1
|
Yunn NO, Kim J, Ryu SH, Cho Y. A stepwise activation model for the insulin receptor. Exp Mol Med 2023; 55:2147-2161. [PMID: 37779149 PMCID: PMC10618199 DOI: 10.1038/s12276-023-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 10/03/2023] Open
Abstract
The binding of insulin to the insulin receptor (IR) triggers a cascade of receptor conformational changes and autophosphorylation, leading to the activation of metabolic and mitogenic pathways. Recent advances in the structural and functional analyses of IR have revealed the conformations of the extracellular domains of the IR in inactive and fully activated states. However, the early activation mechanisms of this receptor remain poorly understood. The structures of partially activated IR in complex with aptamers provide clues for understanding the initial activation mechanism. In this review, we discuss the structural and functional features of IR complexed with various ligands and propose a model to explain the sequential activation mechanism. Moreover, we discuss the structures of IR complexed with biased agonists that selectively activate metabolic pathways and provide insights into the design of selective agonists and their clinical implications.
Collapse
Affiliation(s)
- Na-Oh Yunn
- Postech Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Junhong Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Biomedical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
2
|
Abstract
The insulin receptor (IR) is a type II receptor tyrosine kinase that plays essential roles in metabolism, growth, and proliferation. Dysregulation of IR signaling is linked to many human diseases, such as diabetes and cancers. The resolution revolution in cryo-electron microscopy has led to the determination of several structures of IR with different numbers of bound insulin molecules in recent years, which have tremendously improved our understanding of how IR is activated by insulin. Here, we review the insulin-induced activation mechanism of IR, including (a) the detailed binding modes and functions of insulin at site 1 and site 2 and (b) the insulin-induced structural transitions that are required for IR activation. We highlight several other key aspects of the activation and regulation of IR signaling and discuss the remaining gaps in our understanding of the IR activation mechanism and potential avenues of future research.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA;
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
3
|
The insulin receptor endocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:79-107. [PMID: 36631202 DOI: 10.1016/bs.pmbts.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin signaling controls multiple aspects of animal physiology. At the cell surface, insulin binds and activates the insulin receptor (IR), a receptor tyrosine kinase. Insulin promotes a large conformational change of IR and stabilizes the active conformation. The insulin-activated IR triggers signaling cascades, thus controlling metabolism, growth, and proliferation. The activated IR undergoes internalization by clathrin- or caveolae-mediated endocytosis. The IR endocytosis plays important roles in insulin clearance from blood, and distribution and termination of the insulin signaling. Despite decades of extensive studies, the mechanism and regulation of IR endocytosis and its contribution to pathophysiology remain incompletely understood. Here we discuss recent findings that provide insights into the molecular mechanisms and regulatory pathways that mediate the IR endocytosis.
Collapse
|
4
|
Li J, Wu J, Hall C, Bai XC, Choi E. Molecular basis for the role of disulfide-linked αCTs in the activation of insulin-like growth factor 1 receptor and insulin receptor. eLife 2022; 11:81286. [PMID: 36413010 PMCID: PMC9731570 DOI: 10.7554/elife.81286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) control metabolic homeostasis and cell growth and proliferation. The IR and IGF1R form similar disulfide bonds linked homodimers in the apo-state; however, their ligand binding properties and the structures in the active state differ substantially. It has been proposed that the disulfide-linked C-terminal segment of α-chain (αCTs) of the IR and IGF1R control the cooperativity of ligand binding and regulate the receptor activation. Nevertheless, the molecular basis for the roles of disulfide-linked αCTs in IR and IGF1R activation are still unclear. Here, we report the cryo-EM structures of full-length mouse IGF1R/IGF1 and IR/insulin complexes with modified αCTs that have increased flexibility. Unlike the Γ-shaped asymmetric IGF1R dimer with a single IGF1 bound, the IGF1R with the enhanced flexibility of αCTs can form a T-shaped symmetric dimer with two IGF1s bound. Meanwhile, the IR with non-covalently linked αCTs predominantly adopts an asymmetric conformation with four insulins bound, which is distinct from the T-shaped symmetric IR. Using cell-based experiments, we further showed that both IGF1R and IR with the modified αCTs cannot activate the downstream signaling potently. Collectively, our studies demonstrate that the certain structural rigidity of disulfide-linked αCTs is critical for optimal IR and IGF1R signaling activation.
Collapse
Affiliation(s)
- Jie Li
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jiayi Wu
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Catherine Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| | - Xiao-chen Bai
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States,Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUnited States
| |
Collapse
|
5
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
6
|
Hall C, Yu H, Choi E. Insulin receptor endocytosis in the pathophysiology of insulin resistance. Exp Mol Med 2020; 52:911-920. [PMID: 32576931 PMCID: PMC7338473 DOI: 10.1038/s12276-020-0456-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Insulin signaling controls cell growth and metabolic homeostasis. Dysregulation of this pathway causes metabolic diseases such as diabetes. Insulin signaling pathways have been extensively studied. Upon insulin binding, the insulin receptor (IR) triggers downstream signaling cascades. The active IR is then internalized by clathrin-mediated endocytosis. Despite decades of studies, the mechanism and regulation of clathrin-mediated endocytosis of IR remain incompletely understood. Recent studies have revealed feedback regulation of IR endocytosis through Src homology phosphatase 2 (SHP2) and the mitogen-activated protein kinase (MAPK) pathway. Here we review the molecular mechanism of IR endocytosis and its impact on the pathophysiology of insulin resistance, and discuss the potential of SHP2 as a therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Catherine Hall
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA
| | - Hongtao Yu
- Laboratory of Cell Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.
| | - Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Chen Y, Huang L, Qi X, Chen C. Insulin Receptor Trafficking: Consequences for Insulin Sensitivity and Diabetes. Int J Mol Sci 2019; 20:ijms20205007. [PMID: 31658625 PMCID: PMC6834171 DOI: 10.3390/ijms20205007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor (INSR) has been extensively studied in the area of cell proliferation and energy metabolism. Impaired INSR activities lead to insulin resistance, the key factor in the pathology of metabolic disorders including type 2 diabetes mellitus (T2DM). The mainstream opinion is that insulin resistance begins at a post-receptor level. The role of INSR activities and trafficking in insulin resistance pathogenesis has been largely ignored. Ligand-activated INSR is internalized and trafficked to early endosome (EE), where INSR is dephosphorylated and sorted. INSR can be subsequently conducted to lysosome for degradation or recycled back to the plasma membrane. The metabolic fate of INSR in cellular events implies the profound influence of INSR on insulin signaling pathways. Disruption of INSR-coupled activities has been identified in a wide range of insulin resistance-related diseases such as T2DM. Accumulating evidence suggests that alterations in INSR trafficking may lead to severe insulin resistance. However, there is very little understanding of how altered INSR activities undermine complex signaling pathways to the development of insulin resistance and T2DM. Here, we focus this review on summarizing previous findings on the molecular pathways of INSR trafficking in normal and diseased states. Through this review, we provide insights into the mechanistic role of INSR intracellular processes and activities in the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Yang Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Lili Huang
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Xinzhou Qi
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
8
|
Marafie SK, Al-Shawaf EM, Abubaker J, Arefanian H. Palmitic acid-induced lipotoxicity promotes a novel interplay between Akt-mTOR, IRS-1, and FFAR1 signaling in pancreatic β-cells. Biol Res 2019; 52:44. [PMID: 31426858 PMCID: PMC6699284 DOI: 10.1186/s40659-019-0253-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023] Open
Abstract
Background Free fatty acid receptor 1 (FFAR1) is G-protein coupled receptor predominantly expressed in pancreatic β-cells that is activated by a variety of free fatty acids (FFAs). Once activated, it promotes glucose-stimulated insulin secretion (GSIS). However, increased levels of FFAs lead to lipotoxicity, inducing loss of β-cell function. FFAR1 plays a key role in the development of type 2 diabetes (T2D), and previous studies have indicated the importance of developing anti-diabetic therapies against FFAR1, although its role in the regulation of β-cell function remains unclear. The present study investigated the role of FFAR1 under lipotoxic conditions using palmitic acid (PA). The rat insulinoma 1 clone 832/13 (INS-1 832/13) cell line was used as a model as it physiologically resembles native pancreatic β-cells. Key players of the insulin signaling pathway, such as mTOR, Akt, IRS-1, and the insulin receptor (INSR1β), were selected as candidates to be analyzed under lipotoxic conditions. Results We revealed that PA-induced lipotoxicity affected GSIS in INS-1 cells and negatively modulated the activity of both IRS-1 and Akt. Reduced phosphorylation of both IRS-1 S636/639 and Akt S473 was observed, in addition to decreased expression of both INSR1β and FFAR1. Moreover, transient knockdown of FFAR1 led to a reduction in IRS-1 mRNA expression and an increase in INSR1β mRNA. Finally, PA affected localization of FFAR1 from the cytoplasm to the perinucleus. Conclusions In conclusion, our study suggests a novel regulatory involvement of FFAR1 in crosstalk with mTOR–Akt and IRS-1 signaling in β-cells under lipotoxic conditions.
Collapse
Affiliation(s)
- Sulaiman K Marafie
- Biochemistry & Molecular Biology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait.
| | - Eman M Al-Shawaf
- Biochemistry & Molecular Biology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait
| | - Jehad Abubaker
- Biochemistry & Molecular Biology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait
| | - Hossein Arefanian
- Microbiology & Immunology Department, Dasman Diabetes Institute, P. O. Box 1180, 15462, Dasman, Kuwait.
| |
Collapse
|
9
|
Najjar SM, Perdomo G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology (Bethesda) 2019; 34:198-215. [PMID: 30968756 DOI: 10.1152/physiol.00048.2018] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Upon its secretion from pancreatic β-cells, insulin reaches the liver through the portal circulation to exert its action and eventually undergo clearance in the hepatocytes. In addition to insulin secretion, hepatic insulin clearance regulates the homeostatic level of insulin that is required to reach peripheral insulin target tissues to elicit proper insulin action. Receptor-mediated insulin uptake followed by its degradation constitutes the basic mechanism of insulin clearance. Upon its phosphorylation by the insulin receptor tyrosine kinase, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) takes part in the insulin-insulin receptor complex to increase the rate of its endocytosis and targeting to the degradation pathways. This review summarizes how this process is regulated and how it is associated with insulin-degrading enzyme in the liver. It also discusses the physiological implications of impaired hepatic insulin clearance: Whereas reduced insulin clearance cooperates with increased insulin secretion to compensate for insulin resistance, it can also cause hepatic insulin resistance. Because chronic hyperinsulinemia stimulates hepatic de novo lipogenesis, impaired insulin clearance also causes hepatic steatosis. Thus impaired insulin clearance can underlie the link between hepatic insulin resistance and hepatic steatosis. Delineating these regulatory pathways should lead to building more effective therapeutic strategies against metabolic syndrome.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences, Ohio University , Athens, Ohio.,Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Germán Perdomo
- Departamento de Ciencias de la Salud, Universidad de Burgos , Burgos , Spain
| |
Collapse
|
10
|
Choi E, Kikuchi S, Gao H, Brodzik K, Nassour I, Yopp A, Singal AG, Zhu H, Yu H. Mitotic regulators and the SHP2-MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Nat Commun 2019; 10:1473. [PMID: 30931927 PMCID: PMC6443781 DOI: 10.1038/s41467-019-09318-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Insulin controls glucose homeostasis and cell growth through bifurcated signaling pathways. Dysregulation of insulin signaling is linked to diabetes and cancer. The spindle checkpoint controls the fidelity of chromosome segregation during mitosis. Here, we show that insulin receptor substrate 1 and 2 (IRS1/2) cooperate with spindle checkpoint proteins to promote insulin receptor (IR) endocytosis through recruiting the clathrin adaptor complex AP2 to IR. A phosphorylation switch of IRS1/2 orchestrated by extracellular signal-regulated kinase 1 and 2 (ERK1/2) and Src homology phosphatase 2 (SHP2) ensures selective internalization of activated IR. SHP2 inhibition blocks this feedback regulation and growth-promoting IR signaling, prolongs insulin action on metabolism, and improves insulin sensitivity in mice. We propose that mitotic regulators and SHP2 promote feedback inhibition of IR, thereby limiting the duration of insulin signaling. Targeting this feedback inhibition can improve insulin sensitivity. The mechanisms promoting insulin resistance at the receptor level are poorly understood. Here, Choi et al. show that mitotic proteins and the SHP2-MAPK pathway regulate receptor endocytosis and insulin signaling feedback, identifying a potential role for SHP2 inhibitors to treat diabetes.
Collapse
Affiliation(s)
- Eunhee Choi
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Sotaro Kikuchi
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Haishan Gao
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Karolina Brodzik
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA
| | - Ibrahim Nassour
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Adam Yopp
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Amit G Singal
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA.
| |
Collapse
|
11
|
Choi E, Yu H. Spindle Checkpoint Regulators in Insulin Signaling. Front Cell Dev Biol 2018; 6:161. [PMID: 30555826 PMCID: PMC6281718 DOI: 10.3389/fcell.2018.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
The spindle checkpoint ensures accurate chromosome segregation during mitosis and guards against aneuploidy. Insulin signaling governs metabolic homeostasis and cell growth, and its dysregulation leads to metabolic disorders, such as diabetes. These critical pathways have been extensively investigated, but a link between the two has not been established until recently. Our recent study reveals a critical role of spindle checkpoint regulators in insulin signaling and metabolic homeostasis through regulating endocytosis of the insulin receptor (IR). These findings have linked spindle checkpoint proteins to metabolic regulation, expanding the connection between cell division and metabolism. Here, we briefly review the unexpected roles of spindle checkpoint regulators in vesicle trafficking and insulin signaling.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
12
|
Haeusler RA, McGraw TE, Accili D. Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol 2018; 19:31-44. [PMID: 28974775 PMCID: PMC5894887 DOI: 10.1038/nrm.2017.89] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanism of insulin action is a central theme in biology and medicine. In addition to the rather rare condition of insulin deficiency caused by autoimmune destruction of pancreatic β-cells, genetic and acquired abnormalities of insulin action underlie the far more common conditions of type 2 diabetes, obesity and insulin resistance. The latter predisposes to diseases ranging from hypertension to Alzheimer disease and cancer. Hence, understanding the biochemical and cellular properties of insulin receptor signalling is arguably a priority in biomedical research. In the past decade, major progress has led to the delineation of mechanisms of glucose transport, lipid synthesis, storage and mobilization. In addition to direct effects of insulin on signalling kinases and metabolic enzymes, the discovery of mechanisms of insulin-regulated gene transcription has led to a reassessment of the general principles of insulin action. These advances will accelerate the discovery of new treatment modalities for diabetes.
Collapse
Affiliation(s)
- Rebecca A Haeusler
- Columbia University College of Physicians and Surgeons, Department of Pathology and Cell Biology, New York, New York 10032, USA
| | - Timothy E McGraw
- Weill Cornell Medicine, Departments of Biochemistry and Cardiothoracic Surgery, New York, New York 10065, USA
| | - Domenico Accili
- Columbia University College of Physicians & Surgeons, Department of Medicine, New York, New York 10032, USA
| |
Collapse
|
13
|
Girnita L, Takahashi SI, Crudden C, Fukushima T, Worrall C, Furuta H, Yoshihara H, Hakuno F, Girnita A. Chapter Seven - When Phosphorylation Encounters Ubiquitination: A Balanced Perspective on IGF-1R Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:277-311. [PMID: 27378760 DOI: 10.1016/bs.pmbts.2016.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-surface receptors govern the critical information passage from outside to inside the cell and hence control important cellular decisions such as survival, growth, and differentiation. These receptors, structurally grouped into different families, utilize common intracellular signaling-proteins and pathways, yet promote divergent biological consequences. In rapid processing of extracellular signals to biological outcomes, posttranslational modifications offer a repertoire of protein processing options. Protein ubiquitination was originally identified as a signal for protein degradation through the proteasome system. It is now becoming increasingly recognized that both ubiquitin and ubiquitin-like proteins, all evolved from a common ubiquitin structural superfold, are used extensively by the cell and encompass signal tags for many different cellular fates. In this chapter we examine the current understanding of the ubiquitin regulation surrounding the insulin-like growth factor and insulin signaling systems, major members of the larger family of receptor tyrosine kinases (RTKs) and key regulators of fundamental physiological and pathological states.
Collapse
Affiliation(s)
- L Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - S-I Takahashi
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - C Crudden
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - T Fukushima
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - C Worrall
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - H Furuta
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - H Yoshihara
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - F Hakuno
- Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - A Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Boutchueng-Djidjou M, Collard-Simard G, Fortier S, Hébert SS, Kelly I, Landry CR, Faure RL. The last enzyme of the de novo purine synthesis pathway 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) plays a central role in insulin signaling and the Golgi/endosomes protein network. Mol Cell Proteomics 2015; 14:1079-92. [PMID: 25687571 DOI: 10.1074/mcp.m114.047159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 12/31/2022] Open
Abstract
Insulin is internalized with its cognate receptor into the endosomal apparatus rapidly after binding to hepatocytes. We performed a bioinformatic screen of Golgi/endosome hepatic protein fractions and found that ATIC, which is a rate-limiting enzyme in the de novo purine biosynthesis pathway, and PTPLAD1 are associated with insulin receptor (IR) internalization. The IR interactome (IRGEN) connects ATIC to AMPK within the Golgi/endosome protein network (GEN). Forty-five percent of the IR Golgi/endosome protein network have common heritable variants associated with type 2 diabetes, including ATIC and AMPK. We show that PTPLAD1 and AMPK are rapidly compartmentalized within the plasma membrane (PM) and Golgi/endosome fractions after insulin stimulation and that ATIC later accumulates in the Golgi/endosome fraction. Using an in vitro reconstitution system and siRNA-mediated partial knockdown of ATIC and PTPLAD1 in HEK293 cells, we show that both ATIC and PTPLAD1 affect IR tyrosine phosphorylation and endocytosis. We further show that insulin stimulation and ATIC knockdown readily increase the level of AMPK-Thr172 phosphorylation in IR complexes. We observed that IR internalization was markedly decreased after AMPKα2 knockdown, and treatment with the ATIC substrate AICAR, which is an allosteric activator of AMPK, increased IR endocytosis in cultured cells and in the liver. These results suggest the presence of a signaling mechanism that senses adenylate synthesis, ATP levels, and IR activation states and that acts in regulating IR autophosphorylation and endocytosis.
Collapse
Affiliation(s)
| | | | - Suzanne Fortier
- From the ‡Département de Pédiatrie, Laboratoire de Biologie Cellulaire
| | - Sébastien S Hébert
- §Département de Psychiatrie et Neurosciences, ¶Centre de Recherche du CHU de Québec, Centre-Mère-Enfant
| | - Isabelle Kelly
- ¶Centre de Recherche du CHU de Québec, Centre-Mère-Enfant, ‖Plateforme Protéomique de l'Est du Québec, Université Laval
| | - Christian R Landry
- **Institut de Biologie Intégrative et des Système (IBIS), PROTEO, Département de Biologie, Université Laval, Québec, QC, Canada
| | - Robert L Faure
- From the ‡Département de Pédiatrie, Laboratoire de Biologie Cellulaire, ¶Centre de Recherche du CHU de Québec, Centre-Mère-Enfant,
| |
Collapse
|
15
|
Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation. Cell Mol Life Sci 2013; 71:2403-27. [PMID: 24276851 PMCID: PMC4055838 DOI: 10.1007/s00018-013-1514-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R “borrows” components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.
Collapse
|
16
|
Kluge SF, Sauter D, Vogl M, Peeters M, Li Y, Bibollet-Ruche F, Hahn BH, Kirchhoff F. The transmembrane domain of HIV-1 Vpu is sufficient to confer anti-tetherin activity to SIVcpz and SIVgor Vpu proteins: cytoplasmic determinants of Vpu function. Retrovirology 2013; 10:32. [PMID: 23514615 PMCID: PMC3621411 DOI: 10.1186/1742-4690-10-32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The acquisition of effective Vpu-mediated anti-tetherin activity to promote virion release following transmission of SIVcpzPtt from central chimpanzees (Pan troglodytes troglodytes) to humans distinguishes pandemic HIV-1 group M strains from non-pandemic group N, O and P viruses and may have been a prerequisite for their global spread. Some functional motifs in the cytoplasmic region of HIV-1 M Vpus proposed to be important for anti-tetherin activity are more frequently found in the Vpu proteins of SIVcpzPtt than in those of SIVcpzPts infecting eastern chimpanzees (P. t. schweinfurthii), that have not been detected in humans, and SIVgor from gorillas, which is closely related to HIV-1 O and P. Thus, SIVcpzPtt strains may require fewer adaptive changes in Vpu than SIVcpzPts or SIVgor strains to counteract human tetherin. RESULTS To examine whether SIVcpzPtt may only need changes in the transmembrane domain (TMD) of Vpu to acquire anti-tetherin activity, whereas SIVcpzPts and SIVgor may also require changes in the cytoplasmic region, we analyzed chimeras between the TMD of an HIV-1 M Vpu and the cytoplasmic domains of SIVcpzPtt (n = 2), SIVcpzPts (n = 2) and SIVgor (n = 2) Vpu proteins. Unexpectedly, all of these chimeras were capable of counteracting human tetherin to enhance virion release, irrespective of the presence or absence of the putative adaptor protein binding sites and the DSGxxS β-TrCP binding motif reported to be critical for effective anti-tetherin activity of M Vpus. It was also surprising that in three of the six chimeras the gain of anti-tetherin function was associated with a loss of the CD4 degradation activity since this function was conserved among all parental HIV-1, SIVcpz and SIVgor Vpu proteins. CONCLUSIONS Our results show that changes in the TMD of SIVcpzPtt, SIVcpzPts and SIVgor Vpus are sufficient to render them active against human tetherin. Thus, several previously described domains in the extracellular region of Vpu are not absolutely essential for tetherin antagonism but may be required for other Vpu functions.
Collapse
Affiliation(s)
- Silvia F Kluge
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Giudice J, Leskow FC, Arndt-Jovin DJ, Jovin TM, Jares-Erijman EA. Differential endocytosis and signaling dynamics of insulin receptor variants IR-A and IR-B. J Cell Sci 2011; 124:801-11. [PMID: 21303927 DOI: 10.1242/jcs.076869] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulin signaling comprises a complex cascade of events, playing a key role in the regulation of glucose metabolism and cellular growth. Impaired response to insulin is the hallmark of diabetes, whereas upregulated insulin activity occurs in many cancers. Two splice variants of the insulin receptor (IR) exist in mammals: IR-A, lacking exon 11, and full-length IR-B. Although considerable biochemical data exist on insulin binding and downstream signaling, little is known about the dynamics of the IR itself. We created functional IR transgenes fused with visible fluorescent proteins for use in combination with biotinamido-caproyl insulin and streptavidin quantum dots. Using confocal and structured illumination microscopy, we visualized the endocytosis of both isoforms in living and fixed cells and demonstrated a higher rate of endocytosis of IR-A than IR-B. These differences correlated with higher and sustained activation of IR-A in response to insulin and with distinctive ERK1/2 activation profiles and gene transcription regulation. In addition, cells expressing IR-B showed higher AKT phosphorylation after insulin stimulation than cells expressing IR-A. Taken together, these results suggest that IR signaling is dependent on localization; internalized IRs regulate mitogenic activity, whereas metabolic balance signaling occurs at the cell membrane.
Collapse
Affiliation(s)
- Jimena Giudice
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CIHIDECAR, CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
18
|
Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 2009; 30:586-623. [PMID: 19752219 DOI: 10.1210/er.2008-0047] [Citation(s) in RCA: 733] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In mammals, the insulin receptor (IR) gene has acquired an additional exon, exon 11. This exon may be skipped in a developmental and tissue-specific manner. The IR, therefore, occurs in two isoforms (exon 11 minus IR-A and exon 11 plus IR-B). The most relevant functional difference between these two isoforms is the high affinity of IR-A for IGF-II. IR-A is predominantly expressed during prenatal life. It enhances the effects of IGF-II during embryogenesis and fetal development. It is also significantly expressed in adult tissues, especially in the brain. Conversely, IR-B is predominantly expressed in adult, well-differentiated tissues, including the liver, where it enhances the metabolic effects of insulin. Dysregulation of IR splicing in insulin target tissues may occur in patients with insulin resistance; however, its role in type 2 diabetes is unclear. IR-A is often aberrantly expressed in cancer cells, thus increasing their responsiveness to IGF-II and to insulin and explaining the cancer-promoting effect of hyperinsulinemia observed in obese and type 2 diabetic patients. Aberrant IR-A expression may favor cancer resistance to both conventional and targeted therapies by a variety of mechanisms. Finally, IR isoforms form heterodimers, IR-A/IR-B, and hybrid IR/IGF-IR receptors (HR-A and HR-B). The functional characteristics of such hybrid receptors and their role in physiology, in diabetes, and in malignant cells are not yet fully understood. These receptors seem to enhance cell responsiveness to IGFs.
Collapse
Affiliation(s)
- Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Ospedale Garibaldi-Nesima, 95122 Catania, Italy.
| | | | | | | | | |
Collapse
|
19
|
Pandey KN, Nguyen HT, Garg R, Khurana ML, Fink J. Internalization and trafficking of guanylyl (guanylate) cyclase/natriuretic peptide receptor A is regulated by an acidic tyrosine-based cytoplasmic motif GDAY. Biochem J 2009; 388:103-13. [PMID: 15574117 PMCID: PMC1186698 DOI: 10.1042/bj20041250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have identified a GDAY motif in the C-terminal domain of guanylyl cyclase (guanylate cyclase)/NPRA (natriuretic peptide receptor A) sequence, which serves a dual role as an internalization signal and a recycling signal. To delineate the role of the GDAY motif in receptor internalization and sequestration, we mutated Gly920, Asp921 and Tyr923 to alanine residues (GDAY/AAAA) in the NPRA cDNA sequence. The cDNAs encoding wild-type and mutant receptors were transfected in HEK-293 cells (human embryonic kidney 293 cells). The internalization studies of ligand-receptor complexes revealed that endocytosis of 125I-ANP by HEK-293 cells expressing G920A, Y923A or GDAY/AAAA mutant receptor was decreased by almost 50% (P<0.001) when compared with cells expressing the wild-type receptor. However, the effect of D921A mutation on receptor internalization was minimal. Ligand-mediated down-regulation of G920A, Y923A and GDAY/AAAA mutant receptors was decreased by 35-40% when compared with wild-type NPRA. Subsequently, the recycling of internalized D921A and GDAY/AAAA mutant receptors from the intracellular pool was decreased by more than 40+/-4% when compared with wild-type NPRA. Recycling of G920A and Y923A mutant receptors was also decreased, but to a significantly lesser extent compared with the D921A or GDAY/AAAA mutant receptors. We conclude that the Gly920 and Tyr923 residues within the GDAY consensus motif are necessary for internalization, and that residue Asp921 is important for recycling of NPRA. The current results provide new evidence for a dual role of the GDAY sequence motif in ligand-mediated internalization, recycling and down-regulation of a single-transmembrane receptor protein NPRA.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | |
Collapse
|
20
|
Solowiej J, Bergqvist S, McTigue MA, Marrone T, Quenzer T, Cobbs M, Ryan K, Kania RS, Diehl W, Murray BW. Characterizing the effects of the juxtamembrane domain on vascular endothelial growth factor receptor-2 enzymatic activity, autophosphorylation, and inhibition by axitinib. Biochemistry 2009; 48:7019-31. [PMID: 19526984 DOI: 10.1021/bi900522y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The catalytic domains of protein kinases are commonly treated as independent modular units with distinct biological functions. Here, the interactions between the catalytic and juxtamembrane domains of VEGFR2 are studied. Highly purified preparations of the receptor tyrosine kinase VEGFR2 catalytic domain without (VEGFR2-CD) and with (VEGFR2-CD/JM) the juxtamembrane (JM) domain were characterized by kinetic, biophysical, and structural methods. Although the catalytic parameters for both constructs were similar, the autophosphorylation rate of VEGFR2-CD/JM was substantially faster than VEGFR2-CD. The first event in the autophosphorylation reaction was phosphorylation of JM residue Y801 followed by phosphorylation of activation loop residues in the CD. The rates of activation loop autophosphorylation for the two constructs were determined to be similar. The autophosphorylation rate of Y801 was invariant on enzyme concentration, which is consistent with an intramolecular reaction. In addition, the first biochemical characterization of the advanced clinical compound axitinib is reported. Axitinib was found to have 40-fold enhanced biochemical potency toward VEGFR2-CD/JM (K(i) = 28 pM) compared to VEGFR2-CD, which correlates better with cellular potency. Calorimetric studies, including a novel ITC compound displacement method, confirmed the potency and provided insight into the thermodynamic origin of the potency differences. A structural model for the VEGFR2-CD/JM is proposed based on the experimental findings reported here and on the JM position in c-Kit, FLT3, and CSF1/cFMS. The described studies identify potential functions of the VEGFR2 JM domain with implications to both receptor biology and inhibitor design.
Collapse
Affiliation(s)
- James Solowiej
- Pfizer Global Research and Development, La Jolla, Pfizer Inc., 10777 Science Center Drive, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jensen M, De Meyts P. Molecular mechanisms of differential intracellular signaling from the insulin receptor. VITAMINS AND HORMONES 2009; 80:51-75. [PMID: 19251034 DOI: 10.1016/s0083-6729(08)00603-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Binding of insulin to the insulin receptor (IR) leads to a cascade of intracellular signaling events, which regulate multiple biological processes such as glucose and lipid metabolism, gene expression, protein synthesis, and cell growth, division, and survival. However, the exact mechanism of how the insulin-IR interaction produces its own specific pattern of regulated cellular functions is not yet fully understood. Insulin analogs, anti-IR antibodies as well as synthetic insulin mimetic peptides that target the two insulin-binding regions of the IR, have been used to study the relationship between different aspects of receptor binding and function as well as providing new insights into the structure and function of the IR. This review focuses on the current knowledge of activation of the IR and how activation of the IR by different ligands initiates different cellular responses. Investigation of differential activation of the IR may provide clues to the molecular mechanisms of how the insulin-receptor interaction controls the specificity of the downstream signaling response. Differences in the kinetics of ligand-interaction with the IR, the magnitude of the signal as well as its subcelllar location all play important roles in determining/eliciting the different biological responses. Additional studies are nevertheless required to dissect the precise molecular mechanisms leading to the differential signaling from the IR.
Collapse
Affiliation(s)
- Maja Jensen
- Hagedorn Research Institute, 2820 Gentofte, Denmark
| | | |
Collapse
|
22
|
Matveyenko AV, Veldhuis JD, Butler PC. Adaptations in pulsatile insulin secretion, hepatic insulin clearance, and beta-cell mass to age-related insulin resistance in rats. Am J Physiol Endocrinol Metab 2008; 295:E832-41. [PMID: 18664594 PMCID: PMC2575907 DOI: 10.1152/ajpendo.90451.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In health insulin is secreted in discrete insulin secretory bursts from pancreatic beta-cells, collectively referred to as beta-cell mass. We sought to establish the relationship between beta-cell mass, insulin secretory-burst mass, and hepatic insulin clearance over a range of age-related insulin sensitivity in adult rats. To address this, we used a novel rat model with chronically implanted portal vein catheters in which we recently established the parameters to permit deconvolution of portal vein insulin concentration profiles to measure insulin secretion and resolve its pulsatile components. In the present study, we examined total and pulsatile insulin secretion, insulin sensitivity, hepatic insulin clearance, and beta-cell mass in 35 rats aged 2-12 mo. With aging, insulin sensitivity declined, but euglycemia was sustained by an adaptive increase in fasting and glucose-stimulated insulin secretion through the mechanism of a selective augmentation of insulin pulse mass. The latter was attributable to a closely related increase in beta-cell mass (r=0.8, P<0.001). Hepatic insulin clearance increased with increasing portal vein insulin pulse amplitude, damping the delivery of insulin in the systemic circulation. In consequence, the curvilinear relationship previously reported between insulin secretion and insulin sensitivity was extended to both insulin pulse mass and beta-cell mass vs. insulin sensitivity. These data support a central role of adaptive changes in beta-cell mass to permit appropriate insulin secretion in the setting of decreasing insulin sensitivity in the aging animal. They emphasize the cooperative role of pancreatic beta-cells and the liver in regulating the secretion and delivery of insulin to the systemic circulation.
Collapse
Affiliation(s)
- Aleksey V Matveyenko
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
23
|
Kishi K, Mawatari K, Sakai-Wakamatsu K, Yuasa T, Wang M, Ogura-Sawa M, Nakaya Y, Hatakeyama S, Ebina Y. APS-mediated ubiquitination of the insulin receptor enhances its internalization, but does not induce its degradation. Endocr J 2007; 54:77-88. [PMID: 17102568 DOI: 10.1507/endocrj.k06-056] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
APS, a tyrosine kinase adaptor protein with pleckstrin homology and Src homology 2 domains, is rapidly and strongly tyrosine-phosphorylated by insulin receptor kinase upon insulin stimulation. We have previously shown that APS knockout mice have increased insulin sensitivity, and that this enhancement is possibly due to increased insulin-response on adipose tissues. However, the function of APS in insulin signaling has so far been controversial. Here, we report that APS enhanced ligand-dependent multi-ubiquitination of the insulin receptor (IR) in CHO cells overexpressing the IR. APS-mediated ubiquitination of the IR induced enhancement of the IR internalization, but did not affect the IR degradation. This finding shows one of the pleiotropic functions of APS in insulin signaling.
Collapse
Affiliation(s)
- Kazuhiro Kishi
- Division of Molecular Genetics, Institute for Enzyme Research, The University of Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pandey KN. Internalization and trafficking of guanylyl cyclase/natriuretic peptide receptor-A. Peptides 2005; 26:985-1000. [PMID: 15911067 DOI: 10.1016/j.peptides.2004.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
One of the principal loci involved in the regulatory action of atrial and brain natriuretic peptides (ANP and BNP) is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), whose ligand-binding efficiency and GC catalytic activity vary remarkably in different target cells and tissues. In its mature form, NPRA resides in the plasma membrane and contains an extracellular ligand-binding domain, a single transmembrane region, and the intracellular protein kinase-like homology domain (KHD) and guanylyl cyclase (GC) catalytic domain. NPRA is a dynamic cellular macromolecule that traverses through different compartments of the cell through its lifetime. Binding of ligand to NPRA triggers a complex array of signal transduction events and accelerates the endocytosis. The endocytic transport is important in regulating signal transduction, formation of specialized signaling complexes, and modulation of specific components of internalization events. The present review describes the experiments which reveal the internalization of ligand-receptor complexes of NPRA, receptor trafficking and recycling, and delivery of both ligand-receptor molecules into subcellular compartments. The ligand-receptor complexes of NPRA are finally degraded within the lysosomes. The experimental evidence provides a consensus forum, which establishes the endocytosis, cellular trafficking, sequestration, and metabolic processing of ANP/NPRA complexes in the intact cells. The discussion is afforded to address the experimental insights into the mechanisms that cells utilize in modulating the delivery and metabolic processing of ligand-bound NPRA into the cell interior.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
25
|
Andrade Ferreira I, Akkerman JWN. IRS-1 and Vascular Complications in Diabetes Mellitus. VITAMINS AND HORMONES 2005; 70:25-67. [PMID: 15727801 DOI: 10.1016/s0083-6729(05)70002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The expected explosive increase in the number of patients with diabetes mellitus will increase the stress on health care. Treatment is focused on preventing vascular complications associated with the disorder. In order to develop better treatment regimens, the field of research has made a great effort in understanding this disorder. This chapter summarizes the current views on the insulin signaling pathway with emphasis on intracellular signaling events associated with insulin resistance, which lead to the prothrombotic condition in the vasculature of patience with diabetes mellitus.
Collapse
Affiliation(s)
- I Andrade Ferreira
- Thrombosis and Haemostasis Laboratory, Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
26
|
Affiliation(s)
- Stevan R Hubbard
- Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York 10016, USA.
| |
Collapse
|
27
|
Baass PC, Di Guglielmo GM, Authier F, Posner BI, Bergeron JJ. Compartmentalized signal transduction by receptor tyrosine kinases. Trends Cell Biol 2004; 5:465-70. [PMID: 14732031 DOI: 10.1016/s0962-8924(00)89116-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Signal transduction through receptor tyrosine kinases is believed to occur mainly at the plasma membrane. Ligands bind to their cognate receptors and trigger autophosphorylation events, which are detected by intracellular signalling molecules. However, ligands, such as epidermal growth factor and insulin, induce the rapid internalization of their receptors into endosomes. Although this event is traditionally thought to attenuate the ligand-induced response, in this article the authors discuss an alternative scenario in which selective and regulated signal transduction from receptor tyrosine kinases occurs within the endosome.
Collapse
Affiliation(s)
- P C Baass
- Dept of Anatomy and Cell Biology, McGill University, Montreal, P Q, Canada H3A 2B2
| | | | | | | | | |
Collapse
|
28
|
Shackleton S, Hamer I, Foti M, Zumwald N, Maeder C, Carpentier JL. Role of two dileucine-like motifs in insulin receptor anchoring to microvilli. J Biol Chem 2002; 277:43631-7. [PMID: 12218050 DOI: 10.1074/jbc.m204036200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the absence of ligand, the insulin receptor is maintained on microvilli on the cell surface. A dileucine motif (LL(986-987)) is necessary but not sufficient for this anchoring, which also required the presence of additional sequence(s) downstream of position 1000. The aim of the present study was to identify this (these) additional sequence(s). First, exons 16 or 17 were fused to the extracellular and transmembrane domains of complement receptor 1 and stably expressed in Chinese hamster ovary cells. Results obtained indicate that exon 17 is sufficient for anchoring to microvilli. Second, analysis of insulin receptor mutants truncated within exon 17 demonstrated that whereas receptors truncated at position 1000 showed no preferential association with microvilli, receptors truncated at position 1012 displayed a level of association identical to that of the full-length insulin receptor. Third, mutation of a diisoleucine motif (II(1006-1007)) present within this 12-amino acid stretch abrogated the preferential association of the receptor with microvilli. These results indicate that the domain required for association of insulin receptor with microvilli is contained within the region encoded by exon 17 and that, within this sequence, two dileucine-like motifs (LL(986-987) and II(1006-1007)) play a crucial role.
Collapse
Affiliation(s)
- Sue Shackleton
- Department of Morphology, Faculty of Medicine, University of Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Farhang-Fallah J, Randhawa VK, Nimnual A, Klip A, Bar-Sagi D, Rozakis-Adcock M. The pleckstrin homology (PH) domain-interacting protein couples the insulin receptor substrate 1 PH domain to insulin signaling pathways leading to mitogenesis and GLUT4 translocation. Mol Cell Biol 2002; 22:7325-36. [PMID: 12242307 PMCID: PMC139823 DOI: 10.1128/mcb.22.20.7325-7336.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptor-mediated tyrosine phosphorylation of the insulin receptor substrate 1 (IRS-1) is required for the propagation of many of insulin's biological effects. The amino-terminal pleckstrin homology (PH) domain of IRS-1 plays a pivotal role in promoting insulin receptor (IR)-IRS-1 protein interactions. We have recently reported the isolation of a PH domain-interacting protein, PHIP, which selectively binds to the IRS-1 PH domain and is stably associated with IRS-1 in mammalian cells. Here we demonstrate that overexpression of PHIP in fibroblasts enhances insulin-induced transcriptional responses in a mitogen-activated protein kinase-dependent manner. In contrast, a dominant-negative mutant of PHIP (DN-PHIP) was shown to specifically block transcriptional and mitogenic signals elicited by insulin and not serum. In order to examine whether PHIP/IRS-1 complexes participate in the signal transduction pathway linking the IR to GLUT4 traffic in muscle cells, L6 myoblasts stably expressing a myc-tagged GLUT4 construct (L6GLUT4myc) were transfected with either wild-type or dominant-interfering forms of PHIP. Whereas insulin-dependent GLUT4myc membrane translocation was not affected by overexpression of PHIP, DN-PHIP caused a nearly complete inhibition of GLUT4 translocation, in a manner identical to that observed with a dominant-negative mutant of the p85 subunit of phosphatidylinositol 3-kinase (Deltap85). Furthermore, DN-PHIP markedly inhibited insulin-stimulated actin cytoskeletal reorganization, a process required for the productive incorporation of GLUT4 vesicles at the cell surface in L6 cells. Our results are consistent with the hypothesis that PHIP represents a physiological protein ligand of the IRS-1 PH domain, which plays an important role in insulin receptor-mediated mitogenic and metabolic signal transduction.
Collapse
Affiliation(s)
- Janet Farhang-Fallah
- Department of Biology. Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Activation of the tyrosine kinase of the insulin receptor by insulin binding initiates a cascade of signaling pathways that mediates the metabolic and growth-promoting effects of insulin. Insulin action is regulated by the amount of circulating insulin, which is, in turn, partially regulated by insulin clearance in liver. Receptor-mediated insulin endocytosis followed by degradation mediates insulin clearance. Earlier studies in transfected cells suggested that the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a substrate of the insulin receptor in liver, upregulates receptor-mediated insulin endocytosis and degradation in a phosphorylation-dependent manner. To test this hypothesis, a transgenic mouse, L-SACC1, overexpressing a dominant-negative phosphorylation-defective S503A CEACAM1 mutant in liver was established. The transgenic mouse demonstrated that CEACAM1 increases insulin clearance to maintain insulin sensitivity. Because insulin resistance is the hallmark of type 2 diabetes, understanding the mechanism of CEACAM1 regulation of insulin clearance and action might lead to novel therapeutic strategies against this disease.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department Pharmacology and Therapeutics, Medical College of Ohio, 3035 Arlington Ave., HSci Building, Room 270, Toledo, OH 43614, USA.
| |
Collapse
|
31
|
Chiarugi P, Cirri P, Taddei ML, Talini D, Doria L, Fiaschi T, Buricchi F, Giannoni E, Camici G, Raugei G, Ramponi G. New perspectives in PDGF receptor downregulation: the main role of phosphotyrosine phosphatases. J Cell Sci 2002; 115:2219-32. [PMID: 11973362 DOI: 10.1242/jcs.115.10.2219] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uncontrolled activation of receptor tyrosine kinases (RTKs) is implicated in the proliferation of cancerous cells, and deficiencies in RTKs results in pathological conditions such as developmental abnormalities and immunodeficiencies. Tight regulation of RTK cascades is therefore critical for eliciting an appropriate type and level of response to external stimuli. The aim of this work is to compare different RTK downregulation mechanisms, such as ligandinduced internalisation, ubiquitin-mediated proteolysis and dephosphorylation by protein phosphotyrosine phosphatase (PTPs). We choose platelet-derived growth factor receptor (PDGF-r) in NIH3T3 cells as a model of RTK. Our data suggest that PDGF-r internalisation could be mainly considered as a positive signaling system, as it is involved in MAPK activation rather than a downregulation of the mitotic signal. Inhibition of receptor ubiquitination does not result in regulation of PDGF-r tyrosine phosphorylation and does not lead to variation of intracellular signalling pathways. The overall PDGF-r protein degradation upon PDGF stimulation does not exceed 30-40% of the total receptor; thus the receptor remains functionally active for further stimulation. On the contrary, PTP-dependent dephosphorylation of the activated receptors appears to play a crucial role. In fact, inhibition of PTP upon PDGF stimulation results in upregulation of receptor phosphorylation level, of PI3K recruitment and activation and of cell cycle rate. On the contrary, PTP-dependent dephosphorylation does not affect the endosomic pool of activated receptor. Furthermore, we demonstrate that PDGF-r downregulation by means of PTP dephosphorylation is important for both short term (2 hours) and long-lasting (up to 8 hours) PDGF-r activation. Herein we propose a revisited model of PDGF-r downregulation in which PTPs dephosphorylation retains a major role, conferring on receptor internalisation a signal transduction function.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences of the University of Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Emkey R, Kahn CR. Molecular Aspects of Insulin Signaling. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Czech MP, Van Renterghem B, Sleeman MW. Insulin Receptor Tyrosine Kinase. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
He R, Browning DD, Ye RD. Differential roles of the NPXXY motif in formyl peptide receptor signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4099-105. [PMID: 11238659 DOI: 10.4049/jimmunol.166.6.4099] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NPXXY motif (X represents any amino acid) in the seventh transmembrane domain of the chemotactic formyl peptide receptor (FPR) is highly conserved among G protein-coupled receptors. Recent work suggested that this motif contributes to G protein-coupled receptor internalization and signal transduction; however, its role in FPR signaling remains unclear. In this study we replaced Asn(297) and Tyr(301) in the NPXXY motif of the human FPR with Ala (N297A) and Ala/Phe (Y301A/Y301F), respectively, and determined the effects of the substitutions on FPR functions in transfected rat basophilic leukemia cells. Whereas all the mutant receptors were expressed on the cell surface, the N297A receptor exhibited reduced binding affinity and was unable to mediate activation of phospholipase C-beta and the p42/44 mitogen-activated protein kinase (MAP kinase). The Y301F receptor displayed significantly decreased ligand-stimulated internalization and MAP kinase activation, suggesting that the hydrogen bonding at Tyr(301) is critical for these functions. The Y301F receptor showed a chemotactic response similar to that of wild-type FPR, indicating that cell chemotaxis does not require receptor internalization and hydrogen bonding at the Tyr(301) position. In contrast, the Y301A receptor displayed a left-shifted, but overall reduced, chemotaxis response that peaked at 0.1-1 nM. Finally, using a specific MAP kinase kinase inhibitor, we found that activation of MAP kinase is required for efficient FPR internalization, but is not essential for chemotaxis. These findings demonstrate that residues within the NPXXY motif differentially regulate the functions of FPR.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Animals
- Butadienes/pharmacology
- Calcium/metabolism
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/immunology
- Conserved Sequence/genetics
- Conserved Sequence/immunology
- Enzyme Inhibitors/pharmacology
- Humans
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Mutagenesis, Site-Directed
- N-Formylmethionine Leucyl-Phenylalanine/metabolism
- Nitriles/pharmacology
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Rats
- Receptors, Formyl Peptide
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, Peptide/biosynthesis
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Receptors, Peptide/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R He
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
35
|
Abstract
Insulin (Ins) and various other hormones and growth factors have been shown to be rapidly internalized and translocated to the cell nucleus. This review summarizes the mechanisms that are involved in the translocation of Ins to the nucleus, and discusses its possible role in Ins action, based on observations by the authors and others. Ins is internalized to endosomes by both receptor-mediated and fluid-phase endocytosis, the latter occurring only at high Ins concentrations. The authors recently demonstrated the caveolae are the primary cell membrane locations responsible for initiating the signal transduction cascade induced by Ins. Once Ins is internalized, Ins dissociates from the Ins receptor in the endosome, and is translocated to the cytoplasm, where most Ins is degraded by Ins-degrading enzyme (IDE), although how the polypeptides cross the lipid bilayer is unknown. Some Ins escapes the degradation and binds to cytosolic Ins-binding proteins (CIBPs), in addition to IDE. IDE and some CIBPs are known to be binding proteins for other hormones or their receptors, and are involved in gene regulation, suggesting physiological relevance of CIBPs in the signaling of Ins and other hormones. Ins is eventually translocated through the nuclear pore to the nucleus, where Ins tightly associates with nuclear matrix. The role of Ins internalization and translocation to the nucleus is still controversial, although there is substantial evidence to support its role in cellular responses caused by Ins. Many studies indicate that nuclear translocation of various growth factors and hormones plays an important role in cell proliferation or DNA synthesis. It would be reasonable to suggest that Ins internalization, its association with CIBPs, and its translocation to the nucleus may be essential for the regulation of nuclear events by Ins.
Collapse
Affiliation(s)
- S Harada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | | | |
Collapse
|
36
|
Lewis RE, Chaika OV. Therapeutic manipulation of the insulin receptor kinase - a review. Expert Opin Ther Pat 2000. [DOI: 10.1517/13543776.10.2.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Sasaoka T, Wada T, Ishihara H, Takata Y, Haruta T, Usui I, Ishiki M, Kobayashi M. Synergistic role of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase cascade in the regulation of insulin receptor trafficking. Endocrinology 1999; 140:3826-34. [PMID: 10433244 DOI: 10.1210/endo.140.8.6904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To examine the molecular mechanism of insulin receptor trafficking, we investigated the intracellular signaling molecules that regulate this process in Rat1 fibroblasts overexpressing insulin receptors. Cellular localization of insulin receptors was assessed by confocal laser microscopy with indirect immunofluorescence staining. Insulin receptors were visualized diffusely in the basal state. Insulin treatment induced the change of insulin receptor localization to perinuclear compartment. This insulin-induced insulin receptor trafficking was not affected by treatment of the cells with PI3-kinase inhibitor (wortmannin), whereas treatment with MEK [mitogen-activated protein (MAP) kinase-Erk kinase] inhibitor (PD98059) partly inhibited the process in a dose-dependent manner. Interestingly, treatment with both wortmannin and PD98059 almost completely inhibited insulin receptor trafficking. The functional importance of PI3-kinase and MAP kinase in the trafficking process was directly assessed by using single cell microinjection analysis. Microinjection of p85-SH2 and/or catalytically inactive MAP kinase ([K71A]Erk1) GST fusion protein gave the same results as treatment with wortmannin and PD98059. Furthermore, to determine the crucial step for the requirement of PI3-kinase and MAP kinase pathways, the effect of wortmannin and PD98059 on insulin receptor endocytosis was studied. Insulin internalization from the plasma membrane and subsequent insulin degradation were not affected by treatment with wortmannin and PD98059. In contrast, insulin receptor down-regulation from the cell surface and insulin receptor degradation, after prolonged incubation with insulin, were markedly impaired by the treatment. These results suggest that PI3-kinase and MAP kinase pathways synergistically regulate insulin receptor trafficking at a step subsequent to the receptor internalization.
Collapse
Affiliation(s)
- T Sasaoka
- First Department of Medicine, Toyama Medical & Pharmaceutical University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Virkamäki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 1999; 103:931-43. [PMID: 10194465 PMCID: PMC408269 DOI: 10.1172/jci6609] [Citation(s) in RCA: 568] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- A Virkamäki
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
39
|
Abstract
Insulin degradation is a regulated process that plays a role in controlling insulin action by removing and inactivating the hormone. Abnormalities in insulin clearance and degradation are present in various pathological conditions including type 2 diabetes and obesity and may be important in producing clinical problems. The uptake, processing, and degradation of insulin by cells is a complex process with multiple intracellular pathways. Most evidence supports IDE as the primary degradative mechanism, but other systems (PDI, lysosomes, and other enzymes) undoubtedly contribute to insulin metabolism. Recent studies support a multifunctional role for IDE, as an intracellular binding, regulatory, and degradative protein. IDE increases proteasome and steroid hormone receptor activity, and this activation is reversed by insulin. This raises the possibility of a direct intracellular interaction of insulin with IDE that could modulate protein and fat metabolism. The recent findings would place intracellular insulin-IDE interaction into the insulin signal transduction pathway for mediating the intermediate effects of insulin on fat and protein turnover.
Collapse
Affiliation(s)
- W C Duckworth
- Veterans Affairs Medical Center, Omaha, Nebraska 68105, USA
| | | | | |
Collapse
|
40
|
Go WY, Holicky EL, Hadac EM, Rao RV, Miller LJ. Identification of a domain in the carboxy terminus of CCK receptor that affects its intracellular trafficking. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G56-62. [PMID: 9655684 DOI: 10.1152/ajpgi.1998.275.1.g56] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The carboxy-terminal region of many guanine nucleotide-binding protein (G protein)-coupled receptors contains important regulatory sequences such as an NP(x)2-3Y motif, a site of fatty acid acylation, and serine- and threonine-rich domains. The type A CCK receptor contains all of these, yet their significance has not been examined. We have, therefore, constructed a series of receptor site mutants and truncations that interfere with each of these motifs and expressed each in Chinese hamster ovary cells where they were studied for radioligand binding, cell signaling, receptor internalization, and intracellular trafficking. Each construct was synthesized and transported appropriately to the cell surface, where CCK bound with high affinity, elicited an inositol 1,4, 5-trisphosphate response, and resulted in internalization and normal trafficking. Thus modification or elimination of each of these established sequence motifs had no substantial effect on any of these parameters of receptor and cellular function. However, an additional construct that truncated the carboxy terminus, eliminating an additional 15-amino-acid segment devoid of any currently recognized sequence motifs, resulted in a marked change in receptor trafficking, with all other parameters of receptor function normal. This mutant receptor construct was delayed at the stage of early endosomes, delaying its progress to the lysosome-enriched perinuclear compartment from the rapid time course followed by wild-type receptor and all of the other constructs. It is proposed that this region of the CCK receptor tail contains a new motif important for intracellular receptor trafficking.
Collapse
Affiliation(s)
- W Y Go
- Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
41
|
Ceresa BP, Kao AW, Santeler SR, Pessin JE. Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Mol Cell Biol 1998; 18:3862-70. [PMID: 9632770 PMCID: PMC108970 DOI: 10.1128/mcb.18.7.3862] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/1997] [Accepted: 04/06/1998] [Indexed: 02/07/2023] Open
Abstract
To examine the role of clathrin-dependent insulin receptor internalization in insulin-stimulated signal transduction events, we expressed a dominant-interfering mutant of dynamin (K44A/dynamin) by using a recombinant adenovirus in the H4IIE hepatoma and 3T3L1 adipocyte cell lines. Expression of K44A/dynamin inhibited endocytosis of the insulin receptor as determined by both cell surface radioligand binding and trypsin protection analysis. The inhibition of the insulin receptor endocytosis had no effect on either the extent of insulin receptor autophosphorylation or insulin receptor substrate 1 (IRS1) tyrosine phosphorylation. In contrast, expression of K44A/dynamin partially inhibited insulin-stimulated Shc tyrosine phosphorylation and activation of the mitogen-activated protein kinases ERK1 and -2. Although there was an approximately 50% decrease in the insulin-stimulated activation of the phosphatidylinositol 3-kinase associated with IRS1, insulin-stimulated Akt kinase phosphorylation and activation were unaffected. The expression of K44A/dynamin increased the basal rate of amino acid transport, which was additive with the effect of insulin but had no effect on the basal or insulin-stimulated DNA synthesis. In 3T3L1 adipocytes, expression of K44A/dynamin increased the basal rate of glucose uptake, glycogen synthesis, and lipogenesis without any significant effect on insulin stimulation. Together, these data demonstrate that the acute actions of insulin are largely independent of insulin receptor endocytosis and are initiated by activation of the plasma membrane-localized insulin receptor.
Collapse
Affiliation(s)
- B P Ceresa
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
42
|
Najjar SM, Choice CV, Soni P, Whitman CM, Poy MN. Effect of pp120 on receptor-mediated insulin endocytosis is regulated by the juxtamembrane domain of the insulin receptor. J Biol Chem 1998; 273:12923-8. [PMID: 9582324 DOI: 10.1074/jbc.273.21.12923] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
pp120, a substrate of the insulin receptor tyrosine kinase, does not undergo ligand-stimulated phosphorylation by the insulin-like growth factor-1 (IGF-1) receptor. However, replacement of the C-terminal domain of the IGF-1 receptor beta-subunit with the corresponding segment of the insulin receptor restored pp120 phosphorylation by the chimeric receptor. Since pp120 stimulates receptor-mediated insulin endocytosis when it is phosphorylated, we examined whether pp120 regulates IGF-1 receptor endocytosis in transfected NIH 3T3 cells. pp120 failed to alter IGF-1 receptor endocytosis via either wild-type or chimeric IGF-1 receptors. Thus, the effect of pp120 on hormone endocytosis is specific to insulin, and the C-terminal domain of the beta-subunit of the insulin receptor does not regulate the effect of pp120 on insulin endocytosis. Mutation of Tyr960 in the juxtamembrane domain of the insulin receptor abolished the effect of pp120 to stimulate receptor endocytosis, without affecting pp120 phosphorylation by the insulin receptor. These findings suggest that pp120 interacts with two separate domains of the insulin receptor as follows: a C-terminal domain required for pp120 phosphorylation and a juxtamembrane domain required for internalization. We propose that the interaction of pp120 with the juxtamembrane domain is indirect and requires one or more substrates that bind to Tyr960 in the insulin receptor.
Collapse
Affiliation(s)
- S M Najjar
- Department of Pharmacology and Therapeutics, Medical College of Ohio, Toledo, Ohio 43614, USA.
| | | | | | | | | |
Collapse
|
43
|
Ulrich CD, Holtmann M, Miller LJ. Secretin and vasoactive intestinal peptide receptors: members of a unique family of G protein-coupled receptors. Gastroenterology 1998; 114:382-97. [PMID: 9453500 DOI: 10.1016/s0016-5085(98)70491-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- C D Ulrich
- Center for Basic Research in Digestive Diseases, Department of Molecular Biology/Biochemistry, Mayo Medical School, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
44
|
Sepp-Lorenzino L. Structure and function of the insulin-like growth factor I receptor. Breast Cancer Res Treat 1998; 47:235-53. [PMID: 9516079 DOI: 10.1023/a:1005955017615] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin-like growth factors I and II (IGF-I, IGF-II) were originally identified as potent mitogens and as the mediators of growth hormone action. Besides being mitogenic, however, these polypeptide growth factors play a crucial role in cell survival, and contribute to transformation and to maintenance of the malignant phenotype. Here we will discuss signaling by the IGFs, focusing specifically on the structure and function of the IGF-I receptor and the domains of this receptor responsible for distinct IGF functions: mitogenesis, transformation, and protection from apoptosis. We will also compare the structural domains of the related but functionally distinct receptor for insulin.
Collapse
Affiliation(s)
- L Sepp-Lorenzino
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
45
|
Li Calzi S, Choice CV, Najjar SM. Differential effect of pp120 on insulin endocytosis by two variant insulin receptor isoforms. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:E801-8. [PMID: 9357811 DOI: 10.1152/ajpendo.1997.273.4.e801] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The insulin receptor is expressed as two variably spliced isoforms that differ by the absence (isoform A) or presence (isoform B) of a 12-amino acid sequence encoded by exon 11 at the carboxy terminus of the alpha-subunit. Coexpression of the A isoform and pp120, a substrate of the insulin receptor tyrosine kinase, in NIH 3T3 fibroblasts increased receptor A-mediated insulin endocytosis and degradation by two- to threefold compared with cells expressing receptors alone. Because B is the predominant isoform in the liver and binds insulin with lower affinity than A, we have examined the effect of pp120 on receptor B-mediated endocytosis. In contrast to isoform A, the effect of pp120 on isoform B-mediated insulin internalization and degradation in stably transfected NIH 3T3 cells was minimal.
Collapse
Affiliation(s)
- S Li Calzi
- Department of Pharmacology and Therapeutics, Medical College of Ohio, Toledo 43614, USA
| | | | | |
Collapse
|
46
|
Hamer I, Haft CR, Paccaud JP, Maeder C, Taylor S, Carpentier JL. Dual role of a dileucine motif in insulin receptor endocytosis. J Biol Chem 1997; 272:21685-91. [PMID: 9268295 DOI: 10.1074/jbc.272.35.21685] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two leucines (Leu986 and Leu987) have recently been shown to take part in the control of human insulin receptor (HIR) internalization (Renfrew-Haft, C., Klausner, R. D., and Taylor, S. I. (1994) J. Biol. Chem. 269, 26286-26294). The aim of the present study was to further investigate the exact mechanism of this control process. Constitutive and insulin-induced HIR internalizations were studied biochemically and morphologically in NIH 3T3 cells overexpressing either a double alanine (amino acid residues 986-987) mutant HIR (HIR AA1) or HIR truncated at either amino acid residue 981 (HIR Delta981) or 1000 (HIR Delta1000). Data collected indicate that: (a) the three mutant HIR show a reduced association with microvilli as compared with HIR wild-type; (b) the two receptors containing the dileucine motif (HIR WT and HIR Delta1000) show the highest propensity to associate with clathrin-coated pits, independently of kinase activation; (c) the two receptors lacking the dileucine motif but containing two tyrosine-based motifs, previously described as participating in clathrin-coated pit segregation, associate with these surface domains with a lower affinity than the two others, (d) in the presence of the kinase domain, an unmasking of the tyrosine-based motifs mediated by kinase activation is required. These results indicate that the dileucine motif is not sufficient by itself, but participates in anchoring HIR on microvilli and that another sequence, located downstream from position 1000 is crucial for this event. This dileucine motif also plays a role in HIR segregation in clathrin-coated pits. This latter function is additive with that of the tyrosine-based motifs but the role of the dileucine motif predominates. Eventually, the clathrin-coated pit anchoring function of the dileucine motif is independent of receptor kinase activation in contrast to the tyrosine-based motifs.
Collapse
Affiliation(s)
- I Hamer
- Department of Morphology, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Chrétien L, Laporte SA, Escher E, Leduc R, Guillemette G. Use of LiCl in phospholipase C assays masks the impaired functionality of a mutant angiotensin II receptor. Cell Signal 1997; 9:379-82. [PMID: 9376218 DOI: 10.1016/s0898-6568(97)00032-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We recently reported that replacement of Tyr302 for Ala in the human angiotensin II type 1 receptor (hAT1) severely impaired its ability to activate phospholipase C (PLC). Another study demonstrated that the same mutation in the rat AT1 receptor only slightly impaired its ability to activate PLC. The most striking difference between the two studies was the use of LiCl in the experimental conditions. Thus, in the present report we evaluated the effect of LiCl on the rate of accumulation of inositol trisphosphate (IP3) in transfected cells stimulated with angiotension II (Ang II). In the presence of LiCl, Ang II caused a significant accumulation of IP3 in COS-7 cells transfected with the hAT1Y302A mutant receptor. In stably expressing CHO cells, stimulation of hAT1Y302A did not induce any IP3 elevation even in the presence of LiCl whereas the hAT1 wild-type receptor increased the production of IP3 exclusively in the presence of LiCl. These results show that LiCl is a convenient tool to enhance the sensitivity of PLC assays. However, in structure-activity relationship studies, it may underestimate or mask the debilitating effect of some mutations.
Collapse
Affiliation(s)
- L Chrétien
- Department of Pharmacology, Faculty of Medicine, Université de Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|
48
|
Chaika OV, Chaika N, Volle DJ, Wilden PA, Pirrucello SJ, Lewis RE. CSF-1 receptor/insulin receptor chimera permits CSF-1-dependent differentiation of 3T3-L1 preadipocytes. J Biol Chem 1997; 272:11968-74. [PMID: 9115260 DOI: 10.1074/jbc.272.18.11968] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A chimeric growth factor receptor (CSF1R/IR) was constructed by splicing cDNA sequences encoding the extracellular ligand binding domain of the human colony stimulating factor-1 (CSF-1) receptor to sequences encoding the transmembrane and cytoplasmic domains of the human insulin receptor. The addition of CSF-1 to cells transfected with the CSF1R/IR chimera cDNA stimulated the tyrosine phosphorylation of a protein that was immunoprecipitated by an antibody directed against the carboxyl terminus of the insulin receptor. Phosphopeptide maps of the 32P-labeled CSF1R/IR protein revealed the same pattern of phosphorylation observed in 32P-labeled insulin receptor beta subunits. CSF-1 stimulated the tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and Shc in cells expressing the CSF1R/IR chimera. Lipid accumulation and the expression of a differentiation-specific marker demonstrated that 3T3-L1 preadipocytes undergo CSF-1-dependent differentiation when transfected with the CSF1R/IR chimera cDNA but not when transfected with the expression vector alone. A 12-amino acid deletion within the juxtamembrane region of the CSF1R/IR (CSF1R/IRDelta960) blocked CSF-1-stimulated phosphorylation of IRS-1 and Shc but did not inhibit CSF-1-mediated differentiation of 3T3-L1 preadipocytes. These observations indicate that adipocyte differentiation can be initiated by intracellular pathways that do not require tyrosine phosphorylation of IRS-1 or Shc.
Collapse
Affiliation(s)
- O V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
49
|
Smith RM, Harada S, Jarett L. Insulin internalization and other signaling pathways in the pleiotropic effects of insulin. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 173:243-80. [PMID: 9127955 DOI: 10.1016/s0074-7696(08)62479-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Insulin is the major anabolic hormone in humans and affects multiple cellular processes. Insulin rapidly regulates short-term effects on carbohydrate, lipid, and protein metabolism and is also a potent growth factor controlling cell proliferation and differentiation. The metabolic and growth-related effects require insulin binding to its receptor and receptor phosphorylation. Evidence suggests these events result in subsequent substrate phosphorylation and activation of multiple signaling pathways involving Src homology domain-containing proteins and the internalization of the insulin:receptor complex. The role of insulin internalization in insulin action is largely speculative. For more than two decades, extensive investigation has been carried out by numerous laboratories of the mechanisms by which insulin causes its pleiotropic responses and the cellular processing of insulin receptors. This chapter reviews our current knowledge of the phosphorylation signaling pathways activated by insulin and presents evidence that substrates other than insulin receptor substrate-1 are involved in insulin's regulation of immediate-early gene expression. We also review the mechanisms involved in insulin internalization and present evidence that internalization may play a key role in insulin action through both signal transduction processes and translocation of insulin to the cell cytoplasm and nucleus.
Collapse
Affiliation(s)
- R M Smith
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | |
Collapse
|
50
|
Biener Y, Feinstein R, Mayak M, Kaburagi Y, Kadowaki T, Zick Y. Annexin II is a novel player in insulin signal transduction. Possible association between annexin II phosphorylation and insulin receptor internalization. J Biol Chem 1996; 271:29489-96. [PMID: 8910617 DOI: 10.1074/jbc.271.46.29489] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Annexin II is a Ca2+-, phospholipid-, and actin- binding protein that was implicated in the regulation of vesicular traffic and endosome fusion. It is a known substrate for protein kinases including the platelet-derived growth factor receptor, src protein-tyrosine kinase, and protein kinase C. In the present study we investigated the possible involvement of annexin II in insulin signal transduction. Phosphorylation of annexin II in response to insulin treatment of intact Chinese hamster ovary (CHO)-T cells was detected by 5 min and reached maximal levels after a 2-3-h incubation with the hormone. However, unlike other receptor substrates, annexin II failed to undergo insulin-induced Tyr phosphorylation under conditions where receptor internalization was inhibited. This was evident in CHO cells, overexpressing the insulin receptor, in which internalization was inhibited either by tyrosine kinase inhibitors or by lowering the temperature to 4 degrees C, and in CHO cells overexpressing various insulin receptor mutants in which normal internalization was impaired. Hence, Tyr phosphorylation of annexin II could be part of the internalization and sorting mechanism of the insulin receptor.
Collapse
Affiliation(s)
- Y Biener
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | |
Collapse
|