polymorphonuclear leukocytes (PMNL). MAPK activation was rapid and transient with maximal activation after 1-2.5 min of exposure and occurred in a dose-dependent manner. The keto-BAs (11-keto-beta-BA and 3-O-acetyl-11-beta-keto-BA) gave substantial kinase activation at 30 microM, whereas other BAs lacking the 11-keto group were less effective. Moreover, 11-keto-BAs induced rapid and prominent mobilization of free Ca(2+) in PMNL. Inhibitor studies revealed that phosphatidylinositol 3-kinase (PI 3-K) is involved in BA-induced MAPK activation, whereas a minor role was apparent for protein kinase C. MAPK activation by 3-O-acetyl-11-beta-keto-BA was partially inhibited when Ca(2+) was removed by chelation. Our results suggest that 11-keto-BAs might function as potent activators of PMNL by stimulation of MAPK and mobilization of intracellular Ca(2+).
Collapse
Affiliation(s)
- Anja Altmann
- Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie Strasse 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
11
|
Nijhuis E, Lammers JJ, Koenderman L, Coffer PJ. Src kinases regulate PKB activation and modulate cytokine and chemoattractant‐controlled neutrophil functioning. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.1.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Evert Nijhuis
- Department of Pulmonary Diseases, G03.550, University Medical Centre Utrecht, The Netherlands
| | - Jan‐Willem J Lammers
- Department of Pulmonary Diseases, G03.550, University Medical Centre Utrecht, The Netherlands
| | - Leo Koenderman
- Department of Pulmonary Diseases, G03.550, University Medical Centre Utrecht, The Netherlands
| | - Paul J. Coffer
- Department of Pulmonary Diseases, G03.550, University Medical Centre Utrecht, The Netherlands
| |
Collapse
|
12
|
Zhang N, Long Y, Devreotes PN. Ggamma in dictyostelium: its role in localization of gbetagamma to the membrane is required for chemotaxis in shallow gradients. Mol Biol Cell 2001; 12:3204-13. [PMID: 11598203 PMCID: PMC60167 DOI: 10.1091/mbc.12.10.3204] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
G-protein-mediated signal transduction pathways play an essential role in the developmental program of the simple eukaryotic organism Dictyostelium discoideum. Database searches have yielded 11 Galpha-subunits, a single Gbeta-subunit, but no Ggamma-subunits. We report here the purification, cDNA isolation, and functional analysis of a Ggamma-subunit. Like Gbeta, the Ggamma appears to be unique and hybridization studies show that Ggamma and Gbeta are expressed in parallel during development. Species-wide sequence comparisons of Ggamma-subunits and gamma-like domains of RGS proteins reveal short stretches of highly conserved residues as well as the common CXXL motif at the COOH-terminal of Ggammas that target Gbetagammas to plasma membrane. Overexpression of a CSVL-deleted Ggamma (GgammaDelta) in wild-type cells shifts Gbetagamma to the cytosol and selectively impairs certain G-protein-mediated signal transduction pathways. These cells are able to respond to increments in the stimulus, but are unable to sense chemoattractant gradients. They neither move directionally nor recruit PH-domains to their leading edge. Thus, a full complement of membrane-tethered Gbetagamma is required for sensing shallow gradients, but is not essential for responses to increments in extracellular stimuli.
Collapse
Affiliation(s)
- N Zhang
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
13
|
Dewas C, Fay M, Gougerot-Pocidalo MA, El-Benna J. The mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway is involved in formyl-methionyl-leucyl-phenylalanine-induced p47phox phosphorylation in human neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5238-44. [PMID: 11046057 DOI: 10.4049/jimmunol.165.9.5238] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphorylation of p47 phagocyte oxidase, (p47(phox)), one of the NADPH oxidase components, is essential for the activation of this enzyme and for superoxide production. p47(phox) is phosphorylated on multiple serine residues, but the kinases involved in this process in vivo remain to be characterized. We examined the role of extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinase in p47(phox) phosphorylation. Inhibition of ERK1/2 activation by PD98059, a specific inhibitor of ERK kinase 1/2, inhibited the fMLP-induced phosphorylation of p47(phox). However, PD98059 weakly affected PMA-induced p47(phox) phosphorylation, even though ERK1/2 activation was abrogated. This effect was confirmed using U0126, a second ERK kinase inhibitor. Unlike PD98059 and U0126, the p38 mitogen-activated protein kinase inhibitor SB203580 did not inhibit the phosphorylation of p47(phox) induced either by fMLP or by PMA. Two-dimensional phosphopeptide mapping analysis showed that, in fMLP-induced p47(phox) phosphorylation, PD98059 affected the phosphorylation of all the major phosphopeptides, suggesting that ERK1/2 may regulate p47(phox) phosphorylation either directly or indirectly via other kinases. In PMA-induced p47(phox) phosphorylation, GF109203X, a protein kinase C inhibitor, strongly inhibits p47(phox) phosphorylation. However, in fMLP-induced p47(phox) phosphorylation, PD98059 and GF109203X partially inhibited the phosphorylation of p47(phox) when tested alone, and exerted additive inhibitory effects on p47(phox) phosphorylation when tested together. These results show for the first time that the ERK1/2 pathway participates in the phosphorylation of p47(phox). Furthermore, they strongly suggest that p47(phox) is targeted by several kinase cascades in intact neutrophils activated by fMLP and is therefore a converging point for ERK1/2 and protein kinase C.
Collapse
Affiliation(s)
- C Dewas
- Institut National de la Santé et de la Recherche Médicale, Unité 479, Centre Hospitalier Universitaire Xavier Bichat, Paris, France
| | | | | | | |
Collapse
|
14
|
Adachi T, Choudhury BK, Stafford S, Sur S, Alam R. The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2198-204. [PMID: 10925307 DOI: 10.4049/jimmunol.165.4.2198] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation of eosinophils by cytokines is a major event in the pathogenesis of allergic diseases. We have investigated the activation of mitogen-activated protein (MAP) kinases and their functional relevance in eosinophil differentiation, survival, degranulation, and cytokine production. IL-5 induced phosphorylation and activation of extracellular signal-regulated kinases (ERK) and p38 MAP kinases in eosinophils. PD98059, a MAP/ERK kinase inhibitor, blocked phosphorylation of ERK1/2 in a dose-dependent manner. SB202190, a p38 inhibitor, blocked p38-dependent phosphorylation of activating transcription factor-2. To study the importance of the MAP kinases on eosinophil differentiation, we cultured mouse bone marrow cells with IL-3 and IL-5 in the presence of the inhibitors. SB202190 dramatically inhibited eosinophil differentiation by 71%. PD98059 was less potent and reduced eosinophil differentiation by 28%. Both inhibitors marginally inhibited eosinophil survival only at the highest doses. Prolonged incubation of eosinophils with IL-5 induced significant eosinophil-derived neurotoxin release. Both PD98059 and SB202190 nearly completely inhibited (87% and 100% inhibition, respectively) IL-5-stimulated eosinophil-derived neurotoxin release in a dose-dependent manner. Next, we examined the effect of the MAP kinase inhibitors on eosinophil production of the cytokine macrophage-inflammatory protein (MIP)-1alpha. PD98059 blocked C5a- but not ionomycin-induced MIP-1alpha production (59% inhibition at 50 microM concentration). In contrast, SB202190 nearly completely inhibited (99%) C5a-induced MIP-1alpha production. Further, it blocked ionomycin-stimulated production by 66%. Our results suggest that both p38 and ERK1/2 MAP kinases play an important role in eosinophil differentiation, cytokine production, and degranulation. The p38 MAP kinase plays a greater role than ERK1/2 in eosinophil differentiation and cytokine production.
Collapse
Affiliation(s)
- T Adachi
- Department of Internal Medicine, Division of Allergy and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
15
|
Smolen JE, Petersen TK, Koch C, O'Keefe SJ, Hanlon WA, Seo S, Pearson D, Fossett MC, Simon SI. L-selectin signaling of neutrophil adhesion and degranulation involves p38 mitogen-activated protein kinase. J Biol Chem 2000; 275:15876-84. [PMID: 10748078 DOI: 10.1074/jbc.m906232199] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adhesion molecules known as selectins mediate the capture of neutrophils from the bloodstream. We have previously reported that ligation and cross-linking of L-selectin on the neutrophil surface enhances the adhesive function of beta(2)-integrins in a synergistic manner with chemotactic agonists. In this work, we examined degranulation and adhesion of neutrophils in response to cross-linking of L-selectin and addition of interleukin-8. Cross-linking of L-selectin induced priming of degranulation that was similar to that observed with the alkaloid cytochalasin B. Activation mediated by L-selectin of neutrophil shape change and adhesion through CD11b/CD18 were strongly blocked by Merck C, an imidazole-based inhibitor of p38 mitogen-activated protein kinase (MAPK), but not by a structurally similar non-binding regioisomer. Priming by L-selectin of the release of secondary, tertiary, and secretory, but not primary, granules was blocked by inhibition of p38 MAPK. Peak phosphorylation of p38 MAPK was observed within 1 min of cross-linking L-selectin, whereas phosphorylation of ERK1/2 was highest at 10 min. Phosphorylation of p38 MAPK, but not ERK1/2, was inhibited by Merck C. These data suggest that signal transduction as a result of clustering L-selectin utilizes p38 MAPK to effect neutrophil shape change, integrin activation, and the release of secondary, tertiary, and secretory granules.
Collapse
Affiliation(s)
- J E Smolen
- Department of Pediatrics, Leukocyte Biology Section, Baylor College of Medicine, Houston, Texas 77030-2600, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Thommesen L, Nørsett K, Sandvik AK, Hofsli E, Laegreid A. Regulation of inducible cAMP early repressor expression by gastrin and cholecystokinin in the pancreatic cell line AR42J. J Biol Chem 2000; 275:4244-50. [PMID: 10660591 DOI: 10.1074/jbc.275.6.4244] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The CREM gene encodes both activators and repressors of cAMP-induced transcription. Inducible cAMP early repressor (ICER) isoforms are generated upon activation of an alternative, intronic promoter within the CREM gene. ICER is proposed to down-regulate both its own expression and the expression of other genes that contain cAMP-responsive elements such as a number of growth factors. Thus, ICER has been postulated to play a role in proliferation and differentiation. Here we show that ICER gene expression is induced by gastrin, cholecystokinin (CCK), and epidermal growth factor in AR42J cells. The time course of gastrin- and CCK-mediated ICER induction is rapid and transient, similar to forskolin- and phorbol 12-myristate 13-acetate-induced ICER expression. The specific CCK-B receptor antagonist L740,093 blocks the gastrin but not the CCK response, indicating that both the CCK-B and the CCK-A receptor can mediate ICER gene activation. Noteworthy, CREB is constitutively phosphorylated at Ser-133 in AR42J cells, and ICER induction proceeds in the absence of increased CREB Ser(P)-133. Gastrin-mediated ICER induction was not reduced in the presence of the protein kinase A inhibitor H-89, indicating a protein kinase A-independent mechanism. This is the first report on ICER inducibility via G(q)/G(11) protein-coupled receptors.
Collapse
Affiliation(s)
- L Thommesen
- Department of Physiology and Biomedical Engineering, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|
17
|
Dang PM, Dewas C, Gaudry M, Fay M, Pedruzzi E, Gougerot-Pocidalo MA, El Benna J. Priming of human neutrophil respiratory burst by granulocyte/macrophage colony-stimulating factor (GM-CSF) involves partial phosphorylation of p47(phox). J Biol Chem 1999; 274:20704-8. [PMID: 10400704 DOI: 10.1074/jbc.274.29.20704] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neutrophil superoxide production can be potentiated by prior exposure to "priming" agents such as granulocyte/macrophage colony stimulating factor (GM-CSF). Because the mechanism underlying GM-CSF-dependent priming is not understood, we investigated the effects of GM-CSF on the phosphorylation of the cytosolic NADPH oxidase components p47(phox) and p67(phox). Preincubation of neutrophils with GM-CSF alone increased the phosphorylation of p47(phox) but not that of p67(phox). Addition of formyl-methionyl-leucyl-phenylalanine (fMLP) to GM-CSF-pretreated neutrophils resulted in more intense phosphorylation of p47(phox) than with GM-CSF alone and fMLP alone. GM-CSF-induced p47(phox) phosphorylation was time- and concentration-dependent and ran parallel to the priming effect of GM-CSF on superoxide production. Two-dimensional tryptic peptide mapping of p47(phox) showed that GM-CSF induced phosphorylation of one major peptide. fMLP alone induced phosphorylation of several peptides, an effect enhanced by GM-CSF pretreatment. In contrast to fMLP and phorbol 12-myristate 13-acetate, GM-CSF-induced phosphorylation of p47(phox) was not inhibited by the protein kinase C inhibitor GF109203X. The protein-tyrosine kinase inhibitor genistein and the phosphatidylinositol 3-kinase inhibitor wortmannin inhibited the phosphorylation of p47(phox) induced by GM-CSF and by fMLP but not that induced by phorbol 12-myristate 13-acetate. GM-CSF alone did not induce p47(phox) or p67(phox) translocation to the membrane, but neutrophils treated consecutively with GM-CSF and fMLP showed an increase (compared with fMLP alone) in membrane translocation of p47(phox) and p67(phox). Taken together, these results show that the priming action of GM-CSF on the neutrophil respiratory burst involves partial phosphorylation of p47(phox) on specific serines and suggest the involvement of a priming pathway regulated by protein-tyrosine kinase and phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- P M Dang
- INSERM U. 479, Centre Hospitalier Universitaire Xavier Bichat, Faculté de Medecine, 16 rue Henri Huchard, 75018 Paris, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Hii CS, Stacey K, Moghaddami N, Murray AW, Ferrante A. Role of the extracellular signal-regulated protein kinase cascade in human neutrophil killing of Staphylococcus aureus and Candida albicans and in migration. Infect Immun 1999; 67:1297-302. [PMID: 10024574 PMCID: PMC96460 DOI: 10.1128/iai.67.3.1297-1302.1999] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Killing of Staphylococcus aureus and Candida albicans by neutrophils involves adherence of the microorganisms, phagocytosis, and a collaborative action of oxygen reactive species and components of the granules. While a number of intracellular signalling pathways have been proposed to regulate neutrophil responses, the extent to which each pathway contributes to the killing of S. aureus and C. albicans has not been clearly defined. We have therefore examined the effect of blocking one such pathway, the extracellular signal-regulated protein kinase (ERK) cascade, using the specific inhibitor of the mitogen-activated protein kinase/ERK kinase, PD98059, on the ability of human neutrophils to kill S. aureus and C. albicans. Our data demonstrate the presence of ERK2 and a 43-kDa form of ERK but not ERK1 in human neutrophils. Upon stimulation with formyl methionyl leucyl phenylalanine (fMLP), the activities of both ERK2 and the 43-kDa form were stimulated. Despite abrogating the activity of both ERK forms, PD98059 only slightly reduced the ability of neutrophils to kill S. aureus or C. albicans. This is consistent with our finding that PD98059 had no effect on neutrophil adherence or degranulation, although pretreatment of neutrophils with PD98059 inhibited fMLP-stimulated superoxide production by 50%, suggesting that a change in superoxide production per se is not strictly correlated with microbicidal activity. However, fMLP-stimulated chemokinesis was markedly inhibited, while random migration and fMLP-stimulated chemotaxis were partially inhibited, by PD98059. These data demonstrate, for the first time, that the ERK cascade plays only a minor role in the microbicidal activity of neutrophils and that the ERK cascade is involved primarily in regulating neutrophil migration in response to fMLP.
Collapse
Affiliation(s)
- C S Hii
- Department of Immunopathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
19
|
Aoshiba K, Yasui S, Hayashi M, Tamaoki J, Nagai A. Role of p38-Mitogen-Activated Protein Kinase in Spontaneous Apoptosis of Human Neutrophils. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Neutrophils constitutively undergo apoptosis at both normal and inflamed sites: an important process that limits the toxic potential of the neutrophil. However, the signal pathway for neutrophil apoptosis is currently unknown. In this study, we evaluated the role of p38-mitogen-activated protein kinase (MAPK) in the spontaneous apoptosis of neutrophils in vitro. We found that p38-MAPK was constitutively tyrosine phosphorylated and activated during spontaneous apoptosis of neutrophils. Inhibition of p38-MAPK by SB203580 and an antisense oligonucleotide delayed apoptosis by approximately 24 h. The antioxidants catalase and N-acetylcysteine delayed neutrophil apoptosis, but failed to inhibit phosphorylation and activation of p38-MAPK. Granulocyte-macrophage CSF and anti-Fas Ab, which altered the rate of apoptosis, did not affect phosphorylation and activation of p38-MAPK. These results suggest that the constitutive phosphorylation and activation of p38-MAPK are involved in the program of spontaneous apoptosis in neutrophils.
Collapse
Affiliation(s)
- Kazutetsu Aoshiba
- Department of Medicine, Chest Institute, Tokyo Women’s Medical College, Tokyo, Japan
| | - Shuji Yasui
- Department of Medicine, Chest Institute, Tokyo Women’s Medical College, Tokyo, Japan
| | - Mitsutoshi Hayashi
- Department of Medicine, Chest Institute, Tokyo Women’s Medical College, Tokyo, Japan
| | - Jun Tamaoki
- Department of Medicine, Chest Institute, Tokyo Women’s Medical College, Tokyo, Japan
| | - Atsushi Nagai
- Department of Medicine, Chest Institute, Tokyo Women’s Medical College, Tokyo, Japan
| |
Collapse
|
20
|
Zhang H, Garlichs CD, Mügge A, Daniel WG. Involvement of tyrosine kinases, Ca2+ and PKC in activation of mitogen-activated protein (MAP) kinase in human polymorphonuclear neutrophils. J Physiol 1998; 513 ( Pt 2):359-67. [PMID: 9806988 PMCID: PMC2231303 DOI: 10.1111/j.1469-7793.1998.359bb.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. Activation of mitogen-activated protein (MAP) kinase is an early response to a wide variety of stimuli and plays an important role in the regulation of cellular functions. In the present study we investigated the activation of MAP kinase in human polymorphonuclear neutrophils (PMNs). 2. Activity of MAP kinase and protein kinase C (PKC) was measured radiometrically from the rate of phosphorylation of specific peptide substrates. Protein phosphorylation was measured by immunoprecipitation and Western blot analysis. 3. N-Formyl-Met-Leu-Phe (fMLP), phorbol 12-myristate, 13-acetate (PMA) and the Ca2+-ATPase inhibitors thapsigargin (Tg) and cyclopiazonic acid (CPA) increased MAP kinase activity significantly. The tyrosine kinase inhibitors erbstatin and herbimycin A partially inhibited the effects of fMLP and PMA, and completely abolished the effects of both Tg and CPA. The specific PKC inhibitor calphostin C suppressed activation of MAP kinase produced by fMLP and PMA, but had no effect on that produced by Tg and CPA. Tg and CPA were without effect on PKC activity. 4. Immunoprecipitation and Western blot analysis indicated that the 42 and 44 kDa tyrosine-phosphorylated proteins found after stimulation of PMNs were both members of the MAP kinase family. Pretreatment of PMNs with staurosporine, EGTA or erbstatin significantly reduced the tyrosine phosphorylation of MAP kinase(s). 5. These results suggest that in human PMNs, MAP kinase can be stimulated in both a PKC-dependent and a PKC-independent manner. The Ca2+ signal leads to activation of tyrosine kinases, which contribute to the activation of MAP kinase. However, a PMA-sensitive Ca2+-independent pathway also exists. Mobilization of Ca2+ and activation of PKC synergistically induce maximal MAP kinase activation and tyrosine phosphorylation.
Collapse
Affiliation(s)
- H Zhang
- Department of Cardiology, Medical Clinic II, Friedrich-Alexander-University Erlangen-Nurnberg, D-91054 Erlangen,
| | | | | | | |
Collapse
|
21
|
Huang R, Lian JP, Robinson D, Badwey JA. Neutrophils stimulated with a variety of chemoattractants exhibit rapid activation of p21-activated kinases (Paks): separate signals are required for activation and inactivation of paks. Mol Cell Biol 1998; 18:7130-8. [PMID: 9819399 PMCID: PMC109294 DOI: 10.1128/mcb.18.12.7130] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/1998] [Accepted: 09/14/1998] [Indexed: 02/04/2023] Open
Abstract
Activation of the p21-activated protein kinases (Paks) was compared in neutrophils stimulated with a wide variety of agonists that bind to receptors coupled to heterotrimeric G proteins. Neutrophils stimulated with sulfatide, a ligand for the L-selectin receptor, or the chemoattractant fMet-Leu-Phe (fMLP), platelet-activating factor, leukotriene B4, interleukin-8, or the chemokine RANTES exhibited a rapid and transient activation of the 63- and 69-kDa Paks. These kinases exhibited maximal activation with each of these agonists within 15 s followed by significant inactivation at 3 min. In contrast, neutrophils treated with the chemoattractant and anaphylatoxin C5a exhibited a prolonged activation (>15 min) of these Paks even though the receptor for this ligand may activate the same overall population of complex G proteins as the fMLP receptor. Addition of fMLP to neutrophils already stimulated with C5a resulted in the inactivation of the 63- and 69-kDa Paks. Optimal activation of Paks could be observed at concentrations of these agonists that elicited only shape changes and chemotaxis in neutrophils. While all of the agonists listed above triggered quantitatively similar activation of the 63- and 69-kDa Paks, fMLP was far superior to the other stimuli in triggering activation of the c-Jun N-terminal kinase (JNK) and the p38 mitogen-activated protein kinase (MAPK). These data indicate that separate signals are required for activation and inactivation of Paks and that, in contrast to other cell types, activated Pak does not trigger activation of JNK or p38-MAPK in neutrophils. These results are consistent with the recent hypothesis that G-protein-coupled receptors may initiate signals independent of those transmitted by the alpha and betagamma subunits of complex G proteins.
Collapse
Affiliation(s)
- R Huang
- Arthritis Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
22
|
Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 1998; 95:81-91. [PMID: 9778249 DOI: 10.1016/s0092-8674(00)81784-5] [Citation(s) in RCA: 499] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Directional sensing by eukaryotic cells does not require polarization of chemoattractant receptors. The translocation of the PH domain-containing protein CRAC in D. discoideum to binding sites on the inner face of the plasma membrane reflects activation of the G protein-linked signaling system. Increments in chemoattractant elicit a uniform response around the cell periphery. Yet when cells are exposed to a gradient, the activation occurs selectively at the stimulated edge, even in immobilized cells. We propose that such localized activation, transmitted by the recruitment of cytosolic proteins, may be a general mechanism for gradient sensing by G protein-linked chemotactic systems including those involving chemotactic cytokines in leukocytes.
Collapse
Affiliation(s)
- C A Parent
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
We have investigated the role of actin polymerization in the defective polymorphonuclear neutrophil (PMN) chemotaxis of the human newborn, and its regulation by protein kinase C and by phosphatases 1 and 2A. Isolated PMNs from adult volunteers and healthy term newborns, i.e. umbilical cord blood, were studied. Chemotaxis was measured by a modified micropore filter assay, and actin polymerization was assessed by flow cytometry. Chemotaxis of newborn PMNs (median 18 microm, range 9-21 microm) was significantly reduced compared with adult PMNs (median 23 microm, range 17-34 microm) (p < 0.001). Coincubation with the protein kinase C inhibitor bisindolylmaleimide GF109203X, did not significantly alter chemotaxis, whereas coincubation with the phosphatase inhibitors calyculin A or okadaic acid caused parallel dose-dependent inhibition of chemotaxis in adult and newborn PMNs. Peak actin polymerization was reduced in newborn compared with adult PMNs in response to stimulation with formyl-methionyl-leucyl-phenylalanine and zymosan-activated serum, but was normal in response to phorbol myristate acetate. Prior incubation for 5 min with bisindolylmaleimide GF109203X, calyculin A, or okadaic acid caused no significant alterations in the actin polymerization response to stimulation with formyl-methionyl-leucyl-phenylalanine. We conclude that: 1) newborn PMNs have reduced actin polymerization in response to stimulation with chemotactic agents which act via cell surface receptors, but not with phorbol myristate acetate, which acts directly in the cytoplasm. This suggests that a defect in cell signal transduction may be an underlying factor in defective newborn PMN chemotaxis. 2) Phosphatase inhibitors strongly inhibit chemotaxis but not actin polymerization, therefore phosphatases 1 and 2A may be important regulators of PMN chemotaxis, but this regulation takes place either at a point distal to actin polymerization or via another pathway. 3) Similar results in adult and newborn PMNs suggest that this is not the site of the underlying defect in newborn PMN chemotaxis.
Collapse
Affiliation(s)
- C Merry
- Children's Research Centre, Our Lady's Hospital for Sick Children, Crumlin, Dublin, Ireland
| | | | | |
Collapse
|
24
|
Kosaka C, Khosla M, Weeks G, Pears C. Negative influence of RasG on chemoattractant-induced ERK2 phosphorylation in Dictyostelium. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1402:1-5. [PMID: 9551080 DOI: 10.1016/s0167-4889(98)00010-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Dictyostelium ERK2 protein is transiently activated when cells are treated with the chemotactic agents cAMP or folic acid. Activating phosphorylation is markedly inhibited in strains overexpressing the constitutively activated RasG protein. This is in marked contrast to mammalian cells where the highly related mitogen-activated protein kinases (MAPKs) are stimulated by Ras activation.
Collapse
Affiliation(s)
- C Kosaka
- Biochemistry Department, Oxford University, UK
| | | | | | | |
Collapse
|
25
|
Mócsai A, Bánfi B, Kapus A, Farkas G, Geiszt M, Buday L, Faragó A, Ligeti E. Differential effects of tyrosine kinase inhibitors and an inhibitor of the mitogen-activated protein kinase cascade on degranulation and superoxide production of human neutrophil granulocytes. Biochem Pharmacol 1997; 54:781-9. [PMID: 9353132 DOI: 10.1016/s0006-2952(97)00245-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of two different tyrosine kinase inhibitors (genistein and erbstatin analog) and an inhibitor (2'-amino-3'-methoxyflavone; PD98059) of the mitogen-activated protein (MAP) kinase kinase on the primary granule exocytosis and superoxide (O2.-) production of human neutrophil granulocytes were compared. The effector responses induced by stimulation of the chemotactic receptors by formyl-methionyl-leucyl-phenylalanine and platelet-activating factor were blocked both by genistein and erbstatin analog. In contrast, degranulation and O2.- production triggered by the activation of protein kinase C with phorbol-12-myristate-13-acetate were reduced by erbstatin analog but not by genistein. This inhibitory pattern was observed in both effector responses, but the sensitivity of O2.- production toward tyrosine kinase inhibition was markedly higher than that of degranulation. PD98059 caused no considerable effect on any of the above responses. The data presented indicate that tyrosine kinases are involved not only in the respiratory burst but also in the organization of the degranulation response of neutrophil granulocytes. It is suggested that several tyrosine kinases of different inhibitor sensitivity may participate in the transduction of extracellular signals. However, activation of the MAP kinase cascade does not appear to be involved in either of the investigated biological responses of the neutrophils.
Collapse
Affiliation(s)
- A Mócsai
- Department of Physiology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sue-A-Quan AK, Fialkow L, Vlahos CJ, Schelm JA, Grinstein S, Butler J, Downey GP. Inhibition of neutrophil oxidative burst and granule secretion by wortmannin: potential role of MAP kinase and renaturable kinases. J Cell Physiol 1997; 172:94-108. [PMID: 9207930 DOI: 10.1002/(sici)1097-4652(199707)172:1<94::aid-jcp11>3.0.co;2-o] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Exposure of neutrophils to a variety of agonists including soluble chemoattractant peptides and cytokines results in degranulation and activation of the oxidative burst (effector functions) that are required for bacterial killing. At present, the signaling pathways regulating these important functions are incompletely characterized. Mitogen-activated protein (MAP) kinases (MAPK) as well as members of a family of "renaturable kinases" are rapidly activated in neutrophils in response to diverse physiological agonists, suggesting that they may regulate cell activation. Antagonists of phosphatidyl inositol-3-(OH) kinase (PI3-kinase) such as wortmannin (Wtmn) inhibit these effector responses as well as certain of the above-mentioned kinases, leading to the suggestion that these enzymes lie downstream of PI3-kinase in the pathway regulating the oxidative burst and granule secretion. However, an apparent discrepancy exists in that, while virtually obliterating activity of PI3-kinase and the oxidase at low concentrations (ID50 < 20 nM), Wtmn has only variable inhibitory effects on MAPK even at substantially higher concentrations (75-100 nM). This raises the possibility that the inhibitory effects of Wtmn are mediated via other enzyme systems. The purpose of the current study was therefore to compare the effects of Wtmn on PI3-kinase activity and on the chemoattractant-activated kinases, and to determine the potential relationship of these pathways to microbicidal responses. In human neutrophils, both the oxidative burst and granule secretion induced by fMLP were inhibited by Wtmn but at markedly different concentrations: the oxidative burst was inhibited with an ID50 of < 5 nM while granule secretion was only partially inhibited at concentrations exceeding 75 nM. Activation of both MEK-1 and MAPK in response to fMLP was only partially inhibited by high doses of Wtmn (ID50 of > 100 nM and approximately 75 nM, respectively). In contrast, Wtmn potently inhibited fMLP-induced activation of the 63 and 69 kDa renaturable kinases (ID50 approximately 5-10 nM). We speculate that the renaturable kinases may be involved in the regulation of the oxidative burst, whereas the MAPK pathway may play a role in other neutrophil functions such as granule secretion.
Collapse
Affiliation(s)
- A K Sue-A-Quan
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Waite KA, Wallin R, Qualliotine-Mann D, McPhail LC. Phosphatidic acid-mediated phosphorylation of the NADPH oxidase component p47-phox. Evidence that phosphatidic acid may activate a novel protein kinase. J Biol Chem 1997; 272:15569-78. [PMID: 9182594 DOI: 10.1074/jbc.272.24.15569] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phosphatidic acid (PA), generated by phospholipase D activation, has been linked to the activation of the neutrophil respiratory burst enzyme, NADPH oxidase; however, the intracellular enzyme targets for PA remain unclear. We have recently shown (McPhail, L. C., Qualliotine-Mann, D., and Waite, K. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7931-7935) that a PA-activated protein kinase is involved in the activation of NADPH oxidase in a cell-free system. This protein kinase phosphorylates numerous endogenous proteins, including p47-phox, a component of the NADPH oxidase complex. Phospholipids other than PA were less effective at inducing endogenous protein phosphorylation. Several of these endogenous substrates were also phosphorylated during stimulation of intact cells by opsonized zymosan, an agonist that induces phospholipase D activation. We sought to identify the PA-activated protein kinase that phosphorylates p47-phox. The PA-dependent protein kinase was shown to be cytosolic. cis-Unsaturated fatty acids were poor inducers of protein kinase activity, suggesting that the PA-activated protein kinase is not a fatty acid-regulated protein kinase (e.g. protein kinase N). Chromatographic techniques separated the PA-activated protein kinase from a number of other protein kinases known to be activated by PA or to phosphorylate p47-phox. These included isoforms of protein kinase C, p21 (Cdc42/Rac)-activated protein kinase, and mitogen-activated protein kinase. Gel filtration chromatography indicated that the protein kinase has an apparent molecular size of 125 kDa. Screening of cytosolic fractions from several cell types and rat brain suggested the enzyme has widespread cell and tissue distribution. The partially purified protein kinase was sensitive to the same protein kinase inhibitors that diminished NADPH oxidase activation and was independent of guanosine 5'-3-O-(thio)triphosphate and Ca2+. Phosphoamino acid analysis showed that serine and tyrosine residues were phosphorylated on p47-phox by this kinase(s). These data indicate that one or more potentially novel protein kinases are targets for PA in neutrophils and other cell types. Furthermore, a PA-activated protein kinase is likely to be an important regulator of the neutrophil respiratory burst by phosphorylation of the NADPH oxidase component p47-phox.
Collapse
Affiliation(s)
- K A Waite
- Department of Biochemistry and Medicine, Wake Forest University Medical Center, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- P J Coffer
- Department of Pulmonary Diseases, University Hospital Utrecht, The Netherlands
| | | |
Collapse
|
29
|
Knall C, Worthen GS, Johnson GL. Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc Natl Acad Sci U S A 1997; 94:3052-7. [PMID: 9096344 PMCID: PMC20320 DOI: 10.1073/pnas.94.7.3052] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1996] [Accepted: 01/15/1997] [Indexed: 02/04/2023] Open
Abstract
Chemoattractants and chemokines, such as interleukin 8 (IL-8), are defined by their ability to induce directed cell migration of responsive cells. The signal transduction pathway(s) leading to cell migration remain ill defined. We demonstrate that phosphatidylinositol-3-kinase (PI3K) activity, as determined by inhibition using wortmannin and LY294002, is required for IL-8-induced cell migration of human neutrophils. Recently we reported that IL-8 caused the activation of the Ras/Raf/extracellular signal-regulated kinase (ERK) pathway in human neutrophils and that this activation was dependent on PI3K activity. The regulation of cell migration by IL-8 is independent of ERK kinase and ERK activation since the ERK kinase inhibitor PD098059 had no effect on IL-8-induced cell migration of human neutrophils. Additionally, activation of p38-mitogen-activated protein kinase is insufficient and activation of c-Jun N-terminal kinase is unnecessary to induce cell migration of human neutrophils. Therefore, regulation of neutrophil migration appears to be largely independent of the activation of the mitogen-activated protein kinases. The data argue that PI3K activity plays a central role in multiple signal transduction pathways within the human neutrophil leading to distinct cell functions.
Collapse
Affiliation(s)
- C Knall
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | |
Collapse
|
30
|
Downey GP, Butler JR, Brumell J, Borregaard N, Kjeldsen L, Sue-A-Quan AK, Grinstein S. Chemotactic peptide-induced activation of MEK-2, the predominant isoform in human neutrophils. Inhibition by wortmannin. J Biol Chem 1996; 271:21005-1011. [PMID: 8702863 DOI: 10.1074/jbc.271.35.21005] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Exposure of neutrophils to a variety of agonists including chemoattractant peptides and cytokines induces degranulation and activation of the oxidative burst which are required for bacterial killing. The signaling pathways regulating these important functions are incompletely characterized. Mitogen-activated protein (MAP) kinases, which include the extracellular signal-regulated kinases (ERKs), are activated rapidly in neutrophils, suggesting that they may regulate cell activation. We found that neutrophils express two isoforms of MAP/ERK kinase (MEK), mixed-function kinases that are responsible for phosphorylation and activation of ERK. Like MEK-1, MEK-2 was found to reside in the cytosol both before and after stimulation. Studies were undertaken to define the relative abundance and functional contribution of MEK-1 and MEK-2 in neutrophils and to characterize the signaling pathways leading to their activation. Although the abundance of the two isoforms was similar, the activity of MEK-2 was at least 3-fold greater than that of MEK-1. A rise in cytosolic [Ca2+] was insufficient for MEK stimulation, and blunting the [Ca2+] change with intracellular chelators failed to prevent receptor-mediated activation of either isoform, implying that cytosolic Ca2+ transients are not necessary. In contrast, both MEK-1 and MEK-2 were activated by exposure of cells to protein kinase C (PKC) agonists. Conversely, PKC antagonists inhibited the chemotactic stimulation of both isoforms, suggesting that PKC was required for their activation. Despite these similarities, clear differences were also found in the pathways leading to activation of the MEK isoforms. In particular, MEK-2 was considerably more sensitive than MEK-1 to the phosphatidylinositol 3-kinase inhibitor wortmannin. Phosphorylation and activation of ERK-1 and ERK-2 were also reduced by this inhibitor. In summary, MEK-2 is stimulated in formyl-methionyl-leucyl-phenylalanine-treated neutrophils, where it appears to be functionally the predominant isoform. The time course and inhibitor sensitivity of MEK-2 activation parallel those of several components of the microbicidal response, suggesting a signaling role of the MEK-ERK pathway.
Collapse
Affiliation(s)
- G P Downey
- Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
O'Flaherty JT, Kuroki M, Nixon AB, Wijkander J, Yee E, Lee SL, Smitherman PK, Wykle RL, Daniel LW. 5-Oxo-eicosanoids and hematopoietic cytokines cooperate in stimulating neutrophil function and the mitogen-activated protein kinase pathway. J Biol Chem 1996; 271:17821-8. [PMID: 8663432 DOI: 10.1074/jbc.271.30.17821] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The newly defined eicosatetraenoates (ETEs), 5-oxoETE and 5-oxo-15(OH)-ETE, share structural motifs, synthetic origins, and bioactions with leukotriene B4 (LTB4). All three eicosanoids stimulate Ca2+ transients and chemotaxis in human neutrophils (PMN). However, unlike LTB4, 5-oxoETE and 5-oxo-15(OH)-ETE alone cause little degranulation and no superoxide anion production. However, we show herein that, in PMN pretreated with granulocyte-macrophage or granulocyte colony-stimulating factor (GM-CSF or G-CSF), the oxoETEs become potent activators of the last responses. The oxoETEs also induce translocation of secretory vesicles from the cytosol to the plasmalemma, an effect not requiring cytokine priming. To study the mechanism of PMN activation in response to the eicosanoids, we examined the activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2). PMN expressed three proteins (40, 42, and 44 kDa) that reacted with anti-MAPK antibodies. The oxoETEs, LTB4, GM-CSF, and G-CSF all stimulated PMN to activate the MAPKs and cPLA2, as defined by shifts in these proteins' electrophoretic mobility and tyrosine phosphorylation of the MAPKs. However, the speed and duration of the MAPK response varied markedly depending on the stimulus. 5-OxoETE caused a very rapid and transient activation of MAPK. In contrast, the response to the cytokines was rather slow and persistent. PMN pretreated with GM-CSF demonstrated a dramatic increase in the extent of MAPK tyrosine phosphorylation and electrophoretic mobility shift in response to 5-oxoETE. Similarly, 5-oxoETE induced PMN to release some preincorporated [14C]arachidonic acid, while GM-CSF greatly enhanced the extent of this release. Thus, the synergism exhibited by these agents is prominent at the level of MAPK stimulation and phospholipid deacylation. Pertussis toxin, but not Ca2+ depletion, inhibited MAPK responses to 5-oxoETE and LTB4, indicating that responses to both agents are coupled through G proteins but not dependent upon Ca2+ transients. 15-OxoETE and 15(OH)-ETE were inactive while 5-oxo-15(OH)-ETE and 5(OH)-ETE had 3- and 10-fold less potency than 5-oxoETE, indicating a rather strict structural specificity for the 5-keto group. LY 255283, a LTB4 antagonist, blocked the responses to LTB4 but not to 5-oxoETE. Therefore, the oxoETEs do not appear to operate through the LTB4 receptor. In summary, the oxoETEs are potent activators of PMN that share some but not all activities with LTB4. The response to the oxoETEs is greatly enhanced by pretreatment with cytokines, indicating that combinations of these mediators may be very important in the pathogenesis of inflammation.
Collapse
Affiliation(s)
- J T O'Flaherty
- Department of Medicine, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Torres M, Ye RD. Activation of the mitogen-activated protein kinase pathway by fMet-leu-Phe in the absence of Lyn and tyrosine phosphorylation of SHC in transfected cells. J Biol Chem 1996; 271:13244-9. [PMID: 8662760 DOI: 10.1074/jbc.271.22.13244] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The chemotactic peptide f-Met-Leu-Phe (fMLP) stimulates leukocyte functions through binding and activation of a specific G-protein-coupled formyl peptide receptor (FPR). Recent studies have shown that stimulation of neutrophils with fMLP induces the activation of two members of the mitogen-activated protein kinase (MAP kinase) family, ERK1 and ERK2, through mechanisms that are not completely understood but may involve the phosphorylation of the adapter protein SHC by the Src-related kinase Lyn. In this study, transfected fibroblasts expressing the rabbit FPR were used to investigate further the role of Lyn and SHC phosphorylation in fMLP-stimulated MAP kinase activation. Stimulation of transfected cells with fMLP resulted in the time- and dose-dependent increase in tyrosine phosphorylation and activation of ERK1 and ERK2 and the activation of MEK, the MAP kinase/ERK kinase. The activation of both ERKs and MEK was inhibited by preincubation of the cells with pertussis toxin, indicating that activation was dependent upon a Gi/Go-like protein that couples to the receptor. Our data also show that, unlike neutrophils, FPR-transfected fibroblasts do not express the Src-related kinase Lyn. In the absence of Lyn, fMLP stimulation did not result in an increased tyrosine phosphorylation of the adapter protein SHC, whereas it was still able to induce MAP kinase activation. These data suggest that Lyn and SHC are not the only upstream signals for activation of the MAP kinase/ERK pathway by fMLP and demonstrate the potential application of the FPR-transfected cells for the delineation of additional signaling mechanisms stimulated by fMLP.
Collapse
Affiliation(s)
- M Torres
- Department of Pediatrics, Childrens Hospital Los Angeles Research Institute, University of Southern California, Los Angeles, California 90027, USA
| | | |
Collapse
|
33
|
Ahmed MU, Hazeki K, Hazeki O, Katada T, Ui M. Cyclic AMP-increasing agents interfere with chemoattractant-induced respiratory burst in neutrophils as a result of the inhibition of phosphatidylinositol 3-kinase rather than receptor-operated Ca2+ influx. J Biol Chem 1995; 270:23816-22. [PMID: 7559558 DOI: 10.1074/jbc.270.40.23816] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Superoxide anion and arachidonic acid were produced in guinea pig neutrophils in response to a chemotactic peptide formyl-methionyl-leucyl-phenylalanine (fMLP). Both responses were markedly, but the former response to a phorbol ester was not at all, inhibited when the cellular cAMP level was raised by prostaglandin E1 combined with a cAMP phosphodiesterase inhibitor. Increasing cAMP was also inhibitory to fMLP-induced activation of phosphatidylinositol (PI) 3-kinase and Ca2+ influx without any effect on the cation mobilization from intracellular stores. The fMLP-induced respiratory burst was abolished when PI 3-kinase was inhibited by wortmannin or LY294002, but was not affected when Ca2+ influx was inhibited. On the contrary, fMLP released arachidonic acid from the cells treated with the PI 3-kinase inhibitors as well as from non-treated cells, but it did not so when cellular Ca2+ uptake was prevented. The chemotactic peptide activated PI 3-kinase even in cells in which the receptor-mediated intracellular Ca2+ mobilization and respiratory burst were both abolished by exposure of the cells to a permeable Ca(2+)-chelating agent. Thus, stimulation of fMLP receptors gave rise to dual effects, activation of PI 3-kinase and intracellular Ca2+ mobilization; both effects were necessary for the fMLP-induced respiratory burst. Increasing cellular cAMP inhibited the respiratory burst and arachidonic acid release as a result of the inhibitions of PI 3-kinase and Ca2+ influx, respectively, in fMLP-treated neutrophils.
Collapse
Affiliation(s)
- M U Ahmed
- Ui Laboratory, Institute of Physical and Chemical Research, Wako-shi, Japan
| | | | | | | | | |
Collapse
|
34
|
Ben-Baruch A, Michiel DF, Oppenheim JJ. Signals and receptors involved in recruitment of inflammatory cells. J Biol Chem 1995; 270:11703-6. [PMID: 7744810 DOI: 10.1074/jbc.270.20.11703] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- A Ben-Baruch
- Laboratory of Molecular Immunoregulation, NCI, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
35
|
The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31534-x] [Citation(s) in RCA: 235] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Abstract
MAP kinases (MAPK) are serine/threonine kinases which are activated by a dual phosphorylation on threonine and tyrosine residues. Their specific upstream activators, called MAP kinase kinases (MAPKK), constitute a new family of dual-specific threonine/tyrosine kinases, which in turn are activated by upstream MAP kinase kinase kinases (MAPKKK). These three kinase families are successively stimulated in a cascade of activation described in various species such as mammals, frog, fly, worm or yeast. In mammals, the MAP kinase module lies on the signaling pathway triggered by numerous agonists such as growth factors, hormones, lymphokines, tumor promoters, stress factors, etc. Targets of MAP kinase have been characterized in all subcellular compartments. In yeast, genetic epistasis helped to characterize the presence of several MAP kinase modules in the same system. By complementation tests, the relationships existing between phylogenetically distant members of each kinase family have been described. The roles of the MAP kinase cascade have been analyzed by engineering various mutations in the kinases of the module. The MAP kinase cascade has thus been implicated in higher eukaryotes in cell growth, cell fate and differentiation, and in low eukaryotes, in conjugation, osmotic stress, cell wall construct and mitosis.
Collapse
|