1
|
Inderhees J, Schwaninger M. Liver Metabolism in Ischemic Stroke. Neuroscience 2024; 550:62-68. [PMID: 38176607 DOI: 10.1016/j.neuroscience.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Focal brain damage and neurological deficits are the direct consequences of acute ischemic stroke (AIS). In addition, cerebral ischemia causes systemic alterations across peripheral organs. Dysregulation of the autonomic and endocrine systems as well as the release of brain-derived pro-inflammatory mediators trigger a peripheral immune response and systemic inflammation. As a key metabolic organ, the liver contributes not only to post-stroke immunosuppression but also to stress-induced hyperglycemia. At the same time, increased ketogenesis and glutathione production in the liver are likely to combat inflammation and oxidative stress after AIS. The closely linked lipid metabolism could regulate both glucose and glutathione homeostasis. In addition, increased hepatic very low-density lipoprotein (VLDL) secretion may improve the availability of phospholipids, polyunsaturated fatty acids (PUFAs) and glutathione after AIS. This review provides an overview of recent findings concerning ischemic stroke and the liver and discusses the therapeutic potential of targeting the hepatic metabolism to improve patient outcome after stroke.
Collapse
Affiliation(s)
- Julica Inderhees
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany; Bioanalytic Core Facility, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany.
| |
Collapse
|
2
|
Sahoo DK, Chainy GBN. Hormone-linked redox status and its modulation by antioxidants. VITAMINS AND HORMONES 2023; 121:197-246. [PMID: 36707135 DOI: 10.1016/bs.vh.2022.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hormones have been considered as key factors involved in the maintenance of the redox status of the body. We are making considerable progress in understanding interactions between the endocrine system, redox status, and oxidative stress with the dynamics of life, which encompasses fertilization, development, growth, aging, and various pathophysiological states. One of the reasons for changes in redox states of vertebrates leading to oxidative stress scenario is the disruption of the endocrine system. Comprehending the dynamics of hormonal status to redox state and oxidative stress in living systems is challenging. It is more difficult to come to a unifying conclusion when some hormones exhibit oxidant properties while others have antioxidant features. There is a very limited approach to correlate alteration in titers of hormones with redox status and oxidative stress with growth, development, aging, and pathophysiological stress. The situation is further complicated when considering various tissues and sexes in vertebrates. This chapter discusses the beneficial impacts of hormones with antioxidative properties, such as melatonin, glucagon, insulin, estrogens, and progesterone, which protect cells from oxidative damage and reduce pathophysiological effects. Additionally, we discuss the protective effects of antioxidants like vitamins A, E, and C, curcumin, tempol, N-acetyl cysteine, α-lipoic acid, date palm pollen extract, resveratrol, and flavonoids on oxidative stress triggered by hormones such as aldosterone, glucocorticoids, thyroid hormones, and catecholamines. Inflammation, pathophysiology, and the aging process can all be controlled by understanding how antioxidants and hormones operate together to maintain cellular redox status. Identifying the hormonal changes and the action of antioxidants may help in developing new therapeutic strategies for hormonal imbalance-related disorders.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa States University, Ames, IA, United States.
| | - Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
3
|
|
4
|
Abstract
In aerobes, oxygen is essential for maintenance of life. However, incomplete reduction of oxygen leads to generation of reactive oxygen species. These oxidants oxidise biological macromolecules present in their vicinity and thereby impair cellular functions causing oxidative stress (OS). Aerobes have evolved both enzymatic and nonenzymatic antioxidant defences to protect themselves from OS. Although hormones as means of biological coordination involve in regulation of physiological activities of tissues by regulating metabolism, any change in their normal titre leads to pathophysiological states. While, hormones such as melatonin, insulin, oestrogen, progesterone display antioxidant features, thyroid hormone, corticosteroids and catecholamines elicit free radical generation and OS, and the role of testosterone in inducing OS is debateable. This review is an attempt to understand the impact of free radical generation and cross talk between the hormones modulating antioxidant defence system under various pathophysiological conditions.
Collapse
Affiliation(s)
- Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, India
| | | |
Collapse
|
5
|
Matuz-Mares D, Hernández-Vázquez A, Riveros-Rosas H, Guinzberg R, Quesada-López T, Cárabez-Trejo A, Mora O, Piña E. β- Adrenoceptors activate hepatic glutathione efflux through an unreported pathway. Arch Biochem Biophys 2018; 644:47-56. [PMID: 29496543 DOI: 10.1016/j.abb.2018.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 12/15/2022]
Abstract
The physiological regulation of hepatic glutathione efflux by catecholamines is poorly understood. The purpose of this work was to review the role of adrenergic receptors (AR) on total glutathione (GT) efflux in rat liver. Two models were used: isolated hepatocytes and perfused livers. In hepatocytes 10 μM adrenaline (Adr), but not isoproterenol (Iso) a β-AR agonist, or phenylephrine (Phe) an α1-AR agonist, (in a Krebs-Henseleit buffer (KHB) enriched with Ca2+ and some aminoacids) increased in 13% GT efflux. In livers perfused with KHB, Adr or Iso at 1 μmolar doses (but not Phe) stimulated 11-fold initial velocity of GT release, but only during the first 2 min of perfusion. This immediate response progressively disappeared during the following 15 min of perfusion. A second phase of GT efflux, observed between 2 and 14 min of perfusion, mimics the one reported earlier in isolated hepatocytes. The ED50 for Adr and Iso activation are in the range of 320 nM and 10 nM, respectively. Iso-mediated GT release requires Ca2+ to work, and was prevented by H89, glibenclamide, cystic fibrosis transmembrane regulator (CFTR) antibodies, and a direct CFTR inhibitor. This short-lived GT release system is associated to PKA activation and probably operates through CFTR.
Collapse
Affiliation(s)
- Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México. Cd. Universitaria, Coyoacán. México, Cd. Mx., 04510, Mexico.
| | - Alain Hernández-Vázquez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México. Cd. Universitaria, Coyoacán. México, Cd. Mx., 04510, Mexico
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México. Cd. Universitaria, Coyoacán. México, Cd. Mx., 04510, Mexico
| | - Raquel Guinzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México. Cd. Universitaria, Coyoacán. México, Cd. Mx., 04510, Mexico
| | - Tania Quesada-López
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Blvd. B. Quintana 514-D, Col. Arboledas, 76140, Querétaro, Qro., Mexico
| | - Alfonso Cárabez-Trejo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., Mexico
| | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Blvd. B. Quintana 514-D, Col. Arboledas, 76140, Querétaro, Qro., Mexico
| | - Enrique Piña
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México. Cd. Universitaria, Coyoacán. México, Cd. Mx., 04510, Mexico.
| |
Collapse
|
6
|
Jeon JS, Oh JJ, Kwak HC, Yun HY, Kim HC, Kim YM, Oh SJ, Kim SK. Age-Related Changes in Sulfur Amino Acid Metabolism in Male C57BL/6 Mice. Biomol Ther (Seoul) 2018; 26:167-174. [PMID: 28605831 PMCID: PMC5839495 DOI: 10.4062/biomolther.2017.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 11/05/2022] Open
Abstract
Alterations in sulfur amino acid metabolism are associated with an increased risk of a number of common late-life diseases, which raises the possibility that metabolism of sulfur amino acids may change with age. The present study was conducted to understand the age-related changes in hepatic metabolism of sulfur amino acids in 2-, 6-, 18- and 30-month-old male C57BL/6 mice. For this purpose, metabolite profiling of sulfur amino acids from methionine to taurine or glutathione (GSH) was performed. The levels of sulfur amino acids and their metabolites were not significantly different among 2-, 6- and 18-month-old mice, except for plasma GSH and hepatic homocysteine. Plasma total GSH and hepatic total homocysteine levels were significantly higher in 2-month-old mice than those in the other age groups. In contrast, 30-month-old mice exhibited increased hepatic methionine and cysteine, compared with all other groups, but decreased hepatic S-adenosylmethionine (SAM), S-adenosylhomocysteine and homocysteine, relative to 2-month-old mice. No differences in hepatic reduced GSH, GSH disulfide, or taurine were observed. The hepatic changes in homocysteine and cysteine may be attributed to upregulation of cystathionine β-synthase and down-regulation of γ-glutamylcysteine ligase in the aged mice. The elevation of hepatic cysteine levels may be involved in the maintenance of hepatic GSH levels. The opposite changes of methionine and SAM suggest that the regulatory role of SAM in hepatic sulfur amino acid metabolism may be impaired in 30-month-old mice.
Collapse
Affiliation(s)
- Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Ja Oh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hui Chan Kwak
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hwi-Yeol Yun
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyoung Chin Kim
- Bio-Evaluation Center, KRIBB, Ochang 28116, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Soo Jin Oh
- Bio-Evaluation Center, KRIBB, Ochang 28116, Republic of Korea.,New Drug Development Center, ASAN Institute for Life Science, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
7
|
Mazzari ALDA, Milton F, Frangos S, Carvalho ACB, Silveira D, de Assis Rocha Neves F, Prieto JM. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity. Front Pharmacol 2016; 7:265. [PMID: 27594838 PMCID: PMC4991120 DOI: 10.3389/fphar.2016.00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum.
Collapse
Affiliation(s)
- Andre L D A Mazzari
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy London, UK
| | - Flora Milton
- Faculdade de Ciências da Saúde, Universidade de Brasília Brasília, Brazil
| | - Samantha Frangos
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy London, UK
| | - Ana C B Carvalho
- Agência Nacional de Vigilância Sanitária, Coordenação de Medicamentos Fitoterápicos e Dinamizados Brasília, Brazil
| | - Dâmaris Silveira
- Faculdade de Ciências da Saúde, Universidade de Brasília Brasília, Brazil
| | | | - Jose M Prieto
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy London, UK
| |
Collapse
|
8
|
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1245049. [PMID: 27478531 PMCID: PMC4960346 DOI: 10.1155/2016/1245049] [Citation(s) in RCA: 779] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Victor Manuel Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain
| |
Collapse
|
9
|
Patarrão RS, Lautt WW, Macedo MP. Acute glucagon induces postprandial peripheral insulin resistance. PLoS One 2015; 10:e0127221. [PMID: 25961284 PMCID: PMC4427479 DOI: 10.1371/journal.pone.0127221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
Glucagon levels are often moderately elevated in diabetes. It is known that glucagon leads to a decrease in hepatic glutathione (GSH) synthesis that in turn is associated with decreased postprandial insulin sensitivity. Given that cAMP pathway controls GSH levels we tested whether insulin sensitivity decreases after intraportal (ipv) administration of a cAMP analog (DBcAMP), and investigated whether glucagon promotes insulin resistance through decreasing hepatic GSH levels.Insulin sensitivity was determined in fed male Sprague-Dawley rats using a modified euglycemic hyperinsulinemic clamp in the postprandial state upon ipv administration of DBcAMP as well as glucagon infusion. Glucagon effects on insulin sensitivity was assessed in the presence or absence of postprandial insulin sensitivity inhibition by administration of L-NMMA. Hepatic GSH and NO content and plasma levels of NO were measured after acute ipv glucagon infusion. Insulin sensitivity was assessed in the fed state and after ipv glucagon infusion in the presence of GSH-E. We founf that DBcAMP and glucagon produce a decrease of insulin sensitivity, in a dose-dependent manner. Glucagon-induced decrease of postprandial insulin sensitivity correlated with decreased hepatic GSH content and was restored by administration of GSH-E. Furthermore, inhibition of postprandial decrease of insulin sensitivity L-NMMA was not overcome by glucagon, but glucagon did not affect hepatic and plasma levels of NO. These results show that glucagon decreases postprandial insulin sensitivity through reducing hepatic GSH levels, an effect that is mimicked by increasing cAMP hepatic levels and requires physiological NO levels. These observations support the hypothesis that glucagon acts via adenylate cyclase to decrease hepatic GSH levels and induce insulin resistance. We suggest that the glucagon-cAMP-GSH axis is a potential therapeutic target to address insulin resistance in pathological conditions.
Collapse
Affiliation(s)
- Rita S. Patarrão
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - W. Wayne Lautt
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - M. Paula Macedo
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
- APDP-ERC Portuguese Diabetes AssociationEducationand Research Center, Rua do Salitre, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
10
|
Kunjara S, Greenbaum AL, Sochor M, Flyvbjerg A, Grønbaek H, McLean P. Effects of long-acting somatostatin analogues on redox systems in rat lens in experimental diabetes. Int J Exp Pathol 2014; 95:95-100. [PMID: 24602114 DOI: 10.1111/iep.12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 11/26/2013] [Indexed: 10/25/2022] Open
Abstract
The effects of long-acting somatostatin analogues, angiopeptin (AGP) and Sandostatin (SMS), on the early decline in the lens content of glutathione (GSH), ATP and NADPH and increase in sorbitol were studied in STZ diabetic rats, and comparison was made with the effect of insulin. Three factors prompted this study: (i) the known increase in IGF-1 in ocular tissue in diabetes and antagonistic effect of somatostatins, (ii) the known effect of IGF-1 in increasing lens aldose reductase and (iii) the lack of effect of somatostatins on diabetic hyperglycaemia, the latter enabling a differentiation to be made between effects of hyperglycaemia per se and site(s) of IGF-1/somatostatins. All four metabolites studied showed a significant restoration towards the normal control level after 7 days of treatment with AGP and SMS, and AGP was more effective on levels of GSH and ATP. A significant correlation was found between GSH and ATP across all groups at 7 days treatment. The redox state changes in diabetes include both NADP+/NADPH and NAD+/NADH in the conversion of glucose to sorbitol and via sorbitol dehydrogenase to fructose with a linked decrease in ATP formation via NAD+/NADH regulation of the glycolytic pathway. The interlinked network of change includes the requirement for ATP in the synthesis of GSH. The present study points to possible loci of action of somatostatins in improving metabolic parameters in the diabetic rat lens via effects on aldose reductase and/or glucose transport at GLUT 3.
Collapse
Affiliation(s)
- Sirilaksana Kunjara
- Division of Biosciences, Research Department of Cell and Developmental Biology, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
11
|
Macedo MP, Lima IS, Gaspar JM, Afonso RA, Patarrão RS, Kim YB, Ribeiro RT. Risk of postprandial insulin resistance: the liver/vagus rapport. Rev Endocr Metab Disord 2014; 15:67-77. [PMID: 24174131 PMCID: PMC4000159 DOI: 10.1007/s11154-013-9281-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ingestion of a meal is the greatest challenge faced by glucose homeostasis. The surge of nutrients has to be disposed quickly, as high concentrations in the bloodstream may have pathophysiological effects, and also properly, as misplaced reserves may induce problems in affected tissues. Thus, loss of the ability to adequately dispose of ingested nutrients can be expected to lead to glucose intolerance, and favor the development of pathologies. Achieving interplay of several organs is of upmost importance to maintain effectively postprandial glucose clearance, with the liver being responsible of orchestrating global glycemic control. This dogmatic role of the liver in postprandial insulin sensitivity is tightly associated with the vagus nerve. Herein, we uncover the behaviour of metabolic pathways determined by hepatic parasympathetic function status, in physiology and in pathophysiology. Likewise, the inquiry expands to address the impact of a modern lifestyle, especially one's feeding habits, on the hepatic parasympathetic nerve control of glucose metabolism.
Collapse
Affiliation(s)
- Maria Paula Macedo
- CEDOC, Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa (UNL), 1169-056, Lisboa, Portugal,
| | | | | | | | | | | | | |
Collapse
|
12
|
Mechanisms of action of brain insulin against neurodegenerative diseases. J Neural Transm (Vienna) 2014; 121:611-26. [PMID: 24398779 DOI: 10.1007/s00702-013-1147-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022]
Abstract
Insulin, a pancreatic hormone, is best known for its peripheral effects on the metabolism of glucose, fats and proteins. There is a growing body of evidence linking insulin action in the brain to neurodegenerative diseases. Insulin present in central nervous system is a regulator of central glucose metabolism nevertheless this glucoregulation is not the main function of insulin in the brain. Brain is known to be specifically vulnerable to oxidative products relative to other organs and altered brain insulin signaling may cause or promote neurodegenerative diseases which invalidates and reduces the quality of life. Insulin located within the brain is mostly of pancreatic origin or is produced in the brain itself crosses the blood-brain barrier and enters the brain via a receptor-mediated active transport system. Brain Insulin, insulin receptor and insulin receptor substrate-mediated signaling pathways play important roles in the regulation of peripheral metabolism, feeding behavior, memory and maintenance of neural functions such as neuronal growth and differentiation, neuromodulation and neuroprotection. In the present review, we would like to summarize the novel biological and pathophysiological roles of neuronal insulin in neurodegenerative diseases and describe the main signaling pathways in use for therapeutic strategies in the use of insulin to the cerebral tissues and their biological applications to neurodegenerative diseases.
Collapse
|
13
|
Bednářová A, Kodrík D, Krishnan N. Unique roles of glucagon and glucagon-like peptides: Parallels in understanding the functions of adipokinetic hormones in stress responses in insects. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:91-100. [PMID: 23085293 DOI: 10.1016/j.cbpa.2012.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/07/2012] [Accepted: 10/15/2012] [Indexed: 12/20/2022]
Abstract
Glucagon is conventionally regarded as a hormone, counter regulatory in function to insulin and plays a critical anti-hypoglycemic role by maintaining glucose homeostasis in both animals and humans. Glucagon performs this function by increasing hepatic glucose output to the blood by stimulating glycogenolysis and gluconeogenesis in response to starvation. Additionally it plays a homeostatic role by decreasing glycogenesis and glycolysis in tandem to try and maintain optimal glucose levels. To perform this action, it also increases energy expenditure which is contrary to what one would expect and has actions which are unique and not entirely in agreement with its role in protection from hypoglycemia. Interestingly, glucagon-like peptides (GLP-1 and GLP-2) from the major fragment of proglucagon (in non-mammalian vertebrates, as well as in mammals) may also modulate response to stress in addition to their other physiological actions. These unique modes of action occur in response to psychological, metabolic and other stress situations and mirror the role of adipokinetic hormones (AKHs) in insects which perform a similar function. The findings on the anti-stress roles of glucagon and glucagon-like peptides in mammalian and non-mammalian vertebrates may throw light on the multiple stress responsive mechanisms which operate in a concerted manner under regulation by AKH in insects thus functioning as a stress responsive hormone while also maintaining organismal homeostasis.
Collapse
Affiliation(s)
- Andrea Bednářová
- Institute of Entomology, Biology Centre, Academy of Science, Branišovská 31, České Budějovice, 370 05-CZ, Czech Republic
| | | | | |
Collapse
|
14
|
Lu SC. Glutathione synthesis. Biochim Biophys Acta Gen Subj 2012; 1830:3143-53. [PMID: 22995213 DOI: 10.1016/j.bbagen.2012.09.008] [Citation(s) in RCA: 1546] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glutathione (GSH) is present in all mammalian tissues as the most abundant non-protein thiol that defends against oxidative stress. GSH is also a key determinant of redox signaling, vital in detoxification of xenobiotics, and regulates cell proliferation, apoptosis, immune function, and fibrogenesis. Biosynthesis of GSH occurs in the cytosol in a tightly regulated manner. Key determinants of GSH synthesis are the availability of the sulfur amino acid precursor, cysteine, and the activity of the rate-limiting enzyme, glutamate cysteine ligase (GCL), which is composed of a catalytic (GCLC) and a modifier (GCLM) subunit. The second enzyme of GSH synthesis is GSH synthetase (GS). SCOPE OF REVIEW This review summarizes key functions of GSH and focuses on factors that regulate the biosynthesis of GSH, including pathological conditions where GSH synthesis is dysregulated. MAJOR CONCLUSIONS GCL subunits and GS are regulated at multiple levels and often in a coordinated manner. Key transcription factors that regulate the expression of these genes include NF-E2 related factor 2 (Nrf2) via the antioxidant response element (ARE), AP-1, and nuclear factor kappa B (NFκB). There is increasing evidence that dysregulation of GSH synthesis contributes to the pathogenesis of many pathological conditions. These include diabetes mellitus, pulmonary and liver fibrosis, alcoholic liver disease, cholestatic liver injury, endotoxemia and drug-resistant tumor cells. GENERAL SIGNIFICANCE GSH is a key antioxidant that also modulates diverse cellular processes. A better understanding of how its synthesis is regulated and dysregulated in disease states may lead to improvement in the treatment of these disorders. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Shelly C Lu
- Keck School of Medicine USC, Los Angeles, CA 90033, USA.
| |
Collapse
|
15
|
Večeřa J, Krishnan N, Mithöfer A, Vogel H, Kodrík D. Adipokinetic hormone-induced antioxidant response in Spodoptera littoralis. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:389-95. [PMID: 22085825 DOI: 10.1016/j.cbpc.2011.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/31/2011] [Accepted: 10/31/2011] [Indexed: 11/29/2022]
Abstract
The antioxidative potential of the Manduca sexta adipokinetic hormone (Manse-AKH) in the last instar larvae of Spodoptera littoralis (Noctuidae, Lepidoptera) was demonstrated after exposure to oxidative stress (OS) elicited by feeding on artificial diet containing tannic acid (TA). Determination of protein carbonyls (PCs) and reduced glutathione (GSH) levels, monitoring of activity of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione-S-transferases (GSTs), as well as measuring of the mRNA expression of CAT and SOD were used as markers of the OS. Injection of the Manse-AKH (5 pmol per individual) reversed the OS status by mitigation of PCs formation and by stimulation of glutathione-S-transferases (GSTs) activity. The CAT and SOD mRNA expression was significantly suppressed after the Manse-AKH injection while activity of these enzymes was not affected. These results indicate that diminishing of OS after the AKH injection might be a result of activation of specific enzymatic pathway possibly at the post-translational level rather than a direct effect on regulation of antioxidant marker genes at the transcriptional level.
Collapse
Affiliation(s)
- Josef Večeřa
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, České Budějovice 370 05, Czech Republic
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Neil Kaplowitz
- Division of Gastroenterology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
17
|
Velki M, Kodrík D, Večeřa J, Hackenberger BK, Socha R. Oxidative stress elicited by insecticides: a role for the adipokinetic hormone. Gen Comp Endocrinol 2011; 172:77-84. [PMID: 21185291 DOI: 10.1016/j.ygcen.2010.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/07/2010] [Accepted: 12/12/2010] [Indexed: 11/17/2022]
Abstract
Adipokinetic hormones (AKHs) are insect neuropeptides responding to stress situations including oxidative stress. Two insecticides - endosulfan and malathion - were used to elicit oxidative stress conditions in the firebug Pyrrhocoris apterus, and the physiological functions of AKHs and their ability to activate protective antioxidative reactions were studied. The insecticide treatments elicited only a slight increase of the AKH level in CNS, but more intensive increase in haemolymph, which indicates an immediate involvement of AKH in the stress response. The treatment also resulted in a significant increase of catalase activity in the bug's body and depletion of the reduced glutathione pool in the haemolymph, however, co-application of the insecticides with the AKH (80 pmol) reduced the effect. It has also been found that co-application of the insecticides with AKH increased significantly the bug mortality compared to that induced by the insecticides alone. This enhanced effect of the insecticides probably resulted from the stimulatory role of AKH on bug metabolism: the carbon dioxide production was increased significantly after the co-treatment by AKH with insecticides compared to insecticide treatment alone. It was hypothesized that the increased metabolic rate could intensify the insecticide action by an accelerated rate of exchange of metabolites accompanied by faster penetration of insecticides into tissues.
Collapse
Affiliation(s)
- Mirna Velki
- Institute of Entomology, Biology Centre, Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | | | | | | | | |
Collapse
|
18
|
Pinheiro CHJ, Vitzel KF, Curi R. Effect of N-acetylcysteine on markers of skeletal muscle injury after fatiguing contractile activity. Scand J Med Sci Sports 2010; 22:24-33. [PMID: 20673252 DOI: 10.1111/j.1600-0838.2010.01143.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effects of N-Acetylcysteine (NAC), an unspecific antioxidant, on fatiguing contractile activity-induced injury were investigated. Twenty-four male Wistar rats were randomly assigned to two groups. The placebo group (N=12) received one injection of phosphate buffer (PBS) 1 h prior to contractile activity induced by electrical stimulation. The NAC group (NAC; N=12) received electrical stimulation for the same time period and NAC (500 mg/kg, i.p.) dissolved in PBS 1 h prior to electrical stimulation. The contralateral hindlimb was used as a control, except in the analysis of plasma enzyme activities, when a control group (rats placebo group not electrically stimulated and not treated) was included. The following parameters were measured: tetanic force, muscle fatigue, plasma activities of creatine kinase (CK) and lactate dehydrogenase (LDH), changes in muscle vascular permeability using Evans blue dye (EBD), muscle content of reactive oxygen species (ROS) and thiobarbituric acid-reactive substances (TBARS) and myeloperoxidase (MPO) activity. Muscle fatigue was delayed and tetanic force was preserved in NAC-treated rats. NAC treatment decreased plasma CK and LDH activities. The content of muscle-derived ROS, TBARS, EBD and MPO activity in both gastrocnemius and soleus muscles were also decreased by NAC pre-treatment. Thus, NAC has a protective effect against injury induced by fatiguing contractile activity in skeletal muscle.
Collapse
Affiliation(s)
- C H J Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
19
|
Active recovery training does not affect the antioxidant response to soccer games in elite female players. Br J Nutr 2010; 104:1492-9. [PMID: 20609267 DOI: 10.1017/s0007114510002394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Changes in plasma endogenous and dietary antioxidants and oxidative stress markers were studied following two 90 min elite female soccer games separated by 72 h of either active or passive recovery. The active recovery group (n 8) trained for 1 h at 22 and 46 h after the first game (low-intensity cycling and resistance training), while the passive group rested (n 8). Blood samples were taken before the games; immediately after the games; 21, 45 and 69 h after the first game; and immediately after the second game. The oxidative stress markers and antioxidants were not affected by active recovery. The oxidative stress marker GSSG increased by the same extent after both the games, while the lipid peroxidation marker diacron-reactive oxygen metabolite remained unchanged. The endogenous antioxidants total glutathione and uric acid and ferric reducing/antioxidant power increased immediately after both the games with the same amplitude, while increases in cysteine, cysteine-glycine and total thiols reached significant levels only after the second game. The changes in dietary antioxidants after the first game were either rapid and persistent (tocopherols and ascorbic acid (AA) increased; polyphenols decreased) or delayed (carotenoids). This resulted in high pre-second game levels of tocopherols, AA and carotenoids. Polyphenols returned to baseline at 69 h, and were not affected by the second game. In conclusion, the soccer-associated dietary antioxidant defence, but not the endogenous antioxidant defence, is persistent. Similar acute oxidative stress and endogenous antioxidant responses and dissimilar dietary antioxidant reactions occur during two repeated female soccer games. Finally, the complex antioxidant response to soccer is not affected by active recovery training.
Collapse
|
20
|
Alquicer G, Kodrík D, Krishnan N, Večeřa J, Socha R. Activation of insect anti-oxidative mechanisms by mammalian glucagon. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:226-33. [DOI: 10.1016/j.cbpb.2008.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/27/2008] [Accepted: 11/28/2008] [Indexed: 10/21/2022]
|
21
|
Luo L, Wang Y, Feng Q, Zhang H, Xue B, Shen J, Ye Y, Han X, Ma H, Xu J, Chen D, Yin Z. Recombinant protein glutathione S-transferases P1 attenuates inflammation in mice. Mol Immunol 2008; 46:848-57. [PMID: 18962899 DOI: 10.1016/j.molimm.2008.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/10/2008] [Accepted: 09/07/2008] [Indexed: 10/21/2022]
Abstract
We have reported that intracellular glutathione S-transferases P1 (GSTP1) suppresses LPS (lipopolysaccharide)-induced excessive production of pro-inflammatory factors by inhibiting LPS-stimulated MAPKs (mitogen-activated protein kinases) as well as NF-kappaB activation. But under pathogenic circumstances, physiologic levels of GSTP1 are insufficient to stem pro-inflammatory signaling. Here we show that LPS-induced up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW246.7 cells is significantly reduced by incubating cells with recombinant GSTP1 protein. In vivo study demonstrates that treatment of mice (i.p.) with recombinant GSTP1 protein effectively suppresses the devastating effects of acute inflammation, which includes reduction of mortality rate of endotoxic shock, alleviation of LPS-induced acute lung injury and abrogation of thioglycolate (TG)-induced peritoneal deposition of leukocytes and polymorphonuclear cells (PMNs). Meanwhile, GSTP1 prevented LPS-induced TNF-alpha, IL-1beta, MCP-1 and NO production. Further investigation by using confocal microscopy and flow cytometry shows that recombinant GSTP1 protein can be delivered into RAW246.7 cells, mouse peritoneal macrophages and HEK 293 cells suggesting that extracellular GSTP1 protein could be transported across plasma membrane and act as a cytosolic protein. In conclusion our research demonstrates a new finding that increasing cellular GSTP1 level by supplement of recombinant GSTP1 effectively suppresses the devastating effects of acute inflammation.
Collapse
Affiliation(s)
- Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Long-living growth hormone receptor knockout mice: potential mechanisms of altered stress resistance. Exp Gerontol 2008; 44:10-9. [PMID: 18675334 DOI: 10.1016/j.exger.2008.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/02/2008] [Accepted: 07/08/2008] [Indexed: 11/22/2022]
Abstract
Endocrine mutant mice have proven invaluable toward the quest to uncover mechanisms underlying longevity. Growth hormone (GH) and insulin-like growth factor (IGF) have been shown to be key players in physiological systems that contribute to aging processes including glucose metabolism, body composition and cellular protection. Examination of these mutant mice across several laboratories has revealed that differences exist in both the direction and magnitude of change, differences that may result in variation in life span. Growth hormone receptor knockout mice lack a functional GH receptor, therefore GH signaling is absent. These mice have been shown to lack the heightened oxidative defense mechanisms observed in other GH mutants yet live significantly longer than wild type mice. In this study, glutathione (GSH) and methionine (MET) metabolism was examined to determine the extent of variation in this mutant in comparison to the Ames dwarf, a mouse that exhibits delayed aging and life span extension of nearly 70%. Components of GSH and MET were altered in GHR KO compared to wild type controls. The results of these experiments suggest that these pathways may be partially responsible for differences observed in stress resistance and the capacity to respond to stressors, that in the long term, affect health and life span.
Collapse
|
23
|
Chen ZH, Saito Y, Yoshida Y, Noguchi N, Niki E. Regulation of GCL activity and cellular glutathione through inhibition of ERK phosphorylation. Biofactors 2008; 33:1-11. [PMID: 19276532 DOI: 10.1002/biof.5520330101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extracellular signal-regulated protein kinase (ERK), one of the mitogen-activated protein kinase, has been known to be involved in diverse cellular functions. In this work, we found that basically inhibition of this kinase in cultured cells markedly increased the gamma-glutamate-cysteine ligase (GCL; EC 6.3.2.2) activity, but without any considerable induction of the GCL genes. The increased GCL activity consequently elevated the cellular GSH level and eventually enhanced the cellular antioxidant capacity. Genetic inhibition of B-Raf, the upstream of ERK, also resulted in increased GCL activity and GSH level. Recent evidence also suggests that chronic pro-oxidant exposure results in the loss of ERK phosphorylation in vivo. Therefore, the findings in the present study suggest that inhibition of B-Raf/MEK/ERK pathway might be a promising physiological approach to up-regulate GCL activity and GSH. This study would also help us to understand the comprehensive role of the Raf/MEK/ERK pathway in overall physio/pathological conditions.
Collapse
Affiliation(s)
- Zhi-Hua Chen
- Human Stress Signal Research Center (HSSRC), National Institute of Advanced Industrial Science & Technology (AIST), Osaka, Japan
| | | | | | | | | |
Collapse
|
24
|
Vecera J, Krishnan N, Alquicer G, Kodrík D, Socha R. Adipokinetic hormone-induced enhancement of antioxidant capacity of Pyrrhocoris apterus hemolymph in response to oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:336-42. [PMID: 17512258 DOI: 10.1016/j.cbpc.2007.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/10/2007] [Accepted: 04/10/2007] [Indexed: 11/20/2022]
Abstract
The in vivo effects of oxidative stress on adipokinetic hormone (AKH) titer in short-winged (brachypterous) males of the firebug Pyrrhocoris apterus were tested using paraquat (PQ), a bipyridilium herbicide. PQ undergoes a cyclic redox reaction with oxygen during microsomal and electron transfer reactions forming free radicals in the insect body. Oxidative insult (40 pmol PQ) resulted in enhanced protein carbonylation (a biomarker for oxidative stress) and a depletion of glutathione (GSH) pool in the hemolymph. Interestingly, AKH titer was significantly enhanced in hemolymph at 4 h post inoculation of PQ, while its content in CNS (brain with corpora cardiaca) showed non-specific changes in comparable period. Co-injection of AKH with PQ (40 pmol each) reversed these effects by decreasing protein carbonyl formation, increasing reduced GSH levels, and enhancing the total antioxidant capacity of cell free plasma. Our results indicate that there is a positive feedback regulation between an oxidative stressor action and the level of AKH in insect body, and that AKHs might be involved in the activation of antioxidant protection mechanism.
Collapse
Affiliation(s)
- Josef Vecera
- Institute of Entomology, Academy of Sciences, Branisovská 31, CZ-370 05 Ceské Budejovice, Czech Republic
| | | | | | | | | |
Collapse
|
25
|
Kodrík D, Krishnan N, Habustová O. Is the titer of adipokinetic peptides in Leptinotarsa decemlineata fed on genetically modified potatoes increased by oxidative stress? Peptides 2007; 28:974-80. [PMID: 17353065 DOI: 10.1016/j.peptides.2007.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/26/2007] [Accepted: 01/26/2007] [Indexed: 02/08/2023]
Abstract
The level of adipokinetic hormones (AKHs) (Peram-CAH-I and II) in the corpora cardiaca and the hemolymph of Leptinotarsa decemlineata enormously increases in the adults fed on genetically modified potatoes containing either GNA lectin or Cry 3Aa toxin concomitant with increased oxidative stress in gut tissues. A similar enhancement of the AKH titer is achieved when the adults are injected with paraquat that evokes oxidative stress. On the other hand, an injection of exogenous AKH reduces oxidative stress biomarkers in the hemolymph by reducing protein carbonyls and enhancing reduced glutathione levels. These facts indicate that there is a feedback regulation between an oxidative stressor action and the level of AKH in the insect body, and that AKHs might be involved in the activation of an antioxidant protection mechanism. These results are to our knowledge, the first evidence for the involvement of AKHs in oxidative stress mitigation, in addition to a plethora of other roles.
Collapse
Affiliation(s)
- Dalibor Kodrík
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branisovská 31, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
26
|
Ozer MK, Parlakpinar H, Cigremis Y, Ucar M, Vardi N, Acet A. Ischemia-reperfusion leads to depletion of glutathione content and augmentation of malondialdehyde production in the rat heart from overproduction of oxidants: can caffeic acid phenethyl ester (CAPE) protect the heart? Mol Cell Biochem 2005; 273:169-75. [PMID: 16013452 DOI: 10.1007/s11010-005-0551-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During restoration of blood flow of the ischemic heart induced by coronary occlusion, free radicals cause lipid peroxidation with myocardial injury. Lipid peroxidation end-products, such as malondialdehyde (MDA), have been used to assess oxygen free radical-mediated injury of the ischemic-reperfused (I/R) myocardium in rats. This experimental study assessed the preventive effect of caffeic acid phenthyl ester (CAPE), antioxidant, on I/R-induced lipid peroxidation in the rat heart. We are also interested in the role of CAPE on glutathione (GSH) levels, an antioxidant whose levels are influenced by oxidative stress. I/R leads to the depletion of GSH which is the major intracellular nonprotein sulphydryl and plays an important role in the maintenance of cellular proteins and lipid in their functional state and acts primarily to protect these important structures against the threat of oxidation. In addition, we also examined morphologic changes in the heart by using light microscopy. The left coronary artery was occluded for 30 min and then reperfused for 120 min more before the experiment was terminated. CAPE (50 microM kg(-1)) was administered 10 min prior to ischemia and during occlusion by infusion. At the end of the reperfusion period, rats were sacrificed, and the heart was quickly removed for biochemical determination and histopathological analysis. I/R was accompanied by a significant increase in MDA production and decrease in GSH content in the rat heart. Administration of CAPE reduced MDA production and prevented depletion of GSH content. These beneficial changes in these biochemical parameters were also associated with parallel changes in histopathological appearance. These findings imply that I/R plays a causal role in heart injury due to overproduction of oxygen radicals or insufficient antioxidant and CAPE exert cardioprotective effects probably by the radical scavenging and antioxidant activities.
Collapse
Affiliation(s)
- Mehmet Kaya Ozer
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey.
| | | | | | | | | | | |
Collapse
|
27
|
Nobili V, Pastore A, Gaeta LM, Tozzi G, Comparcola D, Sartorelli MR, Marcellini M, Bertini E, Piemonte F. Glutathione metabolism and antioxidant enzymes in patients affected by nonalcoholic steatohepatitis. Clin Chim Acta 2005; 355:105-11. [PMID: 15820484 DOI: 10.1016/j.cccn.2004.12.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 12/17/2004] [Accepted: 12/17/2004] [Indexed: 12/22/2022]
Abstract
BACKGROUND Oxidative stress and accumulation of excessive fat in the liver may underlie the pathophysiology of nonalcoholic steatohepatitis (NASH). Given that glutathione blood metabolism may represent an indicator of tissue oxidative status, we analysed the blood profile of various forms of glutathione in children with NASH, and we evaluated the presence of systemic oxidative stress by calculating the oxidised/reduced glutathione ratio (GSSG/GSH). Furthermore, we analysed the catalytic activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione transferase (GST), and glutathione reductase (GR) in blood of patients. METHODS Blood samples were obtained from 21 children with NASH and 28 controls. Total, reduced, oxidised, and protein-bound glutathione concentrations were determined by reversed-phase liquid chromatography with fluorescence detection. Antioxidant enzymes were spectrophotometrically assayed by using specific substrates. RESULTS Our findings showed a 1.5-fold increase of GSSG in patients, resulting in a significant rise of the GSSG/GSH ratio. SOD, GPx, and GR activities were not significantly different in NASH respect to controls, whereas GST, which provides the second defence line against oxidative stress, was 17.8% increased. CONCLUSIONS Our data demonstrate an impairment of glutathione metabolism and antioxidant enzyme activities in blood of patients with NASH, supporting a consistent role of free radical cytotoxicity in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Valerio Nobili
- Division of Hepatology, Children's Hospital and Research Institute "Bambino Gesù," Piazza S. Onofrio, 4, Rome 00165, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Brown-Borg HM, Rakoczy SG, Uthus EO. Growth hormone alters methionine and glutathione metabolism in Ames dwarf mice. Mech Ageing Dev 2005; 126:389-98. [PMID: 15664625 DOI: 10.1016/j.mad.2004.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 08/27/2004] [Accepted: 09/14/2004] [Indexed: 11/23/2022]
Abstract
Reduced signaling of the growth hormone (GH)/insulin-like growth factor-1(IGF-1)/insulin pathway is associated with extended life span in several species. Ames dwarf mice are GH and IGF-1 deficient and live 50-64% longer than wild type littermates (males and females, respectively). Previously, we have shown that Ames mice exhibit elevated levels of antioxidative enzymes and lower oxidative damage. To further explore the relationship between GH and antioxidant expression, we administered GH or saline to dwarf mice and evaluated components of the methionine and glutathione (GSH) metabolic pathways. Treatment of dwarf mice with GH significantly suppressed methionine adenosyltransferase (40 and 38%) and glycine-N-methyltransferase (44 and 43%) activities (in 3- and 12-month-old mice, respectively). Growth hormone treatment elevated kidney gamma-glutamyl-cysteine synthetase protein levels in 3- and 12-month-old dwarf mice. In contrast, the activity of the GSH degradation enzyme, gamma-glutamyl transpeptidase, was suppressed by GH administration in heart and liver. The activity of glutathione-S-transferase, an enzyme involved in detoxification, was also affected by GH treatment. Taken together, the current results along with data from previous studies support a role for growth hormone in the regulation of antioxidative defense and ultimately, life span in organisms with altered GH or IGF-1 signaling.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203, USA.
| | | | | |
Collapse
|
29
|
Szkudelski T, Okulicz M, Bialik I, Szkudelska K. The influence of fasting on liver sulfhydryl groups, glutathione peroxidase and glutathione-S-transferase activities in the rat. J Physiol Biochem 2005; 60:1-6. [PMID: 15352379 DOI: 10.1007/bf03168215] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sulfhydryl groups, glutathione peroxidase (GPx) and glutathione-S-transferase (GST) are important elements of the antioxidant defence in the organism. The efficacy of their antioxidant action is influenced by many factors. In this work, the effect of fasting on total, protein-bound and nonprotein sulfhydryl groups and on the activity of liver and serum GPx and GST in rats were determined. Male Wistar rats were divided into two groups: non-fasted and 18-hour fasted. In fasted animals liver content of nonprotein sulfhydryl groups (represented predominantly by reduced glutathione; GSH) was diminished by 22% in comparison to non-fasted group, whereas total and protein-bound -SH groups were unaffected. The activity of liver and serum GPx was unchanged in food deprived rats. In these animals the activity of GST in serum was reduced by 26%. Fasting had no significant effect on the activity of GST in the liver. Our results demonstrate that in rats deprived of food for 18 hours liver and serum GPx and GST are not involved in protection against action of reactive oxygen species formed during fasting. The observed drop in the content of liver nonprotein sulfhydryl groups without concomitant rise in the activity of GPx and GST indicates that this effect may be due to augmented degradation of GSH, its potentiated efflux from hepatocytes and formation of conjugates with intermediates arising as a result of reactive oxygen species action.
Collapse
Affiliation(s)
- T Szkudelski
- Department of Animal Physiology and Biochemistry, University of Agriculture, 60-637 Wolynska 35, Poznan, Poland.
| | | | | | | |
Collapse
|
30
|
Renner A, Sagstetter MR, Götz ME, Lange V, Bengel D, Harms H, Riederer P, Elert O. Heterotopic rat heart transplantation: severe loss of glutathione in 8-hour ischemic hearts. J Heart Lung Transplant 2005; 23:1093-102. [PMID: 15454177 DOI: 10.1016/j.healun.2003.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Revised: 05/21/2003] [Accepted: 08/08/2003] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Tissue damage caused by reactive oxygen species (ROS) formed during ischemia/reperfusion seems to be an important risk factor in the failure of transplanted hearts. Although endogenous anti-oxidants protect the myocardium against free radical attack under physiologic conditions, their capacity may become limited during severe oxidative stress. Thus, we investigated the effect of 8-hour cold ischemia on the myocardial anti-oxidative defense system in a heterotopic rat heart transplantation model. METHODS Lewis rat hearts were subjected to 30 or 480 minutes of 4 degrees C cold ischemia in Bretschneider cardioplegic solution with or without transplantation and reperfusion (30 or 240 minutes) into F344 recipients. Activity levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione S-transferase (GST), and concentrations of glutathione (GSH), glutathione disulfide (GSSG) and lipid hydroperoxides (LOOH) were analyzed in heart homogenates. For histology, cross-sections of the ventricles were stained with hematoxylin-eosin. RESULTS Except for GST, enzyme activities and GSSG concentration increased and the glutathione redox ratio (GSH/GSH + 2GSSG) significantly decreased in 480-minute ischemic hearts compared with those with 30-minute ischemia. Reperfusion dramatically decreased both GSH and GSSG and increased LOOH formation but without severe histopathologic findings in the transplants. Applying a tree-structured classifier technique, GSH and LOOH were identified as significant features indicative of transplantation-induced oxidative stress. CONCLUSIONS In the present study severe loss of glutathione and formation of LOOH indicated transplantation-induced oxidative stress in the rat heart; therefore, alterations of these parameters may hint at relevant deficits in the myocardial anti-oxidative defense and may also predict subsequent tissue damage.
Collapse
Affiliation(s)
- André Renner
- Clinic and Policlinic of Cardiothoracic Surgery, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pan Z, Perez-Polo R. Regulation of γ-glutamylcysteine synthetase activity by nerve growth factor. Int J Dev Neurosci 2004. [DOI: 10.1016/0736-5748(96)00058-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Zhaohui Pan
- University of Texas Medical Branch at Galveston; 301 University Blvd; Galveston TX 77555-0652 U.S.A
| | - Regino Perez-Polo
- University of Texas Medical Branch at Galveston; 301 University Blvd; Galveston TX 77555-0652 U.S.A
| |
Collapse
|
32
|
González B, Manso R. Induction, modification and accumulation of HSP70s in the rat liver after acute exercise: early and late responses. J Physiol 2004; 556:369-85. [PMID: 14754995 PMCID: PMC1664938 DOI: 10.1113/jphysiol.2003.058420] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Liver cells synthesize HSP72, the cytosolic highly stress-inducible member of the 70 kDa family of heat-shock proteins (HSP70s), in response to acute exercise. This study was aimed at obtaining further insight into the physiological relevance of the hepatic stress response to exercise by investigating the induction and long-term maintenance of increased levels of HSP70s of the HSP and glucose-regulated protein (GRP) families, their post-translational modifications during or after exercise and the possible relation of HSP induction to oxidative stress. In a running rat model, acute exercise activated the synthesis and accumulation of HSP72, GRP75 and GRP78 in liver cells, pointing towards a multifactorial origin of this response. A peak HSP72 accumulation was observed shortly after exercise as a result of transcriptional activation. HSP72 was reduced shortly after exercise preceding the disappearance of its mRNA. Two further waves of HSP72 accumulation peaked 8 and 48 h after exercise without transcriptional activation. A transient increase in the proportion of acidic variants of HSP72 and HSP73 was also observed shortly after exercise as a result, at least in part, of protein phosphorylation. Free and protein-bound lipid peroxidation derivatives (TBARS) showed a tendency to increase in the early post-exercise and the free-to-protein-bound TBARS ratio decreased significantly after 2 h. During the early post-exercise period, protein-bound TBARS correlated positively with HSP72 and 73, but not with GRP75 or GRP78. Altogether, the reported results indicate that the early induction and post-translational modification of HSP70s in liver cells following exercise is a preliminary step of a series of long-lasting HSP70-related events, possibly designed to preserve liver cell homeostasis and to help provide a concerted response of the whole organism to physical stress.
Collapse
Affiliation(s)
- Beatriz González
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, E-28049 Cantoblanco, Madrid, Spain.
| | | |
Collapse
|
33
|
Mariotti F, Simbelie KL, Makarios-Lahham L, Huneau JF, Laplaize B, Tomé D, Even PC. Acute ingestion of dietary proteins improves post-exercise liver glutathione in rats in a dose-dependent relationship with their cysteine content. J Nutr 2004; 134:128-31. [PMID: 14704304 DOI: 10.1093/jn/134.1.128] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dietary sulfur amino acids affect glutathione synthesis, but their acute effect under conditions of oxidative stress is unknown. We assessed the effect of the selective ingestion of alpha-lactalbumin, a cysteine-rich protein, on glutathione homeostasis before a single bout of exhaustive exercise. One hour before a 2-h run on a treadmill, untrained rats ingested a meal enriched with either milk protein (TMP), alpha-lactalbumin-enriched milk protein (alpha-LAC), glucose (GLUC) or milk protein plus 150 mg N-acetyl-L-cysteine, a pharmacologic cysteine donor (NAC). Glutathione status was monitored in the blood and measured postexercise in the liver and heart. A group of fed sedentary rats was used as a control (CON). Blood total glutathione levels declined over time in all test groups. Although postexercise heart glutathione did not differ among groups, postexercise liver glutathione was curvilinearly related to prior cysteine intake (R2=0.999, P<0.05). In alpha-LAC rats, liver glutathione was 60-80% higher than in GLUC or CON rats (P<0.05) and did not differ from that of NAC rats. Cysteine from dietary proteins exhibits a considerable, dose-dependent and acute stimulatory effect on liver glutathione during exercise but does not immediately benefit whole-body glutathione homeostasis, presumably because of an overlap between the postprandial and exercise-related states.
Collapse
Affiliation(s)
- François Mariotti
- UMR INRA-INAPG 914 Physiologie de la Nutrition et du Comportement Alimentaire, Institut National Agronomique Paris-Grignon, 75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Cholera toxin-induced modulation of gene expression: elucidation via cDNA microarray for rational cell-based sensor design. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(01)01353-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Leichtweis S, Leeuwenburgh C, Bejma J, Ji LL. Aged rat hearts are not more susceptible to ischemia-reperfusion injury in vivo: role of glutathione. Mech Ageing Dev 2001; 122:503-18. [PMID: 11295168 DOI: 10.1016/s0047-6374(00)00253-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The current study tested the hypothesis that ischemia-reperfusion (I-R) can cause more severe myocardial dysfunction and oxidative damage in senescent rats than young adult rats. Male Fischer 344 rats at the age of 6 (adult) and 24 (old) months were subjected to an open-chest heart surgery and randomly assigned to one of the following treatments: ischemia only (I), with the occlusion of the main descending branch of the left coronary artery (LCA) for 30 min; I-R, with the release of LCA occlusion for 20 min; or sham (S) operation. Heart mechanical performance was monitored using a fluid-filled catheter inserted in the right carotid artery and advanced to the left ventricle. Ischemia caused similar reductions of left ventricle systolic pressure (LVSP) and contractility (+/-dP/dt) in adult and aged hearts. After I-R, adult hearts regained 82% (P<0.05) of the pre-ischemic LVSP, whereas the aged hearts regained 91% (P>0.05) of LVSP. There was no significant difference in the reduction of +/-dP/dt with I-R between adult and aged hearts. Old rats had lower pre-ischemic heart rate than adult rats, however, I-R caused no reduction of heart rate, and a smaller reduction of pressure-rate double product in the aged rats (10%, P>0.05) than the adult rats (23%, P<0.01). Aged rats demonstrated greater myocardial and plasma glutathione (GSH) concentrations prior to surgery, and maintained higher GSH levels and GSH:glutathione disulfide (GSSG) ratio with I-R. Aged hearts also had higher GSH peroxidase, GSH reductase and GSH sulfur-transferase activities than adult hearts, while I-R induced lipid peroxidation was similar. It is concluded that senescent hearts with intact circulatory and neural inputs are not more susceptible to I-R injury than adult hearts during myocardial I-R, partly because they have a greater GSH antioxidant protection.
Collapse
Affiliation(s)
- S Leichtweis
- Department of Kinesiology and Nutritional Science, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
36
|
Leichtweis S, Ji LL. Glutathione deficiency intensifies ischaemia-reperfusion induced cardiac dysfunction and oxidative stress. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 172:1-10. [PMID: 11437734 DOI: 10.1046/j.1365-201x.2001.00820.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The efficacy of glutathione (GSH) in protecting ischaemia-reperfusion (I-R) induced cardiac dysfunction and myocardial oxidative stress was studied in open-chest, stunned rat heart model. Female Sprague-Dawley rats were randomly divided into three experimental groups: (1) GSH-depletion, by injection of buthionine sulphoxamine (BSO, 4 mmol kg(-1), i.p.) 24 h prior to I-R, (2) BSO injection (4 mmol kg(-1), i.p.) in conjunction with acivicin (AT125, 0.05 mmol kg(-1), i.v.) infusion 1 h prior to I-R, and (3) control (C), receiving saline treatment. Each group was further divided into I-R, with surgical occlusion of the main left coronary artery (LCA) for 30 min followed by 20 min reperfusion, and sham. Myocardial GSH content and GSH : glutathione disulphide (GSSG) ratio were decreased by approximately 50% (P < 0.01) in both BSO and BSO + AT125 vs. C. Ischaemia-reperfusion suppressed GSH in both left and right ventricles of C (P < 0.01) and left ventricles of BSO and BSO + AT125 (P < 0.05). Contractility (+dP/dt and -dP/dt) in C heart decreased 55% (P < 0.01) after I and recovered 90% after I-R, whereas +/-dP/dt in BSO decreased 57% (P < 0.01) with ischaemia and recovered 76 and 84% (P < 0.05), respectively, after I-R. For BSO + AT125, +/-dP/dt were 64 and 76% (P < 0.01) lower after ischaemia, and recovered only 67 and 61% (P < 0.01) after I-R. Left ventricular systolic pressure in C, BSO and BSO + AT125 reached 95 (P > 0.05) 87 and 82% (P < 0.05) of their respective sham values after I-R. Rate-pressure double product was 11% (P > 0.05) and 25% (P < 0.05) lower in BSO and BSO + AT125, compared with Saline, respectively. BSO and BSO + AT125 rats demonstrated significantly lower liver GSH and heart Mn superoxide dismutase activity than C rats after I-R. These data indicate that GSH depletion by inhibition of its synthesis and transport can exacerbate cardiac dysfunction inflicted by in vivo I-R. Part of the aetiology may involve impaired myocardial antioxidant defenses and whole-body GSH homeostasis.
Collapse
Affiliation(s)
- S Leichtweis
- Department of Kinesiology and Nutritional Science, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
37
|
Song Z, Cawthon D, Beers K, Bottje WG. Hepatic and extra-hepatic stimulation of glutathione release into plasma by norepinephrine in vivo. Poult Sci 2000; 79:1632-9. [PMID: 11092338 DOI: 10.1093/ps/79.11.1632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Studies were conducted to determine the effect of norepinephrine (NE) on reduced glutathione (GSH) and oxidized glutathione (GSSG) export from hepatic and extra-hepatic tissues in vivo. Anesthetized Single Comb White Leghorn (SCWL) males were implanted with cannulae in the carotid artery, hepatic vein (HV) and hepatic portal veins (PV), and the left bile duct. In Experiment 1, GSH and GSSG in hepatic and portal venous plasma and bile were determined prior to, during, and following two 20-min infusions of NE (2 and 10 microg/min per kg BW) into the hepatic PV. The lower NE infusion rate increased hepatic venous GSH (indicative of increased GSH export into liver sinusoids) without affecting systemic or hepatic vascular pressures; however, it had no affect on portal venous GSH. The higher NE infusion rate increased GSH in the HV and hepatic PV (indicative of extra hepatic export of glutathione) as well as systemic pressure, hepatic and portal venous pressures, and the transhepatic pressure gradient. Biliary secretion of GSH and GSSG was unaffected by either rate of NE infusion in Experiment 1. In Experiment 2, pretreatment of birds with phentolamine, an alpha-adrenergic receptor blocker (alpha-block), abolished sinusoidal export GSH as well as the ability of NE to stimulate GSH release from hepatic and extra-hepatic tissue. Although HV and PV pressures were lower in alpha-block birds compared with controls, there were no differences in the transhepatic pressure gradient between groups. Plasma GSSG was below the limits of detection in Experiments 1 and 2. The combined results of Experiments 1 and 2 indicate that hepatic export of GSH was independent of changes in systemic or hepatic vascular pressures or changes in the transhepatic pressure gradient. The results of these studies are the first to demonstrate that export of GSH into plasma in vivo is mediated by an alpha-receptor-mediated mechanism in hepatic and extra-hepatic tissues. The findings may be particularly important with regard to antioxidant homeostasis of animals during periods of stress.
Collapse
Affiliation(s)
- Z Song
- Department of Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | | | | | | |
Collapse
|
38
|
Favilli F, Catarzi S, Iantomasi T, Vincenzini MT. Glutathione transport system in NIH3t3 fibroblasts. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 4:212-8. [PMID: 11409914 DOI: 10.1006/mcbr.2001.0280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current study characterizes a mediated transport for GSH uptake in murine fibroblasts NIH3T3. The presence of GSH mediated transport is indicated by the behaviour of GSH uptake time-course, as well as by kinetic saturation and the specific inhibition of the initial rate of GSH transport. Moreover, a concentrative GSH uptake has been measured, whose driving force may be due to a change of membrane potential and the direct involvement of ATP. Hyperbolic kinetic saturation shows a single mediated transport with high affinity for GSH (Km = 0.209 +/- 0.03 mM). High specificity of this GSH transporter for the entire structure of GSH is also demonstrated. To summarize, GSH uptake into NIH3T3 cells occurs by an active transport system and shows characteristics similar to ATP-dependent mechanisms previously identified in hepatocyte membranes. Moreover, a possible physiological role of this GSH transporter related to NIH3T3 cell proliferation has been hypothesized.
Collapse
Affiliation(s)
- F Favilli
- Department of Biochemical Sciences, University of Firenze, viale Morgagni 50, Florence, 50134, Italy
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- S C Lu
- Department of Medicine, University of Southern California School of Medicine, Los Angeles 90033, USA
| |
Collapse
|
40
|
Lee H, Cha MK, Kim IH. Activation of thiol-dependent antioxidant activity of human serum albumin by alkaline pH is due to the B-like conformational change. Arch Biochem Biophys 2000; 380:309-18. [PMID: 10933886 DOI: 10.1006/abbi.2000.1929] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antioxidant activity of human serum albumin (HSA) increased steeply as the reaction mixture was shifted from neutral to alkaline pH. The antioxidant activity was also remarkably increased by Ca(2+) or a cationic detergent (cetyltrimethylammonium chloride). Carboxyl group modification of HSA resulted in about 40-fold increase of the antioxidant activity. The chemical modification study indicated that in addition to functional cysteine(s), cationic amino acid residues such as histidine, arginine and lysine appeared to involve in the antioxidant reaction. HSA also exhibited alkaline-pH dependent peroxidase activity to remove fatty acid hydroperoxide. At neutral pH, only two thiols of Cys-289 and free Cys-34 of HSA were modified by a thiol-specific modification reagent, 5-((((2-iodoacetyl)amino)ethy)amino)naphthalene-1-sulfonic acid (I14), regardless of the presence or absence of dithiothreitol (DTT), and the resultant antioxidant activity was not decreased, suggesting that Cys-289 and Cys-34 did not participate in the antioxidant reaction. At alkaline pH, I14 modified several additional HSA thiols in the presence, but did not in the absence of DTT. The antioxidant activity of the modified HSA was remarkably decreased to as much as 30% of the antioxidant activity given by the unmodified HSA in the absence of DTT. The HPLC pattern for tryptic peptides containing modified cysteine(s) derived from the I14-treated c-HSA (carboxyl group-modified HSA) at pH 7.0 with DTT was very similar to that of the I14-modified HSA at pH 8.0 with DTT. Taken together, these results suggest that activation of thiol-dependent antioxidant activity of HSA at alkaline pH is due to the conformational change favorable for the functional cysteine(s)-mediated catalysis.
Collapse
Affiliation(s)
- H Lee
- National Creative Research Initiative Center for Antioxidant Proteins, Department of Biochemistry, Paichai University, 439-6 Doma-2-Dong Seo-Gu, Taejon, 302-735, Republic of Korea
| | | | | |
Collapse
|
41
|
Palestini P, Pitto M, Tedeschi G, Ferraretto A, Parenti M, Brunner J, Masserini M. Tubulin anchoring to glycolipid-enriched, detergent-resistant domains of the neuronal plasma membrane. J Biol Chem 2000; 275:9978-85. [PMID: 10744673 DOI: 10.1074/jbc.275.14.9978] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After incubation of intact living cultured rat cerebellar granule cells at 37 degrees C with a new GM1 ganglioside analog, carrying a diazirine group and labeled with (125)I in the ceramide moiety, followed by photoactivation, a relatively small number of radiolabeled proteins were detected in a membrane-enriched fraction. A protein of about 55 kDa with a pI of about 5 carried a large portion of the radioactivity even if incubation and cross-linking were performed at 4 degrees C and in the presence of inhibitors of endocytosis, suggesting that it is cross-linked at the plasma membrane. Immunoprecipitation and Western blotting experiments showed the positivity of this protein for tubulin. Trypsin treatment of intact cells ruled out the involvement of a plasma membrane surface tubulin. Release of radioactivity from cross-linked tubulin after KOH treatment (but not hydroxylamine treatment) suggested that the photoactivated ganglioside reacts with an ester-linked fatty acid anchor of tubulin. Low buoyancy, detergent-resistant membrane fractions, isolated from cells after incubation with the GM1 analogue and photoactivation, proved their enrichment in endogenous and radioactive GM1 ganglioside, sphingomyelin, cholesterol, signal transduction proteins, and tubulin. It is noteworthy that radioactive tubulin was also detected in this fraction, indicating the presence of tubulin molecules carrying a fatty acid anchor in detergent-resistant, ganglioside-enriched domains of the plasma membrane. Parallel experiments carried out with a phosphatidylcholine analogue, also carrying a diazirine group and labeled with (125)I in the fatty acid moiety, showed the specificity of tubulin interaction with GM1. Taken together, these results indicate that some tubulin molecules are associated with a lipid anchor to detergent-resistant glycolipid-enriched domains of the plasma membrane. This novel feature of membrane domains can provide a key for a better understanding of their biological role.
Collapse
Affiliation(s)
- P Palestini
- Department of Experimental, Environmental Medicine and Biotechnologies, Medical School, University of Milano-Bicocca, Hospital S. Gerardo, 20052 Monza, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Mittur AV, Kaplowitz N, Kempner ES, Ookhtens M. Radiation inactivation studies of hepatic sinusoidal reduced glutathione transport system. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1464:207-18. [PMID: 10727608 DOI: 10.1016/s0005-2736(00)00152-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sinusoidal transport of reduced glutathione (GSH) is a carrier-mediated process. Perfused liver and isolated hepatocyte models revealed a low-affinity transporter with sigmoidal kinetics (K(m) approximately 3.2-12 mM), while studies with sinusoidal membrane vesicles (SMV) revealed a high-affinity unit (K(m) approximately 0.34 mM) besides a low-affinity one (K(m) approximately 3.5-7 mM). However, in SMV, both the high- and low-affinity units manifested Michaelis-Menten kinetics of GSH transport. We have now established the sigmoidicity of the low-affinity unit (K(m) approximately 9) in SMV, consistent with other models, while the high-affinity unit has been retained intact with Michaelis-Menten kinetics (K(m) approximately 0.13 mM). We capitalized on the negligible cross-contributions of the two units to total transport at the low and high ends of GSH concentrations and investigated their characteristics separately, using radiation inactivation, as we did in canalicular GSH transport (Am. J. Physiol. 274 (1998) G923-G930). We studied the functional sizes of the proteins that mediate high- and low-affinity GSH transport in SMV by inactivation of transport at low (trace and 0.02 mM) and high (25 and 50 mM) concentrations of GSH. The low-affinity unit in SMV was much less affected by radiation than in canalicular membrane vesicles (CMV). The target size of the low-affinity sinusoidal GSH transporter appeared to be considerably smaller than both the canalicular low- and high-affinity transporters. The high-affinity unit in SMV was markedly inactivated upon irradiation, revealing a single protein structure with a functional size of approximately 70 kDa. This size is indistinguishable from that of the high-affinity GSH transporter in CMV reported earlier.
Collapse
Affiliation(s)
- A V Mittur
- Research Center for Liver Diseases, Department of Medicine, USC School of Medicine, University of Southern California, 2011 Zonal Ave., HMR-615, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Glutathione (L-gamma-glutamyl-L-cysteinylglycine, GSH) is synthesized from its constituent amino acids by the sequential action of gamma-glutamylcysteine synthetase (gamma-GCS) and GSH synthetase. The intracellular GSH concentration, typically 1-8 mM, reflects a dynamic balance between the rate of GSH synthesis and the combined rate of GSH consumption within the cell and loss through efflux. The gamma-GCS reaction is rate limiting for GSH synthesis, and regulation of gamma-GCS expression and activity is critical for GSH homeostasis. Transcription of the gamma-GCS subunit genes is controlled by a variety of factors through mechanisms that are not yet fully elucidated. Glutathione synthesis is also modulated by the availability of gamma-GCS substrates, primarily L-cysteine, by feedback inhibition of gamma-GCS by GSH, and by covalent inhibition of gamma-GCS by phosphorylation or nitrosation. Because GSH plays a critical role in cellular defenses against electrophiles, oxidative stress and nitrosating species, pharmacologic manipulation of GSH synthesis has received much attention. Administration of L-cysteine precursors and other strategies allow GSH levels to be maintained under conditions that would otherwise result in GSH depletion and cytotoxicity. Conversely, inhibitors of gamma-GCS have been used to deplete GSH as a strategy for increasing the sensitivity of tumors and parasites to certain therapeutic interventions.
Collapse
Affiliation(s)
- O W Griffith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA.
| |
Collapse
|
44
|
Affiliation(s)
- Shelly C. Lu
- USC Liver Disease Research CenterDivision of Gastrointestinal and Liver DiseasesDepartment of MedicineUniversity of Southern California School of Medicine Los Angeles California 90033 USA
| |
Collapse
|
45
|
Powers SK, Ji LL, Leeuwenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 1999; 31:987-97. [PMID: 10416560 DOI: 10.1097/00005768-199907000-00011] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular oxidants include a variety of reactive oxygen, nitrogen, and chlorinating species. It is well established that the increase in metabolic rate in skeletal muscle during contractile activity results in an increased production of oxidants. Failure to remove these oxidants during exercise can result in significant oxidative damage of cellular biomolecules. Fortunately, regular endurance exercise results in adaptations in the skeletal muscle antioxidant capacity, which protects myocytes against the deleterious effects of oxidants and prevents extensive cellular damage. This review discusses the effects of chronic exercise on the up-regulation of both antioxidant enzymes and the glutathione antioxidant defense system. Primary antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase will be discussed as well as glutathione, which is an important nonenzymatic antioxidant. Growing evidence indicates that exercise training results in an elevation in the activities of both superoxide dismutase and glutathione peroxidase along with increased cellular concentrations of glutathione in skeletal muscles. It seems plausible that increased cellular concentrations of these antioxidants will reduce the risk of cellular injury, improve performance, and delay muscle fatigue.
Collapse
Affiliation(s)
- S K Powers
- Department of Exercise and Sport Sciences, Center for Exercise Science, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|
46
|
Sun JS, Lu FJ, Huang WC, Hou SM, Tsuang YH, Hang YS. Antioxidant status following acute ischemic limb injury: a rabbit model. Free Radic Res 1999; 31:9-21. [PMID: 10489116 DOI: 10.1080/10715769900300561] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although ischemic injury to skeletal muscle is a matter of great clinical importance, relatively little is known about the mechanisms which determine systemic responses. One purpose of this study is to elucidate the systemic antioxidant status following an episode of acute ischemic limb injury and subsequent reperfusion. Twelve New Zealand white rabbits were used in this study. After the animals were anesthetized, an ischemic insult was created in the right hind limb for twelve hours, followed by four hours of reperfusion. Several series of blood samples were obtained. At the end of the experiment, the animals were killed and necropsies undertaken in order to evaluate the antioxidant status of various visceral organs. The results link ischemia and reperfusion injury to a significant decline in antioxidative activity in various tissues. The weakening in antioxidant status after ischemic limb injury was most pronounced in the heart tissue, followed in descending order by the spleen, skeletal muscle, lung, liver, and kidney tissue. The levels of specific antioxidants and reactive oxygen species in various organs changed significantly, and the changes were tissue specific. Endogenous radical scavenging systems were not entirely overwhelmed in most of the tissues studied. But higher levels of malondialdehyde (MDA) found in cardiac tissue suggest that the production of oxygen free radicals is accelerated by an ischemic injury. Based on the study, we believe that the cardiac tissue is particularly susceptible to the effects of ischemia and reperfusion injury. Damage to cardiac tissue is probably the major cause of mortality following acute ischemic injury in a limb.
Collapse
Affiliation(s)
- J S Sun
- Department of Orthopedic Surgery, National Taiwan University Hospital, College of Medicine, Taipei, ROC.
| | | | | | | | | | | |
Collapse
|
47
|
Voces J, Alvarez AI, Vila L, Ferrando A, Cabral de Oliveira C, Prieto JG. Effects of administration of the standardized Panax ginseng extract G115 on hepatic antioxidant function after exhaustive exercise. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1999; 123:175-84. [PMID: 10442826 DOI: 10.1016/s0742-8413(99)00025-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effect of prolonged treatment with the standardized Panax ginseng extract G115 on the antioxidant capacity of the liver was investigated. For this purpose, rats that had received G115 orally at different doses for 3 months and untreated control rats were subjected to exhaustive exercise on a treadmill. A bell-shaped dose response on running time was obtained. The results showed that the administration of G115 significantly increases the hepatic glutathione peroxidase activity (GPX) and the reduced glutathione (GSH) levels in the liver, with a dose-dependent reduction of the thiobarbituric acid reactant substances (TBARS). After the exercise, there is reduced hepatic lipid peroxidation, as evidenced by the TBARS levels in both the controls and the treated animals. The GPX (glutathione peroxidase) and SOD (superoxide dismutase) activity are also significantly increased in the groups receiving G115, compared with the controls. The hepatic transaminase levels, ALT (Alanine-amino-transferase) and AST (Aspartate-amino-transferase), in the recuperation phase 48 h after the exercise, indicate a clear hepatoprotective effect related to the administration of the standardized Panax ginseng extract G115. At hepatic level, G115 increases the antioxidant capacity, with a marked reduction of the effects of the oxidative stress induced by the exhaustive exercise.
Collapse
Affiliation(s)
- J Voces
- Department of Animal Physiology, Veterinary Faculty, University of Leon, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Changes in plasma glutathione were investigated under hypoglycemic status. Twelve rabbits were randomly divided into hypoglycemic group (n=6) and saline-injected control group (n=6). Hypoglycemia was induced by intravenous injection of insulin as 10 U/kg and recovered by intravenous glucose injection after 60 minutes. In the control group, saline was intravenously injected in stead of insulin. Plasma levels of oxidized glutathione (GSSG) rose significantly (p<0.01) and remarkably decrease in plasma GSH/GSSG ratio (p<0.05) accompanying increase in serum enzymes in the hypoglycemic group. These results suggest that hypoglycemia might cause change in plasma GSSG which is related to increase of serum enzymes by hypoglycemia.
Collapse
Affiliation(s)
- Z L Jiang
- The Section of Internal Medicine and Disability Prevention, Disability Science, Division of Medicine, Tohoku University Graduate School, Sendai, Japan.
| | | |
Collapse
|
49
|
Park SH, Aust AE. Regulation of nitric oxide synthase induction by iron and glutathione in asbestos-treated human lung epithelial cells. Arch Biochem Biophys 1998; 360:47-52. [PMID: 9826428 DOI: 10.1006/abbi.1998.0950] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment of human lung epithelial (A549) cells with crocidolite asbestos resulted in the induction of the inducible form of nitric oxide synthase (iNOS), production of NO, and a dramatic decrease in intracellular reduced glutathione (GSH). Iron, mobilized from the crocidolite fibers (27% iron by weight), and the formation of NO were required for the formation of 2'-deoxy-7-hydro-8-oxoguanosine in the DNA of the A549 cells, but not for the decrease in GSH. Therefore, we investigated the role of GSH and iron in the induction of iNOS in A549 cells by crocidolite. Iron was required for the induction of iNOS by crocidolite. A fivefold higher amount of chrysotile asbestos (3% iron by weight) was required to cause a similar decrease in intracellular GSH and induction of iNOS. In the absence of asbestos, treatment with either buthionine sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase, or ferric ammonium citrate (FAC), a soluble form of iron, did not result in induction of iNOS. However, iNOS was induced when A549 cells were treated simultaneously with BSO and FAC. The presence of 5 mM N-acetylcysteine prevented induction of iNOS in crocidolite-treated A549 cells. These observations suggest that the induction of iNOS resulted from a decrease in intracellular GSH and the presence of iron from the asbestos fibers.
Collapse
Affiliation(s)
- S H Park
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322-0300, USA
| | | |
Collapse
|
50
|
Leeuwenburgh C, Ji LL. Glutathone and glutathione ethyl ester supplementation of mice alter glutathione homeostasis during exercise. J Nutr 1998; 128:2420-6. [PMID: 9868190 DOI: 10.1093/jn/128.12.2420] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present study examined the effect of glutathione (GSH) and glutathione ethyl ester (GSH-E) supplementation on GSH homeostasis and exercise-induced oxidative stress. Male Swiss-Webster mice were randomly divided into 4 groups: starved for 24 h and injected with GSH or GSH-E (6 mmol/kg body wt, i.p.) 1 h before exercise, starved for 24 h and injected with saline (S); and having free access to food and injected with saline (C). Half of each group of mice was killed either after an acute bout of exhaustive swimming (E) or after rest (R). Plasma GSH concentration was 100-160% (P < 0.05) higher in GSH mice vs. C or S mice at rest, whereas GSH-E injection had no effect. Plasma GSH was not affected by exercise in C or S mice, but was 44 and 34% lower (P < 0.05) in E vs. R mice with GSH or GSH-E injection, respectively. S, GSH- and GSH-E-treated mice had significantly lower liver GSH concentration and the GSH:glutathione disulfide (GSSG) ratio than C mice. Hepatic and renal GSH and the GSH:GSSG ratio were significantly lower in E vs. R mice in all groups. GSH-E-treated mice had a significantly smaller exercise-induced decrease in GSH vs. C, S, and GSH-treated mice and no difference in the GSH:GSSG ratio in the kidney. Activities of gamma-glutamylcysteine synthetase and gamma-glutamyltranspeptidase in the liver and kidney were not affected by either GSH treatment or exercise. GSH concentration and the GSH:GSSG ratio in quadriceps muscle were not different among C, S and GSH-treated mice, but significantly lower in GSH-E-treated mice (P < 0.05). Hepatic malondialdehyde (MDA) content was greater in exercised mice in all but GSH-E-treated groups. GSH and GSH-E increased MDA levels in the kidney of E vs. R mice, but attenuated exercise-induced lipid peroxidation in muscle. Swim endurance time was approximately 2 h longer in GSH (351 +/- 22 min) and GSH-E (348 +/- 27) than S mice (237 +/- 17). We conclude that 1) acute GSH and GSH-E supplementation at the given doses does not increase tissue GSH content or redox status; 2) both GSH and GSH-E improve endurance performance and prevent muscle lipid peroxidation during prolonged exercise; and 3) while both compounds may impose a metabolic and oxidative stress to the kidney, this side effect is smaller with GSH-E supplementation.
Collapse
Affiliation(s)
- C Leeuwenburgh
- Department of Kinesiology, Interdepartmental Graduate Program of Nutritional Sciences, University of Wisconsin-Madison, WI 53706, USA
| | | |
Collapse
|