1
|
Gareri C, Pfeiffer CT, Jiang X, Paulo JA, Gygi SP, Pham U, Chundi A, Wingler LM, Staus DP, Stepniewski TM, Selent J, Lucero EY, Grogan A, Rajagopal S, Rockman HA. Phosphorylation patterns in the AT1R C-terminal tail specify distinct downstream signaling pathways. Sci Signal 2024; 17:eadk5736. [PMID: 39137246 PMCID: PMC11443182 DOI: 10.1126/scisignal.adk5736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
Different ligands stabilize specific conformations of the angiotensin II type 1 receptor (AT1R) that direct distinct signaling cascades mediated by heterotrimeric G proteins or β-arrestin. These different active conformations are thought to engage distinct intracellular transducers because of differential phosphorylation patterns in the receptor C-terminal tail (the "barcode" hypothesis). Here, we identified the AT1R barcodes for the endogenous agonist AngII, which stimulates both G protein activation and β-arrestin recruitment, and for a synthetic biased agonist that only stimulates β-arrestin recruitment. The endogenous and β-arrestin-biased agonists induced two different ensembles of phosphorylation sites along the C-terminal tail. The phosphorylation of eight serine and threonine residues in the proximal and middle portions of the tail was required for full β-arrestin functionality, whereas phosphorylation of the serine and threonine residues in the distal portion of the tail had little influence on β-arrestin function. Similarly, molecular dynamics simulations showed that the proximal and middle clusters of phosphorylated residues were critical for stable β-arrestin-receptor interactions. These findings demonstrate that ligands that stabilize different receptor conformations induce different phosphorylation clusters in the C-terminal tail as barcodes to evoke distinct receptor-transducer engagement, receptor trafficking, and signaling.
Collapse
Affiliation(s)
- Clarice Gareri
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Conrad T. Pfeiffer
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Xue Jiang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anand Chundi
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Laura M. Wingler
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dean P. Staus
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF), 08003 Barcelona, Spain
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
- InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Emilio Y. Lucero
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Alyssa Grogan
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Howard A. Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
2
|
Samuel CS, Li Y, Wang Y, Widdop RE. Functional crosstalk between angiotensin receptors (types 1 and 2) and relaxin family peptide receptor 1 (RXFP1): Implications for the therapeutic targeting of fibrosis. Br J Pharmacol 2024; 181:2302-2318. [PMID: 36560925 DOI: 10.1111/bph.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Class A, rhodopsin-like, G-protein-coupled receptors (GPCRs) are by far the largest class of GPCRs and are integral membrane proteins used by various cells to convert extracellular signals into intracellular responses. Initially, class A GPCRs were believed to function as monomers, but a growing body of evidence has emerged to suggest that these receptors can function as homodimers and heterodimers and can undergo functional crosstalk to influence the actions of agonists or antagonists acting at each receptor. This review will focus on the angiotensin type 1 (AT1) and type 2 (AT2) receptors, as well as the relaxin family peptide receptor 1 (RXFP1), each of which have their unique characteristics but have been demonstrated to undergo some level of interaction when appropriately co-expressed, which influences the function of each receptor. In particular, this receptor functional crosstalk will be discussed in the context of fibrosis, the tissue scarring that results from a failed wound-healing response to injury, and which is a hallmark of chronic disease and related organ dysfunction. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Yan Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
3
|
Tóth DJ, Tóth JT, Damouni A, Hunyady L, Várnai P. Effect of hormone-induced plasma membrane phosphatidylinositol 4,5-bisphosphate depletion on receptor endocytosis suggests the importance of local regulation in phosphoinositide signaling. Sci Rep 2024; 14:291. [PMID: 38168911 PMCID: PMC10761818 DOI: 10.1038/s41598-023-50732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) has been shown to be critical for the endocytosis of G protein-coupled receptors (GPCRs). We have previously demonstrated that depletion of PIP2 by chemically induced plasma membrane (PM) recruitment of a 5-phosphatase domain prevents the internalization of the β2 adrenergic receptor (β2AR) from the PM to early endosomes. In this study, we tested the effect of hormone-induced PM PIP2 depletion on β2AR internalization using type-1 angiotensin receptor (AT1R) or M3 muscarinic acetylcholine receptor (M3R). We followed the endocytic route of β2ARs in HEK 293T cells using bioluminescence resonance energy transfer between the receptor and endosome marker Rab5. To compare the effect of lipid depletion by different means, we created and tested an AT1R fusion protein that is capable of both recruitment-based and hormone-induced depletion methods. The rate of PM PIP2 depletion was measured using a biosensor based on the PH domain of phospholipase Cδ1. As expected, β2AR internalization was inhibited when PIP2 depletion was evoked by recruiting 5-phosphatase to PM-anchored AT1R. A similar inhibition occurred when wild-type AT1R was activated by adding angiotensin II. However, stimulation of the desensitization/internalization-impaired mutant AT1R (TSTS/4A) caused very little inhibition of β2AR internalization, despite the higher rate of measurable PIP2 depletion. Interestingly, inhibition of PIP2 resynthesis with the selective PI4KA inhibitor GSK-A1 had little effect on the change in PH-domain-measured PM PIP2 levels but did significantly decrease β2AR internalization upon either AT1R or M3R activation, indicating the importance of a locally synthetized phosphoinositide pool in the regulation of this process.
Collapse
Affiliation(s)
- Dániel J Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary
| | - József T Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, Semmelweis University, Budapest, Üllői út 78/B, 1082, Hungary
| | - Amir Damouni
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- Institute of Enzymology, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Magyar tudósok körútja 2, 1117, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary.
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Guimarães-Nobre CC, Mendonça-Reis E, Teixeira-Alves LR, Miranda-Alves L, Berto-Junior C. ATR1 Angiotensin II Receptor Reduces Hemoglobin S Polymerization, Phosphatidylserine Exposure, and Increases Deformability of Sickle Cell Disease Erythrocytes. Cell Biochem Biophys 2022; 80:711-721. [PMID: 36175813 DOI: 10.1007/s12013-022-01096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
Angiotensin II (Ang II) regulates blood volume and stimulates erythropoiesis through AT1 (ATR1) and AT2 (ATR2) receptors, found in multiple tissues, including erythrocytes. Sickle cell disease (SCD) patients present altered Ang II levels. Hemoglobin S polymerization, deformability and phosphatidylserine translocation are important features of mature erythrocytes, therefore, our hypothesis is Ang II affects these parameters and, if it does, what would be the influence of AT1R and AT2R on these effects. A polymerization assay (PA), deformability, and annexin V binding were performed in SCD erythrocytes samples adding Ang II, ATR1 antagonist (losartan or eprosartan), and ATR2 antagonist (PD123319). Through the PA test, we observed a dose-dependent polymerization inhibition effect when comparing Ang II to control. Losartan did not affect the level or the rate of Ang II inhibition, while PD123319 showed an increased level of protection against polymerization, and eprosartan brought levels back to control. Ang II was able to reduce the translocation of phosphatidylserine from the inner to the outer leaflet, a marker of eryptosis, in the presence of PD123319. Also, ATR1 showed a positive effect increasing deformability. Our data shows that ATR1 is important for maintenance of erythrocyte physiological function in SCD and for prolonging its life.
Collapse
Affiliation(s)
- Camila Cristina Guimarães-Nobre
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evelyn Mendonça-Reis
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lyzes Rosa Teixeira-Alves
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Endocrinologia Experimental- LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clemilson Berto-Junior
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro, Brazil.
- Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratório de Endocrinologia Experimental- LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Johnstone EKM, Ayoub MA, Hertzman RJ, See HB, Abhayawardana RS, Seeber RM, Pfleger KDG. Novel Pharmacology Following Heteromerization of the Angiotensin II Type 2 Receptor and the Bradykinin Type 2 Receptor. Front Endocrinol (Lausanne) 2022; 13:848816. [PMID: 35721749 PMCID: PMC9204302 DOI: 10.3389/fendo.2022.848816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/21/2022] [Indexed: 01/18/2023] Open
Abstract
The angiotensin type 2 (AT2) receptor and the bradykinin type 2 (B2) receptor are G protein-coupled receptors (GPCRs) that have major roles in the cardiovascular system. The two receptors are known to functionally interact at various levels, and there is some evidence that the observed crosstalk may occur as a result of heteromerization. We investigated evidence for heteromerization of the AT2 receptor and the B2 receptor in HEK293FT cells using various bioluminescence resonance energy transfer (BRET)-proximity based assays, including the Receptor Heteromer Investigation Technology (Receptor-HIT) and the NanoBRET ligand-binding assay. The Receptor-HIT assay showed that Gαq, GRK2 and β-arrestin2 recruitment proximal to AT2 receptors only occurred upon B2 receptor coexpression and activation, all of which is indicative of AT2-B2 receptor heteromerization. Additionally, we also observed specific coupling of the B2 receptor with the Gαz protein, and this was found only in cells coexpressing both receptors and stimulated with bradykinin. The recruitment of Gαz, Gαq, GRK2 and β-arrestin2 was inhibited by B2 receptor but not AT2 receptor antagonism, indicating the importance of B2 receptor activation within AT2-B2 heteromers. The close proximity between the AT2 receptor and B2 receptor at the cell surface was also demonstrated with the NanoBRET ligand-binding assay. Together, our data demonstrate functional interaction between the AT2 receptor and B2 receptor in HEK293FT cells, resulting in novel pharmacology for both receptors with regard to Gαq/GRK2/β-arrestin2 recruitment (AT2 receptor) and Gαz protein coupling (B2 receptor). Our study has revealed a new mechanism for the enigmatic and poorly characterized AT2 receptor to be functionally active within cells, further illustrating the role of heteromerization in the diversity of GPCR pharmacology and signaling.
Collapse
Affiliation(s)
- Elizabeth K. M. Johnstone
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Elizabeth K. M. Johnstone, ; Kevin D. G. Pfleger,
| | - Mohammed Akli Ayoub
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rebecca J. Hertzman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Heng B. See
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Rekhati S. Abhayawardana
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Ruth M. Seeber
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Kevin D. G. Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- Dimerix Limited, Nedlands, WA, Australia
- *Correspondence: Elizabeth K. M. Johnstone, ; Kevin D. G. Pfleger,
| |
Collapse
|
6
|
Song X, Zou X, Ge W, Hou C, Cao Z, Zhao H, Zhang T, Jin L, Fu Y, Kong W, Yan C, Cai J, Wang J. Blocking FcγRIIB in Smooth Muscle Cells Reduces Hypertension. Circ Res 2021; 129:308-325. [PMID: 33980031 DOI: 10.1161/circresaha.120.318447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antihypertensive Agents/pharmacology
- Blood Pressure/drug effects
- Case-Control Studies
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- HEK293 Cells
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypertension/prevention & control
- Immunoglobulin G/blood
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Xiaomin Song
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Xuan Zou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Weipeng Ge
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Cuiliu Hou
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Zhujie Cao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Hongmei Zhao
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Tiantian Zhang
- Department Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (T.Z.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Ling Jin
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases (L.J., J.C.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Yi Fu
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Y.F., W.K.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education (Y.F., W.K.)
| | - Wei Kong
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China (Y.F., W.K.)
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education (Y.F., W.K.)
| | - Chen Yan
- Aab Cardiovascular Research Institute, Medicine, University of Rochester School of Medicine and Dentistry, NY (C.Y.)
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases (L.J., J.C.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences (X.S., X.Z., W.G., C.H., Z.C., H.Z., J.W.), Chinese Academy of Medical Sciences, Peking Union Medical College, China
| |
Collapse
|
7
|
Turu G, Balla A, Hunyady L. The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne) 2019; 10:519. [PMID: 31447777 PMCID: PMC6691095 DOI: 10.3389/fendo.2019.00519] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
AT1 angiotensin receptor plays important physiological and pathophysiological roles in the cardiovascular system. Renin-angiotensin system represents a target system for drugs acting at different levels. The main effects of ATR1 stimulation involve activation of Gq proteins and subsequent IP3, DAG, and calcium signaling. It has become evident in recent years that besides the well-known G protein pathways, AT1R also activates a parallel signaling pathway through β-arrestins. β-arrestins were originally described as proteins that desensitize G protein-coupled receptors, but they can also mediate receptor internalization and G protein-independent signaling. AT1R is one of the most studied receptors, which was used to unravel the newly recognized β-arrestin-mediated pathways. β-arrestin-mediated signaling has become one of the most studied topics in recent years in molecular pharmacology and the modulation of these pathways of the AT1R might offer new therapeutic opportunities in the near future. In this paper, we review the recent advances in the field of β-arrestin signaling of the AT1R, emphasizing its role in cardiovascular regulation and heart failure.
Collapse
Affiliation(s)
- Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Semmelweis University, Hungarian Academy of Sciences, Budapest, Hungary
- *Correspondence: László Hunyady
| |
Collapse
|
8
|
Tóth AD, Turu G, Hunyady L, Balla A. Novel mechanisms of G-protein-coupled receptors functions: AT 1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Pract Res Clin Endocrinol Metab 2018; 32:69-82. [PMID: 29678287 DOI: 10.1016/j.beem.2018.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AT1 angiotensin receptor (AT1R), a prototypical G protein-coupled receptor (GPCR), is the main receptor, which mediates the effects of the renin-angiotensin system (RAS). AT1R plays a crucial role in the regulation of blood pressure and salt-water homeostasis, and in the development of pathological conditions, such as hypertension, heart failure, cardiovascular remodeling, renal fibrosis, inflammation, and metabolic disorders. Stimulation of AT1R leads to pleiotropic signal transduction pathways generating arrays of complex cellular responses. Growing amount of evidence shows that AT1R is a versatile GPCR, which has multiple unique faces with distinct conformations and signaling properties providing new opportunities for functionally selective pharmacological targeting of the receptor. Biased ligands of AT1R have been developed to selectively activate the β-arrestin pathway, which may have therapeutic benefits compared to the conventional angiotensin converting enzyme inhibitors and angiotensin receptor blockers. In this review, we provide a summary about the most recent findings and novel aspects of the AT1R function, signaling, regulation, dimerization or oligomerization and its cross-talk with other receptors, including epidermal growth factor (EGF) receptor, adrenergic receptors and CB1 cannabinoid receptor. Better understanding of the mechanisms and structural aspects of AT1R activation and cross-talk can lead to the development of novel type of drugs for the treatment of cardiovascular and other diseases.
Collapse
Affiliation(s)
- András D Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Tóth AD, Prokop S, Gyombolai P, Várnai P, Balla A, Gurevich VV, Hunyady L, Turu G. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins. J Biol Chem 2017; 293:876-892. [PMID: 29146594 DOI: 10.1074/jbc.m117.813139] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
β-Arrestins are key regulators and signal transducers of G protein-coupled receptors (GPCRs). The interaction between receptors and β-arrestins is generally believed to require both receptor activity and phosphorylation by GPCR kinases. In this study, we investigated whether β-arrestins are able to bind second messenger kinase-phosphorylated, but inactive receptors as well. Because heterologous phosphorylation is a common phenomenon among GPCRs, this mode of β-arrestin activation may represent a novel mechanism of signal transduction and receptor cross-talk. Here we demonstrate that activation of protein kinase C (PKC) by phorbol myristate acetate, Gq/11-coupled GPCR, or epidermal growth factor receptor stimulation promotes β-arrestin2 recruitment to unliganded AT1 angiotensin receptor (AT1R). We found that this interaction depends on the stability lock, a structure responsible for the sustained binding between GPCRs and β-arrestins, formed by phosphorylated serine-threonine clusters in the receptor's C terminus and two conserved phosphate-binding lysines in the β-arrestin2 N-domain. Using improved FlAsH-based serine-threonine clusters β-arrestin2 conformational biosensors, we also show that the stability lock not only stabilizes the receptor-β-arrestin interaction, but also governs the structural rearrangements within β-arrestins. Furthermore, we found that β-arrestin2 binds to PKC-phosphorylated AT1R in a distinct active conformation, which triggers MAPK recruitment and receptor internalization. Our results provide new insights into the activation of β-arrestins and reveal their novel role in receptor cross-talk.
Collapse
Affiliation(s)
- András D Tóth
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
| | - Susanne Prokop
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary
| | - Pál Gyombolai
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Péter Várnai
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - András Balla
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Vsevolod V Gurevich
- the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - László Hunyady
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary, .,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| | - Gábor Turu
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1094, Hungary.,the MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest H-1094, Hungary, and
| |
Collapse
|
10
|
Tadevosyan A, Xiao J, Surinkaew S, Naud P, Merlen C, Harada M, Qi X, Chatenet D, Fournier A, Allen BG, Nattel S. Intracellular Angiotensin-II Interacts With Nuclear Angiotensin Receptors in Cardiac Fibroblasts and Regulates RNA Synthesis, Cell Proliferation, and Collagen Secretion. J Am Heart Assoc 2017; 6:e004965. [PMID: 28381466 PMCID: PMC5533010 DOI: 10.1161/jaha.116.004965] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/16/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cardiac fibroblasts play important functional and pathophysiological roles. Intracellular ("intracrine") angiotensin-II (Ang-II) signaling regulates intercellular communication, excitability, and gene expression in cardiomyocytes; however, the existence and role of intracrine Ang-II signaling in cardiac fibroblasts is unstudied. Here, we evaluated the localization of Ang-II receptors on atrial fibroblast nuclei and associated intracrine effects of potential functional significance. METHODS AND RESULTS Immunoblots of subcellular protein-fractions from isolated canine atrial fibroblasts indicated the presence of nuclear Ang-II type 1 receptors (AT1Rs) and Ang-II type 2 receptors (AT2Rs). Fluorescein isothiocyanate-Ang-II binding displaceable by AT1R- and AT2R-blockers was present on isolated fibroblast nuclei. G-protein subunits, including Gαq/11, Gαi/3, and Gβ, were observed in purified fibroblast nuclear fractions by immunoblotting and intact-fibroblast nuclei by confocal immunocytofluorescence microscopy. Nuclear AT1Rs and AT2Rs regulated de novo RNA synthesis ([α32P]UTP incorporation) via IP3R- and NO-dependent pathways, respectively. In intact cultured fibroblasts, intracellular Ang-II release by photolysis of a membrane-permeable caged Ang-II analog led to IP3R-dependent nucleoplasmic Ca2+-liberation, with IP3R3 being the predominant nuclear isoform. Intracellular Ang-II regulated fibroblast proliferation ([3H]thymidine incorporation), collagen-1A1 mRNA-expression, and collagen secretion. Intracellular Ang-II and nuclear AT1R protein levels were significantly increased in a heart failure model in which atrial fibrosis underlies atrial fibrillation. CONCLUSIONS Fibroblast nuclei possess AT1R and AT2R binding sites that are coupled to intranuclear Ca2+-mobilization and NO liberation, respectively. Intracellular Ang-II signaling regulates fibroblast proliferation, collagen gene expression, and collagen secretion. Heart failure upregulates Ang-II intracrine signaling-components in atrial fibroblasts. These results show for the first time that nuclear angiotensin-II receptor activation and intracrine Ang-II signaling control fibroblast function and may have pathophysiological significance.
Collapse
MESH Headings
- Angiotensin II/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 2 Receptor Blockers/pharmacology
- Animals
- Calcium/metabolism
- Cell Nucleus/metabolism
- Cell Proliferation
- Collagen/metabolism
- Collagen Type I/genetics
- Disease Models, Animal
- Dogs
- Fibroblasts/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein beta Subunits/metabolism
- Heart Atria/cytology
- Heart Failure/metabolism
- Immunoblotting
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Microscopy, Fluorescence
- Nitric Oxide/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Jiening Xiao
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Sirirat Surinkaew
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Patrice Naud
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Clémence Merlen
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - Masahide Harada
- Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Xiaoyan Qi
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
| | - David Chatenet
- Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada
| | - Alain Fournier
- Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada
| | - Bruce G Allen
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
11
|
Tóth AD, Gyombolai P, Szalai B, Várnai P, Turu G, Hunyady L. Angiotensin type 1A receptor regulates β-arrestin binding of the β 2-adrenergic receptor via heterodimerization. Mol Cell Endocrinol 2017; 442:113-124. [PMID: 27908837 DOI: 10.1016/j.mce.2016.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 11/26/2016] [Indexed: 02/06/2023]
Abstract
Heterodimerization between angiotensin type 1A receptor (AT1R) and β2-adrenergic receptor (β2AR) has been shown to modulate G protein-mediated effects of these receptors. Activation of G protein-coupled receptors (GPCRs) leads to β-arrestin binding, desensitization, internalization and G protein-independent signaling of GPCRs. Our aim was to study the effect of heterodimerization on β-arrestin coupling. We found that β-arrestin binding of β2AR is affected by activation of AT1Rs. Costimulation with angiotensin II and isoproterenol markedly enhanced the interaction between β2AR and β-arrestins, by prolonging the lifespan of β2AR-induced β-arrestin2 clusters at the plasma membrane. While candesartan, a conventional AT1R antagonist, had no effect on the β-arrestin2 binding to β2AR, TRV120023, a β-arrestin biased agonist, enhanced the interaction. These findings reveal a new crosstalk mechanism between AT1R and β2AR, and suggest that enhanced β-arrestin2 binding to β2AR can contribute to the pharmacological effects of biased AT1R agonists.
Collapse
Affiliation(s)
- András D Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary
| | - Pál Gyombolai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Hunyady L, Gáborik Z, Vauquelin G, Catt KJ. Review: Structural requirements for signalling and regulation of AT1-receptors. J Renin Angiotensin Aldosterone Syst 2016; 2:S16-S23. [DOI: 10.1177/14703203010020010301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- László Hunyady
- Department of Physiology, Semmelweis University Medical
School, Budapest, Hungary,
| | - Zsuzsanna Gáborik
- Department of Physiology, Semmelweis University Medical
School, Budapest, Hungary
| | - Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology,
Institute of Molecular Biology and Biotechnology, Free University of Brussels
(VUB), Sint-Genesius Rode, Belgium
| | - Kevin J Catt
- Endocrinology and Reproduction Research Branch, National
Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, USA
| |
Collapse
|
13
|
Wang S, Li Y, Miao W, Zhao H, Zhang F, Liu N, Su G, Cai X. Angiopoietin-like protein 2 expression is suppressed by angiotensin II via the angiotensin II type 1 receptor in rat cardiomyocytes. Mol Med Rep 2016; 14:2607-13. [PMID: 27483989 PMCID: PMC4991724 DOI: 10.3892/mmr.2016.5544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/11/2016] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to determine the inhibitory effects of angiotensin II (AngII) on angiopoietin‑like protein 2 (Angptl2) in rat primary cardiomyocytes, and to investigate the potential association between angiotensin II type 1 receptor (AT1R) and these effects. Cardiomyocytes were isolated from 3-day-old Wistar rats, and were cultured and identified. Subsequently, the expression levels of Angptl2 were detected following incubation with various concentrations of AngII for various durations using western blotting, reverse transcription‑quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and immunofluorescence. Finally, under the most appropriate conditions (100 nmol/l AngII, 24 h), the cardiomyocytes were divided into six groups: Normal, AngII, AngII + losartan, normal + losartan, AngII + PD123319 and normal + PD123319 groups, in order to investigate the possible function of AT1R in Angptl2 suppression. Losartan and PD123319 are antagonists of AT1R and angiotensin II type 2 receptor, respectively. The statistical significance of the results was analyzed using Student's t‑test or one‑way analysis of variance. The results demonstrated that Angptl2 expression was evidently suppressed (P<0.05) following incubation with 100 nmol/l AngII for 24 h. Conversely, the expression levels of Angptl2 were significantly increased in the AngII + losartan group compared with the AngII group (P<0.01). However, no significant difference was detected between the AngII + PD123319, normal + losartan or normal + PD123319 groups and the normal group. The present in vitro study indicated that AngII was able to suppress Angptl2 expression, whereas losartan was able to significantly reverse this decrease by inhibiting AT1R.
Collapse
Affiliation(s)
- Shuya Wang
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Ying Li
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Wei Miao
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Hong Zhao
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Feng Zhang
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Liu
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Guohai Su
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiaojun Cai
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
14
|
Morinelli TA, Luttrell LM, Strungs EG, Ullian ME. Angiotensin II receptors and peritoneal dialysis-induced peritoneal fibrosis. Int J Biochem Cell Biol 2016; 77:240-50. [PMID: 27167177 PMCID: PMC5038354 DOI: 10.1016/j.biocel.2016.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/22/2022]
Abstract
The vasoactive hormone angiotensin II initiates its major hemodynamic effects through interaction with AT1 receptors, a member of the class of G protein-coupled receptors. Acting through its AT1R, angiotensin II regulates blood pressure and renal salt and water balance. Recent evidence points to additional pathological influences of activation of AT1R, in particular inflammation, fibrosis and atherosclerosis. The transcription factor nuclear factor κB, a key mediator in inflammation and atherosclerosis, can be activated by angiotensin II through a mechanism that may involve arrestin-dependent AT1 receptor internalization. Peritoneal dialysis is a therapeutic modality for treating patients with end-stage kidney disease. The effectiveness of peritoneal dialysis at removing waste from the circulation is compromised over time as a consequence of peritoneal dialysis-induced peritoneal fibrosis. The non-physiological dialysis solution used in peritoneal dialysis, i.e. highly concentrated, hyperosmotic glucose, acidic pH as well as large volumes infused into the peritoneal cavity, contributes to the development of fibrosis. Numerous trials have been conducted altering certain components of the peritoneal dialysis fluid in hopes of preventing or delaying the fibrotic response with limited success. We hypothesize that structural activation of AT1R by hyperosmotic peritoneal dialysis fluid activates the internalization process and subsequent signaling through the transcription factor nuclear factor κB, resulting in the generation of pro-fibrotic/pro-inflammatory mediators producing peritoneal fibrosis.
Collapse
Affiliation(s)
- Thomas A Morinelli
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Louis M Luttrell
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States; Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, United States
| | - Erik G Strungs
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Michael E Ullian
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States; Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, United States
| |
Collapse
|
15
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
16
|
Gulyás G, Tóth JT, Tóth DJ, Kurucz I, Hunyady L, Balla T, Várnai P. Measurement of inositol 1,4,5-trisphosphate in living cells using an improved set of resonance energy transfer-based biosensors. PLoS One 2015; 10:e0125601. [PMID: 25932648 PMCID: PMC4416922 DOI: 10.1371/journal.pone.0125601] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/24/2015] [Indexed: 01/22/2023] Open
Abstract
Improved versions of inositol-1,4,5-trisphosphate (InsP3) sensors were created to follow intracellular InsP3 changes in single living cells and in cell populations. Similar to previous InsP3 sensors the new sensors are based on the ligand binding domain of the human type-I InsP3 receptor (InsP3R-LBD), but contain a mutation of either R265K or R269K to lower their InsP3 binding affinity. Tagging the InsP3R-LBD with N-terminal Cerulean and C-terminal Venus allowed measurement of InsP3 in single-cell FRET experiments. Replacing Cerulean with a Luciferase enzyme allowed experiments in multi-cell format by measuring the change in the BRET signal upon stimulation. These sensors faithfully followed the agonist-induced increase in InsP3 concentration in HEK 293T cells expressing the Gq-coupled AT1 angiotensin receptor detecting a response to agonist concentration as low as 10 pmol/L. Compared to the wild type InsP3 sensor, the mutant sensors showed an improved off-rate, enabling a more rapid and complete return of the signal to the resting value of InsP3 after termination of M3 muscarinic receptor stimulation by atropine. For parallel measurements of intracellular InsP3 and Ca2+ levels in BRET experiments, the Cameleon D3 Ca2+ sensor was modified by replacing its CFP with luciferase. In these experiments depletion of plasma membrane PtdIns(4,5)P2 resulted in the fall of InsP3 level, followed by the decrease of the Ca2+-signal evoked by the stimulation of the AT1 receptor. In contrast, when type-III PI 4-kinases were inhibited with a high concentration of wortmannin or a more specific inhibitor, A1, the decrease of the Ca2+-signal preceded the fall of InsP3 level indicating an InsP3-, independent, direct regulation of capacitative Ca2+ influx by plasma membrane inositol lipids. Taken together, our results indicate that the improved InsP3 sensor can be used to monitor both the increase and decrease of InsP3 levels in live cells suitable for high-throughput BRET applications.
Collapse
Affiliation(s)
- Gergő Gulyás
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - József T. Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Dániel J. Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - István Kurucz
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
- * E-mail:
| |
Collapse
|
17
|
Bojjireddy N, Guzman-Hernandez ML, Reinhard NR, Jovic M, Balla T. EFR3s are palmitoylated plasma membrane proteins that control responsiveness to G-protein-coupled receptors. J Cell Sci 2014; 128:118-28. [PMID: 25380825 DOI: 10.1242/jcs.157495] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The yeast Efr3p protein is a main regulator of the Stt4p phosphatidylinositol 4-kinase at contact sites between the endoplasmic reticulum and the plasma membrane. A mutation in its fly homologue Rbo, leads to diminished light responses in the eye attributed to progressively impaired PLC signaling. Here, we find that Efr3s plays a role in maintaining responsiveness to the type-I angiotensin II (AngII) receptors. siRNA-mediated depletion of EFR3A and EFR3B impaired the sustained phase of cytosolic Ca(2+) response to high concentration of AngII in HEK293 cells that express wild type but not truncated AGTR1 (AT1a receptor), missing the phosphorylation sites. Efr3 depletion had minimal effect on the recovery of plasma membrane phosphoinositides during stimulation, and AT1 receptors still underwent ligand-induced internalization. A higher level of basal receptor phosphorylation and a larger response was observed after stimulation. Moreover, Gq activation more rapidly desensitized after AngII stimulation in Efr3 downregulated cells. A similar but less pronounced effect of EFR3 depletion was observed on the desensitization of the cAMP response after stimulation with isoproterenol. These data suggest that mammalian Efr3s contribute to the control of the phosphorylation state and, hence, desensitization of AT1a receptors, and could affect responsiveness of G-protein-coupled receptors in higher eukaryotes.
Collapse
Affiliation(s)
- Naveen Bojjireddy
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Luisa Guzman-Hernandez
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathalie Renée Reinhard
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Marko Jovic
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Balakumar P, Jagadeesh G. Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor. J Mol Endocrinol 2014; 53:R71-92. [PMID: 25013233 DOI: 10.1530/jme-14-0125] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The renin-angiotensin system (RAS) plays an important role in the pathophysiology of cardiovascular disorders. Pharmacologic interventions targeting the RAS cascade have led to the discovery of renin inhibitors, angiotensin-converting enzyme inhibitors, and AT(1) receptor blockers (ARBs) to treat hypertension and some cardiovascular and renal disorders. Mutagenesis and modeling studies have revealed that differential functional outcomes are the results of multiple active states conformed by the AT(1) receptor upon interaction with angiotensin II (Ang II). The binding of agonist is dependent on both extracellular and intramembrane regions of the receptor molecule, and as a consequence occupies more extensive area of the receptor than a non-peptide antagonist. Both agonist and antagonist bind to the same intramembrane regions to interfere with each other's binding to exhibit competitive, surmountable interaction. The nature of interactions with the amino acids in the receptor is different for each of the ARBs given the small differences in the molecular structure between drugs. AT(1) receptors attain different conformation states after binding various Ang II analogues, resulting in variable responses through activation of multiple signaling pathways. These include both classical and non-classical pathways mediated through growth factor receptor transactivations, and provide cross-communication between downstream signaling molecules. The structural requirements for AT(1) receptors to activate extracellular signal-regulated kinases 1 and 2 through G proteins, or G protein-independently through β-arrestin, are different. We review the structural and functional characteristics of Ang II and its analogs and antagonists, and their interaction with amino acid residues in the AT(1) receptor.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Gowraganahalli Jagadeesh
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| |
Collapse
|
19
|
PAN ZHIGUO, SHAO YU, DONG WENPENG, LIU CHENXI, CHEN YI, JIN HUI, TANG LIQUN, QIU JUNMING, SU LEI. Xuebijing attenuates hypotension through the upregulation of angiotensin II type 1 receptor-associated protein 1 in rats suffering from heat stroke. Int J Mol Med 2014; 34:1699-705. [DOI: 10.3892/ijmm.2014.1950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 09/12/2014] [Indexed: 11/05/2022] Open
|
20
|
Patel BM, Mehta AA. Aldosterone and angiotensin: Role in diabetes and cardiovascular diseases. Eur J Pharmacol 2012; 697:1-12. [PMID: 23041273 DOI: 10.1016/j.ejphar.2012.09.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/13/2012] [Accepted: 09/22/2012] [Indexed: 12/14/2022]
Abstract
The present review shall familiarize the readers with the role of renin-angiotensin aldosterone system (RAAS), which regulates blood pressure, electrolyte and fluid homeostasis. The local RAAS operates in an autocrine, paracrine and/or intracrine manner and exhibits multiple physiological effects at the cellular level. In addition to local RAAS, there exists a complete pancreatic RAAS which has multi-facet role in diabetes and cardiovascular diseases. Aldosterone is known to mediate hyperinsulinemia, hypertension, cardiac failure and myocardial fibrosis while angiotensin II mediates diabetes, endothelial dysfunction, vascular inflammation, hypertrophy and remodeling. As the understanding of this biology of RAAS increases, it serves to exploit this for the pharmacotherapy of diabetes and cardiovascular diseases.
Collapse
Affiliation(s)
- Bhoomika M Patel
- Department of Pharmacology, L.M. College of Pharmacy, Ahmedabad 380 009, Gujarat, India.
| | | |
Collapse
|
21
|
Gildea JJ, Wang X, Shah N, Tran H, Spinosa M, Van Sciver R, Sasaki M, Yatabe J, Carey RM, Jose PA, Felder RA. Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells. Hypertension 2012; 60:396-403. [PMID: 22710646 DOI: 10.1161/hypertensionaha.112.194175] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and, subsequently, hypertension. We show that D(1)R/D(5)R stimulation increased plasma membrane AT(2)R 4-fold via a D(1)R-mediated, cAMP-coupled, and protein phosphatase 2A-dependent specific signaling pathway. D(1)R/D(5)R stimulation also reduced the ability of angiotensin II to stimulate phospho-extracellular signal-regulated kinase, an effect that was partially reversed by an AT(2)R antagonist. Fenoldopam did not increase AT(2)R recruitment in renal proximal tubule cells with D(1)Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D(1)Rs and AT(2)Rs heterodimerized and cooperatively increased cAMP and cGMP production, protein phosphatase 2A activation, sodium-potassium-ATPase internalization, and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension.
Collapse
Affiliation(s)
- John J Gildea
- University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tóth DJ, Tóth JT, Gulyás G, Balla A, Balla T, Hunyady L, Várnai P. Acute depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate impairs specific steps in endocytosis of the G-protein-coupled receptor. J Cell Sci 2012; 125:2185-97. [PMID: 22357943 DOI: 10.1242/jcs.097279] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Receptor endocytosis plays an important role in regulating the responsiveness of cells to specific ligands. Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] has been shown to be crucial for endocytosis of some cell surface receptors, such as EGF and transferrin receptors, but its role in G-protein-coupled receptor internalization has not been investigated. By using luciferase-labeled type 1 angiotensin II (AT1R), type 2C serotonin (5HT2CR) or β(2) adrenergic (β2AR) receptors and fluorescently tagged proteins (β-arrestin-2, plasma-membrane-targeted Venus, Rab5) we were able to follow the sequence of molecular interactions along the endocytic route of the receptors in HEK293 cells using the highly sensitive method of bioluminescence resonance energy transfer and confocal microscopy. To study the role of plasma membrane PtdIns(4,5)P(2) in receptor endocytosis, we used our previously developed rapamycin-inducible heterodimerization system, in which the recruitment of a 5-phosphatase domain to the plasma membrane degrades PtdIns(4,5)P(2). Here we show that ligand-induced interaction of AT1, 5HT2C and β(2)A receptors with β-arrestin-2 was unaffected by PtdIns(4,5)P(2) depletion. However, trafficking of the receptors to Rab5-positive early endosomes was completely abolished in the absence of PtdIns(4,5)P(2). Remarkably, removal of the receptors from the plasma membrane was reduced but not eliminated after PtdIns(4,5)P(2) depletion. Under these conditions, stimulated AT1 receptors clustered along the plasma membrane, but did not enter the cells. Our data suggest that in the absence of PtdIns(4,5)P(2), these receptors move into clathrin-coated membrane structures, but these are not cleaved efficiently and hence cannot reach the early endosomal compartment.
Collapse
Affiliation(s)
- Dániel J Tóth
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
23
|
Verdonk K, Danser AJ. Reactive Oxygen Species and Angiotensin II Response in Human Omental Arteries: What About Tachyphylaxis? Hypertension 2012; 59:e16; author reply e17. [DOI: 10.1161/hypertensionaha.111.187187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - A.H. Jan Danser
- Division of Pharmacology and Vascular Medicine
Department of Internal Medicine, Erasmus MC
Rotterdam, The Netherlands (Verdonk, Jan Danser)
| |
Collapse
|
24
|
Balla A, Tóth DJ, Soltész-Katona E, Szakadáti G, Erdélyi LS, Várnai P, Hunyady L. Mapping of the localization of type 1 angiotensin receptor in membrane microdomains using bioluminescence resonance energy transfer-based sensors. J Biol Chem 2012; 287:9090-9. [PMID: 22291018 DOI: 10.1074/jbc.m111.293944] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Initiation and termination of signaling of the type I angiotensin receptor (AT(1)-R) can lead to dynamic changes in its localization in plasma membrane microdomains. Several markers were recently developed to investigate membrane microdomains. Here, we used several YFP-labeled fusion constructs (i.e. raft or non-raft plasma membrane markers) to analyze the agonist-induced changes in compartmentalization of AT(1)-R, including internalization or lateral movement between plasma membrane compartments in response to stimulation using bioluminescence resonance energy transfer measurements. Our data demonstrate that angiotensin II (AngII) stimulus changes the microdomain localization of wild type or mutated (DRY → AAY or TSTS → AAAA) AT(1)-Rs co-expressed with the fluorescent probes in HEK293 cells. The comparison of the trafficking of AT(1)-R upon AngII stimulus with those of [Sar(1),Ile(8)]AngII or [Sar(1),Ile(4),Ile(8)]AngII stimulus revealed different types of changes, depending on the nature of the ligand. The observed changes in receptor compartmentalization of the AT(1)-R are strikingly different from those of 5HT-2C and EGF receptors, which demonstrate the usefulness of the bioluminescence resonance energy transfer-based measurements in the investigation of receptor trafficking in the plasma membrane in living cell experiments.
Collapse
Affiliation(s)
- András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 2011; 32:1551-65. [PMID: 21699940 PMCID: PMC3137727 DOI: 10.1016/j.peptides.2011.05.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 02/06/2023]
Abstract
Although renin, the rate-limiting enzyme of the renin-angiotensin system (RAS), was first discovered by Robert Tigerstedt and Bergman more than a century ago, the research on the RAS still remains stronger than ever. The RAS, once considered to be an endocrine system, is now widely recognized as dual (circulating and local/tissue) or multiple hormonal systems (endocrine, paracrine and intracrine). In addition to the classical renin/angiotensin I-converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor (AT₁/AT₂) axis, the prorenin/(Pro)renin receptor (PRR)/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, and the Ang IV/AT₄/insulin-regulated aminopeptidase (IRAP) axis have recently been discovered. Furthermore, the roles of the evolving RAS have been extended far beyond blood pressure control, aldosterone synthesis, and body fluid and electrolyte homeostasis. Indeed, novel actions and underlying signaling mechanisms for each member of the RAS in physiology and diseases are continuously uncovered. However, many challenges still remain in the RAS research field despite of more than one century's research effort. It is expected that the research on the expanded RAS will continue to play a prominent role in cardiovascular, renal and hypertension research. The purpose of this article is to review the progress recently being made in the RAS research, with special emphasis on the local RAS in the kidney and the newly discovered prorenin/PRR/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, the Ang IV/AT₄/IRAP axis, and intracrine/intracellular Ang II. The improved knowledge of the expanded RAS will help us better understand how the classical renin/ACE/Ang II/AT₁ receptor axis, extracellular and/or intracellular origin, interacts with other novel RAS axes to regulate blood pressure and cardiovascular and kidney function in both physiological and diseased states.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, the University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
26
|
Porrello ER, Pfleger KDG, Seeber RM, Qian H, Oro C, Abogadie F, Delbridge LMD, Thomas WG. Heteromerization of angiotensin receptors changes trafficking and arrestin recruitment profiles. Cell Signal 2011; 23:1767-76. [PMID: 21740964 DOI: 10.1016/j.cellsig.2011.06.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/29/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
The cardiovascular hormone angiotensin II (AngII) exerts its actions via two G protein-coupled receptor (GPCR) subtypes, AT(1) and AT(2), which often display antagonistic functions. Methodological constraints have so far precluded detailed analyses of the ligand-dependency, cellular localization, and functional relevance of AngII receptor interactions in live cells. In this study, we utilize a protein-fragment complementation assay (PCA) and GPCR-Heteromer Identification Technology (GPCR-HIT) to provide the first detailed investigation of the ligand-dependency and cellular localization of AngII receptor interactions in human embryonic kidney 293 cells. Fluorescent-tagged receptor constructs for PCA and GPCR-HIT displayed normal affinity and selectivity for AngII (AT(1): IC(50)=1.0-1.6nM; AT(2): IC(50)=2.0-3.0nM). Well-characterized angiotensin receptor interactions were used as positive and negative controls to demonstrate the sensitivity and specificity of these fluorescence-based assays. We report that AT(1)-AT(2) receptor heteromers form constitutively, are localized to the plasma membrane and perinuclear compartments, and do not internalize following AngII stimulation despite arrestin being recruited specifically to the heteromer. Our findings using novel fluorescence-based technologies reveal a previously unrecognized mechanism of angiotensin receptor cross-talk involving cross-inhibition of AT(1) receptor internalization through heteromerization with the AT(2) receptor subtype.
Collapse
Affiliation(s)
- Enzo R Porrello
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Smith NJ, Chan HW, Qian H, Bourne AM, Hannan KM, Warner FJ, Ritchie RH, Pearson RB, Hannan RD, Thomas WG. Determination of the Exact Molecular Requirements for Type 1 Angiotensin Receptor Epidermal Growth Factor Receptor Transactivation and Cardiomyocyte Hypertrophy. Hypertension 2011; 57:973-80. [DOI: 10.1161/hypertensionaha.110.166710] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nicola J. Smith
- From the Baker IDI Heart and Diabetes Institute (N.J.S., H.-W.C., H.Q., A.M.B., R.H.R., W.G.T.), Prahran, Victoria, Australia; School of Biomedical Sciences (H.-W.C., A.M.B., W.G.T.), University of Queensland, St Lucia, Queensland, Australia; Growth Control and Differentiation Program (K.M.H., R.B.P., R.D.H.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centenary Institute (F.J.W.), Camperdown, New South Wales, Australia
| | - Hsiu-Wen Chan
- From the Baker IDI Heart and Diabetes Institute (N.J.S., H.-W.C., H.Q., A.M.B., R.H.R., W.G.T.), Prahran, Victoria, Australia; School of Biomedical Sciences (H.-W.C., A.M.B., W.G.T.), University of Queensland, St Lucia, Queensland, Australia; Growth Control and Differentiation Program (K.M.H., R.B.P., R.D.H.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centenary Institute (F.J.W.), Camperdown, New South Wales, Australia
| | - Hongwei Qian
- From the Baker IDI Heart and Diabetes Institute (N.J.S., H.-W.C., H.Q., A.M.B., R.H.R., W.G.T.), Prahran, Victoria, Australia; School of Biomedical Sciences (H.-W.C., A.M.B., W.G.T.), University of Queensland, St Lucia, Queensland, Australia; Growth Control and Differentiation Program (K.M.H., R.B.P., R.D.H.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centenary Institute (F.J.W.), Camperdown, New South Wales, Australia
| | - Allison M. Bourne
- From the Baker IDI Heart and Diabetes Institute (N.J.S., H.-W.C., H.Q., A.M.B., R.H.R., W.G.T.), Prahran, Victoria, Australia; School of Biomedical Sciences (H.-W.C., A.M.B., W.G.T.), University of Queensland, St Lucia, Queensland, Australia; Growth Control and Differentiation Program (K.M.H., R.B.P., R.D.H.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centenary Institute (F.J.W.), Camperdown, New South Wales, Australia
| | - Katherine M. Hannan
- From the Baker IDI Heart and Diabetes Institute (N.J.S., H.-W.C., H.Q., A.M.B., R.H.R., W.G.T.), Prahran, Victoria, Australia; School of Biomedical Sciences (H.-W.C., A.M.B., W.G.T.), University of Queensland, St Lucia, Queensland, Australia; Growth Control and Differentiation Program (K.M.H., R.B.P., R.D.H.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centenary Institute (F.J.W.), Camperdown, New South Wales, Australia
| | - Fiona J. Warner
- From the Baker IDI Heart and Diabetes Institute (N.J.S., H.-W.C., H.Q., A.M.B., R.H.R., W.G.T.), Prahran, Victoria, Australia; School of Biomedical Sciences (H.-W.C., A.M.B., W.G.T.), University of Queensland, St Lucia, Queensland, Australia; Growth Control and Differentiation Program (K.M.H., R.B.P., R.D.H.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centenary Institute (F.J.W.), Camperdown, New South Wales, Australia
| | - Rebecca H. Ritchie
- From the Baker IDI Heart and Diabetes Institute (N.J.S., H.-W.C., H.Q., A.M.B., R.H.R., W.G.T.), Prahran, Victoria, Australia; School of Biomedical Sciences (H.-W.C., A.M.B., W.G.T.), University of Queensland, St Lucia, Queensland, Australia; Growth Control and Differentiation Program (K.M.H., R.B.P., R.D.H.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centenary Institute (F.J.W.), Camperdown, New South Wales, Australia
| | - Richard B. Pearson
- From the Baker IDI Heart and Diabetes Institute (N.J.S., H.-W.C., H.Q., A.M.B., R.H.R., W.G.T.), Prahran, Victoria, Australia; School of Biomedical Sciences (H.-W.C., A.M.B., W.G.T.), University of Queensland, St Lucia, Queensland, Australia; Growth Control and Differentiation Program (K.M.H., R.B.P., R.D.H.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centenary Institute (F.J.W.), Camperdown, New South Wales, Australia
| | - Ross D. Hannan
- From the Baker IDI Heart and Diabetes Institute (N.J.S., H.-W.C., H.Q., A.M.B., R.H.R., W.G.T.), Prahran, Victoria, Australia; School of Biomedical Sciences (H.-W.C., A.M.B., W.G.T.), University of Queensland, St Lucia, Queensland, Australia; Growth Control and Differentiation Program (K.M.H., R.B.P., R.D.H.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centenary Institute (F.J.W.), Camperdown, New South Wales, Australia
| | - Walter G. Thomas
- From the Baker IDI Heart and Diabetes Institute (N.J.S., H.-W.C., H.Q., A.M.B., R.H.R., W.G.T.), Prahran, Victoria, Australia; School of Biomedical Sciences (H.-W.C., A.M.B., W.G.T.), University of Queensland, St Lucia, Queensland, Australia; Growth Control and Differentiation Program (K.M.H., R.B.P., R.D.H.), Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Centenary Institute (F.J.W.), Camperdown, New South Wales, Australia
| |
Collapse
|
28
|
Guo F, Chen XL, Wang F, Liang X, Sun YX, Wang YJ. Role of Angiotensin II Type 1 Receptor in Angiotensin II-Induced Cytokine Production in Macrophages. J Interferon Cytokine Res 2011; 31:351-61. [PMID: 21235392 DOI: 10.1089/jir.2010.0073] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Feng Guo
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Fei Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Xun Liang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ye-Xiang Sun
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yong-Jie Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
29
|
|
30
|
Dasgupta C, Zhang L. Angiotensin II receptors and drug discovery in cardiovascular disease. Drug Discov Today 2010; 16:22-34. [PMID: 21147255 DOI: 10.1016/j.drudis.2010.11.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/12/2010] [Accepted: 11/26/2010] [Indexed: 12/19/2022]
Abstract
Hypertension is one of the cardiovascular diseases that might cause cardiovascular remodeling and endothelial dysfunction besides high blood pressure. Angiotensin II (Ang II) receptors are implicated in hypertension. Genetic and epigenetic manipulations of the Ang II receptors play a crucial part in the programming of cardiovascular diseases, and certain variants of the Ang II type 1 and Ang II type 2 receptors are constitutively predisposed to higher cardiovascular risk and hypertension. In this review, we focus on the expression, mode of action of Ang II receptors, and their role in programming the cardiovascular diseases in utero. In addition, we discuss possible therapeutic interventions of Ang II stimulation. Collectively, this information might lead us to new drug designs against cardiovascular diseases.
Collapse
Affiliation(s)
- Chiranjib Dasgupta
- Fetal-Origin Diseases Institute, First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | | |
Collapse
|
31
|
Wakui H, Tamura K, Matsuda M, Bai Y, Dejima T, Shigenaga AI, Masuda SI, Azuma K, Maeda A, Hirose T, Ishigami T, Toya Y, Yabana M, Minamisawa S, Umemura S. Intrarenal suppression of angiotensin II type 1 receptor binding molecule in angiotensin II-infused mice. Am J Physiol Renal Physiol 2010; 299:F991-F1003. [PMID: 20739392 DOI: 10.1152/ajprenal.00738.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
ATRAP [ANG II type 1 receptor (AT1R)-associated protein] is a molecule which directly interacts with AT1R and inhibits AT1R signaling. The aim of this study was to examine the effects of continuous ANG II infusion on the intrarenal expression and distribution of ATRAP and to determine the role of AT1R signaling in mediating these effects. C57BL/6 male mice were subjected to vehicle or ANG II infusions at doses of 200, 1,000, or 2,500 ng·kg(-1)·min(-1) for 14 days. ANG II infusion caused significant suppression of ATRAP expression in the kidney but did not affect ATRAP expression in the testis or liver. Although only the highest ANG II dose (2,500 ng·kg(-1)·min(-1)) provoked renal pathological responses, such as an increase in the mRNA expression of angiotensinogen and the α-subunit of the epithelial sodium channel, ANG II-induced decreases in ATRAP were observed even at the lowest dose (200 ng·kg(-1)·min(-1)), particularly in the outer medulla of the kidney, based on immunohistochemical staining and Western blot analysis. The decrease in renal ATRAP expression by ANG II infusion was prevented by treatment with the AT1R-specific blocker olmesartan. In addition, the ANG II-mediated decrease in renal ATRAP expression through AT1R signaling occurred without an ANG II-induced decrease in plasma membrane AT1R expression in the kidney. On the other hand, a transgenic model increase in renal ATRAP expression beyond baseline was accompanied by a constitutive reduction of renal plasma membrane AT1R expression and by the promotion of renal AT1R internalization as well as the decreased induction of angiotensinogen gene expression in response to ANG II. These results suggest that the plasma membrane AT1R level in the kidney is modulated by intrarenal ATRAP expression under physiological and pathophysiological conditions in vivo.
Collapse
Affiliation(s)
- Hiromichi Wakui
- Dept. of Medical Science and Cardiorenal Medicine, Yokohama City Univ. Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wakui H, Tamura K, Tanaka Y, Matsuda M, Bai Y, Dejima T, Masuda SI, Shigenaga AI, Maeda A, Mogi M, Ichihara N, Kobayashi Y, Hirawa N, Ishigami T, Toya Y, Yabana M, Horiuchi M, Minamisawa S, Umemura S. Cardiac-Specific Activation of Angiotensin II Type 1 Receptor–Associated Protein Completely Suppresses Cardiac Hypertrophy in Chronic Angiotensin II–Infused Mice. Hypertension 2010; 55:1157-64. [DOI: 10.1161/hypertensionaha.109.147207] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We cloned a novel molecule interacting with angiotensin II type 1 receptor, which we named ATRAP (for angiotensin II type 1 receptor–associated protein). Previous in vitro studies showed that ATRAP significantly promotes constitutive internalization of the angiotensin II type 1 receptor and further attenuates angiotensin II–mediated hypertrophic responses in cardiomyocytes. The present study was designed to investigate the putative functional role of ATRAP in cardiac hypertrophy by angiotensin II infusion in vivo. We first examined the effect of angiotensin II infusion on endogenous ATRAP expression in the heart of C57BL/6J wild-type mice. The angiotensin II treatment promoted cardiac hypertrophy, concomitant with a significant decrease in cardiac ATRAP expression, but without significant change in cardiac angiotensin II type 1 receptor expression. We hypothesized that a downregulation of the cardiac ATRAP to angiotensin II type 1 receptor ratio is involved in the pathogenesis of cardiac hypertrophy. To examine this hypothesis, we next generated transgenic mice expressing ATRAP specifically in cardiomyocytes under control of the α-myosin heavy chain promoter. In cardiac-specific ATRAP transgenic mice, the development of cardiac hypertrophy, activation of p38 mitogen-activated protein kinase, and expression of hypertrophy-related genes in the context of angiotensin II treatment were completely suppressed, in spite of there being no significant difference in blood pressure on radiotelemetry between the transgenic mice and littermate control mice. These results demonstrate that cardiomyocyte-specific overexpression of ATRAP in vivo abolishes the cardiac hypertrophy provoked by chronic angiotensin II infusion, thereby suggesting ATRAP to be a novel therapeutic target in cardiac hypertrophy.
Collapse
Affiliation(s)
- Hiromichi Wakui
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Kouichi Tamura
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Yutaka Tanaka
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Miyuki Matsuda
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Yunzhe Bai
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Toru Dejima
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Shin-ichiro Masuda
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Atsu-ichiro Shigenaga
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Akinobu Maeda
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Masaki Mogi
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Naoaki Ichihara
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Yusuke Kobayashi
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Nobuhito Hirawa
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Tomoaki Ishigami
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Yoshiyuki Toya
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Machiko Yabana
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Masatsugu Horiuchi
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Susumu Minamisawa
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| | - Satoshi Umemura
- From the Department of Medical Science and Cardiorenal Medicine (H.W., K.T., M.M., Y.B., T.D., S.M., A.S., A.M., N.I., Y.K., N.H., T.I., Y.T., M.Y., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Molecular Cardiovascular Biology and Pharmacology (M.M., M.H.), Ehime University, Graduate School of Medicine, Ehime, Japan; Department of Life Science and Medical Bio-science (S.M.), Waseda University, Tokyo, Japan
| |
Collapse
|
33
|
|
34
|
Sheffler DJ, Conn PJ. Allosteric potentiators of metabotropic glutamate receptor subtype 1a differentially modulate independent signaling pathways in baby hamster kidney cells. Neuropharmacology 2008; 55:419-27. [PMID: 18625258 DOI: 10.1016/j.neuropharm.2008.06.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
Abstract
Recent studies suggest that subtype specific activators of metabotropic glutamate receptors (mGluRs) have exciting potential for the development of novel treatment strategies for numerous psychiatric and neurological disorders. A number of positive allosteric modulators (PAMs) have been identified that are highly selective for mGluR1, including the compounds Ro 01-6128, Ro 67-4853, and Ro 67-7476. These PAMs have been previously found to interact with a site distinct from that of negative allosteric modulators (NAMs), typified by R214127. These mGluR1 PAMs do not have an effect on baseline calcium levels but induce leftward shifts in the concentration-response of mGluR1 to agonists. However, their effects on a variety of signaling pathways and their mechanism of action have not been fully explored and are of critical importance for further development of mGluR1 allosteric modulators as novel drugs. In baby hamster kidney (BHK) cells, mGluR1 activates calcium mobilization, cAMP production, and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation; signaling cascades which are distinct and differentially regulated. In contrast to their effects on calcium mobilization, these compounds were found to activate ERK1/2 phosphorylation in the absence of exogenously added agonist, an effect that was fully blocked by both orthosteric (LY341495) and allosteric (R214127) mGluR1 antagonists. The mGluR1 PAMs were also found to activate cAMP production in the absence of agonist. Thus, these mGluR1 PAMs have qualitatively different effects on a variety of mGluR1-mediated signal transduction cascades. Together, these data provide further evidence that allosteric compounds can differentially modulate the coupling of a single receptor to independent signaling pathways or act in a system-dependent manner.
Collapse
Affiliation(s)
- Douglas J Sheffler
- Department of Pharmacology, Vanderbilt Program in Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | | |
Collapse
|
35
|
Jones BW, Hinkle PM. Arrestin binds to different phosphorylated regions of the thyrotropin-releasing hormone receptor with distinct functional consequences. Mol Pharmacol 2008; 74:195-202. [PMID: 18413662 DOI: 10.1124/mol.108.045948] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Arrestin binding to agonist-occupied phosphorylated G protein-coupled receptors typically increases the affinity of agonist binding, increases resistance of receptor-bound agonist to removal with high acid/salt buffer, and leads to receptor desensitization and internalization. We tested whether thyrotropin-releasing hormone (TRH) receptors lacking phosphosites in the C-terminal tail could form stable and functional complexes with arrestin. Fibroblasts from mice lacking arrestins 2 and 3 were used to distinguish between arrestin-dependent and -independent effects. Arrestin did not promote internalization or desensitization of a receptor that had key Ser/Thr phosphosites mutated to Ala (4Ala receptor). Nevertheless, arrestin greatly increased acid/salt resistance and the affinity of 4Ala receptor for TRH. Truncation of 4Ala receptor just distal to the key phosphosites (4AlaStop receptor) abolished arrestin-dependent acid/salt resistance but not the effect of arrestin on agonist affinity. Arrestin formed stable complexes with activated wild-type and 4Ala receptors but not with 4AlaStop receptor, as measured by translocation of arrestin-green fluorescent protein to the plasma membrane or chemical cross-linking. An arrestin mutant that does not interact with clathrin and AP2 did not internalize receptor but still promoted high affinity TRH binding, acid/salt resistance, and desensitization. A sterically restricted arrestin mutant did not cause receptor internalization or desensitization but did promote acid/salt resistance and high agonist affinity. The results demonstrate that arrestin binds to proximal or distal phosphosites in the receptor tail. Arrestin binding at either site causes increased agonist affinity and acid/salt resistance, but only the proximal phosphosites evoke the necessary conformational changes in arrestin for receptor desensitization and internalization.
Collapse
Affiliation(s)
- Brian W Jones
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
36
|
Ouedraogo M, Lecat S, Rochdi MD, Hachet-Haas M, Matthes H, Gicquiaux H, Verrier S, Gaire M, Glasser N, Mély Y, Takeda K, Bouvier M, Galzi JL, Bucher B. Distinct motifs of neuropeptide Y receptors differentially regulate trafficking and desensitization. Traffic 2007; 9:305-24. [PMID: 18088318 DOI: 10.1111/j.1600-0854.2007.00691.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activated human neuropeptide Y Y(1) receptors rapidly desensitize and internalize through clathrin-coated pits and recycle from early and recycling endosomes, unlike Y(2) receptors that neither internalize nor desensitize. To identify motifs implicated in Y(1) receptor desensitization and trafficking, mutants with varying C-terminal truncations or a substituted Y(2) C-terminus were constructed. Point mutations of key putative residues were made in a C-terminal conserved motif [phi-H-(S/T)-(E/D)-V-(S/T)-X-T] that we have identified and in the second intracellular i2 loop. Receptors were analyzed by functional assays, spectrofluorimetric measurements on living cells, flow cytometry, confocal imaging and bioluminescence resonance energy transfer assays for beta-arrestin activation and adaptor protein (AP-2) complex recruitment. Inhibitory GTP-binding protein-dependent signaling of Y(1) receptors to adenylyl cyclase and desensitization was unaffected by C-terminal truncations or mutations, while C-terminal deletion mutants of 42 and 61 amino acids no longer internalized. Substitutions of Thr357, Asp358, Ser360 and Thr362 by Ala in the C-terminus abolished both internalization and beta-arrestin activation but not desensitization. A Pro145 substitution by His in an i2 consensus motif reported to mediate phosphorylation-independent recruitment of beta-arrestins affected neither desensitization, internalization or recycling kinetics of activated Y(1) receptors nor beta-arrestin activation. Interestingly, combining Pro145 substitution by His and C-terminal substitutions significantly attenuates Y(1) desensitization. In the Y(2) receptor, replacement of His155 with Pro at this position in the i2 loop motif promotes agonist-mediated desensitization, beta-arrestin activation, internalization and recycling. Overall, our results indicate that beta-arrestin-mediated desensitization and internalization of Y(1) and Y(2) receptors are differentially regulated by the C-terminal motif and the i2 loop consensus motif.
Collapse
Affiliation(s)
- Moussa Ouedraogo
- Institut Gilbert-Laustriat, UMR 7175, CNRS/Université Louis Pasteur, Strasbourg I, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mogi M, Iwai M, Horiuchi M. Emerging Concepts of Regulation of Angiotensin II Receptors. Arterioscler Thromb Vasc Biol 2007; 27:2532-9. [PMID: 17717300 DOI: 10.1161/atvbaha.107.144154] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin (Ang) II exerts its important physiological functions through 2 distinct receptor subtypes, type 1 (AT
1
) and type 2 (AT
2
) receptors. Recently, new evidence has accumulated showing the existence of several novel receptor interacting proteins and various angiotensin II receptor activation mechanisms beyond the classical actions of receptors for Ang II. These associated proteins could contribute not only to Ang II receptors’ functions, but also to influencing pathophysiological states. Receptor dimerization of Ang II receptors such as homodimer, heterodimer, and complex formation with other G protein-coupled receptors has also been focused on as a new mechanism of their activation or inactivation. Moreover, ligand-independent receptor activation systems such as mechanical stretch for the AT
1
receptor have also been revealed. These emerging concepts of regulation of Ang II receptors and a new insight into future drug discovery are discussed in this review.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Angiotensin II/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Animals
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Autoantibodies/metabolism
- Dimerization
- Drug Inverse Agonism
- GTP-Binding Proteins/metabolism
- Humans
- Hypertension/drug therapy
- Hypertension/metabolism
- Kruppel-Like Transcription Factors/metabolism
- Ligands
- Membrane Transport Proteins/metabolism
- Multiprotein Complexes/metabolism
- Protein Conformation
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/immunology
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/chemistry
- Receptor, Angiotensin, Type 2/metabolism
- Signal Transduction/drug effects
- Tumor Suppressor Proteins/metabolism
- Ubiquitin-Conjugating Enzymes/metabolism
Collapse
Affiliation(s)
- Masaki Mogi
- FAHA, Professor and Chairman, Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295, Japan
| | | | | |
Collapse
|
38
|
Choi H, Leto TL, Hunyady L, Catt KJ, Bae YS, Rhee SG. Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidase. J Biol Chem 2007; 283:255-267. [PMID: 17981802 DOI: 10.1074/jbc.m708000200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of angiotensin II (Ang II)-induced superoxide production was investigated with HEK293 or Chinese hamster ovary cells reconstituted with the angiotensin type 1 receptor (AT(1)R) and NADPH oxidase (either Nox1 or Nox2) along with a pair of adaptor subunits (either NOXO1 with NOXA1 or p47(phox) with p67(phox)). Ang II enhanced the activity of both Nox1 and Nox2 supported by either adaptor pair, with more effective activation of Nox1 in the presence of NOXO1 and NOXA1 and of Nox2 in the presence of p47(phox) and p67(phox). Expression of several AT(1)R mutants showed that interaction of the receptor with G proteins but not that with beta-arrestin or with other proteins (Jak2, phospholipase C-gamma1, SH2 domain-containing phosphatase 2) that bind to the COOH-terminal region of AT(1)R, was necessary for Ang II-induced superoxide production. The effects of constitutively active alpha subunits of G proteins and of various pharmacological agents implicated signaling by a pathway comprising AT(1)R, Galpha(q/11), phospholipase C-beta, and protein kinase C as largely, but not exclusively, responsible for Ang II-induced activation of Nox1 and Nox2 in the reconstituted cells. A contribution of Galpha(12/13), phospholipase D, and phosphatidyl-inositol 3-kinase to Ang II-induced superoxide generation was also suggested, whereas Src and the epidermal growth factor receptor did not appear to participate in this effect of Ang II. In reconstituted cells stimulated with Ang II, Nox2 exhibited a more sensitive response than Nox1 to the perturbation of protein kinase C, phosphatidylinositol 3-kinase, or the small GTPase Rac1.
Collapse
Affiliation(s)
- Hyun Choi
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Thomas L Leto
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - László Hunyady
- Department of Physiology, Semmelweis University, H-1088 Budapest, Hungary
| | - Kevin J Catt
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun Soo Bae
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea.
| | - Sue Goo Rhee
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
39
|
Curnow KM. Proceedings of the Symposium ‘Angiotensin AT1 Receptors: From Molecular Physiology to Therapeutics’: HUMAN TYPE-1 ANGIOTENSIN II (AT1) RECEPTOR GENE STRUCTURE AND FUNCTION. Clin Exp Pharmacol Physiol 2007; 23 Suppl 3:S67-73. [DOI: 10.1111/j.1440-1681.1996.tb02816.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Thomas WG, Thekkumkara TJ, Baker KM. Proceedings of the Symposium ‘Angiotensin AT1 Receptors: From Molecular Physiology to Therapeutics’: MOLECULAR MECHANISMS OF ANGIOTENSIN II (AT1a) RECEPTOR ENDOCYTOSIS. Clin Exp Pharmacol Physiol 2007; 23 Suppl 3:S74-80. [DOI: 10.1111/j.1440-1681.1996.tb02817.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Szidonya L, Süpeki K, Karip E, Turu G, Várnai P, Clark AJL, Hunyady L. AT1 receptor blocker-insensitive mutant AT1A angiotensin receptors reveal the presence of G protein-independent signaling in C9 cells. Biochem Pharmacol 2007; 73:1582-92. [PMID: 17284329 DOI: 10.1016/j.bcp.2007.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/28/2006] [Accepted: 01/03/2007] [Indexed: 01/01/2023]
Abstract
Although mutant receptors are highly useful to dissect the signal transduction pathways of receptors, they are difficult to study in physiological target tissues, due to the presence of endogenous receptors. To study AT(1) angiotensin receptors in their physiological environment, we constructed a mutant receptor, which differs only from the AT(1A) receptor in its reduced affinity for candesartan, a biphenylimidazole antagonist. We have determined that the conserved S109Y substitution of the rat AT(1A) receptor eliminates its candesartan binding, without exerting any major effect on its angiotensin II and peptide angiotensin receptor antagonist binding, internalization kinetics, beta-arrestin binding, and potency or efficacy of the inositol phosphate response. To demonstrate the usefulness of this mutant receptor in signal transduction studies, we combined it with substitution of the highly conserved DRY sequence with AAY, which abolishes G protein activation. In rat C9 hepatocytes the S109Y receptor caused ERK activation with the same mechanism as the endogenous AT(1) receptor. After combination with the DRY/AAY mutation G protein-independent ERK activation was detected demonstrating that this approach can be used to study the angiotensin II-stimulated signaling pathways in cells endogenously expressing AT(1) receptors.
Collapse
Affiliation(s)
- László Szidonya
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
42
|
Morinelli TA, Raymond JR, Baldys A, Yang Q, Lee MH, Luttrell L, Ullian ME. Identification of a putative nuclear localization sequence within ANG II AT(1A) receptor associated with nuclear activation. Am J Physiol Cell Physiol 2006; 292:C1398-408. [PMID: 17166941 DOI: 10.1152/ajpcell.00337.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) type 1 (AT(1)) receptors, similar to other G protein-coupled receptors, undergo desensitization and internalization, and potentially nuclear localization, subsequent to agonist interaction. Evidence suggests that the carboxy-terminal tail may be involved in receptor nuclear localization. In the present study, we examined the carboxy-terminal tail of the receptor for specific regions responsible for the nuclear translocation phenomenon and resultant nuclear activation. Human embryonic kidney cells stably expressing either a wild-type AT(1A) receptor-green fluorescent protein (AT(1A)R/GFP) construct or a site-directed mutation of a putative nuclear localization sequence (NLS) [K307Q]AT(1A)R/GFP (KQ/AT(1A)R/GFP), were examined for differences in receptor nuclear trafficking and nuclear activation. Receptor expression, intracellular signaling, and ANG II-induced internalization of the wild-type/GFP construct and of the KQ/AT(1A)R/GFP mutant was similar. Laser scanning confocal microscopy showed that in cells expressing the AT(1A)R/GFP, trafficking of the receptor to the nuclear area and colocalization with lamin B occurred within 30 min of ANG II (100 nM) stimulation, whereas the KQ/AT(1A)R/GFP mutant failed to demonstrate nuclear localization. Immunoblotting of nuclear lysates with an anti-GFP antibody confirmed these observations. Nuclear localization of the wild-type receptor correlated with increase transcription for both EGR-1 and PTGS-2 genes while the nuclear-deficient KQ/AT(1A)R/GFP mutant demonstrated increases for only the EGR-1 gene. These results suggest that a NLS (KKFKKY; aa307-312) is located within the cytoplasmic tail of the AT(1A) receptor and that nuclear localization of the receptor corresponds with specific activation of transcription for the COX-2 gene PTGS-2.
Collapse
Affiliation(s)
- Thomas A Morinelli
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, 829 Clinical Sciences Bldg., 96 Jonathan Lucas St., Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Oro C, Qian H, Thomas WG. Type 1 angiotensin receptor pharmacology: signaling beyond G proteins. Pharmacol Ther 2006; 113:210-26. [PMID: 17125841 PMCID: PMC7112676 DOI: 10.1016/j.pharmthera.2006.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 10/03/2006] [Indexed: 02/07/2023]
Abstract
Drugs that inhibit the production of angiotensin II (AngII) or its access to the type 1 angiotensin receptor (AT1R) are prescribed to alleviate high blood pressure and its cardiovascular complications. Accordingly, much research has focused on the molecular pharmacology of AT1R activation and signaling. An emerging theme is that the AT1R generates G protein dependent as well as independent signals and that these transduction systems separately contribute to AT1R biology in health and disease. Regulatory molecules termed arrestins are central to this process as is the capacity of AT1R to crosstalk with other receptor systems, such as the widely studied transactivation of growth factor receptors. AT1R function can also be modulated by polymorphisms in the AGTR gene, which may significantly alter receptor expression and function; a capacity of the receptor to dimerize/oligomerize with altered pharmacology; and by the cellular environment in which the receptor resides. Together, these aspects of the AT1R “flavour” the response to angiotensin; they may also contribute to disease, determine the efficacy of current drugs and offer a unique opportunity to develop new therapeutics that antagonize only selective facets of AT1R function.
Collapse
Affiliation(s)
- Cristina Oro
- Baker Heart Research Institute, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Hongwei Qian
- Baker Heart Research Institute, Melbourne, Australia
| | - Walter G. Thomas
- Baker Heart Research Institute, Melbourne, Australia
- Corresponding author. Molecular Endocrinology Laboratory, Baker Heart Research Institute, P.O. Box 6492, St. Kilda Road Central, Melbourne 8008, Australia. Tel.: +61 3 8532 1224; fax: +61 3 8532 1100.
| |
Collapse
|
44
|
Tsurumi Y, Tamura K, Tanaka Y, Koide Y, Sakai M, Yabana M, Noda Y, Hashimoto T, Kihara M, Hirawa N, Toya Y, Kiuchi Y, Iwai M, Horiuchi M, Umemura S. Interacting molecule of AT1 receptor, ATRAP, is colocalized with AT1 receptor in the mouse renal tubules. Kidney Int 2006; 69:488-94. [PMID: 16514431 DOI: 10.1038/sj.ki.5000130] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The renin-angiotensin system in the kidney plays a critical role in the regulation of renal hemodynamics and sodium handling through the activation of vascular, glomerular and tubular angiotensin II type 1 (AT1) receptor-mediated signaling. We previously cloned a molecule that specifically bound to the AT1 receptor and modulated AT1 receptor signaling in vitro, which we named ATRAP (for AT1 receptor-associated protein). The purpose of this study is to analyze the renal distribution of ATRAP and to examine whether ATRAP is co-expressed with the AT1 receptor in the mouse kidney. We performed in situ hybridization, Western blot analysis, and immunohistochemistry to investigate the expression of ATRAP mRNA and protein in the mouse kidney. The results of Western blot analysis revealed the ATRAP protein to be abundantly expressed in the kidney. Employing in situ hybridization and immunohistochemistry, we found that both ATRAP mRNA and the protein were widely distributed along the renal tubules from Bowman's capsules to the inner medullary collecting ducts. ATRAP mRNA was also detected in the glomeruli, vasculature, and interstitial cells. In all tubular cells, the ATRAP protein colocalized with the AT1 receptor. Finally, we found that the dietary salt depletion significantly decreased the renal expression of ATRAP as well as AT1 receptor. These findings show ATRAP to be abundantly and broadly distributed in nephron segments where the AT1 receptor is expressed. Furthermore, this is the first report demonstrating a substantial colocalization of ATRAP and AT1 receptor in vivo.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/analysis
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Blotting, Western
- Diet, Sodium-Restricted
- Gene Expression Regulation/drug effects
- Immunohistochemistry
- In Situ Hybridization
- Kidney Glomerulus/chemistry
- Kidney Glomerulus/physiology
- Kidney Tubules/chemistry
- Kidney Tubules/physiology
- Male
- Mice
- Mice, Inbred C57BL
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptor, Angiotensin, Type 1/analysis
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Renin-Angiotensin System/physiology
- Signal Transduction
- Sodium/pharmacology
Collapse
Affiliation(s)
- Y Tsurumi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Guo DF, Chenier I, Lavoie JL, Chan JSD, Hamet P, Tremblay J, Chen XM, Wang DH, Inagami T. Development of hypertension and kidney hypertrophy in transgenic mice overexpressing ARAP1 gene in the kidney. Hypertension 2006; 48:453-9. [PMID: 16801480 DOI: 10.1161/01.hyp.0000230664.32874.52] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II regulates blood pressure via activation of the type 1 receptor. We previously identified a novel angiotensin II type 1 receptor-associated protein and demonstrated that it promotes receptor recycling to the plasma membrane. To delineate the pathophysiological function of the ARAP1 in the kidneys, we generated transgenic mice that overexpress rat ARAP1 cDNA specifically in proximal tubules and tested the hypothesis that proximal tubule-specific overexpression of ARAP1 causes hypertension. Two lines of male transgenic mice, 650 and 670, displayed kidney-specific transgene expression. Systolic blood pressure was significantly elevated by &20 to 25 mm Hg in these lines of mice at 20 weeks of age compared with their nontransgenic litter mates. Urine volume, but not water intake, was significantly decreased in both lines compared with nontransgenic controls. The kidney/body weight ratio was significantly increased in both lines compared with their nontransgenic litter mates at 12 and 20 weeks of age. In contrast, no difference was observed in the ratio of brain, spleen, heart, and testis to body weight between male transgenic and nontransgenic animals. Inhibitions of the renin-angiotensin system completely normalized the systolic blood pressure of transgenic mice. Moreover, low salt intake prevented the development of hypertension, whereas high salt intake exacerbated the increase in blood pressure in transgenic mice. Therefore, our data show that proximal tubule-specific overexpression of ARAP1 leads to hypertension, suggesting that renal ARAP1 plays an important role in the regulation of blood pressure and renal function via activation of the intrarenal renin-angiotensin system.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Research Centre, Centre hospitalier de l'Université de Montréal, Hôtel-Dieu, Pavillon Masson, 3850 Saint Urbain St, Montreal, Quebec, Canada H2W 1T8.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pignatari GC, Rozenfeld R, Ferro ES, Oliveira L, Paiva ACM, Devi LA. A role for transmembrane domains V and VI in ligand binding and maturation of the angiotensin II AT1 receptor. Biol Chem 2006; 387:269-76. [PMID: 16542148 DOI: 10.1515/bc.2006.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Several studies have proposed that angiotensin II (Ang II) binds to its receptor AT1 through interactions with residues in helices V and VI, suggesting that the distance between these helices is crucial for ligand binding. Based on a 3D model of AT1 in which the C-terminus of Ang II is docked, we identified the hydrophobic residues of TM V and VI pointing towards the external face of the helices, which may play a role in the structure of the binding pocket and in the structural integrity of the receptor. We performed a systematic mutagenesis study of these residues and examined the binding, localization, maturation, and dimerization of the mutated receptors. We found that mutations of hydrophobic residues to alanine in helix V do not alter binding, whereas mutations to glutamate lead to loss of binding without a loss in cell surface expression, suggesting that the external face of helix V may not directly participate in binding, but may rather contribute to the structure of the binding pocket. In contrast, mutations of hydrophobic residues to glutamate in helix VI lead to a loss in cell surface expression, suggesting that the external surface of helix VI plays a structural role and ensures correct folding of the receptor.
Collapse
Affiliation(s)
- Graciela C Pignatari
- Department of Biophysics, Escola Paulista de Medicina, UNIFESP, São Paulo 04023-062, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Zhang H, Sun GY. Expression and regulation of AT1 receptor in rat lung microvascular endothelial cell. J Surg Res 2006; 134:190-7. [PMID: 16580689 DOI: 10.1016/j.jss.2006.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 12/27/2005] [Accepted: 01/26/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND The renin-angiotensin system is thought to be involved in the development and progression of vascular endothelium inflammation, thereby contributing to vascular endothelium injury. To clarify the role of angiotensin II (Ang II) in rat pulmonary microvascular endothelial cells (RPMVECs), we examined the expression and functional significance of angiotensin II (Ang II) receptors in normal and lipopolysacchride (LPS) treated RPMVECs. METHODS The expressions of Ang II type 1(AT(1)) and Ang II type 2 (AT(2)) receptors in cultured RPMVECs were identified by the reverse transcription-polymerase chain reaction (RT-PCR) technique, Western blot and (125)I-labeled [Sar(1),Ile(8)] Ang II binding assays. The RPMVECs were treated with LPS (0.1-100 microg/ml) and Ang II (10(-8)-10(-5) M) for 24 h, respectively. Next, RPMVECs were treated with 10 microg/ml LPS or 10(-7) M Ang II for various times (3, 6, 12, and 24 h). The mRNA and protein levels of, AT(1) and AT(2) receptors, were evaluated at 3, 6, 12, and 24 h, respectively. RESULTS The presence of specific Ang II binding sites in RPMVECs was found by Ang II saturated assays. RT-PCR revealed that only the AT(1) receptor mRNA is presented in RPMVECs. Western blot analysis of the RPMVECs protein extracts showed only one prominent band of the protein at approximately 41 KDa when probed with anti-AT(1) antibody and anti-AT(2) antibody. No AT(2) receptor mRNA and protein was detected. LPS treated cells resulted in an increase in the mRNA and protein levels of AT(1) receptor, whereas, Ang II treated cells showed a decrease in the mRNA and protein levels of AT(1) receptor. CONCLUSIONS We found that primary cultured RPMVECs expressed only AT(1) receptor, but not AT(2) receptor. LPS up-regulated the transcriptional and post-transcriptional expression of AT(1) receptor in RPMVECS; in contrast, Ang II treatment caused a reduction in the mRNA and protein of AT(1) receptor in a time-dependent manner.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Respiratory Medicine, Department of Emergency Medicine, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | | |
Collapse
|
48
|
von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res 2006; 326:599-616. [PMID: 16555051 DOI: 10.1007/s00441-006-0190-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 01/24/2023]
Abstract
The renin-angiotensin system (RAS) is one of the best-studied enzyme-neuropeptide systems in the brain and can serve as a model for the action of peptides on neuronal function in general. It is now well established that the brain has its own intrinsic RAS with all its components present in the central nervous system. The RAS generates a family of bioactive angiotensin peptides with variable biological and neurobiological activities. These include angiotensin-(1-8) [Ang II], angiotensin-(3-8) [Ang IV], and angiotensin-(1-7) [Ang-(1-7)]. These neuroactive forms of angiotensin act through specific receptors. Only Ang II acts through two different high-specific receptors, termed AT1 and AT2. Neuronal AT1 receptors mediate the stimulatory actions of Ang II on blood pressure, water and salt intake, and the secretion of vasopressin. In contrast, neuronal AT2 receptors have been implicated in the stimulation of apoptosis and as being antagonistic to AT1 receptors. Among the many potential effects mediated by stimulation of AT2 are neuronal regeneration after injury and the inhibition of pathological growth. Ang-(1-7) mediates its antihypertensive effects by stimulating the synthesis and release of vasodilator prostaglandins and nitric oxide and by potentiating the hypotensive effects of bradykinin. New data concerning the roles of Ang IV and Ang-(1-7) in cognition also support the existence of complex site-specific interactions between multiple angiotensins and multiple receptors in the mediation of important central functions of the RAS. Thus, the RAS of the brain is involved not only in the regulation of blood pressure, but also in the modulation of multiple additional functions in the brain, including processes of sensory information, learning, and memory, and the regulation of emotional responses.
Collapse
Affiliation(s)
- O von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| | | |
Collapse
|
49
|
Turu G, Szidonya L, Gáborik Z, Buday L, Spät A, Clark AJL, Hunyady L. Differential β-arrestin binding of AT1and AT2angiotensin receptors. FEBS Lett 2005; 580:41-5. [PMID: 16359671 DOI: 10.1016/j.febslet.2005.11.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 11/16/2005] [Accepted: 11/18/2005] [Indexed: 11/18/2022]
Abstract
Agonist stimulation of G protein-coupled receptors causes receptor activation, phosphorylation, beta-arrestin binding and receptor internalization. Angiotensin II (AngII) causes rapid internalization of the AT1 receptors, whereas AngII-bound AT2 receptors do not internalize. Although the activation of the rat AT1A receptor with AngII causes translocation of beta-arrestin2 to the receptor, no association of this molecule with the AT2 receptor can be detected after AngII treatment with confocal microscopy or bioluminescence resonance energy transfer. These data demonstrate that the two subtypes of angiotensin receptors have different mechanisms of regulation.
Collapse
Affiliation(s)
- Gábor Turu
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1444 Budapest, P.O. Box 259, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
50
|
Nikiforovich GV, Mihalik B, Catt KJ, Marshall GR. Molecular mechanisms of constitutive activity: mutations at position 111 of the angiotensin AT1 receptor. ACTA ACUST UNITED AC 2005; 66:236-48. [PMID: 16218991 DOI: 10.1111/j.1399-3011.2005.00293.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A possible molecular mechanism for the constitutive activity of mutants of the angiotensin type 1 receptor (AT1) at position 111 was suggested by molecular modeling. This involves a cascade of conformational changes in spatial positions of side chains along transmembrane helix (TM3) from L112 to Y113 to F117, which in turn, results in conformational changes in TM4 (residues I152 and M155) leading to the movement of TM4 as a whole. The mechanism is consistent with the available data of site-directed mutagenesis, as well as with correct predictions of constitutive activity of mutants L112F and L112C. It was also predicted that the double mutant N111G/L112A might possess basal constitutive activity comparable with that of the N111G mutant, whereas the double mutants N111G/Y113A, N111G/F117A, and N111G/I152A would have lower levels of basal activity. Experimental studies of the above double mutants showed significant constitutive activity of N111G/L112A and N111G/F117A. The basal activity of N111G/I152A was higher than expected, and that of N111G/Y113A was not determined due to poor expression of the mutant. The proposed mechanism of constitutive activity of the AT(1) receptor reveals a novel nonsimplistic view on the general problem of constitutive activity, and clearly demonstrates the inherent complexity of the process of G protein-coupled receptor (GPCR) activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- CHO Cells
- Cricetinae
- Intracellular Membranes/metabolism
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed/methods
- Mutation
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary/genetics
- Rats
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Transfection
Collapse
Affiliation(s)
- G V Nikiforovich
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | |
Collapse
|