1
|
Malliou F, Andriopoulou CE, Gonzalez FJ, Kofinas A, Skaltsounis AL, Konstandi M. Oleuropein-Induced Acceleration of Cytochrome P450-Catalyzed Drug Metabolism: Central Role for Nuclear Receptor Peroxisome Proliferator-Activated Receptor α. Drug Metab Dispos 2021; 49:833-843. [PMID: 34162688 PMCID: PMC11022892 DOI: 10.1124/dmd.120.000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/06/2021] [Indexed: 11/22/2022] Open
Abstract
Oleuropein (OLE), the main constituent of Olea europaea, displays pleiotropic beneficial effects in health and disease, which are mainly attributed to its anti-inflammatory and cardioprotective properties. Several food supplements and herbal medicines contain OLE and are available without a prescription. This study investigated the effects of OLE on the main cytochrome P450s (P450s) catalyzing the metabolism of many prescribed drugs. Emphasis was given to the role of peroxisome proliferator-activated receptor α (PPARα), a nuclear transcription factor regulating numerous genes including P450s. 129/Sv wild-type and Ppara-null mice were treated with OLE for 6 weeks. OLE induced Cyp1a1, Cyp1a2, Cyp1b1, Cyp3a14, Cyp3a25, Cyp2c29, Cyp2c44, Cyp2d22, and Cyp2e1 mRNAs in liver of wild-type mice, whereas no similar effects were observed in Ppara-null mice, indicating that the OLE-induced effect on these P450s is mediated by PPARα. Activation of the pathways related to phosphoinositide 3-kinase/protein kinase B (AKT)/forkhead box protein O1, c-Jun N-terminal kinase, AKT/p70, and extracellular signal-regulated kinase participates in P450 induction by OLE. These data indicate that consumption of herbal medicines and food supplements containing OLE could accelerate the metabolism of drug substrates of the above-mentioned P450s, thus reducing their efficacy and the outcome of pharmacotherapy. Therefore, OLE-induced activation of PPARα could modify the effects of drugs due to their increased metabolism and clearance, which should be taken into account when consuming OLE-containing products with certain drugs, in particular those of narrow therapeutic window. SIGNIFICANCE STATEMENT: This study indicated that oleuropein, which belongs to the main constituents of the leaves and olive drupes of Olea europaea, induces the synthesis of the major cytochrome P450s (P450s) metabolizing the majority of prescribed drugs via activation of peroxisome proliferator-activated receptor α. This effect could modify the pharmacokinetic profile of co-administered drug substrates of the P450s, thus altering their therapeutic efficacy and toxicity.
Collapse
Affiliation(s)
- Foteini Malliou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Christina E Andriopoulou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Frank J Gonzalez
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Aristeidis Kofinas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| |
Collapse
|
2
|
Hasegawa T, Eiki JI, Chiba M. Interindividual variations in metabolism and pharmacokinetics of 3-(6-methylpyridine-3-yl-sulfanyl)-6-(4H-[1,2,4]triazole-3-yl-sulfanyl)-N-(1,3-thiazole-2-yl)-2-pyridine carboxamide, a glucokinase activator, in rats caused by the genetic polymorphism of CYP2D1. Drug Metab Dispos 2014; 42:1548-55. [PMID: 24924387 DOI: 10.1124/dmd.114.058081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
3-(6-Methylpyridine-3-yl-sulfanyl)-6-(4H-[1,2,4]triazole-3-yl-sulfanyl)-N-(1,3-thiazole-2-yl)-2-pyridine carboxamide (Cpd-D) is a novel glucokinase activator that is being developed for the treatment of type 2 diabetes. Large interindividual variations were observed in the pharmacokinetics of Cpd-D in male Sprague-Dawley (SD) rats, which were subsequently divided into two phenotypes; >6-fold longer terminal-phase half-life and ∼10-fold larger AUC0-∞ values were observed in slow metabolizers (SM) than in fast metabolizers (FM) after the oral administration of Cpd-D. The thiohydantoic acid analog (M2) was the predominant metabolite detected in the urine, bile, and plasma after the oral administration of [(14)C]Cpd-D to the FM phenotypes of bile-duct cannulated SD rats. The liver microsomes prepared from FM phenotyped rats extensively formed M2 with the highest affinity (Km = 0.09 μM) and largest Vmax/Km value in primary metabolism, whereas those from SM phenotypes had little capacity to form M2. Of the rat cytochrome P450 isoforms tested, the formation of M2 was only catalyzed by recombinant CYP2D1. Sequence substitutions (418A/421C and 418G/421T) were detected in the CYP2D1 gene and were designated F and S alleles, respectively. The genotype-phenotype correlation analysis indicated that two S alleles were homozygous (S/S) in the SM phenotypes, whereas the FM phenotypes were either homozygous for the F-alleles (F/F) or heterozygous (F/S). These results indicated that the CYP2D1 polymorphism caused by nucleotide substitutions (418A/421C versus 418G/421T) was responsible for interindividual variations leading to the polymorphism in the major metabolism and pharmacokinetics of Cpd-D in male SD rats.
Collapse
Affiliation(s)
- Takuro Hasegawa
- Banyu Tsukuba Research Institute, MSD K.K., Tsukuba, Ibaraki, Japan
| | - Jun-ichi Eiki
- Banyu Tsukuba Research Institute, MSD K.K., Tsukuba, Ibaraki, Japan
| | - Masato Chiba
- Banyu Tsukuba Research Institute, MSD K.K., Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Daskalopoulos EP, Lang MA, Marselos M, Malliou F, Konstandi M. D2-Dopaminergic Receptor-Linked Pathways: Critical Regulators of CYP3A, CYP2C, and CYP2D. Mol Pharmacol 2012; 82:668-78. [DOI: 10.1124/mol.112.078709] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
4
|
Daskalopoulos EP, Malliou F, Rentesi G, Marselos M, Lang MA, Konstandi M. Stress is a critical player in CYP3A, CYP2C, and CYP2D regulation: role of adrenergic receptor signaling pathways. Am J Physiol Endocrinol Metab 2012; 303:E40-54. [PMID: 22510709 DOI: 10.1152/ajpendo.00545.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress is a critical player in the regulation of the major cytochrome P-450s (CYPs) that metabolize the majority of the prescribed drugs. Early in life, maternal deprivation (MD) stress and repeated restraint stress (RS) modified CYP expression in a stress-specific manner. In particular, the expression of CYP3A1 and CYP2C11 was increased in the liver of MD rats, whereas RS had no significant effect. In contrast, hepatic CYP2D1/2 activity was increased by RS, whereas MD did not affect it. The primary effectors of the stress system, glucocorticoids and epinephrine, highly induced CYP3A1/2. Epinephrine also induced the expression of CYP2C11 and CYP2D1/2. Further investigation indicated that AR-agonists may modify CYP regulation. In vitro experiments using primary hepatocyte cultures treated with the AR-agonists phenylephrine, dexmedetomidine, and isoprenaline indicated an AR-induced upregulating effect on the above-mentioned CYPs mediated by the cAMP/protein kinase A and c-Jun NH₂-terminal kinase signaling pathways. Interestingly though, in vivo pharmacological manipulations of ARs using the same AR-agonists led to a suppressed hepatic CYP expression profile, indicating that the effect of the complex network of central and peripheral AR-linked pathways overrides that of the hepatic ARs. The AR-mediated alterations in CYP3A1/2, CYP2C11, and CYP2D1/2 expressions are potentially connected with those observed in the activation of signal transducer and activator of transcription 5b. In conclusion, stress and AR-agonists may modify the expression of the major CYP genes involved in the metabolism of drugs used in a wide range of diseases, thus affecting drug efficacy and toxicity.
Collapse
|
5
|
Hepatic drug metabolizing profile of Flinders Sensitive Line rat model of depression. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1075-84. [PMID: 20595028 DOI: 10.1016/j.pnpbp.2010.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022]
Abstract
The Flinders Sensitive Line (FSL) rat model of depression exhibits some behavioral, neurochemical, and pharmacological features that have been reported in depressed patients and has been very effective in screening antidepressants. Major factor that determines the effectiveness and toxicity of a drug is the drug metabolizing capacity of the liver. Therefore, in order to discriminate possible differentiation in the hepatic drug metabolism between FSL rats and Sprague-Dawley (SD) controls, their hepatic metabolic profile was investigated in this study. The data showed decreased glutathione (GSH) content and glutathione S-transferase (GST) activity and lower expression of certain major CYP enzymes, including the CYP2B1, CYP2C11 and CYP2D1 in FSL rats compared to SD controls. In contrast, p-nitrophenol hydroxylase (PNP), 7-ethoxyresorufin-O-dealkylase (EROD) and 16alpha-testosterone hydroxylase activities were higher in FSL rats. Interestingly, the wide spread environmental pollutant benzo(alpha)pyrene (B(alpha)P) induced CYP1A1, CYP1A2, CYP2B1/2 and ALDH3c at a lesser extend in FSL than in SD rats, whereas the antidepressant mirtazapine (MIRT) up-regulated CYP1A1/2, CYP2C11, CYP2D1, CYP2E1 and CYP3A1/2, mainly, in FSL rats. The drug also further increased ALDH3c whereas suppressed GSH content in B(alpha)P-exposed FSL rats. In conclusion, several key enzymes of the hepatic biotransformation machinery are differentially expressed in FSL than in SD rats, a condition that may influence the outcome of drug therapy. The MIRT-induced up-regulation of several drug-metabolizing enzymes indicates the critical role of antidepressant treatment that should be always taken into account in the designing of treatment and interpretation of insufficient pharmacotherapy or drug toxicity.
Collapse
|
6
|
|
7
|
Waterman MR. Heterologous expression of mammalian P450 enzymes. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 68:37-66. [PMID: 8154325 DOI: 10.1002/9780470123140.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- M R Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
8
|
Hlavica P. Functional interaction of nitrogenous organic bases with cytochrome P450: A critical assessment and update of substrate features and predicted key active-site elements steering the access, binding, and orientation of amines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:645-70. [PMID: 16503427 DOI: 10.1016/j.bbapap.2006.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 02/02/2023]
Abstract
The widespread use of nitrogenous organic bases as environmental chemicals, food additives, and clinically important drugs necessitates precise knowledge about the molecular principles governing biotransformation of this category of substrates. In this regard, analysis of the topological background of complex formation between amines and P450s, acting as major catalysts in C- and N-oxidative attack, is of paramount importance. Thus, progress in collaborative investigations, combining physico-chemical techniques with chemical-modification as well as genetic engineering experiments, enables substantiation of hypothetical work resulting from the design of pharmacophores or homology modelling of P450s. Based on a general, CYP2D6-related construct, the majority of prospective amine-docking residues was found to cluster near the distal heme face in the six known SRSs, made up by the highly variant helices B', F and G as well as the N-terminal portion of helix C and certain beta-structures. Most of the contact sites examined show a frequency of conservation < 20%, hinting at the requirement of some degree of conformational versatility, while a limited number of amino acids exhibiting a higher level of conservation reside close to the heme core. Some key determinants may have a dual role in amine binding and/or maintenance of protein integrity. Importantly, a series of non-SRS elements are likely to be operative via long-range effects. While hydrophobic mechanisms appear to dominate orientation of the nitrogenous compounds toward the iron-oxene species, polar residues seem to foster binding events through H-bonding or salt-bridge formation. Careful uncovering of structure-function relationships in amine-enzyme association together with recently developed unsupervised machine learning approaches will be helpful in both tailoring of novel amine-type drugs and early elimination of potentially toxic or mutagenic candidates. Also, chimeragenesis might serve in the construction of more efficient P450s for activation of amine drugs and/or bioremediation.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Goethestrasse 33, D-80336 München, Germany.
| |
Collapse
|
9
|
Asikainen A, Tarhanen J, Poso A, Pasanen M, Alhava E, Juvonen RO. Predictive value of comparative molecular field analysis modelling of naphthalene inhibition of human CYP2A6 and mouse CYP2A5 enzymes. Toxicol In Vitro 2003; 17:449-55. [PMID: 12849728 DOI: 10.1016/s0887-2333(03)00065-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objects of this study were first to compare how well the recently constructed structure-inhibition activity relationship models of mouse CYP2A5 and human CYP2A6 predict the interaction of naphthalene in liver microsomes and secondly to study if these CYP enzymes actually oxidize naphthalene. The CoMFA model of CYP2A5 predicted the IC(50) value of naphthalene to be 42 microM (18-115 microM 95% CL) whereas in the in vitro experiment the result was 74 microM (65-83 microM) with the corresponding values for CYP2A6 being 41 microM (18-112 microM) and 25 microM (21-30 microM), respectively. Naphthalene appeared to be a competitive inhibitor both for mouse and human liver microsomal coumarin 7-hydroxylase, which is the specific probe activity for CYP2A5 and CYP2A6. The K(i)-value for the mouse enzyme was between 12-26 microM and for the human enzyme 1.2-5.6 microM. A 1-h in vitro incubation of naphthalene with human and pyrazole treated mouse liver microsomes produced more 1-naphthol than 2-naphthol. Antibody against the purified CYP2A5 inhibited 50-60% of the formation of 1-naphthol and 30-40% of the formation of 2-naphthol. These results indicate that in silico CoMFA models predict relatively well the interaction of naphthalene with CYP2A5 and CYP2A6 and that these CYPs actually oxidize naphthalene in vitro. CoMFA CYP2A5 and CYP2A6 models are thus useful as a technique for elucidating the interaction and potency of untested chemicals with these CYPs.
Collapse
Affiliation(s)
- Arja Asikainen
- Department of Environmental Sciences, University of Kuopio, Box 1627, 70211, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
10
|
Lu AYH, Wang RW, Lin JH. Cytochrome P450 in vitro reaction phenotyping: a re-evaluation of approaches used for P450 isoform identification. Drug Metab Dispos 2003; 31:345-50. [PMID: 12642457 DOI: 10.1124/dmd.31.4.345] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Marker substrates, chemical inhibitors, and inhibitory antibodies are important tools for the identification of cytochrome P450 (P450) isoform responsible for the metabolism of therapeutic agents in vitro. In view of the versatile and nonspecific nature of P450 enzymes, many of the marker substrates and chemical inhibitors used for P450 in vitro reaction phenotyping are isoform selective but not specific. Recently, the use of marker substrate and chemical inhibitors in CYP2D6 in vitro reaction phenotyping was questioned by Granvil et al. (2002). In comparison of a panel of 15 recombinant P450 enzymes, they found that in addition to CYP2D6, CYP1A1 is also capable of catalyzing the formation of 4-hydroxylated metabolite of debrisoquine and that the intrinsic clearance of debrisoquine by CYP2D6-mediated 4-hydroxylation is only about twice that by CYP1A1. In their study, they have also demonstrated that quinidine inhibits both CYP2D6- and CYP1A1-mediated debrisoquine 4-hydroxylation. In view of these important findings, we have reevaluated various approaches used to identify P450 isoform(s) responsible for the metabolism of therapeutic agents. While acknowledging the value of inhibitory antibodies in P450-phenotyping studies, it is our opinion that in well conducted in vitro experiments, isoform-selective chemical inhibitors can also provide valuable and reliable information. Hopefully, future efforts may produce even better P450 isoform-selective marker substrates and inhibitors.
Collapse
Affiliation(s)
- Anthony Y H Lu
- Laboratory for Cancer Research, Department of Chemical Biology, College of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | | | | |
Collapse
|
11
|
Lewis DFV. Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes. Arch Biochem Biophys 2003; 409:32-44. [PMID: 12464242 DOI: 10.1016/s0003-9861(02)00349-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A detailed analysis of substrate selectivity within the cytochrome P450 2 (CYP2) family is reported. From a consideration of specific interactions between drug substrates for human CYP2 family enzymes and the putative active sites of CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, it is likely that the number and disposition of hydrogen bond donor/acceptors and aromatic rings within the various P450 substrate molecules determines their enzyme selectivity and binding affinity, together with directing their preferred routes of metabolism by the CYP2 enzymes concerned. Although many aliphatic residues are present in most P450 active sites, it would appear that their main contribution centers around hydrophobic interactions and desolvation processes accompanying substrate binding. Molecular modeling studies based on the recent CYP2C5 crystal structure appear to show close agreement with site-directed mutagenesis experiments and with information on substrate metabolism and selectivity within the CYP2 family.
Collapse
Affiliation(s)
- David F V Lewis
- Molecular Toxicology Group, School of Biomedical and Life Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
12
|
Hiroi T, Chow T, Imaoka S, Funae Y. Catalytic specificity of CYP2D isoforms in rat and human. Drug Metab Dispos 2002; 30:970-6. [PMID: 12167561 DOI: 10.1124/dmd.30.9.970] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rats, six cytochrome P450 (P450) 2D isoforms have been genetically identified. Nonetheless, there is little evidence of catalytic properties of each CYP2D isoform. In this study, using recombinant CYP2D isoforms (rat CYP2D1, CYP2D2, CYP2D3, and CYP2D4 and human CYP2D6) or hepatic microsomes, we investigated the catalytic specificity toward bufuralol, debrisoquine, and propranolol, which are frequently used as CYP2D substrates. Bufuralol was oxidized to three metabolites by rat and human hepatic microsomes. 1'-Hydroxybufuralol was the major metabolite. 1'2'-Ethenylbufuralol, one of the others, was identified as a novel metabolite. The formation of 1'-hydroxybufuralol and 1'2'-ethenylbufuralol in hepatic microsomes was inhibited by anti-CYP2D antibody, suggesting that these metabolites were formed by CYP2D isoforms. All rat and human recombinant CYP2D isoforms possessed activity for the 1'-hydroxylation of bufuralol, indicating that this catalytic property was common to all CYP2D isoforms. However, the 1'2'-ethenylation of bufuralol was catalyzed only by rat CYP2D4 and human CYP2D6. Debrisoquine was oxidized to two metabolites, 3-hydroxydebrisoquine, and 4-hydroxydebrisoquine, by hepatic microsomes. Recombinant CYP2D2 and CYP2D6 had very high levels of activity for the 4-hydroxylation of debrisoquine with low K(m) values. Only CYP2D1 had a higher level of 3-hydroxylation than 4-hydroxylation activity. Propranolol 4-hydroxylation was catalyzed by CYP2D2, CYP2D4, and CYP2D6. The 7-hydroxylation of propranolol was catalyzed only by CYP2D2. In conclusion, in rats, bufuralol 1'2'-ethenylation activity was specific to CYP2D4 and debrisoquine 4-hydroxylation and propranolol 7-hydroxylation activities were specific to CYP2D2. These catalytic activities are useful as a probe for rat CYP2D isoforms.
Collapse
Affiliation(s)
- Toyoko Hiroi
- Department of Chemical Biology, Osaka City University Medical School, Osaka, Japan.
| | | | | | | |
Collapse
|
13
|
Wennerholm A, Johansson I, Hidestrand M, Bertilsson L, Gustafsson LL, Ingelman-Sundberg M. Characterization of the CYP2D6*29 allele commonly present in a black Tanzanian population causing reduced catalytic activity. PHARMACOGENETICS 2001; 11:417-27. [PMID: 11470994 DOI: 10.1097/00008571-200107000-00005] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Debrisoquine metabolism among Tanzanians has been found to be slower than expected from the CYP2D6 genotype. In order to evaluate any genetic explanation, the coding sequence and intron-exon boundaries of the CYP2D6 gene from three Black Tanzanian volunteers with a CYP2D6*1/*1 or CYP2D6*2/*2 genotype and debrisoquine metabolic ratios (MRs) > 1 were fully sequenced to screen for new mutations. Two functional mutations, G1747 to A (causing V136I) and G3271 to A (causing V338M), were identified in the CYP2D6*2/*2 sample. Thirty-six subjects (34%) out of a total 106 subjects were heterozygous and three subjects (3%) were homozygous for the allele, yielding an allele frequency of 20%. The CYP2D6*29 allele, having also the mutations of the CYP2D6*2 allele, was subsequently expressed in yeast and mammalian COS-1 cells. No differences were seen with respect to the affinity (Km) or maximal velocity (Vmax) of the CYP2D6 substrate bufuralol between the wild-type and mutant when expression was carried out in yeast cells. By contrast, the 1'-hydroxybufuralol catalytic activity of the mutant expressed in COS-1 cells was only 26% of the wild-type (P < 0.01; Mann-Whitney U-test) and its debrisoquine hydroxylation activity was 63% of that of CYP2D6.1. The single mutants V136I and V338M had reduced capacity for bufuralol hydroxylation, but the effect was even stronger when both mutations were present together as in CYP2D6.29. Analysis of the distribution of CYP2D6*29 in subjects phenotyped for debrisoquine revealed that this allele significantly causes a reduction in the rate of debrisoquine hydroxylation in vivo. The results indicate the common existence in Tanzanians of a variant CYP2D6 form with different substrate specificity as compared to the wild-type form of the enzyme causing reduced capacity for debrisoquine metabolism.
Collapse
Affiliation(s)
- A Wennerholm
- Division of Clinical Pharmacology, Department of Medical Laboratory Sciences and Technology, Karolinska Institutet, Huddinge University Hospital, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Enzymatic transformation of most chemical carcinogens is requisite to the formation of electrophiles that cause genotoxicity, and the cytochrome P450 (P450) enzymes are the most prominent enzymes involved in such activation reactions. During the past 15 years the human P450 enzymes have been extensively characterized. Considerable evidence exists that the variation in activity of these enzymes can have important consequences in the actions of drugs. Other studies have been concerned with the activation of procarcinogens by human P450s. Assignments of roles of particular P450s in the metabolism of chemical carcinogens are discussed, along with the current state of evidence for relationships of particular P450s with human cancer.
Collapse
Affiliation(s)
- F P Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
15
|
He YQ, Harlow GR, Szklarz GD, Halpert JR. Structural determinants of progesterone hydroxylation by cytochrome P450 2B5: the role of nonsubstrate recognition site residues. Arch Biochem Biophys 1998; 350:333-9. [PMID: 9473309 DOI: 10.1006/abbi.1997.0516] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The highly related rabbit cytochromes P450 2B4 and 2B5 differ in only 12 amino acid positions, but only 2B5 has activity toward progesterone. Previously, simultaneous site-directed mutagenesis of four key substrate recognition site (SRS) residues (114, 294, 363, and 367) was shown to result in interconversion of the androstenedione hydroxylase specificities of cytochrome P450 2B4 and 2B5. However, the progesterone metabolite profiles of the 2B4 quadruple mutant or of a quintuple mutant in which residue 370 was also mutated to the 2B5 residue were not identical to that of P450 2B5. Therefore, single mutants of P450 2B5 at the remaining seven positions were constructed, expressed in Escherichia coli, and studied with progesterone as the substrate. The single mutants at positions 120 and 221, which are outside any known SRS, exhibited a significant alteration in progesterone hydroxylation. Based on these results, Ile-114, Arg-120, Ser-221, Ser-294, Ile-363, and Val-367 in cytochrome P450 2B4 were replaced simultaneously with Phe, His, Pro, Thr, Val, and Ala, respectively, from 2B5. This yielded a mutant with a very similar progesterone metabolite profile to that of 2B5, although the total activity was lower. An additional substitution at residue 370 produced a multiple mutant P450 2B4 I114F-R120H-S221P-S294T-I363V-V367A- T370M with very similar or identical substrate specificity, regio- and stereospecificity and kinetic properties to that of P450 2B5 wild type.
Collapse
Affiliation(s)
- Y Q He
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
16
|
Guengerich FP. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact 1997; 106:161-82. [PMID: 9413544 DOI: 10.1016/s0009-2797(97)00068-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Historically there has been considerable interest in comparing patterns of biotransformation of xenobiotic chemicals in experimental animal models and humans, e.g. in areas such as drug metabolism and chemical carcinogenesis. With the availability of more basic knowledge it has become possible to attribute the oxidation of selected chemicals to individual cytochrome P450 (P450) enzymes in animals and humans. Further, these P450s can be characterized by their classification into distinct subfamilies, which are defined as having > 59% amino acid sequence identity. Questions arise about how similar these enzymes are with regard to structure and function. More practically, how much can be predicted about reaction specificity and catalysis? In order to address these issues, we need to consider not only the relatedness of P450s from different species but also (i) functional similarity within P450 subfamilies and (ii) the effects of small changes imposed by site-directed mutagenesis. Relationships in the P450 1A, 2A, 2B, 2C, 2D, 2E, 3A, and 17A subfamilies are briefly reviewed. Overall functional similarity is generally seen in subfamily enzymes but many examples exist of important changes in catalysis due to very small differences, even a single conservative amino acid substitution. Some general conclusions are presented about predictability within various P450 subfamilies.
Collapse
Affiliation(s)
- F P Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| |
Collapse
|
17
|
Kent UM, Hanna IH, Szklarz GD, Vaz AD, Halpert JR, Bend JR, Hollenberg PF. Significance of glycine 478 in the metabolism of N-benzyl-1-aminobenzotriazole to reactive intermediates by cytochrome P450 2B1. Biochemistry 1997; 36:11707-16. [PMID: 9305960 DOI: 10.1021/bi971064y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of mutating Gly 478 to Ala in rat cytochrome P450 2B1 on the metabolism of N-benzyl-1-aminobenzotriazole was investigated. The 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation activity of the wild-type enzyme was completely inactivated by incubating with 1 microM BBT. The G478A mutant, however, was not inactivated by incubating with up to 10 microM BBT. Whereas metabolism of BBT by the wild-type 2B1 resulted in the formation of benzaldehyde, benzotriazole, aminobenzotriazole, and a new metabolite, the G478A mutant generated only the later. This metabolite was found by NMR, IR, and mass spectrometry to be a dimeric product formed from the reaction of two BBT molecules. Two spectral binding constants, a high-affinity constant that was the same for both enzymes (30-39 microM) and a low-affinity constant that was 5-fold lower for the mutant enzyme (0.3 mM vs 1.4 mM), were observed with BBT. The apparent Km and kcat values for the G478A mutant with BBT were 0.3 mM and 12 nmol (nmol of P450)-1 min-1, respectively. Molecular modeling studies of BBT bound in the active site of P450 2B1 suggested that a mutation of Gly 478 to Ala would result in steric hindrance and suppress oxidation of BBT at the 1-amino nitrogen. When BBT was oriented in the 2B1 active site such that oxidation at the 7-benzyl carbon could occur, no steric overlap between Ala 478 and the substrate was observed. Thus, this orientation of BBT would be preferred by the mutant leading to oxidation at the 7-benzyl carbon and subsequent dimer formation. These findings indicate that a glycine 478 to alanine substitution in P450 2B1 altered the binding of BBT such that inactivating BBT metabolites were no longer generated.
Collapse
Affiliation(s)
- U M Kent
- Department of Pharmacology, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
He YA, He YQ, Szklarz GD, Halpert JR. Identification of three key residues in substrate recognition site 5 of human cytochrome P450 3A4 by cassette and site-directed mutagenesis. Biochemistry 1997; 36:8831-9. [PMID: 9220969 DOI: 10.1021/bi970182i] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cassette mutagenesis and site-directed mutagenesis were used to investigate the importance of individual amino acid residues at positions 364-377 of cytochrome P450 3A4 in determining steroid hydroxylation or stimulation by alpha-naphthoflavone. The mutants were expressed in an Escherichia coli system, and solubilized membranes were prepared. All mutants except R365G and R365K exhibited anti-3A immunoreactivity on Western blotting, although R372S and R375K were not detected as the Fe2+-CO complex. Replacement of Arg-372 by Lys yielded a typical P450 spectrum. The results indicate that the highly conserved Arg residues at positions 365 and 375 may play a role in stabilizing the tertiary structure or in heme binding. Catalytic activities of 12 mutants were examined using progesterone and testosterone as substrates, and residues 369, 370, and 373 were found to play an important role in determining substrate specificity. Although the three mutants hydroxylated progesterone and testosterone primarily at the 6beta-position like the wild-type, replacement of Ile-369 by Val suppressed progesterone 16alpha-hydroxylase activity, whereas substitution of Ala-370 with Val enhanced progesterone 16alpha-hydroxylation. Interestingly, substitution of Leu-373 with His resulted in production of a new metabolite from both steroids. Moreover, the mutants at positions 369 and 373 were more and less responsive, respectively, than the wild-type to alpha-naphthoflavone stimulation. Alterations in activities or expression of several mutants were interpreted using a three-dimensional model of P450 3A4. The results suggest that analogy with mammalian family 2 and bacterial cytochromes P450 can be used to predict P450 3A residues that contribute to regiospecific steroid hydroxylation.
Collapse
Affiliation(s)
- Y A He
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
19
|
Lewis DF, Eddershaw PJ, Goldfarb PS, Tarbit MH. Molecular modelling of cytochrome P4502D6 (CYP2D6) based on an alignment with CYP102: structural studies on specific CYP2D6 substrate metabolism. Xenobiotica 1997; 27:319-39. [PMID: 9149373 DOI: 10.1080/004982597240497] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. A molecular model of CYP2D6 has been constructed from the bacterial form CYP102 via a homology alignment between the CYP2D subfamily and CYP102 protein sequences. 2. A number of typical CYP2D6 substrates are shown to fit the putative active site of the enzyme, as can the specific inhibitor quinidine. 3. Some of the allelic variants in CYP2D6, which give rise to genetic polymorphisms in 2D6-mediated metabolism, can be rationalized in terms of their position within the active site region. 4. The results of site-directed mutagenesis experiments are consistent with the CYP2D6 model generated from the CYP102 crystal structure. 5. The possibility of an alternative orientation within the active site may explain the CYP2D6-mediated metabolism of relatively large-sized substrates.
Collapse
Affiliation(s)
- D F Lewis
- Molecular Toxicology Group, School of Biological Sciences, University of Surrey, UK
| | | | | | | |
Collapse
|
20
|
Pelkonen P, Lang MA, Negishi M, Wild CP, Juvonen RO. Interaction of aflatoxin B1 with cytochrome P450 2A5 and its mutants: correlation with metabolic activation and toxicity. Chem Res Toxicol 1997; 10:85-90. [PMID: 9074807 DOI: 10.1021/tx960078m] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among members of the mouse cytochrome P450 2A family, P450 2A5 is the best catalyst of aflatoxin B1 (AFB1) oxidation to its 8,9-epoxide (Pelkonen, P., Lang, M., Wild, C. P., Negishi, M., and Juvonen, R. O. (1994) Eur. J. Pharmacol., Environ. Toxicol. Pharmacol. Sect. 292, 67-73). Here we studied the role of amino acid residues 209 and 365 of the P450 2A5 in the metabolism and toxicity of AFB1 using recombinant yeasts. The two sites have previously been shown to be essential in the interaction of coumarin and steroids with the P450 2A5. Reducing the size of the amino acid at position 209 or introducing a negatively charged residue at this site increased the 8,9-epoxidation of AFB1 compared to the wild type. In addition, replacing the hydrophobic amino acid at the 365 position with a positively charged lysine residue strongly decreased the metabolism of AFB1. These mutations changed the KM values generally less than the Vmax values. The changes in AFB1 metabolism contrast with the changes in coumarin 7-hydroxylation caused by these amino acid substitutions, since reducing the size of the 209 residue strongly reduced coumarin metabolism and increased the K(M) values. On the other hand, the results with AFB1 are similar to those obtained with steroid hydroxylation. This suggests that the size of the substrate is important when interacting with the residue 209 of the protein. The catalytic parameters of AFB1 correlated generally with its toxicity to the recombinant yeasts expressing the activating enzyme and with the binding of AFB1 to yeast DNA. Furthermore high affinity substrates and inhibitors (e.g., methoxsalen, metyrapone, coumarin 311, 7-methylcoumarin, coumarin, and pilocarpine) of P450 2A5 could efficiently block the toxicity of AFB1. It is suggested that the recombinant yeasts expressing engineered P450 enzymes are a useful model to understand the substrate protein interactions, to study the relationship of metabolic parameters to toxicity, and to test potential inhibitors of metabolism based toxicity.
Collapse
Affiliation(s)
- P Pelkonen
- Department of Pharmacology and Toxicology, University of Kuopio, Finland
| | | | | | | | | |
Collapse
|
21
|
de Groot MJ, Vermeulen NP, Kramer JD, van Acker FA, Donné-Op den Kelder GM. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108. Chem Res Toxicol 1996; 9:1079-91. [PMID: 8902262 DOI: 10.1021/tx960003i] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytochromes P450 (P450s) constitute a superfamily of phase I enzymes capable of oxidizing and reducing various substrates. P450 2D6 is a polymorphic enzyme, which is absent in 5-9% of the Caucasian population as a result of a recessive inheritance of gene mutations. This deficiency leads to impaired metabolism of a variety of drugs. All drugs metabolized by P450 2D6 contain a basic nitrogen atom, and a flat hydrophobic region coplanar to the oxidation site which is either 5 or 7 A away from the basic nitrogen atom. The aim of this study was to build a three-dimensional structure for the protein and more specifically for the active site of P450 2D6 in order to determine the amino acid residues possibly responsible for binding and/ or catalytic activity. Furthermore, the structural features of the active site can be implemented into the existing small molecule substrate model, thus enhancing its predictive value with respect to possible metabolism by P450 2D6. As no crystal structures are yet available for membrane-bound P450s (such as P450 2D6), the crystal structures of bacterial (soluble) P450 101 (P450cam), P450 102 (P450BM3), and P450 108 (P450terp) have been used to build a three-dimensional model for P450 2D6 with molecular modeling techniques. Several important P450 2D6 substrates were consecutively docked into the active site of the protein model. The energy optimized positions of the substrates in the protein agreed well with the original relative positions of the substrates within the substrate model. This confirms the usefulness of small molecule models in the absence of structural protein data. Furthermore, the derived protein model indicates new leads for experimental validation and extension of the substrate model.
Collapse
Affiliation(s)
- M J de Groot
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Molecular Toxicology, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Ibeanu GC, Ghanayem BI, Linko P, Li L, Pederson LG, Goldstein JA. Identification of residues 99, 220, and 221 of human cytochrome P450 2C19 as key determinants of omeprazole activity. J Biol Chem 1996; 271:12496-501. [PMID: 8647857 DOI: 10.1074/jbc.271.21.12496] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human P450 2C19 is selective for 4'-hydroxylation of S-mephenytoin and 5-hydroxylation of omeprazole, while the structurally homologous P450 2C9 has low activity toward these substrates. To identify the critical amino acids that determine the specificity of human amino acids that determine the specificity of human P450 2C19, we constructed chimeras of p450 2C9 replacing various proposed substrate binding sites (SRS) with those of P450 2C19 and then replaced individual residues of P450 2C19 and then replaced individual residues of P450 2C9 by site-directed mutagenesis. The 339 NH2-terminal amino acid residues (SRS-1-SRS-4) and amino acids 160-383 (SRS-2-SRS-5) of P450 2C19 conferred omeprazole 5-hydroxylase activity to P450 2C9. In contract, the COOH terminus of P450 2C19 (residues 340-490 including SRS-5 and SRS-6), residues 228-339 (SRS-3 and SRS-4) and residues 292-383 (part of SRS-4 and SRS-5) conferred only modest increases in activity. A single mutation Ile99 --> His increased omeprazole 5-hydroxylase to approximately 51% of that of P450 2C19. A chimera spanning residues 160-227 of P450 2C19 also exhibited omeprazole 5-hydroxylase activity which was dramatically enhanced by the mutation Ile99 --> His. A combination of two mutations, Ile99 --> His and Ser200 --> Pro, converted P450 2C9 to an enzyme with a turnover number of omeprazole 5-hyrdroxylation, which resembled that of P450 /c19. Mutation of Pro221 --> Thr enhanced this activity. Residue 99 is within SRS-1, but amino acids 220 and 221 are in the F-G loop and outside any known SRS. Mutation of these three amino acids did not confer significant S-mephenytoin 4'-hydroxylase activity to P450 2C9, although chimeras containing SRS-1-SRS-4 and SRS-2-SRS-5 of P450 2C19 exhibited activity toward this substrate. Our results thus indicate that amino acids 99, 220, and 221 are key residues that determine the specificity of P450 2C19 for omeprazole.
Collapse
Affiliation(s)
- G C Ibeanu
- NIEHS, National Institute of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
23
|
Negishi M, Uno T, Honkakoski P, Sueyoshi T, Darden TA, Pedersen LP. The roles of individual amino acids in altering substrate specificity of the P450 2a4/2a5 enzymes. Biochimie 1996; 78:685-94. [PMID: 9010596 DOI: 10.1016/s0300-9084(97)82525-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A single amino acid substitution is sufficient to alter substrate specificity of P450 enzymes. Mouse P450 2a5, for example, has its substrate specificity converted from coumarin 7- to testosterone 15 alpha-hydroxylase activity by the substitution of Phe at position 209 to Leu. Furthermore, placing Asn at this position confers a novel corticosterone 15 alpha-hydroxylase activity to this P450. Recent site-directed mutational studies show the presence of the topologically common residues, each of which can determine the specificities of various mammalian P450s. For instance, residue 209 (in 2a5) corresponds to a residue at position 206 in rat P4502B1 that regulates its steroid hydroxylase activity. High substrate specificity often observed in an individual P450, therefore, can be determined and altered by the identities of a few critical residues. The structural flexibility of the substrate-heme pocket may also provide P450 enzymes with the ability to display a broad range of substrate specificities. Understanding the underlying principles whereby the flexible pocket determines P450 activities may lead us to the prediction of P450 activities based on the identities of key amino acid residues.
Collapse
Affiliation(s)
- M Negishi
- Pharmacogenetics Section, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
24
|
Lewis DF. Three-dimensional models of human and other mammalian microsomal P450s constructed from an alignment with P450102 (P450bm3). Xenobiotica 1995; 25:333-66. [PMID: 7645302 DOI: 10.3109/00498259509061857] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. A novel modelling alignment for P450s, utilizing NADPH-P450 reductase for electron transfer, is proposed on the basis of analysis of their amino acid sequences. 2. Information used to facilitate the alignment process includes: the recent X-ray crystal structure of P450102 (P450bm3), site-directed mutagenesis experiments, chemical modification of specific residues, and antibody recognition studies. 3. The alignment has been used to construct a number of microsomal P450s of relevance to xenobiotic and endogenous metabolism.
Collapse
Affiliation(s)
- D F Lewis
- Molecular Toxicology Group, School of Biological Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
25
|
Ramarao MK, Straub P, Kemper B. Identification by in vitro mutagenesis of the interaction of two segments of C2MstC1, a chimera of cytochromes P450 2C2 and P450 2C1. J Biol Chem 1995; 270:1873-80. [PMID: 7829524 DOI: 10.1074/jbc.270.4.1873] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A hybrid cytochrome P450, C2MstC1, with 306 N-terminal amino acids derived from cytochrome P450 2C2 sequence and 184 C-terminal amino acids from cytochrome P450 2C1 acquires a novel progesterone 21-hydroxylase activity which is absent in the parent enzymes. Extension of the cytochrome P450 2C2 sequence to residue 382 reduced progesterone hydroxylase activity to 5% of that of C2MstC1, while further extension to residue 411 or 462 increased activity back to about 30 or 40%, respectively. In the chimera with cytochrome P450 2C2 sequence to residue 382, substitution of cytochrome P450 2C1 amino acids at positions 368, 369, and 374 increased progesterone hydroxylase activity to a level equivalent to that of C2MstC1. In the chimera with cytochrome P450 2C2 sequence extending to residue 411, substitutions of P450 2C1 amino acids at positions 386 and 388, in addition those at 368, 369, and 374, were required to obtain activities equivalent to that of C2MstC1, which suggests an interaction between these two regions. The lauric acid hydroxylase activities of all chimeras and mutant cytochromes P450 differed by 2-fold or less, demonstrating that the changes in progesterone hydroxylase activity reflected altered interactions with the substrate. Alignment of cytochrome P450 2C1 sequence with cytochromes P450cam, P450BM-3, and P450terp predicts that residues 368/369 and 386/388 are in adjacent antiparallel strands of the same beta-sheet, in agreement with the experimental data suggesting an interaction between these two regions.
Collapse
Affiliation(s)
- M K Ramarao
- Department of Physiology and Biophysics, University of Illinois at Urbana-Champaign 61801
| | | | | |
Collapse
|
26
|
Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 1995; 3:41-62. [PMID: 7743131 DOI: 10.1016/s0969-2126(01)00134-4] [Citation(s) in RCA: 486] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Cytochromes P450 catalyze the oxidation of a variety of hydrophobic substrates. Sequence identities between P450 families are generally low (10-30%), and consequently, the structure-function correlations among P450s are not clear. The crystal structures of P450terp and the hemoprotein domain of P450BM-3 were recently determined, and are compared here with the previously available structure of P450cam. RESULTS The topology of all three enzymes is quite similar. The heme-binding core structure is well conserved, except for local differences in the I helices. The greatest variation is observed in the substrate-binding regions. The structural superposition of the proteins permits an improved sequence alignment of other P450s. The charge distribution in the three structures is similarly asymmetric and defines a molecular dipole. CONCLUSIONS Based on this comparison we believe that all P450s will be found to possess the same tertiary structure. The ability to precisely predict other P450 substrate-contact residues is limited by the extreme structural heterogeneity in the substrate-recognition regions. The central I-helix structures of P450terp and P450BM-3 suggest a role for helix-associated solvent molecules as a source of catalytic protons, distinct from the mechanism for P450cam. We suggest that the P450 molecular dipole might aid in both redox-partner docking and proton recruitment for catalysis.
Collapse
Affiliation(s)
- C A Hasemann
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9050, USA
| | | | | | | | | |
Collapse
|
27
|
Mimura M, Yamazaki H, Sugahara C, Hiroi T, Funae Y, Shimada T. Differential roles of cytochromes P450 2D1, 2C11, and 1A1/2 in the hydroxylation of bufuralol by rat liver microsomes. Biochem Pharmacol 1994; 47:1957-63. [PMID: 7912070 DOI: 10.1016/0006-2952(94)90069-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bufuralol hydroxylation activities of liver microsomal cytochrome P450 (P450) enzymes were studied in the rat; the reaction has been used widely in determining levels of liver microsomal P450 2D6, which shows debrisoquine-type genetic polymorphism in humans. Liver microsomes catalyzed the conversion of bufuralol to 1'-hydroxybufuralol and a structurally unidentified metabolite (termed here as M-1) in the presence of an NADPH-generating system and molecular oxygen. Bufuralol 1'-hydroxylation activities catalyzed by the liver microsomes were not increased in rats treated with several P450 inducers, whereas beta-naphthoflavone treatment (and to a lesser extent that of isosafrole) caused a significant induction of M-1 formation. The major role of P450 1A1/2 in M-1 formation was confirmed by catalytic inhibition with anti-P450 antibodies and alpha-naphthoflavone in liver microsomes of beta-naphthoflavone-treated rats, and by reconstitution experiments containing P450 1A1 and 1A2. Among nine forms of purified rat P450 enzymes studied in the reconstituted system, P450 2C11 displayed the highest activities for bufuralol 1'-hydroxylation, followed by P450 1A1 and P450 2D1. A female-specific form of P450 2C12 did not catalyze bufuralol 1'-hydroxylation. In liver microsomes of male rats, however, P450 2D1 was the dominant enzyme because only anti-P450 2D1 antibodies, and not anti-P450 2C11 and anti-P450 1A1, inhibited the bufuralol hydroxylation activities, and a specific P450 2D1 inhibitor, quinine, caused a dramatic decrease in the hydroxylation activities. The major contribution of P450 2D1 in the bufuralol 1'-hydroxylation activities was also supported by a kinetic analysis of the reconstituted system; P450 2D1 enzyme had a very low Km value (8.4 microM) as compared with those of P450 2C11 (Km = 83 microM) and P450 1A1 (Km = 230 microM). Thus, the present results suggested that different P450 enzymes are involved in the hydroxylation of bufuralol in rat liver microsomes, and the kinetic analysis, as well as immunoinhibition and chemical inhibition experiments, may be of great importance for determining the major roles of P450 enzymes in drug hydroxylation reactions.
Collapse
Affiliation(s)
- M Mimura
- Osaka Prefectural Institute of Public Health, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Laethem RM, Halpert JR, Koop DR. Epoxidation of arachidonic acid as an active-site probe of cytochrome P-450 2B isoforms. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1206:42-8. [PMID: 7910485 DOI: 10.1016/0167-4838(94)90070-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the present study we determined the regioselectivity of arachidonic acid epoxidation by several members of the cytochrome P-450 2B subfamily, including rat P-450 2B1, 2B1-WM (an allelic variant of 2B1 expressed in Wistar-Munich rats), 2B2, and rabbit 2B4 and 2B5. The major products formed with all isoforms were the four regioisomeric epoxides, but each isoform produced a distinct distribution of the four epoxides. P-450 2B1 produced predominantly 14,15-epoxyeicosatrienoic acid (EET), while P-450 2B1-WM produced the 11,12-EET as the major product. P-450 2B2, 2B4, and 2B5 catalyzed the formation of all four epoxides in nearly equal amounts. The single Gly-478-->Ala substitution in the variant P-450 2B1-WM was sufficient to cause a dramatic change in the ratio of epoxides when compared with P-450 2B1. The Gly-478-->Ala mutation also changed the regioselective epoxidation of gamma-linolenic acid at the three double bonds. Four site-directed mutants of P-450 2B1 were also evaluated. The mutations included two single mutants where Ile-114 was changed to either Val or Ala and two double mutants where the Ala-478 mutation was coupled with either Val or Ala at position 114. When Ile-114 was mutated to Val, the degree of epoxidation of arachidonic acid at all four double bonds was nearly equal. However, substitution of Ile-114 with Ala, resulted in a significant reduction in the degree of epoxidation at the 14,15- and 11,12-double bonds, and the 8,9- and 5,6-EETs were the major products. When Ala was introduced at position 478 in conjunction with Val at position 114 the regioselective epoxidation of the mutant enzyme more closely resembled P-450 2B1-WM in that 11,12-EET was the major metabolite. The double mutation with Ala at both positions 114 and 478 produced a unique distribution of epoxide products with 5,6-EET as the major metabolite. The results of these studies indicate that residues 114 and 478 in the P-450 2B subfamily are important for the orientation of fatty acids in the active site.
Collapse
Affiliation(s)
- R M Laethem
- Department of Pharmacology, Oregon Health Sciences University, Portland 97201-3098
| | | | | |
Collapse
|
29
|
Shimizu T, Murakami Y, Hatano M. Glu318 and Thr319 mutations of cytochrome P450 1A2 remarkably enhance homolytic O-O cleavage of alkyl hydroperoxides. An optical absorption spectral study. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36832-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
He Y, Luo Z, Klekotka PA, Burnett VL, Halpert JR. Structural determinants of cytochrome P450 2B1 specificity: evidence for five substrate recognition sites. Biochemistry 1994; 33:4419-24. [PMID: 8155660 DOI: 10.1021/bi00180a040] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Twelve site-directed mutants of rat cytochrome P450 2B1 distributed over seven positions and four putative substrate recognition sites (SRS) were constructed and expressed in COS cells. Function was examined using androstenedione and testosterone as substrates. Substitutions at positions 303, 360, and 473 did not markedly affect the regio- or stereoselectivity of androgen metabolism, whereas mutants in positions 206 (SRS-2), 302 (SRS-4), and 363 and 367 (SRS-5) exhibited markedly different steroid metabolite profiles compared with parental P450 2B1. In particular, the Phe-206-->Leu substitution conferred androgen 6 alpha- and testosterone 7 alpha-hydroxylase activities, and the Thr-302-->Ser substitution suppressed androgen 16 beta-hydroxylation in favor of androstenedione 16 alpha- and testosterone 15 alpha-hydroxylation. Replacement of Val-363 or Val-367 with Ala conferred androgen 15 alpha-hydroxylase and 6 beta-hydroxylase activities, respectively, and suppressed susceptibility to mechanism-based inactivation by the P450 2B1-selective chloramphenicol analog N-(2-p-nitrophenethyl)chlorofluoroacetamide. The Val-367-->Ala mutant was also resistant to chloramphenicol itself. The Leu mutant at position 363 exhibited increased specificity for androstenedione and testosterone 16 beta-hydroxylation, whereas the Leu mutant at position 367 exhibited decreased stereospecificity. Most interestingly, the size of key residues identified plays a critical role in governing steroid hydroxylation from the alpha-face or beta-face and hydroxylation on the D-ring or the B-ring.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y He
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson 85721
| | | | | | | | | |
Collapse
|
31
|
Ishida N, Sugita O. The rat cytochrome P450 C‐M/F (CYP2D) subfamily: Constitutive P450 isozymes in male and female. Stem Cells 1994. [DOI: 10.1002/stem.5530120711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Sato H, Shimizu T, Murakami Y, Hatano M. Remarkable Enhancement of 7-Ethoxycoumarin O-Deethylation by Lys250, Arg251 and Lys253 Mutations of Cytochrome P450 1A2. CHEM LETT 1994. [DOI: 10.1246/cl.1994.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Miller JP, White RE. Photoaffinity labeling of cytochrome P450 2B4: capture of active site heme ligands by a photocarbene. Biochemistry 1994; 33:807-17. [PMID: 8292609 DOI: 10.1021/bi00169a023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Spiro[adamantane-2,2'-diazirine], which produces adamantyl carbene upon photolysis, binds tightly to P450 2B4 (KS = 3.2 microM), giving a normal substrate binding difference spectrum. Irradiation of 2-[3H]adamantane diazirine at 365 nm in the presence of native, ferric P450 2B4 resulted in first-order photolysis (t1/2 = 1.8 min). The main product was 2-[3H]adamantanol, with about 6% of the radioactivity covalently bound to P450 2B4. With the ferrous carbonyl form of P450 2B4, 2-adamantanol production decreased and protein labeling increased to 12%. When ferric cyanide 2B4 was used, 2-adamantanecarbonitrile was formed in addition to 2-adamantanol. The nitrile appears to have resulted from capture of the iron-bound cyanide ligand by the carbene. The use of multiple cycles of photolysis increased the percentage of protein labeling to 76%. Photolabeling was inhibited by known 2B4 substrates and inhibitors. Also, N-demethylation of benzphetamine and generation of a substrate binding difference spectrum by benzphetamine were both inhibited stoichiometrically with the fraction of radiolabeled protein. The labeled protein was permanently converted to the high-spin state, as indicated by the characteristic change in the absorbance spectrum, demonstrating irreversible occupation of the substrate binding site by the adamantyl residue. Mild acid hydrolysis of radiolabeled 2B4 at the five Asp-Pro bonds generated a 2-kDa peptide which carried 78% of the radioactivity. These results are interpreted as the result of the active site carbene reacting by three competing pathways: capture of the heme sixth ligand to yield either 2-adamantanol or 2-adamantanecarbonitrile, capture of an unbound active site water molecule to yield adamantanol, and covalent attachment to a protein residue. Thus, the P450 2B4 active site appears to contain at least one unbound water molecule in addition to the heme aquo sixth ligand, even when substrate is present.
Collapse
Affiliation(s)
- J P Miller
- Department of Pharmacology, University of Connecticut Health Center, Farmington 06030
| | | |
Collapse
|
34
|
Peyronneau MA, Renaud JP, Jaouen M, Urban P, Cullin C, Pompon D, Mansuy D. Expression in yeast of three allelic cDNAs coding for human liver P-450 3A4. Different stabilities, binding properties and catalytic activities of the yeast-produced enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:355-61. [PMID: 8269924 DOI: 10.1111/j.1432-1033.1993.tb18384.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three natural allelic cDNAs coding for P-450 3A4, the major form in human liver, namely NF25, NF10 and hPCN1, have been expressed in Saccharomyces cerevisiae. NF25 and hPCN1 were functionally expressed in yeast microsomes, yielding proteins with an absorption maximum at 448 nm in the CO-reduced difference spectrum. Some catalytic activities and substrate binding properties of P-450 NF25 and P-450 hPCN1 in yeast microsomes have been compared; no striking difference was found, showing that the two point substitutions between their amino-acid sequences (Trp392 and Thr431 in P-450 NF25 are replaced by Val392 and Ile431 in P-450 hPCN1) have no significant effect on the functional properties of these two variants. By contrast, P-450 NF10, which differs from P-450 NF25 by a one-amino-acid deletion (Ile224 replacing Thr224-Val225), was produced as a denatured form, as revealed by an absorption maximum at 420 nm, and was not catalytically active. This suggests that the deletion prevents the correct folding of the protein. The results of this study show that P-450 NF25 and P-450 hPCN1 are two roughly equivalent, functionally active variants of P-450 3A4, but that P-450 NF10 is a defective, unstable gene product that could arise from an alternative mRNA splicing. This could contribute to the large variations reported for nifedipine oxidation, a typical P-450 3A4 activity, in human liver.
Collapse
Affiliation(s)
- M A Peyronneau
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS URA 400, Université Paris 5, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Straub P, Lloyd M, Johnson E, Kemper B. Cassette mutagenesis of a potential substrate recognition region of cytochrome P450 2C2. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80639-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Kedzie KM, Grimm SW, Chen F, Halpert JR. Hybrid enzymes for structure-function analysis of cytochrome P-450 2B11. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1164:124-32. [PMID: 8329443 DOI: 10.1016/0167-4838(93)90238-m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous work has shown that P-450 2B11 is responsible for the unique ability of dogs to metabolize and eliminate certain highly-chlorinated biphenyls such as 2,2',4,4',5,5'-hexachlorobiphenyl (245-HCB), whereas the related P-450 2B forms in rat and rabbit are unable to metabolize the compound to any significant degree. To determine the structural basis for this functional diversity, hybrid enzymes were generated. Success with this approach required a careful choice of second enzyme and common substrate with which to assess the functional integrity of the hybrid proteins. The choices of P-450 2B5 from rabbit as the second enzyme and androstenedione as the substrate were based in part on the finding that P-450 2B11 and P-450 2B5 hydroxylate androstenedione with similar overall activities but distinct profiles. Enzymatic studies with eight hybrid enzymes provided evidence for two regions of P-450 2B11 and 2B5, between residues 95-239 and 240-370, that appear to be involved in defining substrate specificity for androstenedione, and three regions of P-450 2B11, between residues 95-239, 240-370, and 371-494, that contain amino acids necessary for metabolism of 245-HCB. This deliberate approach to the creation of hybrid cytochromes P-450 has generated a series of enzymes that will be central to further structure-function studies of the cytochromes P-450 2B.
Collapse
Affiliation(s)
- K M Kedzie
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson 85721
| | | | | | | |
Collapse
|
37
|
A single amino acid substitution confers progesterone 6 beta-hydroxylase activity to rabbit cytochrome P450 2C3. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53130-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Halpert J, He Y. Engineering of cytochrome P450 2B1 specificity. Conversion of an androgen 16 beta-hydroxylase to a 15 alpha-hydroxylase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53630-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
He YA, Balfour CA, Kedzie KM, Halpert JR. Role of residue 478 as a determinant of the substrate specificity of cytochrome P450 2B1. Biochemistry 1992; 31:9220-6. [PMID: 1390709 DOI: 10.1021/bi00153a015] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two allelic variants and eight site-directed mutants of cytochrome P450 2B1 differing at residue 478 have been expressed in COS cells and assayed for androstenedione hydroxylase activities. The 478Gly and 478Ala variants and five mutants (Ser, Thr, Val, Ile, and Leu) exhibited 16 beta-OH:16 alpha-OH ratios ranging from 0.7 to 9.3, whereas the Pro, Glu, and Arg mutants were expressed but inactive. The seven samples active toward androstenedione also exhibited testosterone 16 beta-OH:16 alpha-OH ratios ranging from 0.4 to 2.3. With both steroids, the Gly variant had the highest 16 beta-hydroxylase activity, and the 16 beta-OH:16 alpha-OH ratio increased with the size of aliphatic size chains (Ala, Val, and Ile/Leu). The highest ratio of androgen 15 alpha:16-hydroxylation was observed with the Ser mutant. On the basis of previous work indicating decreased susceptibility of the 478Ala variant in liver microsomal and reconstituted systems to inactivation by chloramphenicol analogs, methodology was refined for monitoring enzyme inactivation in COS cell microsomes. The Gly and Ala variants were inactivated by chloramphenicol with similar rate constants, whereas the Ser and Val mutants were inactivated more slowly, and the Leu mutant was refractory. Only the Gly variant was inactivated by the chloramphenicol analog N-(2-p-nitrophenethyl)chlorofluoroacetamide. Thus, the side chain of residue 478 appears to be a major determinant of enzyme inactivation as well as of androgen hydroxylation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y A He
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson 85721
| | | | | | | |
Collapse
|
40
|
Matsuo Y, Iwahashi K, Ichikawa Y. Debrisoquine 4-monooxygenase and bufuralol 1'-monooxygenase activities in bovine and rabbit tissues. Biochem Pharmacol 1992; 43:1911-9. [PMID: 1596280 DOI: 10.1016/0006-2952(92)90633-t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The tissue distributions of debrisoquine 4-monooxygenase and bufuralol 1'-monooxygenase activities in microsomes from bovine and rabbit tissues were analysed. Debrisoquine 4-monooxygenase and bufuralol 1'-monooxygenase activities were found in liver, and at low levels in cerebral cortex, kidney cortex, lung, small intestine and spleen. Other tissues, such as kidney medulla, adrenocortex, adrenomedulla, blood vessels, thyroid gland, heart, ovary, uterus and testis, showed low levels of bufuralol 1'-monooxygenase activity but not detectable debrisoquine 4-monooxygenase activity. The bufuralol/debrisoquine monooxygenase activity ratios were higher in kidney and lung, and lower in cerebral cortex and spleen than in liver. Both monooxygenase activities in several bovine tissues including liver were inhibited strongly by phenylisocyanide (0.1 mM) and quinidine (0.5 mM), moderately by metyrapone (1 mM), and not at all by KCN (1 mM). NaN3 (5 mM) and sodium cholate (0.5% w/v) inhibited debrisoquine 4-monooxygenase activity strongly and moderately, but bufuralol 1'-monooxygenase activity moderately and strongly, respectively. No effect of a hydroxyl radical scavenger or of superoxide dismutase on either monooxygenase activity was observed. It was concluded from these results, as well as the NADPH dependency of the reactions, that the two monooxygenase reactions observed in these tissues were catalysed by cytochrome P450s.
Collapse
Affiliation(s)
- Y Matsuo
- Department of Biochemistry, Kagawa Medical School, Japan
| | | | | |
Collapse
|
41
|
Johnson EF. Mapping determinants of the substrate selectivities of P450 enzymes by site-directed mutagenesis. Trends Pharmacol Sci 1992; 13:122-6. [PMID: 1574808 DOI: 10.1016/0165-6147(92)90042-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Point-mutation studies in cytochrome P450s by site-directed mutagenesis have identified key residues that can confer the catalytic properties of one cytochrome P450 onto another. Most of these key residues cluster at sites that map to amino acids forming the substrate-binding site of P450cam, a distantly related enzyme. These sites are found on topological elements of P450cam, which by their surface location and lack of extensive secondary structure are likely to permit genetic variation without extensive disruption of the overall topology of the enzyme. If these topological features of P450cam are conserved in the mammalian enzymes, they are likely to accommodate the structural diversity seen for mammalian P450s in a manner that conserves a basic structure for P450 enzymes but that leads to the catalytic diversity seen for the mammalian enzymes.
Collapse
Affiliation(s)
- E F Johnson
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
42
|
Gotoh O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48462-1] [Citation(s) in RCA: 894] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Swanson BA, Halpert JR, Bornheim LM, Ortiz de Montellano PR. Topological analysis of the active sites of cytochromes P450IIB4 (rabbit), P450IIB10 (mouse), and P450IIB11 (dog) by in situ rearrangement of phenyl-iron complexes. Arch Biochem Biophys 1992; 292:42-6. [PMID: 1727649 DOI: 10.1016/0003-9861(92)90048-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The reaction of phenyldiazene with purified, phenobarbital-inducible rabbit cytochrome P450IIB4, mouse cytochrome P450IIB10, and dog cytochrome P450IIB11 yields complexes with absorbance maxima at 480 nm. Treatment of the cytochrome P450 complexes with K3Fe(CN)6 results in disappearance of the 480-nm absorption. Extraction of the prosthetic group from the proteins after these reactions yields the two isomers of N-phenylprotoporphyrin IX with the N-phenyl group on pyrrole rings A and D as the major products and the regioisomer with the N-phenyl on pyrrole ring C as a minor product. The A:C:D arylated pyrrole ring ratio is 3:2:3 for rabbit P450IIB4, 3:1:3 for mouse P450IIB10, and 4:1:2 for dog P450IIB11. Formation of the A and D regioisomers is consistent with the results obtained previously for rat isozymes IA1, IIB1, IIB2, and IIE1, but the rabbit, mouse, and dog P450IIB enzymes differ from the four rat enzymes in that a substantial amount of the isomer with the N-phenyl on pyrrole ring C is also formed. The results indicate that the region over pyrrole ring B is masked by protein residues in all the active sites and suggest that the region over pyrrole ring C is more hindered by protein residues in the rat than in the rabbit, mouse, or dog enzymes so far examined.
Collapse
Affiliation(s)
- B A Swanson
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | | | | | | |
Collapse
|
44
|
Kedzie K, Balfour C, Escobar G, Grimm S, He Y, Pepperl D, Regan J, Stevens J, Halpert J. Molecular basis for a functionally unique cytochrome P450IIB1 variant. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54602-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Affiliation(s)
- F P Guengerich
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
46
|
|