1
|
Vitale A, Pedrazzini E. StresSeed: The Unfolded Protein Response During Seed Development. FRONTIERS IN PLANT SCIENCE 2022; 13:869008. [PMID: 35432435 PMCID: PMC9008589 DOI: 10.3389/fpls.2022.869008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
During seed development, the endoplasmic reticulum (ER) takes care of the synthesis and structural maturation of very high amounts of storage proteins in a relatively short time. The ER must thus adjust its extension and machinery to optimize this process. The major signaling mechanism to maintain ER homeostasis is the unfolded protein response (UPR). Both storage proteins that assemble into ER-connected protein bodies and those that are delivered to protein storage vacuoles stimulate the UPR, but its extent and features are specific for the different storage protein classes and even for individual members of each class. Furthermore, evidence exists for anticipatory UPR directly connected to the development of storage seed cells and for selective degradation of certain storage proteins soon after their synthesis, whose signaling details are however still largely unknown. All these events are discussed, also in the light of known features of mammalian UPR.
Collapse
|
2
|
Gao H, He C, Hua R, Guo Y, Wang B, Liang C, Gao L, Shang H, Xu JD. Endoplasmic Reticulum Stress of Gut Enterocyte and Intestinal Diseases. Front Mol Biosci 2022; 9:817392. [PMID: 35402506 PMCID: PMC8988245 DOI: 10.3389/fmolb.2022.817392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum, a vast reticular membranous network from the nuclear envelope to the plasma membrane responsible for the synthesis, maturation, and trafficking of a wide range of proteins, is considerably sensitive to changes in its luminal homeostasis. The loss of ER luminal homeostasis leads to abnormalities referred to as endoplasmic reticulum (ER) stress. Thus, the cell activates an adaptive response known as the unfolded protein response (UPR), a mechanism to stabilize ER homeostasis under severe environmental conditions. ER stress has recently been postulated as a disease research breakthrough due to its significant role in multiple vital cellular functions. This has caused numerous reports that ER stress-induced cell dysfunction has been implicated as an essential contributor to the occurrence and development of many diseases, resulting in them targeting the relief of ER stress. This review aims to outline the multiple molecular mechanisms of ER stress that can elucidate ER as an expansive, membrane-enclosed organelle playing a crucial role in numerous cellular functions with evident changes of several cells encountering ER stress. Alongside, we mainly focused on the therapeutic potential of ER stress inhibition in gastrointestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer. To conclude, we reviewed advanced research and highlighted future treatment strategies of ER stress-associated conditions.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuexin Guo
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing-Dong Xu,
| |
Collapse
|
3
|
Hoter A, Naim HY. The glucose-regulated protein GRP94 interacts avidly in the endoplasmic reticulum with sucrase-isomaltase isoforms that are associated with congenital sucrase-isomaltase deficiency. Int J Biol Macromol 2021; 186:237-243. [PMID: 34242650 DOI: 10.1016/j.ijbiomac.2021.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022]
Abstract
The glucose-regulated protein GRP94 is a molecular chaperone that is located in the endoplasmic reticulum (ER). Here, we demonstrate in pull down experiments an interaction between GRP94 and sucrase-isomaltase (SI), the most prominent disaccharidase of the small intestine. GRP94 binds to SI exclusively via its mannose-rich form compatible with an interaction occurring in the ER. We have also examined the interaction GRP94 to a panel of SI mutants that are associated with congenital sucrase-isomaltase deficiency (CSID). These mutants exhibited more efficient binding to GRP94 than wild type SI underlining a specific role of this chaperone in the quality control in the ER. In view of the hypoxic milieu of the intestine, we probed the interaction of GRP94 to SI and its mutants in cell culture under hypoxic conditions and observed a substantial increase in the binding of GRP94 to the SI mutants. The interaction of GRP94 to the major carbohydrate digesting enzyme and regulating its folding as well as retaining SI mutants in the ER points to a potential role of GRP94 in maintenance of intestinal homeostasis by chaperoning and stabilizing SI.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
4
|
Preissler S, Rato C, Yan Y, Perera LA, Czako A, Ron D. Calcium depletion challenges endoplasmic reticulum proteostasis by destabilising BiP-substrate complexes. eLife 2020; 9:62601. [PMID: 33295873 PMCID: PMC7758071 DOI: 10.7554/elife.62601] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
The metazoan endoplasmic reticulum (ER) serves both as a hub for maturation of secreted proteins and as an intracellular calcium storage compartment, facilitating calcium-release-dependent cellular processes. ER calcium depletion robustly activates the unfolded protein response (UPR). However, it is unclear how fluctuations in ER calcium impact organellar proteostasis. Here, we report that calcium selectively affects the dynamics of the abundant metazoan ER Hsp70 chaperone BiP, by enhancing its affinity for ADP. In the calcium-replete ER, ADP rebinding to post-ATP hydrolysis BiP-substrate complexes competes with ATP binding during both spontaneous and co-chaperone-assisted nucleotide exchange, favouring substrate retention. Conversely, in the calcium-depleted ER, relative acceleration of ADP-to-ATP exchange favours substrate release. These findings explain the rapid dissociation of certain substrates from BiP observed in the calcium-depleted ER and suggest a mechanism for tuning ER quality control and coupling UPR activity to signals that mobilise ER calcium in secretory cells.
Collapse
Affiliation(s)
- Steffen Preissler
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Rato
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Yahui Yan
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Luke A Perera
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Aron Czako
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Targeting hsp90 family members: A strategy to improve cancer cell death. Biochem Pharmacol 2019; 164:177-187. [PMID: 30981878 DOI: 10.1016/j.bcp.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
Abstract
A crucial process in biology is the conversion of the genetic information into functional proteins that carry out the genetic program. However, a supplementary step is required to obtain functional proteins: the folding of the newly translated polypeptides into well-defined, three-dimensional conformations. Proteins chaperones are crucial for this final step in the readout of genetic information, which results in the formation of functional proteins. In this review, a special attention will be given to the strategies targeting hsp90 family members in order to increase cancer cell death. We argue that disruption of hsp90 machinery and the further client protein degradation is the main consequence of hsp90 oxidative cleavage taking place at the N-terminal nucleotide-binding site. Moreover, modulation of Grp94 expression will be discussed as a potential therapeutic goal looking for a decrease in cancer relapses.
Collapse
|
6
|
Molecular cloning, cellular expression and characterization of Arabian camel (Camelus dromedarius) endoplasmin. Int J Biol Macromol 2018; 117:574-585. [DOI: 10.1016/j.ijbiomac.2018.05.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/24/2022]
|
7
|
Wang S, Li X, Li T, Wang H, Zhang X, Lou J, Xing Q, Hu X, Bao Z. The GRP94 gene of Yesso scallop (Patinopecten yessoensis): Characterization and expression regulation in response to thermal and bacterial stresses. FISH & SHELLFISH IMMUNOLOGY 2018; 80:443-451. [PMID: 29894740 DOI: 10.1016/j.fsi.2018.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
The 94-kDa glucose-regulated protein (GRP94) belonging to the HSP90 family is an endoplasmic reticulum (ER) chaperone. It plays critical roles in ER quality control, and has been implicated as a specialized immune chaperone to regulate both innate and adaptive immunity. In this study, we identified and characterized a GRP94 gene (PyGRP94) from Yesso scallop (Patinopecten yessoensis). The protein sequence of PyGRP94 is highly conserved with its homologs in vertebrates, with a signal sequence in N-terminal, an ER retrieval signal sequence in C-terminal and a HATPase_c domain. Expression analysis suggests that PyGRP94 transcripts in early embryos are maternally derived and the zygotic expression is started from D-shaped larvae. This gene is also expressed in almost all the adult tissues examined except smooth muscle, with the highest expression level in hemocytes. Besides, PyGRP94 was demonstrated to be induced by heat shock and both Gram-positive (Micrococcus luteus) and Gram-negative (Vibrio anguillarum) bacterial infection, with much more dramatic changes being observed after V. anguillarum challenge. Our results suggest the involvement of PyGRP94 in response to thermal stress, and that it might play an important role in the innate immune defense of scallop.
Collapse
Affiliation(s)
- Shuyue Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xu Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Tingting Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Huizhen Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xiangchao Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Jiarun Lou
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Qiang Xing
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
8
|
Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC, Soto OB, Cox MB, Galigniana MD. The Nuclear Receptor Field: A Historical Overview and Future Challenges. NUCLEAR RECEPTOR RESEARCH 2018; 5:101320. [PMID: 30148160 PMCID: PMC6108593 DOI: 10.11131/2018/101320] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this article we summarize the birth of the field of nuclear receptors, the discovery of untransformed and transformed isoforms of ligand-binding macromolecules, the discovery of the three-domain structure of the receptors, and the properties of the Hsp90-based heterocomplex responsible for the overall structure of the oligomeric receptor and many aspects of the biological effects. The discovery and properties of the subfamily of receptors called orphan receptors is also outlined. Novel molecular aspects of the mechanism of action of nuclear receptors and challenges to resolve in the near future are discussed.
Collapse
Affiliation(s)
- Gisela I. Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
| | - Nadia R. Zgajnar
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | - Cecilia M. Lotufo
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | | | - Jeffrey C. Sivils
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Olga B. Soto
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Marc B. Cox
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mario D. Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| |
Collapse
|
9
|
Trusch F, Loebach L, Wawra S, Durward E, Wuensch A, Iberahim NA, de Bruijn I, MacKenzie K, Willems A, Toloczko A, Diéguez-Uribeondo J, Rasmussen T, Schrader T, Bayer P, Secombes CJ, van West P. Cell entry of a host-targeting protein of oomycetes requires gp96. Nat Commun 2018; 9:2347. [PMID: 29904064 PMCID: PMC6002402 DOI: 10.1038/s41467-018-04796-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2018] [Indexed: 12/02/2022] Open
Abstract
The animal-pathogenic oomycete Saprolegnia parasitica causes serious losses in aquaculture by infecting and killing freshwater fish. Like plant-pathogenic oomycetes, S. parasitica employs similar infection structures and secretes effector proteins that translocate into host cells to manipulate the host. Here, we show that the host-targeting protein SpHtp3 enters fish cells in a pathogen-independent manner. This uptake process is guided by a gp96-like receptor and can be inhibited by supramolecular tweezers. The C-terminus of SpHtp3 (containing the amino acid sequence YKARK), and not the N-terminal RxLR motif, is responsible for the uptake into host cells. Following translocation, SpHtp3 is released from vesicles into the cytoplasm by another host-targeting protein where it degrades nucleic acids. The effector translocation mechanism described here, is potentially also relevant for other pathogen-host interactions as gp96 is found in both animals and plants.
Collapse
Grants
- BB/E007120/1 Biotechnology and Biological Sciences Research Council
- BB/G012075/1 Biotechnology and Biological Sciences Research Council
- Biotechnology and Biological Sciences Research Council (BBSRC)
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Our work is supported by the [European Community's] Seventh Framework Programme [FP7/2007-2013] under grant agreement no [238550] (LL, JDU, CJS, PvW); BBSRC [BBE007120/1, BB/J018333/1 and BB/G012075/1] (FT, IdB, CJS, SW, PvW); Newton Global partnership Award [BB/N005058/1] (FT, PvW), the University of Aberdeen (ADT, TR, CJS, PvW) and Deutsche Forschungsgemeinschaft [CRC1093] (PB, TS). We would like to acknowledge the Ministry of Higher Education Malaysia for funding INA. We would like to thank Brian Haas for his bioinformatics support. We would like to acknowledge Neil Gow and Johannes van den Boom for critical reading of the manuscript. We would like to acknowledge Svetlana Rezinciuc for technical help with pH-studies.
Collapse
Affiliation(s)
- Franziska Trusch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Lars Loebach
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Stephan Wawra
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- Botanical Institute, Genetical Institute, University of Cologne, Cologne, 50674, Germany
| | - Elaine Durward
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Andreas Wuensch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Nurul Aqilah Iberahim
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Irene de Bruijn
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- Netherlands Institute for Ecology (NIOO), Wageningen, 6708 PB, Netherlands
| | - Kevin MacKenzie
- Microscopy and Histology Facility, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Ariane Willems
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Aleksandra Toloczko
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | | | - Tim Rasmussen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Thomas Schrader
- Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, 45117, Germany
| | - Chris J Secombes
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| |
Collapse
|
10
|
Mattei E, Delpino A, Mileo AM, Ferrini U. Induction of Stress Proteins in Murine and Human Melanoma Cell Cultures. TUMORI JOURNAL 2018; 72:129-34. [PMID: 3705184 DOI: 10.1177/030089168607200202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The induction of stress proteins was studied in two human and two murine melanoma cell lines. Exposure for 1 h to heat (42 °C), to ethanol (6%), to arsenate (100 μM) and to disulfiram (50 μM) induced the expression of SPs with apparent molecular weights of 100, 86, 70-72 and 24-26 Kd. Quantitation of the single SPs indicated that the basal level as well as the enhanced synthesis following the various stressors were different in each cell line. The induction of the 100 Kd species occurred in only one murine melanoma and not in the others. The 86 and in particular the 70-72 Kd species were the most prominent groups, whereas the 24-26 SPs were induced only following arsenate and disulfiram exposure in the three melanoma cell lines. In one of the murine melanomas, the expression of SPs was markedly reduced compared to the other cell lines. No definite specific patterns of SP expression could be identified in tumors of the same histologic type.
Collapse
|
11
|
Golbidi S, Li H, Laher I. Oxidative Stress: A Unifying Mechanism for Cell Damage Induced by Noise, (Water-Pipe) Smoking, and Emotional Stress-Therapeutic Strategies Targeting Redox Imbalance. Antioxid Redox Signal 2018; 28:741-759. [PMID: 29212347 DOI: 10.1089/ars.2017.7257] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Modern technologies have eased our lives but these conveniences can impact our lifestyles in destructive ways. Noise pollution, mental stresses, and smoking (as a stress-relieving solution) are some environmental hazards that affect our well-being and healthcare budgets. Scrutinizing their pathophysiology could lead to solutions to reduce their harmful effects. Recent Advances: Oxidative stress plays an important role in initiating local and systemic inflammation after noise pollution, mental stress, and smoking. Lipid peroxidation and release of lysolipid by-products, disturbance in activation and function of nuclear factor erythroid 2-related factor 2 (Nrf2), induction of stress hormones and their secondary effects on intracellular kinases, and dysregulation of intracellular Ca2+ can all potentially trigger other vicious cycles. Recent clinical data suggest that boosting the antioxidant system through nonpharmacological measures, for example, lifestyle changes that include exercise have benefits that cannot easily be achieved with pharmacological interventions alone. CRITICAL ISSUES Indiscriminate manipulation of the cellular redox network could lead to a new series of ailments. An ideal approach requires meticulous scrutiny of redox balance mechanisms for individual pathologies so as to create new treatment strategies that target key pathways while minimizing side effects. FUTURE DIRECTIONS Extrapolating our understanding of redox balance to other debilitating conditions such as diabetes and the metabolic syndrome could potentially lead to devising a unifying therapeutic strategy. Antioxid. Redox Signal. 28, 741-759.
Collapse
Affiliation(s)
- Saeid Golbidi
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| | - Huige Li
- 2 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany
| | - Ismail Laher
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| |
Collapse
|
12
|
Peksel B, Gombos I, Péter M, Vigh L, Tiszlavicz Á, Brameshuber M, Balogh G, Schütz GJ, Horváth I, Vigh L, Török Z. Mild heat induces a distinct "eustress" response in Chinese Hamster Ovary cells but does not induce heat shock protein synthesis. Sci Rep 2017; 7:15643. [PMID: 29142280 PMCID: PMC5688065 DOI: 10.1038/s41598-017-15821-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022] Open
Abstract
The current research on cellular heat stress management focuses on the roles of heat shock proteins (HSPs) and the proteostasis network under severe stress conditions. The mild, fever-type stress and the maintenance of membrane homeostasis are less well understood. Herein, we characterized the acute effect of mild, fever-range heat shock on membrane organization, and HSP synthesis and localization in two mammalian cell lines, to delineate the role of membranes in the sensing and adaptation to heat. A multidisciplinary approach combining ultrasensitive fluorescence microscopy and lipidomics revealed the molecular details of novel cellular “eustress”, when cells adapt to mild heat by maintaining membrane homeostasis, activating lipid remodeling, and redistributing chaperone proteins. Notably, this leads to acquired thermotolerance in the complete absence of the induction of HSPs. At higher temperatures, additional defense mechanisms are activated, including elevated expression of molecular chaperones, contributing to an extended stress memory and acquired thermotolerance.
Collapse
Affiliation(s)
- Begüm Peksel
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Ádám Tiszlavicz
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Mario Brameshuber
- Institute of Applied Physics - Biophysics, TU Wien, 1040, Vienna, Austria
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Gerhard J Schütz
- Institute of Applied Physics - Biophysics, TU Wien, 1040, Vienna, Austria
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary.
| |
Collapse
|
13
|
Vincenz-Donnelly L, Hipp MS. The endoplasmic reticulum: A hub of protein quality control in health and disease. Free Radic Biol Med 2017; 108:383-393. [PMID: 28363604 DOI: 10.1016/j.freeradbiomed.2017.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
Abstract
One third of the eukaryotic proteome is synthesized at the endoplasmic reticulum (ER), whose unique properties provide a folding environment substantially different from the cytosol. A healthy, balanced proteome in the ER is maintained by a network of factors referred to as the ER quality control (ERQC) machinery. This network consists of various protein folding chaperones and modifying enzymes, and is regulated by stress response pathways that prevent the build-up as well as the secretion of potentially toxic and aggregation-prone misfolded protein species. Here, we describe the components of the ERQC machinery, investigate their response to different forms of stress, and discuss the consequences of ERQC break-down.
Collapse
Affiliation(s)
- Lisa Vincenz-Donnelly
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, 82152 Martinsried, Germany
| | - Mark S Hipp
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
14
|
Hong F, Mohammad Rachidi S, Lundgren D, Han D, Huang X, Zhao H, Kimura Y, Hirano H, Ohara O, Udono H, Meng S, Liu B, Li Z. Mapping the Interactome of a Major Mammalian Endoplasmic Reticulum Heat Shock Protein 90. PLoS One 2017; 12:e0169260. [PMID: 28056051 PMCID: PMC5215799 DOI: 10.1371/journal.pone.0169260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
Up to 10% of cytosolic proteins are dependent on the mammalian heat shock protein 90 (HSP90) for folding. However, the interactors of its endoplasmic reticulum (ER) paralogue (gp96, Grp94 and HSP90b1) has not been systematically identified. By combining genetic and biochemical approaches, we have comprehensively mapped the interactome of gp96 in macrophages and B cells. A total of 511 proteins were reduced in gp96 knockdown cells, compared to levels observed in wild type cells. By immunoprecipitation, we found that 201 proteins associated with gp96. Gene Ontology analysis indicated that these proteins are involved in metabolism, transport, translation, protein folding, development, localization, response to stress and cellular component biogenesis. While known gp96 clients such as integrins, Toll-like receptors (TLRs) and Wnt co-receptor LRP6, were confirmed, cell surface HSP receptor CD91, TLR4 pathway protein CD180, WDR1, GANAB and CAPZB were identified as potentially novel substrates of gp96. Taken together, our study establishes gp96 as a critical chaperone to integrate innate immunity, Wnt signaling and organ development.
Collapse
Affiliation(s)
- Feng Hong
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Saleh Mohammad Rachidi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Debbie Lundgren
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - David Han
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Xiu Huang
- Department of Epidemiology and Public Health, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Department of Epidemiology and Public Health, Yale University, School of Medicine, New Haven, Connecticut, United States of America
| | - Yayoi Kimura
- Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Hisashi Hirano
- Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Osamu Ohara
- Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Heichiiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bei Liu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
- * E-mail: (ZL); (BL)
| | - Zihai Li
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, United States of America
- * E-mail: (ZL); (BL)
| |
Collapse
|
15
|
Hotamisligil GS, Davis RJ. Cell Signaling and Stress Responses. Cold Spring Harb Perspect Biol 2016; 8:8/10/a006072. [PMID: 27698029 DOI: 10.1101/cshperspect.a006072] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stress-signaling pathways are evolutionarily conserved and play an important role in the maintenance of homeostasis. These pathways are also critical for adaptation to new cellular environments. The endoplasmic reticulum (ER) unfolded protein response (UPR) is activated by biosynthetic stress and leads to a compensatory increase in ER function. The JNK and p38 MAPK signaling pathways control adaptive responses to intracellular and extracellular stresses, including environmental changes such as UV light, heat, and hyperosmotic conditions, and exposure to inflammatory cytokines. Metabolic stress caused by a high-fat diet represents an example of a stimulus that coordinately activates both the UPR and JNK/p38 signaling pathways. Chronic activation of these stress-response pathways ultimately causes metabolic changes associated with obesity and altered insulin sensitivity. Stress-signaling pathways, therefore, represent potential targets for therapeutic intervention in the metabolic stress response and other disease processes.
Collapse
Affiliation(s)
- Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases, Broad Institute of Harvard-MIT, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Roger J Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
16
|
Bi HT, Yuan FH, Yuan K, Weng SP, He JG, Chen YH. Identification and functional characterization of a glucose regulated protein 94 gene in Litopenaeus vannamei and its responsiveness in WSSV infection. Mol Immunol 2016; 73:29-36. [PMID: 27037893 DOI: 10.1016/j.molimm.2016.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
In the current study, a cDNA of glucose regulated protein 94 (LvGRP94) was cloned from Litopenaeus vannamei. Subcellular localization assay revealed that LvGRP94 expressed in endoplasmic reticulum (ER). And results of reported gene assays demonstrated that the promoter of LvGRP94 was activated by L. vannamei leucine zipper domain transcription factor X-box binding protein 1 (LvXBP1) or heat shock treatment. Furthermore, LvGRP94 was found to highly express in hemocytes as well as in epidermis by real-time RT-PCR. In addition, it was shown that LvGRP94 inhibited by LvXBP1 knocked-down in the hemocytes, was induced by white spot syndrome virus (WSSV) infection, or unfolded protein response (UPR) pathway activation. Importantly, decreasing LvGRP94 reduced the cumulative mortality of WSSV-infected shrimps and WSSV copies in shrimp muscle. These results suggested that LvGRP94 might involve in shrimp UPR pathway as well as WSSV infection.
Collapse
Affiliation(s)
- Hai-Tao Bi
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Hong Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
17
|
Wang J, Sevier CS. Formation and Reversibility of BiP Protein Cysteine Oxidation Facilitate Cell Survival during and post Oxidative Stress. J Biol Chem 2016; 291:7541-57. [PMID: 26865632 DOI: 10.1074/jbc.m115.694810] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
Redox fluctuations within cells can be detrimental to cell function. To gain insight into how cells normally buffer against redox changes to maintain cell function, we have focused on elucidating the signaling pathways that serve to sense and respond to oxidative redox stress within the endoplasmic reticulum (ER) using yeast as a model system. Previously, we have shown that a cysteine in the molecular chaperone BiP, a Hsp70 molecular chaperone within the ER, is susceptible to oxidation by peroxide during ER-derived oxidative stress, forming a sulfenic acid (-SOH) moiety. Here, we demonstrate that this same conserved BiP cysteine is susceptible also to glutathione modification (-SSG). Glutathionylated BiP is detected both as a consequence of enhanced levels of cellular peroxide and also as a by-product of increased levels of oxidized glutathione (GSSG). Similar to sulfenylation, we observe glutathionylation decouples BiP ATPase and peptide binding activities, turning BiP from an ATP-dependent foldase into an ATP-independent holdase. We show glutathionylation enhances cell proliferation during oxidative stress, which we suggest relates to modified BiP's increased ability to limit polypeptide aggregation. We propose the susceptibility of BiP to modification with glutathione may serve also to prevent irreversible oxidation of BiP by peroxide.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Carolyn S Sevier
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
18
|
Behnke J, Feige MJ, Hendershot LM. BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 2015; 427:1589-608. [PMID: 25698114 DOI: 10.1016/j.jmb.2015.02.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/26/2022]
Abstract
BiP (immunoglobulin heavy-chain binding protein) is the endoplasmic reticulum (ER) orthologue of the Hsp70 family of molecular chaperones and is intricately involved in most functions of this organelle through its interactions with a variety of substrates and regulatory proteins. Like all Hsp70 family members, the ability of BiP to bind and release unfolded proteins is tightly regulated by a cycle of ATP binding, hydrolysis, and nucleotide exchange. As a characteristic of the Hsp70 family, multiple DnaJ-like co-factors can target substrates to BiP and stimulate its ATPase activity to stabilize the binding of BiP to substrates. However, only in the past decade have nucleotide exchange factors for BiP been identified, which has shed light not only on the mechanism of BiP-assisted folding in the ER but also on Hsp70 family members that reside throughout the cell. We will review the current understanding of the ATPase cycle of BiP in the unique environment of the ER and how it is regulated by the nucleotide exchange factors, Grp170 (glucose-regulated protein of 170kDa) and Sil1, both of which perform unanticipated roles in various biological functions and disease states.
Collapse
Affiliation(s)
- Julia Behnke
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthias J Feige
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
19
|
Kuelling FA, Foley KT, Liu JJ, Liebenberg E, Sin AH, Matsukawa A, Lotz JC. The anabolic effect of plasma-mediated ablation on the intervertebral disc: stimulation of proteoglycan and interleukin-8 production. Spine J 2014; 14:2479-87. [PMID: 24747799 DOI: 10.1016/j.spinee.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 08/05/2013] [Accepted: 04/10/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Plasma-mediated radiofrequency-based ablation (coblation) is an electrosurgical technique currently used for tissue removal in a wide range of surgical applications, including lumbar microdiscectomy. In vitro and in vivo studies have shown the technique to alter the expression of inflammatory cytokines in the disc, increasing the levels of interleukin-8 (IL-8), which may promote maturation and remodeling of the disc matrix. PURPOSE To better understand the effect of coblation treatment, this study characterizes the temporal and spatial pattern of healing after stab injury to the rabbit intervertebral disc, with and without plasma-mediated radiofrequency treatment. PATIENT SAMPLE A total of 23 New Zealand white rabbits. STUDY DESIGN Annular and nuclear stab injuries. OUTCOME MEASURES Sandwich enzyme-linked immunosorbent assay evaluated the concentrations of cytokines tumor necrosis factor-α, IL-1β, and IL-8. Histopathologic evaluations were performed on whole discs and end plates. Tissue sections were stained with Safranin-O to evaluate nucleus pulposus and annulus fibrosus proteoglycan content and with Alcian blue for extracellular proteoglycan content. Intradiscal leakage pressure was evaluated by injecting methylene blue dye into the nucleus. METHODS Animals underwent annular and nuclear stab injuries on three consecutive lumbar discs (L2-L3 to L4-L5). The three levels were randomly assigned into one of the three groups for treatment with a plasma-mediated radiofrequency ablation device (TOPAZ; ArthroCare Corp., Austin, TX, USA): active treatment of the nucleus only (SN); active treatment of both nucleus and annulus (SNA); sham treatment. Unstabbed/untreated discs from L5-L6 (n=5) served as normal controls. Animals were euthanized at 4, 8, and 28 days postsurgery. RESULTS Tumor necrosis factor-α was detected in sham discs at 4 and 8 days, but not in coblation groups (SN or SNA); IL-1β was below detection in all three treatment groups. Interleukin-8 levels increased in all treatment groups at 4 and 8 days compared with normal control, peaking at 4th day for sham and SN groups and 8th day (p>.3) for the SNA group (a 2.5-fold increase). Pressure measurements revealed higher leakage in the SN group, but no statistically significant differences. Histopathology showed higher proteoglycan production by 28 days in the SNA and SN groups compared with sham. All three treatment groups showed ruptured annular fibers from the stab injury, but maintained the overall architecture. Remnants of notochordal tissue within the nucleus were evident in all treatment groups at 4 and 8 days, but were only found in sham group by 28 days. At this time, unlike the normal or sham controls, the nucleus of SN and SNA discs had fibrocartilaginous tissue with chondrocyte-like cells. Significant differences in the disc architecture grade were only noted when comparing normal controls with other groups by 28 days (p<.001). CONCLUSIONS Plasma-mediated radiofrequency ablation appears to have an anabolic effect on disc cells, stimulating proteoglycan and IL-8 production and maintaining annulus architecture. Coblation treatment appears to reduce cellular response to proinflammatory stimuli and restore overall disc architecture that may prove beneficial in a number of degenerative disc paradigms. Further studies are encouraged to investigate the therapeutic effect of the technique.
Collapse
Affiliation(s)
- Fabrice A Kuelling
- Orthopaedic Bioengineering Laboratory, Department of Orthopaedic Surgery, 513 Parnassus Ave, Box 0514, University of California, San Francisco, CA 94143, USA
| | - Kevin T Foley
- Department of Neurosurgery, University of Tennessee, 427 Johnson Building, Memphis, TN 38119, USA
| | - Jane J Liu
- Orthopaedic Bioengineering Laboratory, Department of Orthopaedic Surgery, 513 Parnassus Ave, Box 0514, University of California, San Francisco, CA 94143, USA
| | - Ellen Liebenberg
- Orthopaedic Bioengineering Laboratory, Department of Orthopaedic Surgery, 513 Parnassus Ave, Box 0514, University of California, San Francisco, CA 94143, USA
| | - Anthony H Sin
- Department of Neurosurgery, University of Tennessee, 427 Johnson Building, Memphis, TN 38119, USA
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University School of Medicine, 2-5-1, Shikata, Okayama 700-8558, Japan
| | - Jeffrey C Lotz
- Orthopaedic Bioengineering Laboratory, Department of Orthopaedic Surgery, 513 Parnassus Ave, Box 0514, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Abstract
The mammalian circadian clock comprises a system of interconnected transcriptional and translational feedback loops. Proper oscillator function requires the precisely timed synthesis and degradation of core clock proteins. Heat shock protein 90 (HSP90), an adenosine triphosphate (ATP)-dependent molecular chaperone, has important functions in many cellular regulatory pathways by controlling the activity and stability of its various client proteins. Despite accumulating evidence for interplay between the heat shock response and the circadian system, the role of HSP90 in the mammalian core clock is not known. The results of this study suggest that inhibition of the ATP-dependent chaperone activity of HSP90 impairs circadian rhythmicity of cultured mouse fibroblasts whereby amplitude and phase of the oscillations are predominantly affected. Inhibition of HSP90 shortened the half-life of BMAL1, which resulted in reduced cellular protein levels and blunted expression of rhythmic BMAL1-CLOCK target genes. Furthermore, the HSP90 isoforms HSP90AA1 and HSP90AB1, and not HSP90B1-GRP94 or TRAP1, are responsible for maintaining proper cellular levels of BMAL1 protein. In summary, these findings provide evidence for a model in which cytoplasmic HSP90 is required for transcriptional activation processes by the positive arm of the mammalian circadian clock.
Collapse
Affiliation(s)
- Rebecca Schneider
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany
| | | | | |
Collapse
|
21
|
Scroggins BT, Neckers L. Post-translational modification of heat-shock protein 90: impact on chaperone function. Expert Opin Drug Discov 2013; 2:1403-14. [PMID: 23484535 DOI: 10.1517/17460441.2.10.1403] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heat-shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of many signaling proteins that are often activated, mutated or overexpressed in cancer cells and that underly cancer cell proliferation and survival. Hsp90 is a conformationally flexible protein that associates with a distinct set of cochaperones depending on ATP or ADP occupancy of an N-terminal binding pocket. Nucleotide exchange and ATP hydrolysis by Hsp90 itself, with the assistance of cochaperones, drive the Hsp90 chaperone machine to bind, chaperone and release client proteins. Cycling of the Hsp90 chaperone machine is critical to its function. Although ATP binding and hydrolysis have been convincingly implicated in regulating the Hsp90 cycle, growing evidence suggests that various post-translational modifications of Hsp90, including phosphorylation, acetylation and other modifications, provide an additional overlapping or parallel level of regulation. A more complete understanding of how these various protein modifications are regulated and interact with each other at the cellular level to modulate Hsp90 chaperone activity is critical to the design of novel approaches to inhibit this medically important molecular target.
Collapse
Affiliation(s)
- Bradley T Scroggins
- National Cancer Institute, Urologic Oncology Branch, Bldg 10/CRC, Room 1-5940, 9000 Rockville Pike, Bethesda, MD 20892, USA +1 301 496 5899 ; +1 301 402 0922 ;
| | | |
Collapse
|
22
|
Abstract
There are alarming increases in the incidence of obesity, insulin resistance, type II diabetes, and cardiovascular disease. The risk of these diseases is significantly reduced by appropriate lifestyle modifications such as increased physical activity. However, the exact mechanisms by which exercise influences the development and progression of cardiovascular disease are unclear. In this paper we review some important exercise-induced changes in cardiac, vascular, and blood tissues and discuss recent clinical trials related to the benefits of exercise. We also discuss the roles of boosting antioxidant levels, consequences of epicardial fat reduction, increases in expression of heat shock proteins and endoplasmic reticulum stress proteins, mitochondrial adaptation, and the role of sarcolemmal and mitochondrial potassium channels in the contributing to the cardioprotection offered by exercise. In terms of vascular benefits, the main effects discussed are changes in exercise-induced vascular remodeling and endothelial function. Exercise-induced fibrinolytic and rheological changes also underlie the hematological benefits of exercise.
Collapse
|
23
|
Antioxidant and anti-inflammatory effects of exercise in diabetic patients. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:941868. [PMID: 22007193 PMCID: PMC3191828 DOI: 10.1155/2012/941868] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/15/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic metabolic disease which is characterized by absolute or relative deficiencies in insulin secretion and/or insulin action. The key roles of oxidative stress and inflammation in the progression of vascular complications of this disease are well recognized. Accumulating epidemiologic evidence confirms that physical inactivity is an independent risk factor for insulin resistance and type II diabetes. This paper briefly reviews the pathophysiological pathways associated with oxidative stress and inflammation in diabetes mellitus and then discusses the impact of exercise on these systems. In this regard, we discuss exercise induced activation of cellular antioxidant systems through “nuclear factor erythroid 2-related factor.” We also discuss anti-inflammatory myokines, which are produced and released by contracting muscle fibers. Antiapoptotic, anti-inflammatory and chaperon effects of exercise-induced heat shock proteins are also reviewed.
Collapse
|
24
|
Díaz-Troya S, Pérez-Pérez ME, Pérez-Martín M, Moes S, Jeno P, Florencio FJ, Crespo JL. Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas. PLANT PHYSIOLOGY 2011; 157:730-41. [PMID: 21825107 PMCID: PMC3192568 DOI: 10.1104/pp.111.179861] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/01/2011] [Indexed: 05/20/2023]
Abstract
The target of rapamycin (TOR) kinase integrates nutritional and stress signals to coordinately control cell growth in all eukaryotes. TOR associates with highly conserved proteins to constitute two distinct signaling complexes termed TORC1 and TORC2. Inactivation of TORC1 by rapamycin negatively regulates protein synthesis in most eukaryotes. Here, we report that down-regulation of TOR signaling by rapamycin in the model green alga Chlamydomonas reinhardtii resulted in pronounced phosphorylation of the endoplasmic reticulum chaperone BiP. Our results indicated that Chlamydomonas TOR regulates BiP phosphorylation through the control of protein synthesis, since rapamycin and cycloheximide have similar effects on BiP modification and protein synthesis inhibition. Modification of BiP by phosphorylation was suppressed under conditions that require the chaperone activity of BiP, such as heat shock stress or tunicamycin treatment, which inhibits N-linked glycosylation of nascent proteins in the endoplasmic reticulum. A phosphopeptide localized in the substrate-binding domain of BiP was identified in Chlamydomonas cells treated with rapamycin. This peptide contains a highly conserved threonine residue that might regulate BiP function, as demonstrated by yeast functional assays. Thus, our study has revealed a regulatory mechanism of BiP in Chlamydomonas by phosphorylation/dephosphorylation events and assigns a role to the TOR pathway in the control of BiP modification.
Collapse
|
25
|
Golbidi S, Laher I. Molecular mechanisms in exercise-induced cardioprotection. Cardiol Res Pract 2011; 2011:972807. [PMID: 21403846 PMCID: PMC3051318 DOI: 10.4061/2011/972807] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023] Open
Abstract
Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
26
|
Scheele GA, Kern HF. Selective Regulation of Gene Expression in the Exocrine Pancreas. Compr Physiol 2011. [DOI: 10.1002/cphy.cp060325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Cavener DR, Gupta S, McGrath BC. PERK in beta cell biology and insulin biogenesis. Trends Endocrinol Metab 2010; 21:714-21. [PMID: 20850340 PMCID: PMC2991375 DOI: 10.1016/j.tem.2010.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/17/2022]
Abstract
PERK (EIF2AK3) was originally discovered as a major component of the unfolded protein response (UPR). PERK deficiency results in permanent neonatal diabetes, which was initially thought to be caused by a failure to regulate ER stress in insulin-secreting beta cells, culminating in beta cell death. However, subsequent studies found that low beta cell mass was a result of reduced cell proliferation, rather than increased apoptosis. Genetic and cellular studies of Perk-deficient beta cells showed that PERK was crucially required for ER functions including proinsulin trafficking and quality control, unrelated to the ER stress pathway. Under normal physiological conditions, changes in ER calcium levels, mediated by glucose and other insulin secretagogues, regulate PERK activity for the purpose of controlling insulin biogenesis.
Collapse
Affiliation(s)
- Douglas R Cavener
- Department of Biology, Center for Cellular Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
28
|
Lin TY, Chang JTC, Wang HM, Chan SH, Chiu CC, Lin CY, Fan KH, Liao CT, Chen IH, Liu TZ, Li HF, Cheng AJ. Proteomics of the radioresistant phenotype in head-and-neck cancer: Gp96 as a novel prediction marker and sensitizing target for radiotherapy. Int J Radiat Oncol Biol Phys 2010; 78:246-56. [PMID: 20615631 DOI: 10.1016/j.ijrobp.2010.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 11/19/2009] [Accepted: 03/23/2010] [Indexed: 11/28/2022]
Abstract
PURPOSE Radiotherapy is an integral part of the treatment modality for head-neck cancer (HNC), but in some cases the disease is radioresistant. We designed this study to identify molecules that may be involved in this resistance. METHODS AND MATERIALS Two radioresistant sublines were established by fractionated irradiation of the HNC cell lines, to determine differentially proteins between parental and radioresistant cells. Proteomic analysis and reverse-transcription polymerase chain reaction were used to identify and confirm the differential proteins. The siRNA knockdown experiments were applied to examine cellular functions of a radioresistant gene, with investigation of the alterations in colonogenic survival, cell cycle status, and reactive oxygen species levels. Xenografted mouse tumors were studied to validate the results. RESULTS IN all, 64 proteins were identified as being potentially associated with radioresistance, which are involved in several cellular pathways, including regulation of stimulus response, cell apoptosis, and glycolysis. Six genes were confirmed to be differentially expressed in both radioresistant sublines, with Gp96, Grp78, HSP60, Rab40B, and GDF-15 upregulated, and annexin V downregulated. Gp96 was further investigated for its functions in response to radiation. Gp96-siRNA transfectants displayed a radiation-induced growth delay, reduction in colonogenic survival, increased cellular reactive oxygen species levels, and increased proportion of the cells in the G2/M phase. Xenograft mice administered Gp96-siRNA showed significantly enhanced growth suppression in comparison with radiation treatment alone (p = 0.009). CONCLUSIONS We identified 64 proteins and verified 6 genes that are potentially involved in the radioresistant phenotype. We further demonstrated that Gp96 knockdown enhances radiosensitivity both in cells and in vivo, which may lead to a better prognosis of HNC treatment.
Collapse
Affiliation(s)
- Ting-Yang Lin
- Department of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pedersen BK. Edward F. Adolph Distinguished Lecture: Muscle as an endocrine organ: IL-6 and other myokines. J Appl Physiol (1985) 2009; 107:1006-14. [DOI: 10.1152/japplphysiol.00734.2009] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle is an endocrine organ that produces and releases myokines in response to contraction. Some myokines are likely to work in a hormone-like fashion, exerting specific endocrine effects on other organs such as the liver, the brain, and the fat. Other myokines will work locally via paracrine mechanisms, exerting, e.g., angiogenetic effects, whereas yet other myokines work via autocrine mechanisms and influence signaling pathways involved in fat oxidation and glucose uptake. The finding that muscles produce and release myokines creates a paradigm shift and opens new scientific, technological, and scholarly horizons. This finding represents a breakthrough within integrative physiology and contributes to our understanding of why regular exercise protects against a wide range of chronic diseases. Thus the myokine field provides a conceptual basis for the molecular mechanisms underlying, e.g., muscle-fat, muscle-liver, muscle-pancreas, and muscle-brain cross talk.
Collapse
Affiliation(s)
- Bente K. Pedersen
- The Centre of Inflammation and Metabolism at the Department of Infectious Diseases, and Copenhagen Muscle Research Centre, Rigshospitalet, the Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Morton JP, Kayani AC, McArdle A, Drust B. The Exercise-Induced Stress Response of Skeletal Muscle, with Specific Emphasis on Humans. Sports Med 2009; 39:643-62. [DOI: 10.2165/00007256-200939080-00003] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
31
|
Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88:1379-406. [PMID: 18923185 DOI: 10.1152/physrev.90100.2007] [Citation(s) in RCA: 1395] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle has recently been identified as an endocrine organ. It has, therefore, been suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert paracrine, autocrine, or endocrine effects should be classified as "myokines." Recent research demonstrates that skeletal muscles can produce and express cytokines belonging to distinctly different families. However, the first identified and most studied myokine is the gp130 receptor cytokine interleukin-6 (IL-6). IL-6 was discovered as a myokine because of the observation that it increases up to 100-fold in the circulation during physical exercise. Identification of IL-6 production by skeletal muscle during physical activity generated renewed interest in the metabolic role of IL-6 because it created a paradox. On one hand, IL-6 is markedly produced and released in the postexercise period when insulin action is enhanced but, on the other hand, IL-6 has been associated with obesity and reduced insulin action. This review focuses on the myokine IL-6, its regulation by exercise, its signaling pathways in skeletal muscle, and its role in metabolism in both health and disease.
Collapse
Affiliation(s)
- Bente K Pedersen
- The Centre of Inflammation and Metabolism at Department of Infectious Diseases, Rigshospitalet, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
32
|
Frasson M, Vitadello M, Brunati AM, La Rocca N, Tibaldi E, Pinna LA, Gorza L, Donella-Deana A. Grp94 is Tyr-phosphorylated by Fyn in the lumen of the endoplasmic reticulum and translocates to Golgi in differentiating myoblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:239-52. [PMID: 19000718 DOI: 10.1016/j.bbamcr.2008.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 09/22/2008] [Accepted: 10/02/2008] [Indexed: 12/11/2022]
Abstract
The endoplasmic-reticulum chaperone Grp94 is required for the cell surface export of molecules involved in the native immune response, in mesoderm induction and muscle development, but the signals responsible for Grp94 recruitment are still obscure. Here we show for the first time that Grp94 undergoes Tyr-phosphorylation in differentiating myogenic C2C12 cells. By means of phospho-proteomic and immunoprecipitation analyses, and the use of Src-specific inhibitors we demonstrate that the Src-tyrosine-kinase Fyn becomes active early after induction of C2C12 cell differentiation, in parallel with the recruitment and the Tyr-phosphorylation of Grp94, which peaks at 6-hour differentiation. Grp94 is Tyr-phosphorylated inside the endoplasmic reticulum by a lumenal Fyn, as indicated by fluorescence and electronmicroscopy immunolocalization, co-immunoprecipitation after chemical cross-linking and by treatment of intact endoplasmic-reticulum vesicles with proteinase K. Furthermore, fractionation of cellular membrane compartments and double-immunofluorescence studies showed that Tyr-phosphorylation of Grp94 is necessary for the protein translocation from the endoplasmic reticulum to the Golgi apparatus. These results indicate that Fyn-catalyzed Tyr-phosphorylation of Grp94 is an event required to promote the chaperone export from the endoplasmic reticulum occurring in the early phase of myoblast differentiation.
Collapse
Affiliation(s)
- Martina Frasson
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Sebastian Karl Wandinger
- Department of Chemistry and the Center for Integrated Protein Science, Technische Universität München, 85747 Garching, Germany
| | | | | |
Collapse
|
34
|
da Silva Krause M, de Bittencourt PIH. Type 1 diabetes: can exercise impair the autoimmune event? TheL-arginine/glutamine coupling hypothesis. Cell Biochem Funct 2008; 26:406-33. [DOI: 10.1002/cbf.1470] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Glembotski CC. The role of the unfolded protein response in the heart. J Mol Cell Cardiol 2007; 44:453-9. [PMID: 18054039 DOI: 10.1016/j.yjmcc.2007.10.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/14/2007] [Accepted: 10/18/2007] [Indexed: 12/14/2022]
Abstract
The misfolding of nascent proteins, or the unfolding of proteins after synthesis is complete, can occur in response to numerous environmental stresses, or as a result of mutations that de-stabilize protein structure. Cells have developed elaborate protein quality control systems that recognize improperly folded proteins and either refold them or facilitate their degradation. One such quality control system is the unfolded protein response, or the UPR. The UPR is a highly conserved signal transduction system that is activated when cells are subjected to conditions that alter the endoplasmic reticulum (ER) in ways that impair the folding of nascent proteins in this organelle. Recent observations indicate that in the heart, the UPR is activated during acute stresses, including ischemia/reperfusion, as well as upon longer term stresses that lead to cardiac hypertrophy and heart failure. Moreover, certain aspects of the UPR are activated during, and are required for proper heart development. This review summarizes recent studies of the UPR in the heart, focusing on the possible roles of the UPR in contributing to, or protecting from ischemia/reperfusion damage.
Collapse
Affiliation(s)
- Christopher C Glembotski
- The SDSU Heart Institute and The Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
36
|
Chang JTC, Chan SH, Lin CY, Lin TY, Wang HM, Liao CT, Wang TH, Lee LY, Cheng AJ. Differentially expressed genes in radioresistant nasopharyngeal cancer cells: gp96 and GDF15. Mol Cancer Ther 2007; 6:2271-9. [PMID: 17671084 DOI: 10.1158/1535-7163.mct-06-0801] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy is the major treatment modality for nasopharyngeal cancer (NPC), but in some cases, the disease is radioresistant. We designed this study to identify genes that may be involved in this resistance. We first established two radioresistant subclone cell lines derived from NPC parental cell lines (NPC-076 and NPC-BM1) by treating the cells with four rounds of sublethal ionizing radiation. cDNA microarray analysis was then done, comparing the two resistant cell lines with their corresponding parental cell lines. Seven genes were found to be up-regulated in radioresistant subclones, including gp96 and GDF15, which had shown highest overexpressions. We constructed small interfering RNA plasmids (gp96si and GDF15si) and transfected them into NPC cells to knock down these genes and examine whether this changed their response to radiation. Both gp96si and GDF15si transfectants had radiation-induced growth delay and reduction in colonogenic survival compared with control cells. Knockdown of either gp96 or GDF15 increased the proportion of the cells in G(2)-M phase, the most radiosensitive phase of the cell cycle. We have therefore identified at least two genes, gp96 and GDF15, involved in radioresistance of NPC cell lines and showed that knockdown of the genes enhances radiosensitivity.
Collapse
Affiliation(s)
- Joseph Tung-Chieh Chang
- Department of Radiation Oncology, Chang Gung University, 259 Wen-Hwa 1st Road, Taoyuan 333, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Morton JP, Maclaren DPM, Cable NT, Campbell IT, Evans L, Bongers T, Griffiths RD, Kayani AC, McArdle A, Drust B. Elevated core and muscle temperature to levels comparable to exercise do not increase heat shock protein content of skeletal muscle of physically active men. Acta Physiol (Oxf) 2007; 190:319-27. [PMID: 17488245 DOI: 10.1111/j.1748-1716.2007.01711.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Exercise-associated hyperthermia is routinely cited as the signal responsible for inducing an increased production of heat shock proteins (HSPs) following exercise. This hypothesis, however, has not been tested in human skeletal muscle. The aim of the present study was to therefore investigate the role of increased muscle and core temperature in contributing to the exercise-induced production of the major HSP families in human skeletal muscle. METHODS Seven physically active males underwent a passive heating protocol of 1 h duration during which the temperature of the core and vastus lateralis muscle were increased to similar levels to those typically occurring during moderately demanding aerobic exercise protocols. One limb was immersed in a tank containing water maintained at approximately 45 degrees C whilst the contra-lateral limb remained outside the tank and was not exposed to heat stress. Muscle biopsies were obtained from the vastus lateralis of both legs immediately prior to and at 48 h and 7 days post-heating. RESULTS The heating protocol induced significant increases (P < 0.05) in rectal (1.5 +/- 0.2 degrees C) and muscle temperature of the heated leg (3.6 +/- 0.5 degrees C). Muscle temperature of the non-heated limb showed no significant change (P > 0.05) following heating (pre: 36.1 +/- 0.5, post: 35.7 +/- 0.2 degrees C). Heating failed to induce a significant increase (P > 0.05) in muscle content of HSP70, HSC70, HSP60, HSP27, alphaB-crystallin, MnSOD protein content or in the activity of superoxide dismutase and catalase. CONCLUSIONS These data demonstrate that increases in both systemic and local muscle temperature per se do not appear to mediate the exercise-induced production of HSPs in human skeletal muscle and suggest that non-heat stress factors associated with contractile activity are of more importance in mediating this response.
Collapse
Affiliation(s)
- J P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rhyu KW, Walsh AJL, O'Neill CW, Bradford DS, Lotz JC. The short-term effects of electrosurgical ablation on proinflammatory mediator production by intervertebral disc cells in tissue culture. Spine J 2007; 7:451-8. [PMID: 17630143 DOI: 10.1016/j.spinee.2006.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 07/15/2006] [Accepted: 07/18/2006] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Percutaneous discectomy can be performed by a variety of methods. One method, electrosurgical ablation, has been shown in a chronic animal model to alter the expression of inflammatory cytokines in degenerated discs. PURPOSE To determine whether electrosurgical ablation has an acute direct effect on proinflammatory mediator production by disc cells. STUDY DESIGN A short-term in vitro study using normal and interleukin (IL)-1alpha stimulated porcine disc cells cultured in alginate gel to evaluate the biochemical effects of electrosurgical ablation. METHODS Porcine annulus and nucleus cells were embedded into alginate gels and cultured using control culture media or IL-1alpha-treated media for 6 days before ablation treatment. Treated gels were ablated by using a radiofrequency-based electrosurgical device for 5 seconds and cultured an additional 3 or 6 days. IL-1beta, IL-6, IL-8, tumor necrosis factor alpha (TNF-alpha), prostaglandin E2 (PGE2), nitric oxide (NO), and heat shock protein-70 (Hsp70) levels in culture medium were measured. Levels were normalized to DNA and compared between ablated and shams. RESULTS For normal annulus cells, there were no significant changes in cytokine levels between ablation and sham groups. For normal nucleus cells, ablation produced significantly greater levels of IL-8 at 3 days and 6 days, Hsp70 at 3 days but not 6 days, and NO at 6 days. PGE2 was also increased at 3 days and 6 days but not significantly. For IL-1-stimulated annulus cells, IL-6 and NO in the ablation group were decreased at 3 days relative to the control group. However, IL-6, IL-8, PGE2, and Hsp70 were significantly increased in the 6-day ablation group. For degenerated nucleus cells, IL-6, IL-8, and TNF-alpha were significantly decreased in the ablation group at both 3 days and 6 days. Ablation resulted in reduced PGE2 at 3 days but not 6 and reduced Hsp70 and NO at 6 days. CONCLUSIONS The results show that electrosurgical ablation has an acute direct effect on proinflammatory mediator production by disc cells. The effect produced depends on disc cell phenotype, the mediator, and time. These direct biologic effects may be a mechanism of pain relief after percutaneous discectomy using electrosurgical ablation. However, the measured responses are limited to the short-term (1 week), and the existence of a prolonged effect remains to be determined.
Collapse
Affiliation(s)
- Kee-Won Rhyu
- Department of Orthopaedic Surgery, University of California at San Francisco, 2100 Webster Street, Suite 110, San Francisco, CA 94115, USA
| | | | | | | | | |
Collapse
|
39
|
Mann K, Olsen JV, Macek B, Gnad F, Mann M. Phosphoproteins of the chicken eggshell calcified layer. Proteomics 2007; 7:106-15. [PMID: 17152097 DOI: 10.1002/pmic.200600635] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The chicken eggshell matrix is a complex mixture of proteins and proteoglycans. It also contains phosphoproteins that are thought to affect mineralization of the matrix. Several of the matrix phosphoproteins, such as the major component osteopontin, have already been identified as phosphoproteins in other tissues, but the phosphorylation status of the eggshell matrix forms was unknown. The phosphopeptides, obtained after cleavage of the matrix proteins with several different cleavage methods, were enriched by anion-exchange chromatography and reversible binding to titanium oxide and identified by LC-MS(n) or pseudo-MS(n) analysis following neutral loss scanning. Altogether we identified 39 phosphorylated matrix proteins, 22 of which were not known to be phosphorylated before. Eight of the proteins were identified as eggshell matrix components for the first time. Together these proteins contained more than 150 different phosphorylation sites, 103 of which were determined with high confidence. Among the major phosphorylated proteins of the chicken eggshell matrix were osteopontin and the eggshell-specific proteins ovocleidin-17, ovocleidin-116, and ovocalyxin-32.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institute for Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany.
| | | | | | | | | |
Collapse
|
40
|
Fehrenbach E, Schneider ME. Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects. Sports Med 2006; 36:373-84. [PMID: 16646626 DOI: 10.2165/00007256-200636050-00001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.
Collapse
Affiliation(s)
- Elvira Fehrenbach
- Institute of Clinical and Experimental Transfusion Medicine, University of Tuebingen, Tuebingen, Germany.
| | | |
Collapse
|
41
|
Cho S, Park SM, Kim TD, Kim JH, Kim KT, Jang SK. BiP internal ribosomal entry site activity is controlled by heat-induced interaction of NSAP1. Mol Cell Biol 2006; 27:368-83. [PMID: 17074807 PMCID: PMC1800651 DOI: 10.1128/mcb.00814-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
TheBiP protein, a stress response protein, plays an important role in the proper folding and assembly of nascent protein and in the scavenging of misfolded proteins in the endoplasmic reticulum lumen. Translation of BiP is directed by an internal ribosomal entry site (IRES) in the 5' nontranslated region of the BiP mRNA. BiP IRES activity increases when cells are heat stressed. Here we report that NSAP1 specifically enhances the IRES activity of BiP mRNA by interacting with the IRES element. Overexpression of NSAP1 in 293T cells increased the IRES activity of BiP mRNA, whereas knockdown of NSAP1 by small interfering RNA (siRNA) reduced the IRES activity of BiP mRNA. The amount of NSAP1 bound to the BiP IRES increased under heat stress conditions, and the IRES activity of BiP mRNA was increased. Moreover, the increase in BiP IRES activity with heat treatment was not observed in cells lacking NSAP1 after siRNA treatment. BiP mRNAs were redistributed from the heavy polysome to the light polysome in NSAP1 knockdown cells. Together, these data indicate that NSAP1 modulates IRES-dependent translation of BiP mRNA through an RNA-protein interaction under heat stress conditions.
Collapse
Affiliation(s)
- Sungchan Cho
- Department of Life Science, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
42
|
Lu Y, Hu Q, Yang C, Gao F. Histidine 89 is an essential residue for Hsp70 in the phosphate transfer reaction. Cell Stress Chaperones 2006; 11:148-53. [PMID: 16817320 PMCID: PMC1484515 DOI: 10.1379/csc-152r.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Autophosphorylation of Hsp70 is detected in the process of substrate refolding in the presence of adenosine triphosphate (ATP) in the reaction mixture. But to date, the role and mechanism of Hsp70 autophosphorylation have not been elucidated. In this study we determined the site of histidine phosphorylation of Hsp70 as an intermediate in the process of phosphate transfer reaction by site-directed mutagenesis. We selected two possible sites (ie, His89 and His227) of intermediate histidine phosphorylation based on our hypothesis of the transfer of gamma-phosphoryl groups and replacement by glycine and serine. Although an acid labile autophosphorylation intermediate of Hsp70 and its cytidine diphosphate-dependent dephosphorylation were detected in wild-type Hsp70, they were markedly suppressed in the H89S mutation of Hsp70, but not on the H227S mutation. The ATPase activity and ATP synthesis activity of Hsp70 were almost completely suppressed in the H89S and H89G mutations. The role of His89 in the phosphate transfer reaction of Hsp70 is discussed.
Collapse
Affiliation(s)
- Yuanming Lu
- Department of Clinical Research Center, No. 6 Hospital, Shanghai Jiaotong University, Shanghai 200233, People's Republic of China.
| | | | | | | |
Collapse
|
43
|
Fairburn B, Muthana M, Hopkinson K, Slack LK, Mirza S, Georgiou AS, Espigares E, Wong C, Pockley AG. Analysis of purified gp96 preparations from rat and mouse livers using 2-D gel electrophoresis and tandem mass spectrometry. Biochimie 2006; 88:1165-74. [PMID: 16690194 DOI: 10.1016/j.biochi.2006.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 04/03/2006] [Indexed: 11/25/2022]
Abstract
The stress protein gp96 exhibits a number of immunological activities, the majority of studies into which have used gp96 purified from a variety of tissues. On the basis of 1-D gel electrophoresis, the purity of these preparations has been reported to range between 70% and 99%. This study analyzed gp96 preparations from rat and mouse livers using 2-D gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry (MS-MS). The procedure for purifying gp96 was reproducible, as similar protein profiles were observed in replicate gels of gp96 preparations. The purity of the preparations was typically around 70%, with minor co-purified proteins of varying molecular weights and mobilities being present. Dominant bands at 95-100 kDa in preparations from Wistar rats and C57BL/6 mice were identified as gp96 by ECL Western blotting. Multiple bands having similar, yet distinct molecular weights and differing pI mobility on ECL Western blots were confirmed as being gp96 in preparations from Wistar rats using MS-MS. The most striking feature of the 2-D gel analysis was the presence of additional dominant bands at 55 kDa in preparations from Wistar rats, and at 75-90 kDa in preparations from C57BL/6 mice. These were identified as gp96 by ECL Western blotting and, in the case of preparations from Wistar rats, by MS-MS. Although the lower molecular weight, gp96-related molecules might be partially degraded gp96, their reproducible presence, definition and characteristics suggest that they are alternative, species-specific isoforms of the molecule. A 55 kDa protein which exhibited a lower pI value than gp96 was present in all preparations and this was identified as calreticulin, another putative immunoregulatory molecule. This study confirms the reproducibility of the gp96 purification protocol and reveals the presence of multiple gp96 isoforms, some of which likely result from post-translational modifications such as differential glycosylation and phosphorylation.
Collapse
Affiliation(s)
- B Fairburn
- Immunobiology Research Unit, Clinical Sciences Centre, University of Sheffield, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fischer CP, Hiscock NJ, Basu S, Vessby B, Kallner A, Sjöberg LB, Febbraio MA, Pedersen BK. Vitamin E isoform-specific inhibition of the exercise-induced heat shock protein 72 expression in humans. J Appl Physiol (1985) 2005; 100:1679-87. [PMID: 16384840 DOI: 10.1152/japplphysiol.00421.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased levels of reactive oxygen and nitrogen species, as seen in response to exercise, challenge the cellular integrity. Important protective adaptive changes include induction of heat shock proteins (HSPs). We hypothesized that supplementation with antioxidant vitamins C (ascorbic acid) and E (tocopherol) would attenuate the exercise-induced increase of HSP72 in the skeletal muscle and in the circulation. Using randomization, we allocated 21 young men into three groups receiving one of the following oral supplementations: RRR-alpha-tocopherol 400 IU/day + ascorbic acid (AA) 500 mg/day (CEalpha), RRR-alpha-tocopherol 290 IU/day + RRR-gamma-tocopherol 130 IU/day + AA 500 mg/day (CEalphagamma), or placebo (Control). After 28 days of supplementation, the subjects performed 3 h of knee extensor exercise at 50% of the maximal power output. HSP72 mRNA and protein content was determined in muscle biopsies obtained from vastus lateralis at rest (0 h), postexercise (3 h), and after a 3-h recovery (6 h). In addition, blood was sampled for measurements of HSP72, alpha-tocopherol, gamma-tocopherol, AA, and 8-iso-prostaglandin-F2alpha (8-PGF2alpha). Postsupplementation, the groups differed with respect to plasma vitamin levels. The marker of lipid peroxidation, 8-iso-PGF2alpha, increased from 0 h to 3 h in all groups, however, markedly less (P < 0.05) in CEalpha. In Control, skeletal muscle HSP72 mRNA content increased 2.5-fold (P < 0.05) and serum HSP72 protein increased 4-fold (P < 0.05) in response to exercise, whereas a significant increase of skeletal muscle HSP72 protein content was not observed (P = 0.07). In CEalpha, skeletal muscle HSP72 mRNA, HSP72 protein, and serum HSP72 were not different from Control in response to exercise. In contrast, the effect of exercise on skeletal muscle HSP72 mRNA and protein, as well as circulating HSP72, was completely blunted in CEalphagamma. The results indicate that gamma-tocopherol comprises a potent inhibitor of the exercise-induced increase of HSP72 in skeletal muscle as well as in the circulation.
Collapse
Affiliation(s)
- Christian P Fischer
- Centre of Inflammation and Metabolism, The Department of Infectious Diseases and The Copenhagen Muscle Research Centre, Rigshospitalet and The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Back SH, Schröder M, Lee K, Zhang K, Kaufman RJ. ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 2005; 35:395-416. [PMID: 15804613 DOI: 10.1016/j.ymeth.2005.03.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 01/22/2023] Open
Abstract
The endoplasmic reticulum (ER) serves many specialized functions in the cell including calcium storage and gated release, biosynthesis of membrane and secretory proteins, and production of lipids and sterols. Therefore, the ER integrates many internal and external signals to coordinate downstream responses, although the mechanism(s) that maintain homeostasis are largely unknown. When misfolded or unfolded proteins accumulate in the ER, an intracellular signaling pathway termed the unfolded protein response (UPR) is activated. Identification of IRE1 in the yeast Saccharomyces cerevisiae as a proximal sensor in the UPR pathway was a milestone in understanding how the ER responds to the accumulation of unfolded protein and signals transcriptional activation through regulated nonconventional splicing of its substrate mRNA encoding the transcription factor Hac1p. Subsequent studies identified IRE1 and HAC1 homologues in mammalian cells. Here, we summarize various approaches to study the IRE1-Hac1 pathway in yeast and the homologous IRE1-XBP1 pathway in mammalian cells. We present microbiological growth assays for the UPR, reporter assays for UPR signaling, direct techniques to measure UPR activation in vivo, methods to study translation of HAC1 mRNA, and in vitro cleavage and ligation of HAC1 and XBP1 mRNA. Especially we think the newly developed quantitative and qualitative methods to detect IRE1 activity-dependent XBP1 mRNA splicing will be fast and accurate tools to show the activation of the UPR.
Collapse
Affiliation(s)
- Sung Hoon Back
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI 48109-0650, USA
| | | | | | | | | |
Collapse
|
46
|
Tytell M, Hooper PL. Heat shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets 2005; 5:267-87. [PMID: 15992180 DOI: 10.1517/14728222.5.2.267] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
All cells, from bacterial to human, have a common, intricate response to stress that protects them from injury. Heat shock proteins (Hsps), also known as stress proteins and molecular chaperones, play a central role in protecting cellular homeostatic processes from environmental and physiologic insult by preserving the structure of normal proteins and repairing or removing damaged ones. An understanding of the interplay between Hsps and cell stress tolerance will provide new tools for treatment and drug design that maximise preservation or restoration of health. For example, the increased vulnerability of tissues to injury in some conditions, such as ageing, diabetes mellitus and menopause, or with the use of certain drugs,, such as some antihypertensive medications, is associated with an impaired Hsp response. Additionally, diseases that are associated with tissue oxidation, free radical formation, disorders of protein folding, or inflammation, may be improved therapeutically by elevated expression of Hsps. The accumulation of Hsps, whether induced physiologically, pharmacologically, genetically, or by direct administration of the proteins, is known to protect the organism from a great variety of pathological conditions, including myocardial infarction, stroke, sepsis, viral infection, trauma, neurodegenerative diseases, retinal damage, congestive heart failure, arthritis, sunburn, colitis, gastric ulcer, diabetic complications and transplanted organ failure. Conversely, lowering Hsps in cancer tissues can amplify the effectiveness of chemo- or radiotherapy. Treatments and agents that induce Hsps include hyperthermia, heavy metals (zinc and tin), salicylates, dexamethasone, cocaine, nicotine, alcohol, alpha-adrenergic agonists, PPAR-gamma agonists, bimoclomol, geldanamycin, geranylgeranylacetone and cyclopentenone prostanoids. Compounds that suppress Hsps include quercetin (a bioflavinoid), 15-deoxyspergualin (an immunosuppressive agent) and retinoic acid. Researchers who are cognisant of the Hsp-related effects of these and other agents will be able to use them to develop new therapeutic paradigms.
Collapse
Affiliation(s)
- M Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
47
|
Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569:29-63. [PMID: 15603751 DOI: 10.1016/j.mrfmmm.2004.06.056] [Citation(s) in RCA: 1314] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/10/2004] [Indexed: 02/08/2023]
Abstract
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
48
|
Escobar MA, Hoelz DJ, Sandoval JA, Hickey RJ, Grosfeld JL, Malkas LH. Profiling of nuclear extract proteins from human neuroblastoma cell lines: the search for fingerprints. J Pediatr Surg 2005; 40:349-58. [PMID: 15750928 DOI: 10.1016/j.jpedsurg.2004.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Neuroblastoma (NB) commonly presents with advanced disease at diagnosis and is associated with poor survival. If identified early, however, survival is improved suggesting a benefit of early detection. The authors have used proteomics technology in an attempt to identify novel markers that permit early detection of NB and characterize its molecular makeup. METHODS Three different human NB cell lines SK-N-AS, SK-N-DZ, and SK-N-FI were subjected to series of biochemical fractionation steps to extract nuclear proteins. These proteins were analyzed for differential expression by 2-dimensional polyacrylamide gel electrophoresis. Polypeptides of interest were subsequently identified by liquid chromatography-linked tandem mass spectrometry. RESULTS Multiple proteins were identified in these human NB cell lines including SET (a ubiquitous nuclear protein), stathmin (a cytosolic signal transduction protein), and grp94 (a heat shock protein). SET is a putative oncogene associated with the chromosomal translocation (6;9) leading to acute undifferentiated leukemia. Stathmin is an oncogene found in greater abundance in leukemic cells compared to nonleukemic cells. A total of 94-kDa glucose-regulated protein has been shown to be protective in human breast cancer cells in vitro and related with the occurrence, differentiation, and progression of human lung cancer. The first protein has not been previously associated with NB. CONCLUSIONS The identification of these 3 previously unrecognized cancer-related potential biomarkers in human NB cell lines may prove useful in developing diagnostic tests. The proteomic methodology of 2-dimensional polyacrylamide gel electrophoresis/mass spectrometry also provides an improved opportunity to understand the natural history of NB and develop novel chemotherapeutic agents for this prevalent childhood malignancy with a dismal outcome.
Collapse
Affiliation(s)
- Mauricio A Escobar
- Section of Pediatric Surgery, Department of Surgery, Riley Children's Hospital, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
49
|
Netherton CL, Parsley JC, Wileman T. African swine fever virus inhibits induction of the stress-induced proapoptotic transcription factor CHOP/GADD153. J Virol 2004; 78:10825-8. [PMID: 15367650 PMCID: PMC516373 DOI: 10.1128/jvi.78.19.10825-10828.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stress signaling from mitochondria and the endoplasmic reticulum (ER) leads to the induction of the proapoptotic transcription factor CHOP/GADD153. Many viruses use the ER as a site of replication and/or envelopment, and this activity can lead to the activation of ER stress and apoptosis. African swine fever virus (ASFV) is assembled on the cytoplasmic face of the ER and ultimately enveloped by ER membrane cisternae. The virus also recruits mitochondria to sites of viral replication and induces the mitochondrial stress protein hsp60. Here we studied the effects of ASFV on the induction of CHOP/GADD153 in infected cells. Interestingly, unlike other ER-tropic viruses, ASFV did not activate CHOP and was able to inhibit the induction of CHOP/GADD153 by a number of exogenous stimuli.
Collapse
Affiliation(s)
- Christopher L Netherton
- Division of Immunology, Institute for Animal Health, Pirbright Laboratory, Ash Rd., Pirbright, Surrey GU24 0NF, United Kingdom
| | | | | |
Collapse
|
50
|
González B, Manso R. Induction, modification and accumulation of HSP70s in the rat liver after acute exercise: early and late responses. J Physiol 2004; 556:369-85. [PMID: 14754995 PMCID: PMC1664938 DOI: 10.1113/jphysiol.2003.058420] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Liver cells synthesize HSP72, the cytosolic highly stress-inducible member of the 70 kDa family of heat-shock proteins (HSP70s), in response to acute exercise. This study was aimed at obtaining further insight into the physiological relevance of the hepatic stress response to exercise by investigating the induction and long-term maintenance of increased levels of HSP70s of the HSP and glucose-regulated protein (GRP) families, their post-translational modifications during or after exercise and the possible relation of HSP induction to oxidative stress. In a running rat model, acute exercise activated the synthesis and accumulation of HSP72, GRP75 and GRP78 in liver cells, pointing towards a multifactorial origin of this response. A peak HSP72 accumulation was observed shortly after exercise as a result of transcriptional activation. HSP72 was reduced shortly after exercise preceding the disappearance of its mRNA. Two further waves of HSP72 accumulation peaked 8 and 48 h after exercise without transcriptional activation. A transient increase in the proportion of acidic variants of HSP72 and HSP73 was also observed shortly after exercise as a result, at least in part, of protein phosphorylation. Free and protein-bound lipid peroxidation derivatives (TBARS) showed a tendency to increase in the early post-exercise and the free-to-protein-bound TBARS ratio decreased significantly after 2 h. During the early post-exercise period, protein-bound TBARS correlated positively with HSP72 and 73, but not with GRP75 or GRP78. Altogether, the reported results indicate that the early induction and post-translational modification of HSP70s in liver cells following exercise is a preliminary step of a series of long-lasting HSP70-related events, possibly designed to preserve liver cell homeostasis and to help provide a concerted response of the whole organism to physical stress.
Collapse
Affiliation(s)
- Beatriz González
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, E-28049 Cantoblanco, Madrid, Spain.
| | | |
Collapse
|