1
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
2
|
Beyond Lipid Signaling: Pleiotropic Effects of Diacylglycerol Kinases in Cellular Signaling. Int J Mol Sci 2020; 21:ijms21186861. [PMID: 32962151 PMCID: PMC7554708 DOI: 10.3390/ijms21186861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The diacylglycerol kinase family, which can attenuate diacylglycerol signaling and activate phosphatidic acid signaling, regulates various signaling transductions in the mammalian cells. Studies on the regulation of diacylglycerol and phosphatidic acid levels by various enzymes, the identification and characterization of various diacylglycerol and phosphatidic acid-regulated proteins, and the overlap of different diacylglycerol and phosphatidic acid metabolic and signaling processes have revealed the complex and non-redundant roles of diacylglycerol kinases in regulating multiple biochemical and biological networks. In this review article, we summarized recent progress in the complex and non-redundant roles of diacylglycerol kinases, which is expected to aid in restoring dysregulated biochemical and biological networks in various pathological conditions at the bed side.
Collapse
|
3
|
Lee JA, Hall B, Allsop J, Alqarni R, Allen SP. Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol 2020; 112:123-136. [PMID: 32773177 DOI: 10.1016/j.semcdb.2020.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cell in the central nervous system and are involved in multiple processes including metabolic homeostasis, blood brain barrier regulation and neuronal crosstalk. Astrocytes are the main storage point of glycogen in the brain and it is well established that astrocyte uptake of glutamate and release of lactate prevents neuronal excitability and supports neuronal metabolic function. However, the role of lipid metabolism in astrocytes in relation to neuronal support has been until recently, unclear. Lipids play a fundamental role in astrocyte function, including energy generation, membrane fluidity and cell to cell signaling. There is now emerging evidence that astrocyte storage of lipids in droplets has a crucial physiological and protective role in the central nervous system. This pathway links β-oxidation in astrocytes to inflammation, signalling, oxidative stress and mitochondrial energy generation in neurons. Disruption in lipid metabolism, structure and signalling in astrocytes can lead to pathogenic mechanisms associated with a range of neurological disorders.
Collapse
Affiliation(s)
- James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Jessica Allsop
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Razan Alqarni
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
4
|
Nakano T, Ogasawara S, Tanaka T, Hozumi Y, Mizuno S, Satoh E, Sakane F, Okada N, Taketomi A, Honma R, Nakamura T, Saidoh N, Yanaka M, Itai S, Handa S, Chang YW, Yamada S, Kaneko MK, Kato Y, Goto K. DaMab-2: Anti-Human DGKα Monoclonal Antibody for Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2017; 36:181-184. [DOI: 10.1089/mab.2017.0023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Toshiaki Tanaka
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yasukazu Hozumi
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, Akita, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Eri Satoh
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Naoki Okada
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Ryusuke Honma
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Noriko Saidoh
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yao-Wen Chang
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
- New Industry Creation Hatchery Center, Tohoku University, Miyagi, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
5
|
Kaneko YK, Ishikawa T. [Regulation of Lipid Metabolism by Diacylglycerol Kinases in Pancreatic β-cells]. YAKUGAKU ZASSHI 2017; 136:461-5. [PMID: 26935087 DOI: 10.1248/yakushi.15-00246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The appropriate secretion of insulin from pancreatic β-cells is essential for regulating blood glucose levels. Glucose-stimulated insulin secretion (GSIS) involves the following steps: Glucose uptake by pancreatic β-cells is metabolized to produce ATP. Increased ATP levels result in the closure of ATP-sensitive K(+) (KATP) channels, resulting in membrane depolarization that activates voltage-dependent Ca(2+) channels to subsequently trigger insulin secretion. In addition to this primary mechanism through KATP channels, insulin secretion is regulated by cyclic AMP and diacylglycerol (DAG), which mediate the effects of receptor agonists such as GLP-1 and acetylcholine. Glucose by itself can also increase the levels of these second messengers. Recently, we have shown an obligatory role of diacylglycerol kinase (DGK), an enzyme catalyzing the conversion of DAG to phosphatidic acid, in GSIS. Of the 10 known DGK isoforms, we focused on type-I DGK isoforms (i.e., DGKα, DGKβ, and DGKγ), which are activated by Ca(2+). The protein expression of DGKα and DGKγ was detected in mouse pancreatic islets and the pancreatic β-cell line MIN6. Depletion of these DGKs by a specific inhibitor or siRNA decreased both [Ca(2+)]i and insulin secretion in MIN6 cells. Similar [Ca(2+)]i responses were induced by DiC8, a membrane-permeable DAG analog. These results suggest that DGKα and DGKγ play crucial roles in insulin secretion, and that their depletion impairs insulin secretion through DAG accumulation. In this article, we review the current understanding of the roles of DAG- and DGK-signaling in pancreatic β-cells, and discuss their pathophysiological roles in the progression of type-2 diabetes.
Collapse
Affiliation(s)
- Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | | |
Collapse
|
6
|
Boroda S, Niccum M, Raje V, Purow BW, Harris TE. Dual activities of ritanserin and R59022 as DGKα inhibitors and serotonin receptor antagonists. Biochem Pharmacol 2016; 123:29-39. [PMID: 27974147 DOI: 10.1016/j.bcp.2016.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022]
Abstract
Diacylglycerol kinase alpha (DGKα) catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid (PA). Recently, DGKα was identified as a therapeutic target in various cancers, as well as in immunotherapy. Application of small-molecule DGK inhibitors, R59022 and R59949, induces cancer cell death in vitro and in vivo. The pharmacokinetics of these compounds in mice, however, are poor. Thus, there is a need to discover additional DGK inhibitors not only to validate these enzymes as targets in oncology, but also to achieve a better understanding of their biology. In the present study, we investigate the activity of ritanserin, a compound structurally similar to R59022, against DGKα. Ritanserin, originally characterized as a serotonin (5-HT) receptor (5-HTR) antagonist, underwent clinical trials as a potential medicine for the treatment of schizophrenia and substance dependence. We document herein that ritanserin attenuates DGKα kinase activity while increasing the enzyme's affinity for ATP in vitro. In addition, R59022 and ritanserin function as DGKα inhibitors in cultured cells and activate protein kinase C (PKC). While recognizing that ritanserin attenuates DGK activity, we also find that R59022 and R59949 are 5-HTR antagonists. In conclusion, ritanserin, R59022 and R59949 are combined pharmacological inhibitors of DGKα and 5-HTRs in vitro.
Collapse
Affiliation(s)
- Salome Boroda
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Maria Niccum
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Vidisha Raje
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Benjamin W Purow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| |
Collapse
|
7
|
Furse S. Is phosphatidylglycerol essential for terrestrial life? J Chem Biol 2016; 10:1-9. [PMID: 28101250 DOI: 10.1007/s12154-016-0159-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/29/2016] [Indexed: 01/11/2023] Open
Abstract
Lipids are of increasing importance in understanding biological systems. Lipids carrying an anionic charge are noted in particular for their electrostatic interactions with both proteins and divalent cations. However, the biological, analytical, chemical and biophysical data of such species are rarely considered together, limiting our ability to assess the true role of such lipids in vivo. In this review, evidence from a range of studies about the lipid phosphatidylglycerol is considered. This evidence supports the conclusions that this lipid is ubiquitous in living systems and generally of low abundance but probably fundamental for terrestrial life. Possible reasons for this are discussed and further questions posed.
Collapse
Affiliation(s)
- Samuel Furse
- Molekylærbiologisk institutt, Unversitetet i Bergen, Thormøhlens gate 55, 5006 Bergen, Norway
| |
Collapse
|
8
|
Shirai Y, Ikeda M, Saito N. Regulation of diacylglycerol kinase by phosphorylation. Adv Biol Regul 2013; 52:239-47. [PMID: 22005481 DOI: 10.1016/j.advenzreg.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 12/29/2022]
Affiliation(s)
- Y Shirai
- Applied Chemistry in Bioscience, Graduate School of Agriculture, Kobe 657 8501, Japan.
| | | | | |
Collapse
|
9
|
Petro EJ, Raben DM. Bacterial expression strategies for several Sus scrofa diacylglycerol kinase alpha constructs: solubility challenges. Sci Rep 2013; 3:1609. [PMID: 23558375 PMCID: PMC3617429 DOI: 10.1038/srep01609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/19/2013] [Indexed: 01/27/2023] Open
Abstract
We pursued several strategies for expressing either full-length Sus scrofa diacylglycerol kinase (DGK) alpha or the catalytic domain (alphacat) in Escherichia coli. Alphacat could be extracted, refolded, and purified from inclusion bodies, but when subjected to analytical gel filtration chromatography, it elutes in the void volume, in what we conclude are microscopic aggregates unsuitable for x-ray crystallography. Adding glutathione S-transferase, thioredoxin, or maltose binding protein as N-terminal fusion tags did not improve alphacat's solubility. Coexpressing with bacterial chaperones increased the yield of alphacat in the supernatant after high-speed centrifugation, but the protein still elutes in the void upon analytical gel filtration chromatography. We believe our work will be of interest to those interested in the structure of eukaryotic DGKs, so that they know which expression strategies have already been tried, as well as to those interested in protein folding and those interested in chaperone/target-protein interactions.
Collapse
Affiliation(s)
- Elizabeth J. Petro
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel M. Raben
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Tu-Sekine B, Raben DM. Regulation and roles of neuronal diacylglycerol kinases: a lipid perspective. Crit Rev Biochem Mol Biol 2011; 46:353-64. [PMID: 21539478 DOI: 10.3109/10409238.2011.577761] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diacylglycerol kinases (DGKs) are a class of enzymes that catalyze the ATP-dependent conversion of diacylglycerol (DAG) to phosphatidic acid (PtdOH), resulting in the coordinate regulation of these two lipid second messengers. This regulation is particularly important in the nervous system where it is now well-established that DAG and PtdOH serve very important roles in modulating a variety of neurological functions. There are currently 10 identified mammalian DGKs, organized into five classes or "Types" based upon similarities in their primary sequences. A number of studies have identified eight of these isoforms in various regions of the mammalian central nervous system (CNS): DGK-α, DGK-β, DGK-γ, DGK-η, DGK-ζ, DGK-ι, DGK-ϵ, and DGK-θ. Further studies have provided compelling evidence supporting roles for these enzymes in neuronal spine density, myelination, synaptic activity, neuronal plasticity, epileptogenesis and neurotransmitter release. The physiological regulation of these enzymes is less clear. Like all interfacial enzymes, DGKs metabolize their hydrophobic substrate (DAG) at a membrane-aqueous interface. Therefore, these enzymes can be regulated by alterations in their subcellular localization, enzymatic activity, and/or membrane association. In this review, we summarize what is currently understood about the localization and regulation of the neuronal DGKs in the mammalian CNS.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, 21205 MD, USA
| | | |
Collapse
|
11
|
Diacylglycerol kinases as sources of phosphatidic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:942-8. [PMID: 19264149 DOI: 10.1016/j.bbalip.2009.02.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/18/2009] [Accepted: 02/18/2009] [Indexed: 11/22/2022]
Abstract
There are ten mammalian diacylglycerol kinases (DGKs) whose primary role is to terminate diacylglycerol (DAG) signaling. However, it is becoming increasingly apparent that DGKs also influence signaling events through their product, phosphatidic acid (PA). They do so in some cases by associating with proteins and then modifying their activity by generating PA. In other cases, DGKs broadly regulate signaling events by virtue of their ability to provide PA for the synthesis of phosphatidylinositols (PtdIns).
Collapse
|
12
|
Graf C, Klumpp M, Habig M, Rovina P, Billich A, Baumruker T, Oberhauser B, Bornancin F. Targeting ceramide metabolism with a potent and specific ceramide kinase inhibitor. Mol Pharmacol 2008; 74:925-32. [PMID: 18612076 DOI: 10.1124/mol.108.048652] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ceramide kinase (CerK) produces the bioactive lipid ceramide-1-phosphate (C1P) and appears as a key enzyme for controlling ceramide levels. In this study, we discovered and characterized adamantane-1-carboxylic acid (2-benzoylamino-benzothiazol-6-yl)amide (NVP-231), a potent, specific, and reversible CerK inhibitor that competitively inhibits binding of ceramide to CerK. NVP-231 is active in the low nanomolar range on purified as well as cellular CerK and abrogates phosphorylation of ceramide, resulting in decreased endogenous C1P levels. When combined with another ceramide metabolizing inhibitor, such as tamoxifen, NVP-231 synergistically increased ceramide levels and reduced cell growth. Therefore, NVP-231 represents a novel and promising compound for controlling ceramide metabolism that may provide insight into CerK physiological function.
Collapse
Affiliation(s)
- Christine Graf
- Novartis Institutes for BioMedical Research, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
DGKs (diacylglycerol kinases) are members of a unique and conserved family of intracellular lipid kinases that phosphorylate DAG (diacylglycerol), catalysing its conversion into PA (phosphatidic acid). This reaction leads to attenuation of DAG levels in the cell membrane, regulating a host of intracellular signalling proteins that have evolved the ability to bind this lipid. The product of the DGK reaction, PA, is also linked to the regulation of diverse functions, including cell growth, membrane trafficking, differentiation and migration. In multicellular eukaryotes, DGKs provide a link between lipid metabolism and signalling. Genetic experiments in Caenorhabditis elegans, Drosophila melanogaster and mice have started to unveil the role of members of this protein family as modulators of receptor-dependent responses in processes such as synaptic transmission and photoreceptor transduction, as well as acquired and innate immune responses. Recent discoveries provide new insights into the complex mechanisms controlling DGK activation and their participation in receptor-regulated processes. After more than 50 years of intense research, the DGK pathway emerges as a key player in the regulation of cell responses, offering new possibilities of therapeutic intervention in human pathologies, including cancer, heart disease, diabetes, brain afflictions and immune dysfunctions.
Collapse
|
14
|
Goto K, Hozumi Y, Nakano T, Saino-Saito S, Martelli AM. Lipid Messenger, Diacylglycerol, and its Regulator, Diacylglycerol Kinase, in Cells, Organs, and Animals: History and Perspective. TOHOKU J EXP MED 2008; 214:199-212. [DOI: 10.1620/tjem.214.199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine
| | - Yasukazu Hozumi
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine
| | - Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine
| | - Sachiko Saino-Saito
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine
| | | |
Collapse
|
15
|
Fanani ML, Topham MK, Walsh JP, Epand RM. Lipid modulation of the activity of diacylglycerol kinase alpha- and zeta-isoforms: activation by phosphatidylethanolamine and cholesterol. Biochemistry 2005; 43:14767-77. [PMID: 15544347 DOI: 10.1021/bi049145z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diacylglycerol kinase (DGK) isoforms alpha and zeta were extracted from transfected cells that overexpressed these enzymes. We determined the lipid dependence of the binding of these isoforms to liposomes. The modulation by lipid of the rate of phosphorylation of diacylglycerol by these enzymes was also measured. Incorporation of phosphatidylethanolamine into the liposomes resulted in an increased partitioning of both isoforms of DGK to the membrane as well as an increased catalytic rate. We demonstrate that the increased catalytic rate is a consequence of both increased portioning of the enzyme to the membrane and increased catalytic activity of the membrane-bound form. DGKalpha, a calcium-dependent isoform, can be activated in a calcium-independent fashion in the presence of phosphatidylethanolamine. Similar effects are observed with cholesterol. In contrast, sphingomyelin inhibits the activity of both isoforms of DGK. Our results demonstrate that the translocation to membranes and activity of DGKalpha and DGKzeta are modulated by the composition and properties of the membrane. The enzymes are activated by the presence of lipids that promote the formation of inverted phases. However, the promotion of negative curvature is not the sole factor contributing to the lipid effects on enzyme binding and activity. A truncated form of DGKalphalacking both the E-F hand and the recoverin homology domain is constitutively active and is not further activated by any of the lipids tested or by calcium. However, a truncated form lacking only the recoverin homology domain is partially activated by either calcium or certain lipids.
Collapse
Affiliation(s)
- Maria Laura Fanani
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Science Center, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | |
Collapse
|
16
|
Waggoner DW, Johnson LB, Mann PC, Morris V, Guastella J, Bajjalieh SM. MuLK, a eukaryotic multi-substrate lipid kinase. J Biol Chem 2004; 279:38228-35. [PMID: 15252046 DOI: 10.1074/jbc.m405932200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the identification and characterization of a novel lipid kinase that phosphorylates multiple substrates. This enzyme, which we term MuLK for multi-substrate lipid kinase, does not belong to a previously described lipid kinase family. MuLK has orthologs in many organisms and is broadly expressed in human tissues. Although predicted to be a soluble protein, MuLK co-fractionates with membranes and localizes to an internal membrane compartment. Recombinant MuLK phosphorylates diacylglycerol, ceramide, and 1-acylglycerol but not sphingosine. Although its affinity for diacylglycerol and ceramide are similar, MuLK exhibits a higher V(max) toward diacylglycerol in vitro, consistent with it acting primarily as a diacylglycerol kinase. MuLK activity was inhibited by sphingosine and enhanced by cardiolipin. It was stimulated by calcium when magnesium concentrations were low and inhibited by calcium when magnesium concentrations were high. The effects of charged lipids and cations on MuLK activity in vitro suggest that its activity in vivo is tightly regulated by cellular conditions.
Collapse
Affiliation(s)
- David W Waggoner
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ito T, Hozumi Y, Sakane F, Saino-Saito S, Kanoh H, Aoyagi M, Kondo H, Goto K. Cloning and Characterization of Diacylglycerol Kinase ι Splice Variants in Rat Brain. J Biol Chem 2004; 279:23317-26. [PMID: 15024004 DOI: 10.1074/jbc.m312976200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diacylglycerol kinase (DGK) catalyzes phosphorylation of a second messenger diacylglycerol (DG) to phosphatidic acid in cellular signal transduction. Previous studies have revealed that DGK consists of a family of isozymes including our rat clones. In this study we isolated from rat brain cDNA library the cDNA clones for a rat homologue of DGKiota (rDGKiota-1) that contains two zinc finger-like sequences, the highly conserved DGK catalytic domain, a bipartite nuclear localization signal, and four ankyrin repeats at the carboxyl terminus. In addition, we found novel splice variants, which contain either insertion 1 (71 bp) or insertion 2 (19 bp) or both in the carboxyl-terminal portion. Each of the insertions causes a frameshift, and the resultant premature stop codons produce two truncated forms (termed rDGKiota-2 and -iota-3), the former lacking the ankyrin repeats at the carboxyl terminus and the latter lacking a part of the catalytic domain and the ankyrin repeats. Truncation of the carboxyl-terminal portion clearly exerts effects on the detergent solubility and enzymatic activity of the splice variants, although all three variants showed similar cytoplasmic localization in cDNA-transfected cultured neurons despite the continued presence of the nuclear localization signal sequence. Immunoblot analysis using anti-rDGKiota antibody raised against the common amino-terminal portion clearly shows that these rDGKiota variants are indeed expressed in the brain. These results suggest that the carboxyl-terminal truncated forms of rDGKiota-2 and -iota-3 that exhibit reduced enzymatic activities might show a dominant negative effect against the intact rDGKiota-1, and that the modulation of signal transduction by the splice variants may play some roles in the physiologic and/or pathologic conditions of neurons.
Collapse
Affiliation(s)
- Tsukasa Ito
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Rho GTPases, such as Rho, Rac and Cdc42, are known to regulate many cellular processes including cell movement and cell adhesion. While the cellular events of germ cell movement are crucial to spermatogenesis since developing germ cells must migrate progressively from the basal to the adluminal compartment but remain attached to the seminiferous epithelium, the physiological significance of Rho GTPases in spermatogenesis remains largely unexplored. This paper reviews some recent findings on Rho GTPases in the field with emphasis on the studies in the testis, upon which future studies can be designed to delineate the role of Rho GTPases in spermatogenesis.
Collapse
Affiliation(s)
- Wing-Yee Lui
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
19
|
Efanov AM, Appelskog IB, Abdel-Halim SM, Khan A, Bränström R, Larsson O, Ostenson CG, Mest HJ, Berggren PO, Efendic S, Zaitsev SV. Insulinotropic activity of the imidazoline derivative RX871024 in the diabetic GK rat. Am J Physiol Endocrinol Metab 2002; 282:E117-24. [PMID: 11739091 DOI: 10.1152/ajpendo.000031.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulinotropic activity of the imidazoline derivative RX871024 was compared in pancreatic islets from nondiabetic Wistar rats and spontaneously diabetic Goto-Kakizaki (GK) rats. RX871024 significantly stimulated insulin secretion in islets from both animal groups. The insulinotropic activity of RX871024 was higher than that of the sulfonylurea glibenclamide. This difference was more pronounced in islets from GK rats compared with Wistar rat islets. More importantly, RX871024 substantially improved glucose sensitivity in diabetic beta-cells, whereas glibenclamide stimulated insulin secretion about twofold over a broad range of glucose concentrations in nondiabetic and diabetic rats. RX871024 induced a faster increase in cytosolic free Ca(2+) concentration and faster inhibition of ATP-dependent K(+) channel activity in GK rat islets compared with Wistar rat islets. RX871024 also induced a more pronounced increase in diacylglycerol concentration in GK rat islets. These data support the idea that imidazoline compounds can form the basis for the development of novel drugs for treatment of type 2 diabetes, which can restore glucose sensitivity in diabetic beta-cells.
Collapse
Affiliation(s)
- Alexander M Efanov
- Endocrine and Diabetes Unit, Department of Molecular Medicine, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Haq E, Sharma S, Khuller GK. Purification of diacylglycerol kinase from Microsporum gypseum and its phosphorylation by the catalytic subunit of protein kinase A. Arch Biochem Biophys 2001; 392:219-25. [PMID: 11488595 DOI: 10.1006/abbi.2001.2447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diacylglycerol (DG) kinase (EC 2.7.1.107) was purified to homogeneity from the soluble extract of Microsporum gypseum, a dermatophyte. Purified enzyme showed a final specific activity of 2172 pmol/min/mg protein and its apparent molecular weight on SDS-PAGE was found to be 93 kDa. The activity of purified enzyme was inhibited in a dose-dependent manner in the presence of DG-kinase inhibitor (D5919, Sigma). DG-kinase activity was found to be stimulated in the presence of phosphatidylcholine, phosphatidylethanolamine, and cardiolipin while the activity was alleviated in the presence of phosphatidic acid and arachidonic acid. Kinase activity was partially inhibited when assayed after prior treatment with alkaline phosphatase. Treatment of DG-kinase with the catalytic subunit of protein kinase A (PKA)-stimulated DG-kinase activity in a dose-dependent manner. Incubation of DG-kinase with the catalytic subunit of PKA led to the phosphorylation of DG-kinase as revealed by autoradiography. The phosphorylated band disappeared completely in the presence of specific PKA inhibitor. Increased activity of DG-kinase on incubation with the catalytic subunit of PKA was possibly due to the phosphorylation of the former by the latter. Whether this in vitro phosphorylation and activation of DG-kinase occurs under physiological conditions remains to be elucidated.
Collapse
Affiliation(s)
- E Haq
- Department of Biochemistry, Postgraduate Institute of Medical Education & Research, Chandigarh-160 012, India
| | | | | |
Collapse
|
21
|
Tumaney AW, Shekar S, Rajasekharan R. Identification, purification, and characterization of monoacylglycerol acyltransferase from developing peanut cotyledons. J Biol Chem 2001; 276:10847-52. [PMID: 11283027 DOI: 10.1074/jbc.m100005200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biosynthesis of diacylglycerols in plants occurs mainly through the acylation of lysophosphatidic acid in the microsomal membranes. Here we describe the first identification of diacylglycerol biosynthetic activity in the soluble fraction of developing oilseeds. This activity was NaF-insensitive and acyl-CoA-dependent. Diacylglycerol formation was catalyzed by monoacylglycerol (MAG) acyltransferase (EC ) that transferred an acyl moiety from acyl-CoA to MAG. The enzyme was purified by successive chromatographic separations on octyl-Sepharose, blue-Sepharose, Superdex-75, and palmitoyl-CoA-agarose to apparent homogeneity from developing peanut (Arachis hypogaea) cotyledons. The enzyme was purified to 6,608-fold with the final specific activity of 15.86 nmol min(-1) mg(-1). The purified enzyme was electrophoretically homogeneous, and its molecular mass was 43,000 daltons. The purified MAG acyltransferase was specific for MAG and did not utilize any other acyl acceptor such as glycerol, glycerol-3-phosphate, lysophosphatidic acid, and lysophosphatidylcholine. The K(m) values for 1-palmitoylglycerol and 1-oleoylglycerol were 16.39 and 5.65 micrometer, respectively. The K(m) values for 2-monoacylglycerols were 2- to 4-fold higher than that of the corresponding 1-monoacylglycerol. The apparent K(m) values for palmitoyl-, stearoyl-, and oleoyl-CoAs were 17.54, 25.66, and 9.35 micrometer, respectively. Fatty acids, phospholipids, and sphingosine at low concentrations stimulated the enzyme activity. The identification of MAG acyltransferase in oilseeds suggests the presence of a regulatory link between signal transduction and synthesis of complex lipids in plants.
Collapse
Affiliation(s)
- A W Tumaney
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
22
|
Gangar A, Karande AA, Rajasekharan R. Isolation and localization of a cytosolic 10 S triacylglycerol biosynthetic multienzyme complex from oleaginous yeast. J Biol Chem 2001; 276:10290-8. [PMID: 11139581 DOI: 10.1074/jbc.m009550200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triacylglycerol is one of the major storage forms of metabolic energy in eukaryotic cells. Biosynthesis of triacylglycerol is known to occur in membranes. We report here the isolation, purification, and characterization of a catalytically active cytosolic 10 S multienzyme complex for triacylglycerol biosynthesis from Rhodotorula glutinis during exponential growth. The complex was characterized and was found to contain lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, diacylglycerol acyltransferase, acyl-acyl carrier protein synthetase, and acyl carrier protein. The 10 S triacylglycerol biosynthetic complex rapidly incorporates free fatty acids as well as fatty acyl-coenzyme A into triacylglycerol and its biosynthetic intermediates. Lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, and diacylglycerol acyltransferase from the complex were microsequenced. Antibodies were raised against the synthetic peptides corresponding to lysophosphatidic acid acyltransferase and phosphatidic acid phosphatase sequences. Immunoprecipitation and immunolocalization studies show the presence of a cytosolic multienzyme complex for triacylglycerol biosynthesis. Chemical cross-linking studies revealed that the 10 S multienzyme complex was held together by protein-protein interactions. These results demonstrate that the cytosol is one of the sites for triacylglycerol biosynthesis in oleaginous yeast.
Collapse
Affiliation(s)
- A Gangar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
23
|
Efanov AM, Zaitsev SV, Berggren PO, Mest HJ, Efendic S. Imidazoline RX871024 raises diacylglycerol levels in rat pancreatic islets. Biochem Biophys Res Commun 2001; 281:1070-3. [PMID: 11243843 DOI: 10.1006/bbrc.2001.4483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Imidazoline compound RX871024 and carbamylcholine (CCh) stimulate insulin secretion in isolated rat pancreatic islets. Combination of CCh and RX871024 induces a synergetic effect on insulin secretion. RX871024 and CCh produce twofold increases in diacylglycerol (DAG) concentration. The combination of two compounds has an additive effect on DAG concentration. Effects of RX871024 on insulin secretion and DAG concentration are not dependent on the presence of D609, an inhibitor of phosphatidylcholine-specific phospholipase C. It is concluded that as in case with CCh the increase in DAG concentration induced by imidazoline RX871024 contributes to the insulinotropic activity of the compound.
Collapse
Affiliation(s)
- A M Efanov
- Karolinska Institutet, Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Hospital, Stockholm, S-171 76, Sweden
| | | | | | | | | |
Collapse
|
24
|
Huang Z, Ghalayini A, Guo XX, Alvarez KM, Anderson RE. Light-mediated activation of diacylglycerol kinase in rat and bovine rod outer segments. J Neurochem 2000; 75:355-62. [PMID: 10854281 DOI: 10.1046/j.1471-4159.2000.0750355.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hydrolysis of phosphatidylinositol 4,5-bisphosphate is regulated by light in retinal rod outer segment (ROS) membranes. We recently reported that the activities of phosphatidylinositol synthetase and phosphatidylinositol 3-kinase are also higher in bleached (light-exposed) ROS (B-ROS). In this study, we investigated the effect of bleaching on diacylglycerol (DAG) kinase (DAG-kinase) activity in bovine and rat ROS membranes prepared from dark-adapted (D-ROS) or bleached (B-ROS) retinas. In bovine ROS, DAG-kinase activity toward endogenous DAG substrate was higher in B-ROS than in D-ROS. Quantification of DAG in both sets of membranes showed that the levels were the same, eliminating the possibility that the greater DAG-kinase activity was due to higher levels of endogenous substrate in B-ROS. DAG-kinase activity was also higher in B-ROS against an exogenous, water-soluable substrate (1, 2-didecanoyl-rac-glycerol), which competed with endogenous DAG substrate and saturated at approximately 2 mM. Immunoblot analysis with an anti-DAG-kinase gamma polyclonal antibody demonstrated that the gamma isoform was present in isolated bovine ROS. Immunocytochemistry of frozen bovine retinal sections confirmed the presence of DAG-kinase gamma immunoreactivity in ROS, as well as other retinal cells. Quantification of the immunoreactive products on western blots showed that more DAG-kinase gamma was present in B-ROS than in D-ROS. In an in vivo experiment, ROS prepared from rats exposed to 30 min of room light had greater DAG-kinase activity than ROS prepared from dark-adapted animals. Taken together, these data suggest that light exposure leads to the translocation of DAG-kinase from the cytosol to ROS membranes and that the greater DAG-kinase activity in B-ROS is due to the presence of more protein associated with ROS membranes.
Collapse
Affiliation(s)
- Z Huang
- Departments of Ophthalmology, Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center Dean A. McGee Eye Institute, Oklahoma City, Oklahoma, USA
| | | | | | | | | |
Collapse
|
25
|
Schuster GS, Caughman GB, Rueggeberg FA. Changes in cell phospholipid metabolism in vitro in the presence of HEMA and its degradation products. Dent Mater 2000; 16:297-302. [PMID: 10831786 DOI: 10.1016/s0109-5641(00)00022-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Diacylglycerol-kinase (DAG-kinase) is an enzyme that phosphorylates diacylglycerol (DAG) to phosphatidic acid (PA), which serves as a precursor to phosphoglycerides involved in cell signaling or as cell membrane structural components. DAG-kinase can be inhibited by diacylethylene glycols (DAEG). We hypothesize that 2-hydroxyethyl methacrylate (HEMA) may alter phosphorylation of DAG to PA following intracellular formation of DAEG. METHODS Cultured rabbit kidney (RK13) epithelial cells were treated with HEMA, EG, or known inhibitors of DAG-kinase for 24 h, then exposed to [32P]O4- in the presence of a synthetic diacylglycerol for 2 h. Other cultures were radiolabeled with [3H]-oleic acid for 24 h, then exposed to HEMA for an additional 24 h. The cells were harvested and the lipids extracted. Radioactive lipids were separated by thin layer chromatography, located by autoradiography, and quantitated as cpm/ug protein. Cell cultures treated with HEMA were homogenized and the DAG-kinase activity was assayed and expressed as cpm/ug protein. Data were analyzed by one-way ANOVA and Newman-Keuls Multiple Comparison Test. RESULTS Cultures exposed to HEMA or known DAG-kinase inhibitors exhibited reduced incorporation of radioactivity in the PA fraction compared to control cultures. Direct assays of DAG-kinase activity from cells exposed to HEMA demonstrated decreased enzyme activity. Evaluation of cell phospholipid synthesis showed altered formation of phosphatidylethanolamine and phosphatidylcholine. SIGNIFICANCE Results suggest that HEMA impairs formation of PA, possibly by acylation of EG released by hydrolysis of the HEMA and resultant production of the inhibitor DAEG. The decreased availability of PA may alter PA-dependent cell structural lipid pathways and lipid-dependent signaling pathways, altering cell growth.
Collapse
Affiliation(s)
- G S Schuster
- Department of Oral Biology and Maxillofacial Pathology, Medical College of Georgia School of Dentistry, Augusta, GA 30912-1126, USA.
| | | | | |
Collapse
|
26
|
Goto K, Kondo H. Diacylglycerol kinase in the central nervous system--molecular heterogeneity and gene expression. Chem Phys Lipids 1999; 98:109-17. [PMID: 10358933 DOI: 10.1016/s0009-3084(99)00023-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diacylglycerol (DAG) is one of the important second messengers, which serves as an activator of protein kinase C (PKC). DAG kinase (DGK) phosphorylates DAG to generate phosphatidic acid, thus DGK is considered to be a regulator of PKC activity through attenuation of DAG. Recent studies have revealed molecular structures of several DGK isozymes from mammalian species, and showed that most of the isozymes are expressed in the brain in various amounts. We have cloned four DGK isozyme cDNAs from rat brain library (DGK alpha, -beta, -gamma, and -zeta) (previously also designated DGK-I, -II, -III, and -IV, respectively) and examined their mRNA expressions in rat brain by in situ hybridization histochemistry. Interestingly, it is revealed that the mRNA for each isozyme is expressed in a distinct pattern in the brain; DGK alpha is expressed in oligodendrocytes, glial cells that form myelin; DGK beta in neurons of the caudate-putamen; DGK gamma predominantly in the cerebellar Purkinje cells; and DGK zeta in the cerebellar and cerebral cortices. Molecular diversity and distinct expression patterns of DGK isozymes suggest a physiological importance for the enzyme in brain function. Furthermore, functional implications of these DGK isozymes are briefly discussed.
Collapse
Affiliation(s)
- K Goto
- Department of Anatomy, Yamagata University School of Medicine, Japan.
| | | |
Collapse
|
27
|
Thomas WE, Glomset JA. Multiple factors influence the binding of a soluble, Ca2+-independent, diacylglycerol kinase to unilamellar phosphoglyceride vesicles. Biochemistry 1999; 38:3310-9. [PMID: 10079074 DOI: 10.1021/bi982566u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied the influence of membrane lipids, MgCl2, and ATP on the ability of a soluble diacylglycerol kinase to bind to 100-nm lipid vesicles. The enzyme did not bind detectably to vesicles that contained phosphatidylcholine alone or to vesicles that contained 50 mol % phosphatidylcholine + 50 mol % phosphatidylethanolamine. But it did bind to vesicles that contained anionic phosphoglycerides, and maximal binding occurred (in the presence of MgCl2) when the vesicles contained anionic phosphoglycerides alone. When increasing amounts of phosphatidylcholine were included in phosphatidylserine-containing vesicles, enzyme binding to the vesicles decreased by as much as 1000-fold. However, when increasing amounts of phosphatidylethanolamine were included in phosphatidylserine-containing vesicles, little change in binding occurred until the concentration of phosphatidylserine was reduced to below 25 mol %. These results and results obtained with vesicles that contained various mixtures of anionic phosphoglycerides, phosphatidylcholine, phosphatidylethanolamine, and unesterified cholesterol provided evidence that anionic phosphoglycerides were positive effectors of binding, phosphatidylcholine was a negative effector, and phosphatidylethanolamine and unesterified cholesterol were essentially neutral diluents. Other experiments showed that diacylglycerol and some of its structural analogues also were important, positive effectors of enzyme binding and that addition of ATP to the medium increased their effects. The combined results of the study suggest that the enzyme may bind to vesicles via at least two types of binding sites: one type that requires anionic phospholipids and is enhanced by Mg2+ but inhibited by phosphatidylcholine, and one type that requires diacylglycerol and is enhanced by ATP.
Collapse
Affiliation(s)
- W E Thomas
- Howard Hughes Medical Institute, Department of Medicine, Regional Primate Research Center, University of Washington, Seattle 98195-7370, USA
| | | |
Collapse
|
28
|
Hinkovska-Galcheva VT, Boxer LA, Mansfield PJ, Harsh D, Blackwood A, Shayman JA. The formation of ceramide-1-phosphate during neutrophil phagocytosis and its role in liposome fusion. J Biol Chem 1998; 273:33203-9. [PMID: 9837889 DOI: 10.1074/jbc.273.50.33203] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramide, a product of agonist-stimulated sphingomyelinase activation, is known to be generated during the phagocytosis of antibody-coated erythrocytes by polymorphonuclear leukocytes. Agonist-stimulated formation of ceramide-1-phosphate is now shown to occur in 32PO4-labeled neutrophils. Ceramide-1-phosphate is formed by a calcium-dependent ceramide kinase, found predominately in the neutrophil plasma membrane. The neutrophil kinase is specific for ceramide because, in contrast to the bacterial diglyceride kinase, ceramide is not phosphorylated under conditions specific for diglyceride phosphorylation. Conversely, 1,2-diacylglycerol does not serve as substrate for the neutrophil ceramide kinase. Ceramide kinase activation occurs in a time-dependent fashion, reaching peak activity 10 min after formyl peptide stimulation and challenge with antibody-coated erythrocytes. The lipid kinase activity is optimal at pH 6.8. Because the formation of the phagolysosome is a critical event in phagocytosis, the effect of ceramide-1-phosphate in promoting the fusion of liposomes was determined. Both the addition of increasing concentrations of sphingomyelinase D and ceramide-1-phosphate promoted liposomal fusion. In summary, ceramide-1-phosphate is formed during phagocytosis through activation of ceramide kinase. Ceramide-1-phosphate may promote phagolysosome formation.
Collapse
Affiliation(s)
- V T Hinkovska-Galcheva
- Department of Pediatrics, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
29
|
Nobe K, Ohata H, Momose K. Receptor-mediated diacylglycerol kinase translocation dependent on both transient increase in the intracellular calcium concentration and modification by protein kinase C. Biochem Pharmacol 1997; 53:1683-94. [PMID: 9264321 DOI: 10.1016/s0006-2952(97)82454-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diacylglycerol kinase (DG kinase) is activated by various stimuli in many types of cells. We reported earlier that carbachol (CCh) induced DG kinase translocation from the cytosolic fraction to the membrane fraction in guinea pig taenia coli (Biochem. Pharmacol., 50: 591-599, 1995). In this study, the regulation mechanisms of DG kinase translocation are reported, based on the following findings: 1) CCh sustained an increase in DG kinase in the membrane fraction and a decrease in the cytosolic fraction; 2) blocking calcium influx by removing extracellular calcium did not affect the CCh-induced sustained DG kinase translocation; 3) exposing purified protein kinase C (PKC) to DG kinase increased DG kinase affinity to octylglycoside micelles only with the enzyme extracted from the cytosolic fraction; and 4) CCh-induced DG kinase translocation was reversed by removing CCh, and the serine/threonine phosphatase inhibitor, okadaic acid, blocked the reversal of the translocation. These results suggest that CCh-induced DG kinase translocation is promoted by both a transient increase in intracellular calcium, which may be released from the intracellular store, and by DG kinase phosphorylation by PKC.
Collapse
Affiliation(s)
- K Nobe
- Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | | | |
Collapse
|
30
|
Klauck TM, Xu X, Mousseau B, Jaken S. Cloning and characterization of a glucocorticoid-induced diacylglycerol kinase. J Biol Chem 1996; 271:19781-8. [PMID: 8702685 DOI: 10.1074/jbc.271.33.19781] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Diacylglycerol kinase (DGK) plays a key role in cellular processes by regulating the intracellular concentration of the second messenger diacylglycerol. We screened a hamster DDT1 smooth muscle cell library and isolated a unique, glucocorticoid-inducible cDNA with substantial homology to known DGKs. DGK activity was increased in lysates of insect cells infected with recombinant baculovirus containing this cDNA. Antibodies raised against expressed sequences recognized a glucocorticoid-inducible 130-140-kDa protein on immunoblots of DDT1 cell lysates. Thus, this sequence appears to be a new member of the DGK family that we refer to as DGKeta. Homology to other DGKs was apparent in domains that are thought to be important for DGK function including the cysteine-rich motifs and potential catalytic domains. DGKeta shares substantial homology with DGKdelta including the N-terminal pleckstrin homology domain. The tissue distribution of DGKeta message (determined by ribonuclease protection assays) and protein (determined by immunoblots) was broader than reported for other DGKs, indicating that DGKeta may play a more general role in regulating cellular DG levels than other DGKs. Heterogeneity among DGK family members indicates that individual DGKs may have unique functions.
Collapse
Affiliation(s)
- T M Klauck
- W. Alton Jones Cell Science Center, Lake Placid, New York 12946, USA
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- R Lehner
- Banting and Best Department of Medical Research, University of Toronto, Canada
| | | |
Collapse
|
32
|
Sakane F, Imai S, Kai M, Wada I, Kanoh H. Molecular cloning of a novel diacylglycerol kinase isozyme with a pleckstrin homology domain and a C-terminal tail similar to those of the EPH family of protein-tyrosine kinases. J Biol Chem 1996; 271:8394-401. [PMID: 8626538 DOI: 10.1074/jbc.271.14.8394] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A fourth member of the diacylglycerol kinase (DGK) gene family termed DGK delta was cloned from the human testis cDNA library. The cDNA sequence contains an open reading frame of 3,507 nucleotides encoding a putative DGK protein of 130,006 Da. Interestingly, the new DGK isozyme contains a pleckstrin homology domain found in a number of proteins involved in signal transduction. Furthermore, the C-terminal tail of this isozyme is very similar to those of the EPH family of receptor tyrosine kinases. The primary structure of the delta-isozyme also has two cysteine-rich zinc finger-like structures (C3 region) and the C-terminal C4 region, both of which have been commonly found in the three isozymes previously cloned (DGKs alpha, beta and gamma). However, DGK delta lacks the EF-hand motifs (C2) and contains a long Glu- and Ser-rich insertion (317 residues), which divides the C4 region into two portions. Taken together, these structural features of DGK delta indicate that this isozyme belongs to a DGK subfamily distinct from that consisting of DGKs alpha, beta, and gamma. Increased DGK activity without marked preference to arachidonoyl type of diacylglycerol was detected in the particulate fraction of COS-7 cells expressing the transfected DGKdelta cDNA. The enzyme activity was independent of phosphatidylserine, which is a common activator for the previously sequenced DGKs. Northern blot analysis showed that the DGK delta mRNA (approximately 6.3 kilobases) is most abundant in human skeletal muscle but undetectable in the brain, thymus, and retina. This expression pattern is different from those of the previously cloned DGKs. Our results show that the DGK gene family consists of at least two subfamilies consisting of enzymes with distinct structural characteristics and that each cell type probably expresses its own characteristic repertoire of DGKs whose functions may be regulated through different signal transduction pathways.
Collapse
Affiliation(s)
- F Sakane
- Department of Biochemistry, Sapporo Medical University School of Medicine, South-1, West-17, Sapporo 060, Japan
| | | | | | | | | |
Collapse
|
33
|
Walsh JP, Suen R, Glomset JA. Arachidonoyl-diacylglycerol kinase. Specific in vitro inhibition by polyphosphoinositides suggests a mechanism for regulation of phosphatidylinositol biosynthesis. J Biol Chem 1995; 270:28647-53. [PMID: 7499383 DOI: 10.1074/jbc.270.48.28647] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We previously described the purification of a membrane-bound diacylglycerol kinase highly selective for sn-1-acyl-2-arachidonoyl diacylglycerols (Walsh, J. P., Suen, R., Lemaitre, R. N., and Glomset, J. A. (1994) J. Biol. Chem. 269, 21155-21164). This enzyme appears to be responsible for the rapid clearance of the arachidonate-rich pool of diacylglycerols generated during stimulus-induced phosphoinositide turnover. We have now shown phosphatidylinositol 4,5-bisphosphate to be a potent and specific inhibitor of arachidonoyl-diacylglycerol kinase. Kinetic analyses indicated a Ki for phosphatidylinositol 4,5-bisphosphate of 0.04 mol %. Phosphatidic acid also was an inhibitor with a Ki of 0.7 mol %. Other phospholipids had only small effects at these concentrations. A series of multiply phosphorylated lipid analogs also inhibited the enzyme, indicating that the head group phosphomonoesters are the primary determinants of the polyphosphoinositide effect. However, these compounds were not as potent as phosphatidylinositol 4,5-bisphosphate, indicating some specificity for the polyphosphoinositide additional to its total charge. Five other diacylglycerol kinases were activated to varying degrees by phosphatidylinositol 4,5-bisphosphate and phosphatidic acid, suggesting that inhibition by acidic lipids may be specific for the arachidonoyl-DAG kinase isoform. Given the presumed role of arachidonoyl-diacylglycerol kinase in the phosphoinositide cycle, this inhibition may represent a mechanism for polyphosphoinositides to regulate their own synthesis.
Collapse
Affiliation(s)
- J P Walsh
- Department of Medicine, Indiana University, Indianapolis 46202-5111, USA
| | | | | |
Collapse
|
34
|
Minami K, Hirata Y, Tokumura A, Nakaya Y, Fukuzawa K. Protein kinase C-independent inhibition of the Ca(2+)-activated K+ channel by angiotensin II and endothelin-1. Biochem Pharmacol 1995; 49:1051-6. [PMID: 7748184 DOI: 10.1016/0006-2952(95)98500-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously reported that the Ca(2+)-activated K+ channel (KCa-channel) in cultured smooth muscle cells from porcine coronary artery was inhibited by protein kinase C (C-kinase). In this study, inhibition of the KCa-channel by receptor-mediated vascular contractile agonists, such as angiotensin II (ANG II) and endothelin-1 (ET-1), was investigated by the patch-clamp technique. In cell-attached patches, addition of ANG II (500 nM) or ET-1 (50 nM) to the bath inhibited the KCa-channel activated by the calcium ionophore A23187 (10-20 microM). Phorbol 12-myristate 13-acetate (PMA, 1 microM), a C-kinase activator, also decreased the open probability of the KCa-channel. The PMA-induced decrease in the open probability was reversed by subsequent application of staurosporine (1 nM), a C-kinase inhibitor, but the ANG II- and ET-1-induced decreases were not reversed by subsequent application of staurosporine (> 30 nM). Pretreatment of smooth muscle cells with 30 nM staurosporine, a protein kinase inhibitor, or 1 mM neomycin, an inhibitor of phospholipase C, also did not abolish the inhibition of the KCa-channel by ANG II. Furthermore, ANG II inhibited the KCa-channel in cells in which C-kinase was down-regulated. These results indicate that, in porcine coronary artery smooth muscle cells, ANG II and ET-1 inhibit the KCa-channel by a C-kinase-independent mechanism.
Collapse
Affiliation(s)
- K Minami
- Laboratory of Health Chemistry, Faculty of Pharmaceutical Sciences, Tokushima University, Japan
| | | | | | | | | |
Collapse
|
35
|
Nobe K, Ohata H, Momose K. Activation of diacylglycerol kinase by carbachol in guinea pig taenia coli. Biochem Pharmacol 1994; 48:2005-14. [PMID: 7802689 DOI: 10.1016/0006-2952(94)90499-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Changes in diacylglycerol kinase (DG kinase) activity in carbachol (CCh)-stimulated guinea pig taenia coli were investigated. In a mixed micellar assay system, added 1,2-dioctanoyl-sn-glycerol (diC8) and endogenous DG were competitively bound to common DG kinase isozymes from guinea pig taenia coli and phosphorylated, suggesting that diC8 is useful as a probe of agonist effects on DG kinase activity. In phosphorus-32 ([32P]Pi)- and diC8-prelabeled guinea pig taenia coli, diC8 was phosphorylated by DG kinase to [32P]dioctanoyl-phosphatidic acid ([32P]diC8-PA). CCh increased the accumulation of both [32P]diC8-PA and endogenous [32P]phosphatidic acid ([32P]PA) in a time- and dose-dependent manner (0.1-100 microM CCh). CCh-induced increases in [32P]diC8-PA and [32P]PA were inhibited by 1 microM atropine and 3 microM DG kinase inhibitor (R59022). These findings indicated the activation of DG kinase by muscarinic receptor stimulation in guinea pig taenia coli. Therefore, DG kinase activation may play an important role in CCh-induced PA formation. CCh-induced [32P]diC8-PA and [32P]PA accumulation was dependent on intracellular calcium concentrations. However, a KCl-induced increase in intracellular calcium, without receptor stimulation, was ineffective. Moreover, treatment with phorbol ester also increased accumulation of both PA species in KCl-treated tissues. These findings suggest that muscarinic receptor mediated activation of DG kinase may require both an increase in intracellular calcium and PKC activation in guinea pig taenia coli.
Collapse
Affiliation(s)
- K Nobe
- Department of Pharmacology, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | |
Collapse
|
36
|
|
37
|
Kai M, Sakane F, Imai S, Wada I, Kanoh H. Molecular cloning of a diacylglycerol kinase isozyme predominantly expressed in human retina with a truncated and inactive enzyme expression in most other human cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32336-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Tronchère H, Record M, Tercé F, Chap H. Phosphatidylcholine cycle and regulation of phosphatidylcholine biosynthesis by enzyme translocation. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1212:137-51. [PMID: 8180240 DOI: 10.1016/0005-2760(94)90248-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- H Tronchère
- INSERM Unité 326, Hôpital Purpan, Toulouse, France
| | | | | | | |
Collapse
|
39
|
Hart TC, Champagne C, Zhou J, Van Dyke TE. Assignment of the gene for diacylglycerol kinase (DAGK) to human chromosome 12. Mamm Genome 1994; 5:123-4. [PMID: 8180475 DOI: 10.1007/bf00292343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- T C Hart
- Department of Periodontology, Eastman Dental Center, Rochester, New York 14620
| | | | | | | |
Collapse
|
40
|
Kanoh H, Sakane F, Imai S, Wada I. Diacylglycerol kinase and phosphatidic acid phosphatase--enzymes metabolizing lipid second messengers. Cell Signal 1993; 5:495-503. [PMID: 8312127 DOI: 10.1016/0898-6568(93)90045-n] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- H Kanoh
- Department of Biochemistry, Sapporo Medical College, Japan
| | | | | | | |
Collapse
|
41
|
Moritz A, Westerman J, De Graan PN, Payrastre B, Gispen WH, Wirtz KW. Characterization of phosphatidylinositol-4-phosphate 5-kinase activities from bovine brain membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1168:79-86. [PMID: 8389203 DOI: 10.1016/0005-2760(93)90269-f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phosphatidylinositol-4-phosphate (PtdIns(4)P) kinase activity associated with bovine brain membranes, was released by NaCl treatment and partially purified by chromatography on phosphocellulose, phenylsepharose, Ultrogel AcA44, DEAE-cellulose and ATP-agarose. The final preparation contained a 6333-fold purified protein fraction with a specific activity of 171 nmol.min-1 x mg-1. Under conditions where this PtdIns(4)P kinase activity (PtdIns(4)P kinase activity b) did not bind to DEAE-cellulose, a PtdIns(4)P kinase activity purified earlier (Moritz, A., De Graan, P.N.E., Ekhart, P.F., Gispen, W.H. and Wirtz, K.W.A. (1990) J. Neurochem. 54, 351-354) does bind (PtdIns(4)P kinase activity a). Both enzyme activities specifically used PtdIns(4)P as substrate and phosphorylated the inositol moiety at the 5'-position. PtdIns(4) kinase activity a has an apparent Km of 18 microM for PtdIns(4)P whereas PtdIns(4)P kinase activity b has a Km of 4 microM. All other measured kinetic parameters (i.e., Km for ATP, Mg(2+)-dependence, pH optimum, activation by phosphatidylserine and inhibition by phosphatidylinositol 4,5-bisphosphate) were similar for both enzyme activities.
Collapse
Affiliation(s)
- A Moritz
- Center for Biomembranes and Lipid Enzymology, Rudolf Magnus Institute, University of Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Two forms of rat brain cytosolic diacylglycerol kinase (EC2.7.1.107) were separated by heparin-agarose column chromatography. These forms, designated DGK-I and DGK-II, were not interconvertible as determined by rechromatography. DGK-I and DGK-II had respective molecular masses of 88 and 180 kDa, as measured by Sepharose 6B chromatography. Both forms preferred diacylglycerol over monoacylglycerol and were insensitive to R59022. DGK-II, but not DGK-I, was activated by an activator substance prepared from chicken egg yolk. DGK-II was activated by a rat brain cytosolic activator and was exclusively sensitive to 5'-AMP-mediated inactivation. Further studies revealed that these two forms had the following distinct characteristics: (a) substrate specificity, (b) inhibition by heparin, (c) sensitivity to lysine-containing polyamino acids, and (d) responses to different phospholipids. In general, DGK-II was more responsive to various inhibitors and activators, making it a prime candidate for a regulatable enzyme.
Collapse
Affiliation(s)
- Q Chen
- Department of Biochemistry, School of Medicine, University of Missouri-Columbia 65212
| | | | | |
Collapse
|
43
|
Kanoh H, Imai S, Yamada K, Sakane F. Purification and properties of phosphatidic acid phosphatase from porcine thymus membranes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74041-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Bothmer J, Markerink M, Jolles J. Brain phosphatidic acid and polyphosphoinositide formation in a broken cell preparation: regional distribution and the effect of age. Neurochem Int 1992; 21:223-8. [PMID: 1338899 DOI: 10.1016/0197-0186(92)90151-g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of age on phosphate incorporation into phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid (PA) was studied. Lysed crude synaptosomal fractions of different brain regions of 3-month-old and 32-month-old Brown Norway rats were used. The brain regions tested were the hippocampus, frontal cortex, occipital/parietal cortex, entorhinal/pyriformal cortex, striatum/septum, thalamus and hypothalamus. The individual specific phosphorylating activities were unevenly distributed within the brain of Brown Norway rats. Strikingly, the distribution of phosphate incorporation into PIP2 was opposite from that of phosphate incorporation into PA. Phosphate incorporation into PA decreased (-15%) with age in almost all brain regions tested, whereas phosphate incorporation into PIP2 decreased with age only in the frontal cortex (-20%) and in the hypothalamus (-8%). The effects of age may reflect a deterioration of phosphoinositide metabolism, with its function in signal transduction coupled to receptors via G-proteins, in the brain regions involved. In addition, there was an age related decrease in protein content and total phospholipid phosphorus content of lysed crude synaptosomal preparations of all brain regions. The high correlation between the changes in these parameters may be indicative of a decrease in the number or size of synaptosomes with age in the brain regions involved.
Collapse
Affiliation(s)
- J Bothmer
- Department of Neuropsychology and Psychobiology, University of Limburg, Maastricht, The Netherlands
| | | | | |
Collapse
|
45
|
Fu T, Sugimoto Y, Okano Y, Kanoh H, Nozawa Y. Abolishment of bradykinin-induced calcium oscillations in ras-transformed fibroblasts by the expression of 80 kDa diacylglycerol kinase. FEBS Lett 1992; 307:301-4. [PMID: 1322835 DOI: 10.1016/0014-5793(92)80700-q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our previous study showed bradykinin-induced periodic Ca2+ changes (Ca2+ oscillations) in v-Ki-ras-transformed NIH/3T3 (DT) cells in which protein kinase C (PKC) activity is partially down-regulated by a sustained high level of 1,2-diacylglycerol (DAG) [FEBS Lett. (1991) 281, 263-266]. In the present study, DAG kinase with 80 kDa mass (80K DGK) has been successfully transfected in DT cells, which exhibited enhanced cellular DAG kinase activities, decreased cellular DAG contents, and increased PKC activities compared to the control vector-transfected cells. Furthermore, these DGK-transfectants showed strong inhibition in bradykinin-induced Ca2+ oscillations. The results suggest that the sustained DAG increase down-regulates the PKC activity, thereby leading to the induction of Ca2+ oscillations in DT cells.
Collapse
Affiliation(s)
- T Fu
- Department of Biochemistry, Gifu University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
46
|
Inoue H, Yoshioka T, Hotta Y. Partial purification and characterization of membrane-associated diacylglycerol kinase of Drosophila heads. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1122:219-24. [PMID: 1322704 DOI: 10.1016/0167-4838(92)90327-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A membrane-associated diacylglycerol kinase of Drosophila heads was purified to near homogeneity from the KCl extract of Drosophila heads. The purification procedure involved chromatography on Q-Sepharose, ammonium sulfate fractionation, Superose 12, hydroxyapatite and ATP-agarose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of fractions after the ATP-agarose column chromatography showed that only a 115 kDa protein correlated well with the enzyme activity. The apparent Km values of partially purified DG kinase were 220 microM for ATP and 540 microM for diolein, respectively. The activity of the DG kinase was inhibited by deoxycholate and was not activated by Ca2+.
Collapse
Affiliation(s)
- H Inoue
- Department of Basic Sciences, School of Human Sciences, Waseda University, Tokorozawa, Japan
| | | | | |
Collapse
|
47
|
Goddat J, Coste H, Vilgrain I, Chambaz E, Driguez H. Derivatives of di-O-octanoylglycerol and mono-O-octylglycerol as modulators of protein kinase C and diacylglycerol kinase activities. Lipids 1992; 27:331-8. [PMID: 1328795 DOI: 10.1007/bf02536146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Twelve analogs of 1,2-di-O-octanoylglycerol modified at C-3 and three quaternary N-alkyl-ammonium derivatives of glycerol were synthesized. The compounds were tested in vitro as potential modulators of the calcium activated, phospholipid dependent protein kinase C (PKC) and diacylglycerol (DAG) kinase activities in order to understand the molecular interactions of these enzymes with their natural activators, inhibitors, or substrates. PKC activity was assayed by measuring histone H1 phosphorylation, and the compounds synthesized were tested either in the presence (inhibitors) or in the absence (activators) of 1,2-di-O-octanoylglycerol analogs with the phosphatidylserine/Ca2+ mixture. DAG kinase activity was measured by the incorporation of phosphate into 1,2-di-O-oleoyl-sn-glycerol in the presence of the various analogs synthesized. In regard to PKC activity, the assays revealed that 1,2-di-O-octanoylglycerol analogs are inactive when modified at C-3 with groups which do not permit hydrogen bonding. Under our conditions, di-O-octanoylthioglycerol, which has been reported as inactive, was able to activate PKC in the presence of phosphatidylserine. It has been shown to give a synergistic activation with diacylglycerol and had no affinity for the phorbol ester receptor binding site, suggesting that O-octanoylthioglycerol interacts with the enzyme at a different site from the phorbol ester receptor binding site. PKC and DAG kinase activities are inhibited by N-alkyl-ammonium compounds (IC50 24 microM) only when either two 8-carbon alkyl or acyl chains are present at the 1- and 2-positions of the glycerol backbone.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
48
|
Moritz A, De Graan P, Gispen W, Wirtz K. Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42504-5] [Citation(s) in RCA: 295] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
|
50
|
Kanoh H, Sakane F, Yamada K. Diacylglycerol kinase isozymes from brain and lymphoid tissues. Methods Enzymol 1992; 209:162-72. [PMID: 1323029 DOI: 10.1016/0076-6879(92)09020-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|