1
|
Hashimoto Y, Kawade H, Bao W, Morii S, Nakano M, Nagae M, Murakami R, Tokoro Y, Nakashima M, Cai Z, Isaji T, Gu J, Nakajima K, Kizuka Y. The K346T mutant of GnT-III bearing weak in vitro and potent intracellular activity. Biochim Biophys Acta Gen Subj 2024; 1868:130663. [PMID: 38936637 DOI: 10.1016/j.bbagen.2024.130663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND N-Acetylglucosaminyltransferase-III (GnT-III, also designated MGAT3) catalyzes the formation of a specific N-glycan branch, bisecting GlcNAc, in the Golgi apparatus. Bisecting GlcNAc is a key residue that suppresses N-glycan maturation and is associated with the pathogenesis of cancer and Alzheimer's disease. However, it remains unclear how GnT-III recognizes its substrates and how GnT-III activity is regulated in cells. METHODS Using AlphaFold2 and structural comparisons, we predicted the key amino acid residues in GnT-III that interact with substrates in the catalytic pocket. We also performed in vitro activity assay, lectin blotting analysis and N-glycomic analysis using point mutants to assess their activity. RESULTS Our data suggested that E320 of human GnT-III is the catalytic center. More interestingly, we found a unique mutant, K346T, that exhibited lower in vitro activity and higher intracellular activity than wild-type GnT-III. The enzyme assays using various substrates showed that the substrate specificity of K346T was unchanged, whereas cycloheximide chase experiments revealed that the K346T mutant has a slightly shorter half-life, suggesting that the mutant is unstable possibly due to a partial misfolding. Furthermore, TurboID-based proximity labeling showed that the localization of the K346T mutant is shifted slightly to the cis side of the Golgi, probably allowing for prior action to competing galactosyltransferases. CONCLUSIONS The slight difference in K346T localization may be responsible for the higher biosynthetic activity despite the reduced activity. GENERAL SIGNIFICANCE Our findings underscore the importance of fine intra-Golgi localization and reaction orders of glycosyltransferases for the biosynthesis of complex glycan structures in cells.
Collapse
Affiliation(s)
- Yuta Hashimoto
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Haruka Kawade
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - WanXue Bao
- Glyco-Biochemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Reiko Murakami
- Glycoanalytical Chemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yuko Tokoro
- Glyco-Biochemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Misaki Nakashima
- Glyco-Biochemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Zixuan Cai
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Kazuki Nakajima
- Glycoanalytical Chemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yasuhiko Kizuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan; Glyco-Biochemistry Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
2
|
Bonab MKF, Guo Z, Li Q. Glycosphingolipids: from metabolism to chemoenzymatic total synthesis. Org Biomol Chem 2024; 22:6665-6683. [PMID: 39120686 PMCID: PMC11341264 DOI: 10.1039/d4ob00695j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
GSLs are the major glycolipids in vertebrates and mediate many key biological processes from intercellular recognition to cis regulation of signal transduction. The fast-expanding field of glycobiology has led to a growing demand for diverse and structurally defined GSLs, and enzymatic GSL synthesis is developing rapidly in accordance. This article provides an overview of natural GSL biosynthetic pathways and surveys the bacterial enzymes applied to GSL synthesis and recent progress in synthesis strategies. By correlating these three areas, this article aims to define the gaps between GSL biosynthesis and chemoenzymatic synthesis and evaluate the opportunities for harnessing natural forces to access GSLs efficiently.
Collapse
Affiliation(s)
- Mitra K F Bonab
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Qingjiang Li
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.
| |
Collapse
|
3
|
Corcoran E, Olayinka A, di Luca M, Gusti Y, Hakimjavadi R, O'Connor B, Redmond EM, Cahill PA. N-Glycans on the extracellular domain of the Notch1 receptor control Jagged-1 induced Notch signalling and myogenic differentiation of S100β resident vascular stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567576. [PMID: 38014317 PMCID: PMC10680845 DOI: 10.1101/2023.11.17.567576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Notch signalling, critical for development and postnatal homeostasis of the vascular system, is highly regulated by several mechanisms including glycosylation. While the importance of O-linked glycosylation is widely accepted, the structure and function of N-glycans has yet to be defined. Here, we take advantage of lectin binding assays in combination with pharmacological, molecular, and site-directed mutagenetic approaches to study N-glycosylation of the Notch1 receptor. We find that several key oligosaccharides containing bisecting or core fucosylated structures decorate the receptor, control expression and receptor trafficking, and dictate Jagged-1 activation of Notch target genes and myogenic differentiation of multipotent S100β vascular stem cells. N-glycans at asparagine (N) 1241 and 1587 protect the receptor from accelerated degradation, while the oligosaccharide at N888 directly affects signal transduction. Conversely, N-linked glycans at N959, N1179, N1489 do not impact canonical signalling but inhibit differentiation. Our work highlights a novel functional role for N-glycans in controlling Notch1 signalling and differentiation of vascular stem cells.
Collapse
Affiliation(s)
- Eoin Corcoran
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Abidemi Olayinka
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Mariana di Luca
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Yusof Gusti
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Brendan O'Connor
- School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
4
|
Zhang N, Häring M, Wolf F, Großhans J, Kong D. Dynamics and functions of E-cadherin complexes in epithelial cell and tissue morphogenesis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:585-601. [PMID: 38045551 PMCID: PMC10689684 DOI: 10.1007/s42995-023-00206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Cell-cell adhesion is at the center of structure and dynamics of epithelial tissue. E-cadherin-catenin complexes mediate Ca2+-dependent trans-homodimerization and constitute the kernel of adherens junctions. Beyond the basic function of cell-cell adhesion, recent progress sheds light the dynamics and interwind interactions of individual E-cadherin-catenin complex with E-cadherin superclusters, contractile actomyosin and mechanics of the cortex and adhesion. The nanoscale architecture of E-cadherin complexes together with cis-interactions and interactions with cortical actomyosin adjust to junctional tension and mechano-transduction by reinforcement or weakening of specific features of the interactions. Although post-translational modifications such as phosphorylation and glycosylation have been implicated, their role for specific aspects of in E-cadherin function has remained unclear. Here, we provide an overview of the E-cadherin complex in epithelial cell and tissue morphogenesis focusing on nanoscale architectures by super-resolution approaches and post-translational modifications from recent, in particular in vivo, studies. Furthermore, we review the computational modelling in E-cadherin complexes and highlight how computational modelling has contributed to a deeper understanding of the E-cadherin complexes.
Collapse
Affiliation(s)
- Na Zhang
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
5
|
Hsu YP, Nourzaie O, Tocher AE, Nerella K, Ermakov G, Jung J, Fowler A, Wu P, Ayesa U, Willingham A, Beaumont M, Ingale S. Site-Specific Antibody Conjugation Using Modified Bisected N-Glycans: Method Development and Potential toward Tunable Effector Function. Bioconjug Chem 2023; 34:1633-1644. [PMID: 37620302 PMCID: PMC10516122 DOI: 10.1021/acs.bioconjchem.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Antibody-drug conjugates (ADCs) have garnered worldwide attention for disease treatment, as they possess high target specificity, a long half-life, and outstanding potency to kill or modulate the functions of targets. FDA approval of multiple ADCs for cancer therapy has generated a strong desire for novel conjugation strategies with high biocompatibility and controllable bioproperties. Herein, we present a bisecting glycan-bridged conjugation strategy that enables site-specific conjugation without the need for the oligosaccharide synthesis and genetic engineering of antibodies. Application of this method is demonstrated by conjugation of anti-HER2 human and mouse IgGs with a cytotoxic drug, monomethyl auristatin E. The glycan bridge showed outstanding stability, and the resulting ADCs eliminated HER2-expressing cancer cells effectively. Moreover, our strategy preserves the feasibility of glycan structure remodeling to fine-tune the immunogenicity and pharmacokinetic properties of ADCs through glycoengineering.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Omar Nourzaie
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Ariel E. Tocher
- MRL,
Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kavitha Nerella
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Grigori Ermakov
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Jiwon Jung
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Alexandra Fowler
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Peidong Wu
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Umme Ayesa
- MRL, Merck
& Co., Inc., 90 E.
Scott Ave., Rahway, New Jersey 07065, United States
| | - Aarron Willingham
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Maribel Beaumont
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Sampat Ingale
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| |
Collapse
|
6
|
Dang L, Li P, Dan W, Liu H, Shen J, Zhu B, Jia L, Sun S. Glycoproteomic analysis of regulatory effects of bisecting N-glycans on N-glycan biosynthesis and protein expressions in human HK-2 cells. Carbohydr Res 2023; 531:108894. [PMID: 37421876 DOI: 10.1016/j.carres.2023.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/02/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Bisecting N-glycan is known to be a metastasis suppressor and plays a regulatory role in the biosynthesis of N-glycans. Previous studies have shown that bisecting N-glycans are capable of modulating both the branching and terminal modifications of glycans. However, these effects have been investigated mainly by glycomic approaches and it remains unclear how they alter when glycans are attached to different glycosites of proteins. Here, we systematically investigated the regulatory roles of bisecting N-glycans in human HK-2 cells using StrucGP, a strategy we developed for structural interpretation of site-specific N-glycans on glycoproteins. The glycoproteomics analysis showed that most of bisecting N-glycans are complex type and often occur in company with core fucosylation. With the overexpression and knockdown of MGAT3, the only enzyme responsible for bisecting N-glycan synthesis, we found that bisecting N-glycans can impact the biosynthesis of N-glycans from multiple aspects, including glycan types, branching, sialylation, fucosylation (different effects for core and terminal fucosylation) as well as the presence of terminal N-acetylglucosamine. Furthermore, gene ontology analysis suggested that most proteins with bisecting N-glycans located in the extracellular region or membrane, where they function mostly in cell adhesion, extracellular matrix regulation and cell signaling. Finally, we showed that overexpression of bisecting N-glycans had a broad impact on the protein expressions of HK-2 cells, involving multiple biological processes. Taken together, our work systematically demonstrated the expression profiles of bisecting N-glycans, and their regulatory effects on the biosynthesis of N-glycans and protein expressions, which provide valuable information for the functional elucidation of bisecting N-glycans.
Collapse
Affiliation(s)
- Liuyi Dang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Pengfei Li
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Wei Dan
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Huanhuan Liu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Bojing Zhu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Li Jia
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, China.
| |
Collapse
|
7
|
Soni V, Rosenn EH, Venkataraman R. Insights into the central role of N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU) in peptidoglycan metabolism and its potential as a therapeutic target. Biochem J 2023; 480:1147-1164. [PMID: 37498748 DOI: 10.1042/bcj20230173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Several decades after the discovery of the first antibiotic (penicillin) microbes have evolved novel mechanisms of resistance; endangering not only our abilities to combat future bacterial pandemics but many other clinical challenges such as acquired infections during surgeries. Antimicrobial resistance (AMR) is attributed to the mismanagement and overuse of these medications and is complicated by a slower rate of the discovery of novel drugs and targets. Bacterial peptidoglycan (PG), a three-dimensional mesh of glycan units, is the foundation of the cell wall that protects bacteria against environmental insults. A significant percentage of drugs target PG, however, these have been rendered ineffective due to growing drug resistance. Identifying novel druggable targets is, therefore, imperative. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is one of the key building blocks in PG production, biosynthesized by the bifunctional enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU). UDP-GlcNAc metabolism has been studied in many organisms, but it holds some distinctive features in bacteria, especially regarding the bacterial GlmU enzyme. In this review, we provide an overview of different steps in PG biogenesis, discuss the biochemistry of GlmU, and summarize the characteristic structural elements of bacterial GlmU vital to its catalytic function. Finally, we will discuss various studies on the development of GlmU inhibitors and their significance in aiding future drug discoveries.
Collapse
Affiliation(s)
- Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Eric H Rosenn
- Tel Aviv University School of Medicine, Tel Aviv 6997801, Israel
| | - Ramya Venkataraman
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
8
|
Chen Q, Zhang Y, Zhang K, Liu J, Pan H, Wang X, Li S, Hu D, Lin Z, Zhao Y, Hou G, Guan F, Li H, Liu S, Ren Y. Profiling the Bisecting N-acetylglucosamine Modification in Amniotic Membrane via Mass Spectrometry. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:648-656. [PMID: 35123071 PMCID: PMC9880894 DOI: 10.1016/j.gpb.2021.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 01/31/2023]
Abstract
Bisecting N-acetylglucosamine (GlcNAc), a GlcNAc linked to the core β-mannose residue via a β1,4 linkage, is a special type of N-glycosylation that has been reported to be involved in various biological processes, such as cell adhesion and fetal development. This N-glycan structure is abundant in human trophoblasts, which is postulated to be resistant to natural killer cell-mediated cytotoxicity, enabling a mother to nourish a fetus without rejection. In this study, we hypothesized that the human amniotic membrane, which serves as the last barrier for the fetus, may also express bisected-type glycans. To test this hypothesis, glycomic analysis of the human amniotic membrane was performed, and bisected N-glycans were detected. Furthermore, our proteomic data, which have been previously employed to explore human missing proteins, were analyzed and the presence of bisecting GlcNAc-modified peptides was confirmed. A total of 41 glycoproteins with 43 glycopeptides were found to possess a bisecting GlcNAc, and 25 of these glycoproteins were reported to exhibit this type of modification for the first time. These results provide insights into the potential roles of bisecting GlcNAc modification in the human amniotic membrane, and can be beneficial to functional studies on glycoproteins with bisecting GlcNAc modifications and functional studies on immune suppression in human placenta.
Collapse
Affiliation(s)
| | | | | | - Jie Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Siqi Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Dandan Hu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yun Zhao
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Hong Li
- Shenzhen Seventh People's Hospital, Shenzhen 518081, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China,Corresponding authors.
| | - Yan Ren
- BGI-Shenzhen, Shenzhen 518083, China,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China,Corresponding authors.
| |
Collapse
|
9
|
Hsu YP, Verma D, Sun S, McGregor C, Mangion I, Mann BF. Successive remodeling of IgG glycans using a solid-phase enzymatic platform. Commun Biol 2022; 5:328. [PMID: 35393560 PMCID: PMC8990068 DOI: 10.1038/s42003-022-03257-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
The success of glycoprotein-based drugs in various disease treatments has become widespread. Frequently, therapeutic glycoproteins exhibit a heterogeneous array of glycans that are intended to mimic human glycopatterns. While immunogenic responses to biologic drugs are uncommon, enabling exquisite control of glycosylation with minimized microheterogeneity would improve their safety, efficacy and bioavailability. Therefore, close attention has been drawn to the development of glycoengineering strategies to control the glycan structures. With the accumulation of knowledge about the glycan biosynthesis enzymes, enzymatic glycan remodeling provides a potential strategy to construct highly ordered glycans with improved efficiency and biocompatibility. In this study, we quantitatively evaluate more than 30 enzymes for glycoengineering immobilized immunoglobulin G, an impactful glycoprotein class in the pharmaceutical field. We demonstrate successive glycan remodeling in a solid-phase platform, which enabled IgG glycan harmonization into a series of complex-type N-glycoforms with high yield and efficiency while retaining native IgG binding affinity. A solid-phase glycan remodeling (SPGR) platform is presented. Over thirty enzymes were evaluated for successive glycoengineering of immobilized antibodies with outstanding performance in several SPGR reactions.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA.,Exploratory Science Center, Merck & Co., Inc, Cambridge, MA, 02141, USA
| | - Deeptak Verma
- Computational and Structural Chemistry, Discovery Chemistry, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Shuwen Sun
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Caroline McGregor
- Process Research & Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Ian Mangion
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Benjamin F Mann
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA.
| |
Collapse
|
10
|
Gruszewska E, Grytczuk A, Chrostek L. Glycosylation in viral hepatitis. Biochim Biophys Acta Gen Subj 2021; 1865:129997. [PMID: 34474116 DOI: 10.1016/j.bbagen.2021.129997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND The interaction between hepatitis viruses and host cells is regulated by glycans exposed on the surfaces of human and viruses cells. As the biosynthesis and degradation of human glycoproteins take place at the highest level in the liver, the changes in glycosylation of serum proteins may potentially be useful in the diagnosis of liver pathology. On the other hand, specific alterations in viruses envelope glycans could cause large changes in the entry process of hepatitis viruses into a host cells. SCOPE OF REVIEW Unique alterations in glycosylation of specific proteins can be detected in HBV and HCV infected patients especially with confirmed fibrosis/cirrhosis. On the other hand, viral envelope proteins that bind to host cells are glycosylated. These glycosylated proteins play a key role in recognition, binding and penetration of the host cells. In this review we summarized the knowledge about significance of glycosylation for viral and host factors. MAJOR CONCLUSIONS Glycosylation changes in single serum glycoproteins are noticed in the sera of patients with viral hepatitis. However, a more specific biomarker for the diagnosis of chronic hepatitis than that of a single glycosylated molecule is systemic investigation of complete set of glycan structures (N-glycome). Glycans play important roles in the viral biology cycle especially as a connecting element with host receptors. GENERAL SIGNIFICANCE The interaction between virus glycoproteins and cellular receptors, which are also glycoproteins, determines the possibility of virus penetration into host cells. Therefore these glycans can be the targets for the developing of novel treatment strategies of viral hepatitis.
Collapse
Affiliation(s)
- Ewa Gruszewska
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Agnieszka Grytczuk
- Department of Laboratory Diagnostics, University Clinical Hospital in Bialystok, Bialystok, Poland
| | - Lech Chrostek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland.
| |
Collapse
|
11
|
Fujihira H, Takakura D, Matsuda A, Abe M, Miyazaki M, Nakagawa T, Kajino K, Denda-Nagai K, Noji M, Hino O, Irimura T. Bisecting-GlcNAc on Asn388 is characteristic to ERC/mesothelin expressed on epithelioid mesothelioma cells. J Biochem 2021; 170:317-326. [PMID: 33792699 PMCID: PMC8510291 DOI: 10.1093/jb/mvab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/27/2021] [Indexed: 11/13/2022] Open
Abstract
Mesothelioma is a highly aggressive tumour associated with asbestos exposure and is histologically classified into three types: epithelioid-type, sarcomatoid-type and biphasic-type. The prognosis of mesothelioma patients is poor and there is no effective molecular-targeting therapy as yet. ERC/mesothelin is a glycoprotein that is highly expressed on several types of cancers including epithelioid mesothelioma, but also expressed on normal mesothelial cells. This is a predicted reason why there is no clinically approved therapeutic antibody targeting ERC/mesothelin. In the present study, we focussed on the differential glycosylation between ERC/mesothelin present on epithelioid mesothelioma and that on normal mesothelial cells and aimed to reveal a distinct feature of epithelioid mesothelioma cells. Lectin microarray analysis of ERC/mesothelin using cells and patient specimens showed significantly stronger binding of PHA-E4 lectin, which recognizes complex-type N-glycans having a so-called bisecting-GlcNAc structure, to ERC/mesothelin from epithelioid mesothelioma cells than that from normal mesothelial cells. Further, liquid chromatography/mass spectrometry analysis on ERC/mesothelin from epithelioid mesothelioma cells confirmed the presence of a bisecting-GlcNAc attached to Asn388 of ERC/mesothelin. These results suggest that this glycoproteome could serve as a potential target for the generation of a highly selective and safe therapeutic antibody for epithelioid mesothelioma.
Collapse
Affiliation(s)
- Haruhiko Fujihira
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Glycometabolic Biochemistry Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan
| | - Daisuke Takakura
- Project for utilizing glycans in the development of innovative drug discovery technologies, Japan Bioindustry Association (JBA), Tokyo 104-0032, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
| | - Atsushi Matsuda
- Department of Biochemistry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Masaaki Abe
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Michiyo Miyazaki
- Project for utilizing glycans in the development of innovative drug discovery technologies, Japan Bioindustry Association (JBA), Tokyo 104-0032, Japan
| | - Tomomi Nakagawa
- Project for utilizing glycans in the development of innovative drug discovery technologies, Japan Bioindustry Association (JBA), Tokyo 104-0032, Japan
| | - Kazunori Kajino
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan.,Department of Human Pathology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Kaori Denda-Nagai
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Miki Noji
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Okio Hino
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Tatsuro Irimura
- Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
12
|
Dall'Olio F, Malagolini N. Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:303-340. [PMID: 34687015 DOI: 10.1007/978-3-030-76912-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Li H, Patel V, DiMartino SE, Froehlich JW, Lee RS. An in-depth Comparison of the Pediatric and Adult Urinary N-glycomes. Mol Cell Proteomics 2020; 19:1767-1776. [PMID: 32737218 DOI: 10.1074/mcp.ra120.002225] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
We performed an in-depth characterization and comparison of the pediatric and adult urinary glycomes using a nanoLC-MS/MS based glycomics method, which included normal healthy pediatric (1-10 years, n = 21) and adult (21-50 years, n = 22) individuals. A total of 116 N-glycan compositions were identified, and 46 of them could be reproducibly quantified. We performed quantitative comparisons of the 46 glycan compositions between different age and sex groups. The results showed significant quantitative changes between the pediatric and adult cohorts. The pediatric urinary N-glycome was found to contain a higher level of high-mannose (HM), asialylated/afucosylated glycans (excluding HM), neutral fucosylated and agalactosylated glycans, and a lower level of trisialylated glycans compared with the adult. We further analyzed gender-associated glycan changes in the pediatric and adult group, respectively. In the pediatric group, there was almost no difference of glycan levels between males and females. In adult, the majority of glycans were more abundant in males than females, except the high-mannose and tetrasialylated glycans. These findings highlight the importance to consider age-matching and adult sex-matching for urinary glycan studies. The identified normal pediatric and adult urinary glycomes can serve as a baseline reference for comparisons to other disease states affected by glycosylation.
Collapse
Affiliation(s)
- Haiying Li
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Viral Patel
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shannon E DiMartino
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John W Froehlich
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | - Richard S Lee
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
14
|
Chen Q, Tan Z, Guan F, Ren Y. The Essential Functions and Detection of Bisecting GlcNAc in Cell Biology. Front Chem 2020; 8:511. [PMID: 32719771 PMCID: PMC7350706 DOI: 10.3389/fchem.2020.00511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
The N-glycans of mammalian glycoproteins vary greatly in structure, and the biological importance of these variations is mostly unknown. It is widely acknowledged that the bisecting N-acetylglucosamine (GlcNAc) structure, a β1,4-linked GlcNAc attached to the core β-mannose residue, represents a special type of N-glycosylated modification, and it has been reported to be involved in various biological processes, such as cell adhesion, fertilization and fetal development, neuritogenesis, and tumor development. In particular, the occurrence of N-glycans with a bisecting GlcNAc modification on proteins has been proven, with many implications for immune biology. Due to the essential functions of bisecting GlcNAc structures, analytical approaches to this modification are highly required. The traditional approach that has been used for bisecting GlcNAc determinations is based on the lectin recognition of Phaseolus vulgaris erythroagglutinin (PHA-E); however, poor binding specificity hinders the application of this method. With the development of mass spectrometry (MS) with high resolution and improved sensitivity and accuracy, MS-based glycomic analysis has provided precise characterization and quantification for glycosylation modification. In this review, we first provide an overview of the bisecting GlcNAc structure and its biological importance in neurological systems, immune tolerance, immunoglobulin G (IgG), and tumor metastasis and development and then summarize approaches to its determination by MS for performing precise functional studies. This review is valuable for those readers who are interested in the importance of bisecting GlcNAc in cell biology.
Collapse
Affiliation(s)
- Qiushi Chen
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Zengqi Tan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Yan Ren
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Pandey A, Niknejad N, Jafar-Nejad H. Multifaceted regulation of Notch signaling by glycosylation. Glycobiology 2020; 31:8-28. [PMID: 32472127 DOI: 10.1093/glycob/cwaa049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
To build a complex body composed of various cell types and tissues and to maintain tissue homeostasis in the postembryonic period, animals use a small number of highly conserved intercellular communication pathways. Among these is the Notch signaling pathway, which is mediated via the interaction of transmembrane Notch receptors and ligands usually expressed by neighboring cells. Maintaining optimal Notch pathway activity is essential for normal development, as evidenced by various human diseases caused by decreased and increased Notch signaling. It is therefore not surprising that multiple mechanisms are used to control the activation of this pathway in time and space. Over the last 20 years, protein glycosylation has been recognized as a major regulatory mechanism for Notch signaling. In this review, we will provide a summary of the various types of glycan that have been shown to modulate Notch signaling. Building on recent advances in the biochemistry, structural biology, cell biology and genetics of Notch receptors and the glycosyltransferases that modify them, we will provide a detailed discussion on how various steps during Notch activation are regulated by glycans. Our hope is that the current review article will stimulate additional research in the field of Notch glycobiology and will potentially be of benefit to investigators examining the contribution of glycosylation to other developmental processes.
Collapse
Affiliation(s)
| | | | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics.,Development, Disease Models & Therapeutics Graduate Program.,Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Barolo L, Abbriano RM, Commault AS, George J, Kahlke T, Fabris M, Padula MP, Lopez A, Ralph PJ, Pernice M. Perspectives for Glyco-Engineering of Recombinant Biopharmaceuticals from Microalgae. Cells 2020; 9:E633. [PMID: 32151094 PMCID: PMC7140410 DOI: 10.3390/cells9030633] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Microalgae exhibit great potential for recombinant therapeutic protein production, due to lower production costs, immunity to human pathogens, and advanced genetic toolkits. However, a fundamental aspect to consider for recombinant biopharmaceutical production is the presence of correct post-translational modifications. Multiple recent studies focusing on glycosylation in microalgae have revealed unique species-specific patterns absent in humans. Glycosylation is particularly important for protein function and is directly responsible for recombinant biopharmaceutical immunogenicity. Therefore, it is necessary to fully characterise this key feature in microalgae before these organisms can be established as industrially relevant microbial biofactories. Here, we review the work done to date on production of recombinant biopharmaceuticals in microalgae, experimental and computational evidence for N- and O-glycosylation in diverse microalgal groups, established approaches for glyco-engineering, and perspectives for their application in microalgal systems. The insights from this review may be applied to future glyco-engineering attempts to humanize recombinant therapeutic proteins and to potentially obtain cheaper, fully functional biopharmaceuticals from microalgae.
Collapse
Affiliation(s)
- Lorenzo Barolo
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Audrey S. Commault
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Jestin George
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD 4001, Australia
| | - Matthew P. Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Sydney, Australia;
| | - Angelo Lopez
- Department of Chemistry, University of York, York, YO10 5DD, UK;
| | - Peter J. Ralph
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| |
Collapse
|
17
|
Urata Y, Takeuchi H. Effects of Notch glycosylation on health and diseases. Dev Growth Differ 2019; 62:35-48. [PMID: 31886522 DOI: 10.1111/dgd.12643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Notch signaling is an evolutionarily conserved signaling pathway and is essential for cell-fate specification in metazoans. Dysregulation of Notch signaling results in various human diseases, including cardiovascular defects and cancer. In 2000, Fringe, a known regulator of Notch signaling, was discovered as a Notch-modifying glycosyltransferase. Since then, glycosylation-a post-translational modification involving literal sugars-on the Notch extracellular domain has been noted as a critical mechanism for the regulation of Notch signaling. Additionally, the presence of diverse O-glycans decorating Notch receptors has been revealed in the extracellular domain epidermal growth factor-like (EGF) repeats. Here, we concisely summarize the recent studies in the human diseases associated with aberrant Notch glycosylation.
Collapse
Affiliation(s)
- Yusuke Urata
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Fonseca-García C, Zayas AE, Montiel J, Nava N, Sánchez F, Quinto C. Transcriptome analysis of the differential effect of the NADPH oxidase gene RbohB in Phaseolus vulgaris roots following Rhizobium tropici and Rhizophagus irregularis inoculation. BMC Genomics 2019; 20:800. [PMID: 31684871 PMCID: PMC6827182 DOI: 10.1186/s12864-019-6162-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are generated by NADPH oxidases known as respiratory burst oxidase homologs (RBOHs) in plants. ROS regulate various cellular processes, including the mutualistic interactions between legumes and nitrogen-fixing bacteria or arbuscular mycorrhizal (AM) fungi. Rboh is a multigene family comprising nine members (RbohA-I) in common bean (Phaseolus vulgaris). The RNA interference-mediated silencing of RbohB (PvRbohB-RNAi) in this species diminished its ROS production and greatly impaired nodulation. By contrast, the PvRbohB-RNAi transgenic roots showed early hyphal root colonization with enlarged fungal hypopodia; therefore, we proposed that PvRbohB positively regulates rhizobial infection (Rhizobium tropici) and inhibits AM colonization by Rhizophagus irregularis in P. vulgaris. RESULTS To corroborate this hypothesis, an RNA-Seq transcriptomic analysis was performed to identify the differentially expressed genes in the PvRbohB-RNAi roots inoculated with Rhizobium tropici or Rhizophagus irregularis. We found that, in the early stages, root nodule symbioses generated larger changes of the transcriptome than did AM symbioses in P. vulgaris. Genes related to ROS homeostasis and cell wall flexibility were markedly upregulated in the early stages of rhizobial colonization, but not during AM colonization. Compared with AM colonization, the rhizobia induced the expression of a greater number of genes encoding enzymes involved in the metabolism of auxins, cytokinins, and ethylene, which were typically repressed in the PvRbohB-RNAi roots. CONCLUSIONS Our research provides substantial insights into the genetic interaction networks in the early stages of rhizobia and AM symbioses with P. vulgaris, as well as the differential roles that RbohB plays in processes related to ROS scavenging, cell wall remodeling, and phytohormone homeostasis during nodulation and mycorrhization in this legume.
Collapse
Affiliation(s)
- Citlali Fonseca-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Alejandra E Zayas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Jesús Montiel
- Department of Molecular Biology and Genetics, Aarhus University, C 8000, Aarhus, Denmark
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
19
|
Tang L, Chen X, Zhang X, Guo Y, Su J, Zhang J, Peng C, Chen X. N-Glycosylation in progression of skin cancer. Med Oncol 2019; 36:50. [PMID: 31037368 DOI: 10.1007/s12032-019-1270-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022]
Abstract
Skin cancer can be classified as cutaneous malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. Due to the high level of morbidity and mortality, skin cancer has become a global public health issue worldwide while the pathogenesis of skin cancer is still unclear. It is necessary to further identify the pathogenesis of skin cancer and find candidate targets to diagnose and treat skin cancer. A variety of factors are known to be associated with skin cancer including N-glycosylation, which partly explained the malignant behaviors of skin cancer. In this review, we retrieved databases such as PubMed and Web of Science to elucidate its relationship between glycosylation and skin cancer. We summarized some key glycosyltransferases and proteins during the process of N-glycosylation related to skin cancer, which was helpful to unmask the additional mechanism of skin cancer and find some novel targets of skin cancer.
Collapse
Affiliation(s)
- Ling Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Yeye Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Jianglin Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Dang L, Shen J, Zhao T, Zhao F, Jia L, Zhu B, Ma C, Chen D, Zhao Y, Sun S. Recognition of Bisecting N-Glycans on Intact Glycopeptides by Two Characteristic Ions in Tandem Mass Spectra. Anal Chem 2019; 91:5478-5482. [PMID: 30973713 DOI: 10.1021/acs.analchem.8b05639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bisecting N-glycan represents one of the most important modifications to the N-glycan core, and it is involved in various biological processes. Despite many studies on the biological roles of bisecting N-glycans, current approaches for bisecting N-glycan analysis mainly rely on the use of the lectin PHA-E, which are of low specificity and sensitivity. Here, we describe a straightforward method for the recognition of bisecting N-glycans on intact glycopeptides using two characteristic Y ions [peptide+HexNAc3Hex1] and [peptide+HexNAc3Hex1Fuc1] in low energy fragmented MS/MS spectra under higher energy collisional dissociation (HCD) mode. The critical aspect of the method is the combination use of low energy HCD fragmentation and intact glycopeptide analysis. With samples from rat renal tissues, we determined the optimal fragmentation energies and analyzed the influence of core fucosylation on the intensity of the [peptide+HexNAc3Hex1] ion. Using the method, we identified 183 intact glycopeptides with bisecting N-glycans and investigated the primary bisecting N-glycan structures and the possible biological roles of these identified proteins.
Collapse
Affiliation(s)
- Liuyi Dang
- College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Jiechen Shen
- College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Ting Zhao
- College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Fei Zhao
- College of Basic Medical Sciences , Shaanxi University of Chinese Medicine , Xianyang 712046 , China
| | - Li Jia
- College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Bojing Zhu
- College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Chen Ma
- College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Danqian Chen
- College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Yingyong Zhao
- College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Shisheng Sun
- College of Life Sciences , Northwest University , Xi'an 710069 , China
| |
Collapse
|
21
|
Sun D, Hu F, Gao H, Song Z, Xie W, Wang P, Shi L, Wang K, Li Y, Huang C, Li Z. Distribution of abnormal IgG glycosylation patterns from rheumatoid arthritis and osteoarthritis patients by MALDI-TOF-MSn. Analyst 2019; 144:2042-2051. [PMID: 30714583 DOI: 10.1039/c8an02014k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IgG glycosylation differs in rheumatoid arthritis (RA) and osteoarthritis (OA), which should contribute to their pathogenesis research and diagnosis.
Collapse
|
22
|
Wong MY, Chen K, Antonopoulos A, Kasper BT, Dewal MB, Taylor RJ, Whittaker CA, Hein PP, Dell A, Genereux JC, Haslam SM, Mahal LK, Shoulders MD. XBP1s activation can globally remodel N-glycan structure distribution patterns. Proc Natl Acad Sci U S A 2018; 115:E10089-E10098. [PMID: 30305426 PMCID: PMC6205500 DOI: 10.1073/pnas.1805425115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Classically, the unfolded protein response (UPR) safeguards secretory pathway proteostasis. The most ancient arm of the UPR, the IRE1-activated spliced X-box binding protein 1 (XBP1s)-mediated response, has roles in secretory pathway maturation beyond resolving proteostatic stress. Understanding the consequences of XBP1s activation for cellular processes is critical for elucidating mechanistic connections between XBP1s and development, immunity, and disease. Here, we show that a key functional output of XBP1s activation is a cell type-dependent shift in the distribution of N-glycan structures on endogenous membrane and secreted proteomes. For example, XBP1s activity decreased levels of sialylation and bisecting GlcNAc in the HEK293 membrane proteome and secretome, while substantially increasing the population of oligomannose N-glycans only in the secretome. In HeLa cell membranes, stress-independent XBP1s activation increased the population of high-mannose and tetraantennary N-glycans, and also enhanced core fucosylation. mRNA profiling experiments suggest that XBP1s-mediated remodeling of the N-glycome is, at least in part, a consequence of coordinated transcriptional resculpting of N-glycan maturation pathways by XBP1s. The discovery of XBP1s-induced N-glycan structural remodeling on a glycome-wide scale suggests that XBP1s can act as a master regulator of N-glycan maturation. Moreover, because the sugars on cell-surface proteins or on proteins secreted from an XBP1s-activated cell can be molecularly distinct from those of an unactivated cell, these findings reveal a potential new mechanism for translating intracellular stress signaling into altered interactions with the extracellular environment.
Collapse
Affiliation(s)
- Madeline Y Wong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Brian T Kasper
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003
| | - Mahender B Dewal
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rebecca J Taylor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Charles A Whittaker
- Barbara K. Ostrom (1978) Bioinformatics and Computing Facility, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Pyae P Hein
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom;
| | - Lara K Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, NY 10003;
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
23
|
Metabolic engineering of CHO cells to prepare glycoproteins. Emerg Top Life Sci 2018; 2:433-442. [DOI: 10.1042/etls20180056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/24/2022]
Abstract
As a complex and common post-translational modification, N-linked glycosylation affects a recombinant glycoprotein's biological activity and efficacy. For example, the α1,6-fucosylation significantly affects antibody-dependent cellular cytotoxicity and α2,6-sialylation is critical for antibody anti-inflammatory activity. Terminal sialylation is important for a glycoprotein's circulatory half-life. Chinese hamster ovary (CHO) cells are currently the predominant recombinant protein production platform, and, in this review, the characteristics of CHO glycosylation are summarized. Moreover, recent and current metabolic engineering strategies for tailoring glycoprotein fucosylation and sialylation in CHO cells, intensely investigated in the past decades, are described. One approach for reducing α1,6-fucosylation is through inhibiting fucosyltransferase (FUT8) expression by knockdown and knockout methods. Another approach to modulate fucosylation is through inhibition of multiple genes in the fucosylation biosynthesis pathway or through chemical inhibitors. To modulate antibody sialylation of the fragment crystallizable region, expressions of sialyltransferase and galactotransferase individually or together with amino acid mutations can affect antibody glycoforms and further influence antibody effector functions. The inhibition of sialidase expression and chemical supplementations are also effective and complementary approaches to improve the sialylation levels on recombinant glycoproteins. The engineering of CHO cells or protein sequence to control glycoforms to produce more homogenous glycans is an emerging topic. For modulating the glycosylation metabolic pathways, the interplay of multiple glyco-gene knockouts and knockins and the combination of multiple approaches, including genetic manipulation, protein engineering and chemical supplementation, are detailed in order to achieve specific glycan profiles on recombinant glycoproteins for superior biological function and effectiveness.
Collapse
|
24
|
Wang Q, Chung CY, Chough S, Betenbaugh MJ. Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng 2018; 115:1378-1393. [DOI: 10.1002/bit.26567] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Sandra Chough
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| |
Collapse
|
25
|
Pearce OMT. Cancer glycan epitopes: biosynthesis, structure and function. Glycobiology 2018; 28:670-696. [DOI: 10.1093/glycob/cwy023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Oliver M T Pearce
- Centre for Cancer & Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
26
|
Hanashima S, Suga A, Yamaguchi Y. Bisecting GlcNAc restricts conformations of branches in model N-glycans with GlcNAc termini. Carbohydr Res 2018; 456:53-60. [PMID: 29274553 DOI: 10.1016/j.carres.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/10/2017] [Indexed: 01/23/2023]
Abstract
Bisected N-glycans play significant roles in tumor migration and Alzheimer's disease through modulating the action and localization of their carrier proteins. Such biological functions are often discussed in terms of the conformation of the attached N-glycans with or without bisecting GlcNAc. To obtain insights into the effects of bisecting GlcNAc on glycan conformation, a systematic NMR structural analysis was performed on two pairs of synthetic N-glycans, with and without bisecting GlcNAc. The analysis reveals that terminal GlcNAcs and bisecting GlcNAc cooperate to restrict the conformations of both the α1-3 and α1-6 branches of N-glycans. 1H and 13C chemical shift comparisons suggest that bisecting GlcNAc directly modulates local conformation. Unique NOE correlations between core-mannose and the α1-3 branch mannose as well as the 3JC-H constant of the glycoside linkage indicate that bisecting GlcNAc restricts the conformation of the 1-3 branch. The angles of the glycosidic bonds between core-mannose and α1-6 branch mannose derived from 3JC-H and 3JH-H coupling constants show that terminal GlcNAcs restrict the distribution of the ψ angle to 180° and the bisecting GlcNAc increases the distribution of the ω angle +60° in the presence of terminal GlcNAcs. It is feasible that restriction of branch conformations by bisecting GlcNAc has important consequences for protein-glycan interplay and following biological events.
Collapse
Affiliation(s)
- Shinya Hanashima
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Akitsugu Suga
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
27
|
Abstract
Glycosylation is one of the most frequent post-translational modification of proteins. Many membrane and secreted proteins are decorated by sugar chains mainly linked to asparagine (N-linked) or to serine or threonine (O-linked). The biosynthesis of the sugar chains is mainly controlled by the activity of their biosynthetic enzymes: the glycosyltransferases. Glycosylation plays multiple roles, including the fine regulation of the biological activity of glycoproteins. Inflammaging is a chronic low grade inflammatory status associated with aging, probably caused by the continuous exposure of the immune system to inflammatory stimuli of endogenous and exogenous origin. The aging-associated glycosylation changes often resemble those observed in inflammatory conditions. One of the most reproducible markers of calendar and biological aging is the presence of N-glycans lacking terminal galactose residues linked to Asn297 of IgG heavy chains (IgG-G0). Although the mechanism(s) generating IgG-G0 remain unclear, their presence in a variety of inflammatory conditions suggests a link with inflammaging. In addition, these aberrantly glycosylated IgG can exert a pro-inflammatory effect through different mechanisms, triggering a self-fueling inflammatory loop. A strong association with aging has been documented also for the plasmatic forms of glycosyltrasferases B4GALT1 and ST6GAL1, although their role in the extracellular glycosylation of antibodies does not appear likely. Siglecs, are a group of sialic acid binding mammalian lectins which mainly act as inhibitory receptors on the surface of immune cells. In general activity of Siglecs appears to be associated with long life, probably because of their ability to restrain aging-associated inflammation.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
28
|
Abstract
Protein glycosylation is post-translational modification (PTM) which is important for pharmacokinetics and immunogenicity of recombinant glycoprotein therapeutics. As a result of variations in monosaccharide composition, glycosidic linkages and glycan branching, glycosylation introduces considerable complexity and heterogeneity to therapeutics. The host cell line used to produce the glycoprotein has a strong influence on the glycosylation because different host systems may express varying repertoire of glycosylation enzymes and transporters that contributes to specificity and heterogeneity in glycosylation profiles. In this review, we discuss the types of host cell lines currently used for recombinant therapeutic production, their glycosylation potential and the resultant impact on glycoprotein properties. In addition, we compare the reported glycosylation profiles of four recombinant glycoproteins: immunoglobulin G (IgG), coagulation factor VII (FVII), erythropoietin (EPO) and alpha-1 antitrypsin (A1AT) produced in different mammalian cells to establish the influence of mammalian host cell lines on glycosylation.
Collapse
Affiliation(s)
- Justin Bryan Goh
- a Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| | - Say Kong Ng
- a Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR) , Singapore , Singapore
| |
Collapse
|
29
|
Allam H, Johnson BP, Zhang M, Lu Z, Cannon MJ, Abbott KL. The glycosyltransferase GnT-III activates Notch signaling and drives stem cell expansion to promote the growth and invasion of ovarian cancer. J Biol Chem 2017; 292:16351-16359. [PMID: 28842505 DOI: 10.1074/jbc.m117.783936] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/21/2017] [Indexed: 01/28/2023] Open
Abstract
Glycosylation changes associated with cellular transformation can facilitate the growth and progression of tumors. Previously we discovered that the gene Mgat3 encoding the glycosyltransferase GnT-III is elevated in epithelial ovarian carcinomas (EOCs) and leads to the production of abnormal truncated N-linked glycan structures instead of the typical bisected forms. In this study, we are interested in discovering how these abnormal glycans impact the growth and progression of ovarian cancer. We have discovered using stable shRNA gene suppression that GnT-III expression controls the expansion of side-population cells, also known as cancer stem cells. More specifically, we found that GnT-III expression regulates the levels and activation of the heavily glycosylated Notch receptor involved in normal and malignant development. Suppression of GnT-III in EOC cell lines and primary tumor-derived cells resulted in an inhibition of Notch signaling that was more potent than pharmacologic blockage of Notch activation via γ-secretase inhibition. The inhibition resulted from the redirection of the Notch receptor to the lysosome, a novel mechanism. These findings demonstrate a new role for bisecting glycosylation in the control of Notch transport and demonstrate the therapeutic potential of inhibiting GnT-III as a treatment for controlling EOC growth and recurrence.
Collapse
Affiliation(s)
- Heba Allam
- From the Medical Microbiology and Immunology Department, Menofiya University, Cairo 11795, Egypt
| | - Blake P Johnson
- the Department of Biology, Ouachita Baptist University, Arkadelphia, Arkansas 71998, and
| | - Mao Zhang
- the Departments of Biochemistry and Molecular Biology and
| | - Zhongpeng Lu
- the Departments of Biochemistry and Molecular Biology and
| | - Martin J Cannon
- Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Karen L Abbott
- the Departments of Biochemistry and Molecular Biology and
| |
Collapse
|
30
|
Verhelst X, Vanderschaeghe D, Castéra L, Raes T, Geerts A, Francoz C, Colman R, Durand F, Callewaert N, Van Vlierberghe H. A Glycomics-Based Test Predicts the Development of Hepatocellular Carcinoma in Cirrhosis. Clin Cancer Res 2016; 23:2750-2758. [PMID: 27986746 DOI: 10.1158/1078-0432.ccr-16-1500] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/20/2016] [Accepted: 11/30/2016] [Indexed: 01/29/2023]
Abstract
Purpose: Cirrhosis is a major risk factor for the development of hepatocellular carcinoma but remains underdiagnosed in the compensated stage. Fibrosis progression and cirrhosis are associated with changes in blood serum glycomic profiles. Previously, the serum glycomics-based GlycoCirrhoTest was shown to identify 50% to 70% of compensated cirrhosis cases in chronic liver disease cohorts, at >90% specificity. This study assessed GlycoCirrhoTest for the risk of hepatocellular carcinoma development in compensated cirrhosis.Experimental Design: Serum glycomics were analyzed in sera of 133 patients, with compensated cirrhosis collected between 1995 and 2005 in a surveillance protocol for hepatocellular carcinoma using an optimized glycomic technology on a DNA sequencer.Results: Baseline GlycoCirrhoTest values were significantly increased in patients who developed hepatocellular carcinoma after a median follow-up of 6.4 years as compared with patients who did not. For patients with a baseline GlycoCirrhoTest exceeding 0.2, the HR for hepatocellular carcinoma development over the entire study (Cox regression) was 5.1 [95% confidence interval (CI), 2.2-11.7; P < 0.001], and the HR for hepatocellular carcinoma development within 7 years was 12.1 (95% CI, 2.8-51.6; P = 0.01) based on the cut-off value optimized in the same cohort. An absolute increase in GlycoCirrhoTest of 0.2 was associated with an HR of 10.29 (95% CI, 3.37-31.43; P < 0.001) for developing hepatocellular carcinoma. In comparison, the HR for the development of hepatocellular carcinoma within 7 years for AFP levels above the optimal cutoff in this study (5.75 ng/mL) was 4.65 (95% CI, 1.59-13.61).Conclusions: This prognostic study suggests that GlycoCirrhoTest is a serum biomarker that identifies compensated cirrhotic patients at risk for developing hepatocellular carcinoma. Screening strategies could be guided by a positive test on GlycoCirrhoTest. Clin Cancer Res; 23(11); 2750-8. ©2016 AACR.
Collapse
Affiliation(s)
- Xavier Verhelst
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium. .,Laboratory of Hepatology, Ghent University, Ghent, Belgium
| | - Dieter Vanderschaeghe
- Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Laurent Castéra
- Hepatology and Liver Intensive Care Unit, Hôpital Beaujon, Clichy, France.,INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Paris, France
| | - Tom Raes
- Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium.,Laboratory of Hepatology, Ghent University, Ghent, Belgium
| | - Claire Francoz
- Hepatology and Liver Intensive Care Unit, Hôpital Beaujon, Clichy, France.,INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Paris, France
| | - Roos Colman
- Department of Public Health, Biostatistics Unit, University of Ghent, Ghent, Belgium
| | - François Durand
- Hepatology and Liver Intensive Care Unit, Hôpital Beaujon, Clichy, France.,INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Paris, France
| | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Hepatology and Gastroenterology, Ghent University Hospital, Ghent, Belgium.,Laboratory of Hepatology, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer. Biomolecules 2016; 6:biom6020025. [PMID: 27136596 PMCID: PMC4919920 DOI: 10.3390/biom6020025] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
N-glycan, a fundamental and versatile protein modification in mammals, plays critical roles in various physiological and pathological events including cancer progression. The formation of N-glycan branches catalyzed by specific N-acetylglucosaminyltransferases [GnT-III, GnT-IVs, GnT-V, GnT-IX (Vb)] and a fucosyltransferase, Fut8, provides functionally diverse N-glycosylated proteins. Aberrations of these branches are often found in cancer cells and are profoundly involved in cancer growth, invasion and metastasis. In this review, we focus on the GlcNAc and fucose branches of N-glycans and describe how their expression is dysregulated in cancer by genetic and nongenetic mechanisms including epigenetics and nucleotide sugar metabolisms. We also survey the roles that these N-glycans play in cancer progression and therapeutics. Finally, we discuss possible applications of our knowledge on basic glycobiology to the development of medicine and biomarkers for cancer therapy.
Collapse
|
32
|
Fliedl L, Grillari J, Grillari-Voglauer R. Human cell lines for the production of recombinant proteins: on the horizon. N Biotechnol 2015; 32:673-9. [DOI: 10.1016/j.nbt.2014.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 02/08/2023]
|
33
|
Yoshitake H, Hashii N, Kawasaki N, Endo S, Takamori K, Hasegawa A, Fujiwara H, Araki Y. Chemical Characterization of N-Linked Oligosaccharide As the Antigen Epitope Recognized by an Anti-Sperm Auto-Monoclonal Antibody, Ts4. PLoS One 2015. [PMID: 26222427 PMCID: PMC4519047 DOI: 10.1371/journal.pone.0133784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ts4, an anti-sperm auto-monoclonal antibody, possesses immunoreactivity to the acrosomal region of mouse epididymal spermatozoa. In addition, the mAb shows specific immunoreactivity to reproduction-related regions such as testicular germ cells and early embryo. Our qualitative study previously showed that the antigen epitope for Ts4 contained a N-linked common oligosaccharide (OS) chain on testicular glycoproteins as determined by Western blotting for testicular glycoproteins after treatment with several glycohydrolases. Since the distribution of the Ts4-epitope is unique, the OS chain in Ts4-epitope may have role(s) in the reproductive process. The aim of this study was to clarify the molecular structure of the Ts4-epitope, particularly its OS moiety. Using Ts4 immunoprecipitation combined with liquid chromatography and multiple-stage mass spectrometry, the candidate carbohydrate structure in the Ts4-epitope is proposed to be N-linked fucosylated agalacto-biantennary with bisecting N-acetylglucosamine (GlcNAc) or with N-acetylgalactosamine-GlcNAc motif. Further binding analyses using various lectins against the mouse testicular Ts4-immunoprecipitants revealed that Phaseolus vulgaris erythroagglutinin and Pisum sativum agglutinin showed positive staining of the bands corresponding to Ts4 reactive proteins. Moreover, the immunoreactivity of Ts4 against the testicular extract was completely abrogated after digestion with β-N-acetylglucosaminidase. These results show that the Ts4-epitope contains agalacto-biantennary N-glycan with bisecting GlcNAc carrying fucose residues.
Collapse
Affiliation(s)
- Hiroshi Yoshitake
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Nana Kawasaki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Setagaya-ku, Tokyo, Japan
| | - Shuichiro Endo
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
- Department of Obstetrics and Gynecology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Akiko Hasegawa
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Yoshihiko Araki
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
- Department of Obstetrics and Gynecology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
34
|
Li X, Li D, Pang X, Yang G, Deeg HJ, Guan F. Quantitative analysis of glycans, related genes, and proteins in two human bone marrow stromal cell lines using an integrated strategy. Exp Hematol 2015; 43:760-9.e7. [PMID: 25936519 DOI: 10.1016/j.exphem.2015.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/17/2022]
Abstract
Altered expression of glycans is associated with cell-cell signal transduction and regulation of cell functions in the bone marrow micro-environment. Studies of this micro-environment often use two human bone marrow stromal cell lines, HS5 and HS27a, co-cultured with myeloid cells. We hypothesized that differential protein glycosylation between these two cell lines may contribute to functional differences in in vitro co-culture models. In this study, we applied an integrated strategy using genomic, proteomic, and functional glycomic techniques for global expression profiling of N-glycans and their related genes and enzymes in HS5 cells versus HS27a cells. HS5 cells had significantly enhanced levels of bisecting N-glycans (catalyzed by MGAT3 [β-1,4-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase]), whereas HS27a cells had enhanced levels of Galβ1,4GlcNAc (catalyzed by β4GalT1 [β4-galactosyltransferase I]). This integrated strategy provides useful information regarding the functional roles of glycans and their related glycogenes and glycosyltransferases in the bone marrow microenvironment, and a basis for future studies of crosstalk among stromal cells and myeloma cells in co-culture.
Collapse
Affiliation(s)
- Xiang Li
- Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Dongliang Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xingchen Pang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - H Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Feng Guan
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
35
|
Guo H, Abbott KL. Functional impact of tumor-specific N-linked glycan changes in breast and ovarian cancers. Adv Cancer Res 2015; 126:281-303. [PMID: 25727151 DOI: 10.1016/bs.acr.2014.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Changes in glycosylation have been implicated in various human diseases, including cancer. Research over the past few decades has produced significant findings that illustrate the importance of cancer-specific alterations in glycosylation in the regulation of tumor formation and metastasis. The identification of glycan-based biomarkers and strategies targeting specific glycan epitopes on the tumor cell surface has become one of the widely pursued research areas. In this chapter, we will summarize and provide perspective on available knowledge about the functional roles that glycan structures play in the development and progression of the gynecological cancers, breast and ovarian, with a specific focus on N-linked glycans. A better understanding of the functional roles for glycans in cancer will drive future innovations for diagnostics and therapeutics.
Collapse
|
36
|
Yi CH, Ruan CP, Wang H, Xu XY, Zhao YP, Fang M, Ji J, Gu X, Gao CF. Function characterization of a glyco-engineered anti-EGFR monoclonal antibody cetuximab in vitro. Acta Pharmacol Sin 2014; 35:1439-46. [PMID: 25263334 DOI: 10.1038/aps.2014.77] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/05/2014] [Indexed: 11/09/2022] Open
Abstract
AIM To evaluate the biochemical features and activities of a glyco-engineered form of the anti-human epidermal growth factor receptor monoclonal antibody (EGFR mAb) cetuximab in vitro. METHODS The genes encoding the Chinese hamster bisecting glycosylation enzyme (GnTIII) and anti-human EGFR mAb were cloned and coexpressed in CHO DG44 cells. The bisecting-glycosylated recombinant EGFR mAb (bisec-EGFR mAb) produced by these cells was characterized with regard to its glycan profile, antiproliferative activity, Fc receptor binding affinity and cell lysis capability. The content of galactose-α-1,3-galactose (α-Gal) in the bisec-EGFR mAb was measured using HPAEC-PAD. RESULTS The bisec-EGFR mAb had a higher content of bisecting N-acetylglucosamine residues. Compared to the wild type EGFR mAb, the bisec-EGFR mAb exhibited 3-fold higher cell lysis capability in the antibody-dependent cellular cytotoxicity assay, and 1.36-fold higher antiproliferative activity against the human epidermoid carcinoma line A431. Furthermore, the bisec-EGFR mAb had a higher binding affinity for human FcγRIa and FcγRIIIa-158F than the wild type EGFR mAb. Moreover, α-Gal, which was responsible for cetuximab-induced hypersensitivity reactions, was not detected in the bisec-EGFR mAb. CONCLUSION The glyco-engineered EGFR mAb with more bisecting modifications and lower α-Gal content than the approved therapeutic antibody Erbitux shows improved functionality in vitro, and requires in vivo validations.
Collapse
|
37
|
Hanashima S, Korekane H, Taniguchi N, Yamaguchi Y. Synthesis of N-glycan units for assessment of substrate structural requirements of N-acetylglucosaminyltransferase III. Bioorg Med Chem Lett 2014; 24:4533-4537. [PMID: 25139566 DOI: 10.1016/j.bmcl.2014.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/22/2014] [Accepted: 07/29/2014] [Indexed: 12/27/2022]
Abstract
N-Acetylglucosaminyltransferase (GnT) III is a glycosyltransferase which produces bisected N-glycans by transferring GlcNAc to the 4-position of core mannose. Bisected N-glycans are involved in physiological and pathological processes through the functional regulation of their carrier proteins. An understanding of the biological functions of bisected glycans will be greatly accelerated by use of specific inhibitors of GnT-III. Thus far, however, such inhibitors have not been developed and even the substrate-binding mode of GnT-III is not fully understood. To gain insight into structural features required of the substrate, we systematically synthesized four N-glycan units, the branching parts of the bisected and non-bisected N-glycans. The series of syntheses were achieved from a common core trimannose, giving bisected tetra- and hexasaccharides as well as non-bisected tri- and pentasaccharides. A competitive GnT-III inhibition assay using the synthetic substrates revealed a vital role for the Manβ(1-4)GlcNAc moiety. In keeping with previous reports, GlcNAc at the α1,3-branch is also involved in the interaction. The structural requirements of GnT-III elucidated in this study will provide a basis for rational inhibitor design.
Collapse
Affiliation(s)
- Shinya Hanashima
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroaki Korekane
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN Global Research Cluster, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
38
|
Silibinin inhibits ICAM-1 expression via regulation of N-linked and O-linked glycosylation in ARPE-19 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:701395. [PMID: 25032222 PMCID: PMC4083610 DOI: 10.1155/2014/701395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 12/03/2022]
Abstract
To evaluate the effects of silibinin on intercellular adhesion molecule-1 (ICAM-1) expression, we used ARPE-19 cells as a model in which tumor necrosis factor (TNF-α) and interferon (IFN-γ) enhanced ICAM-1 expression. This upregulation was inhibited by silibinin. In an adherence assay using ARPE-19 and THP-1 cells, silibinin inhibited the cell adhesion function of ICAM-1. The inhibitory effects of silibinin on ICAM-1 expression were mediated via the blockage of nuclear translocation of p65 proteins in TNF-α and phosphorylation of STAT1 in IFN-γ-stimulated cells. In addition, silibinin altered the degree of N-linked glycosylation posttranslationally in ARPE-19 cells by significantly enhancing MGAT3 gene expression. Silibinin can increase the O-GlcNAc levels of glycoproteins in ARPE-19 cells. In a reporter gene assay, PUGNAc, which can also increase O-GlcNAc levels, inhibited NF-κB reporter activity in TNF-α-induced ARPE-19 cells and this process was augmented by silibinin treatment. Overexpression of OGT gene was associated with reduced TNF-α-induced ICAM-1 levels, which is consistent with that induced by silibinin treatment. Taken together, silibinin inhibits ICAM-1 expression and its function through altered O-linked glycosylation in NF-κB and STAT1 signaling pathways and decreases the N-linked glycosylation of ICAM-1 transmembrane protein in proinflammatory cytokine-stimulated ARPE-19 cells.
Collapse
|
39
|
Loos A, Steinkellner H. Plant glyco-biotechnology on the way to synthetic biology. FRONTIERS IN PLANT SCIENCE 2014; 5:523. [PMID: 25339965 PMCID: PMC4189330 DOI: 10.3389/fpls.2014.00523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/16/2014] [Indexed: 05/04/2023]
Abstract
Plants are increasingly being used for the production of recombinant proteins. One reason is that plants are highly amenable to glycan engineering processes and allow the production of therapeutic proteins with increased efficacies due to optimized glycosylation profiles. Removal and insertion of glycosylation reactions by knock-out/knock-down approaches and introduction of glycosylation enzymes have paved the way for the humanization of the plant glycosylation pathway. The insertion of heterologous enzymes at exactly the right stage of the existing glycosylation pathway has turned out to be of utmost importance. To enable such precise targeting chimeric enzymes have been constructed. In this short review we will exemplify the importance of correct targeting of glycosyltransferases, we will give an overview of the targeting mechanism of glycosyltransferases, describe chimeric enzymes used in plant N-glycosylation engineering and illustrate how plant glycoengineering builds on the tools offered by synthetic biology to construct such chimeric enzymes.
Collapse
Affiliation(s)
| | - Herta Steinkellner
- *Correspondence: Herta Steinkellner, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria e-mail:
| |
Collapse
|
40
|
Schachter H. Complex N-glycans: the story of the "yellow brick road". Glycoconj J 2013; 31:1-5. [PMID: 24178944 DOI: 10.1007/s10719-013-9507-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 11/25/2022]
Abstract
The synthesis of complex asparagine-linked glycans (N-glycans) involves a multi-step process that starts with a five mannose N-glycan structure: [Manα1-6(Manα1-3)Manα1-6][Manα1-3]-R where R = Manβ1-4GlcNAcβ1-4GlcNAcβ1-Asn-protein. N-acetylglucosaminyltransferase I (GlcNAc-TI) first catalyzes addition of GlcNAc in β1-2 linkage to the Manα1-3-R terminus of the five-mannose structure. Mannosidase II then removes two Man residues exposing the Manα1-6 terminus that serves as a substrate for GlcNAc-T II and addition of a second GlcNAcβ1-2 residue. The resulting structure is the complex N-glycan: GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)-R. This structure is the precursor to a large assortment of branched complex N-glycans involving four more N-acetylglucosaminyltransferases. This short review describes the experiments (done in the early 1970s) that led to the discovery of GlcNAc-TI and II.
Collapse
Affiliation(s)
- Harry Schachter
- Molecular Structure and Function Program, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada, M5G 1X8,
| |
Collapse
|
41
|
Nagae M, Yamanaka K, Hanashima S, Ikeda A, Morita-Matsumoto K, Satoh T, Matsumoto N, Yamamoto K, Yamaguchi Y. Recognition of bisecting N-acetylglucosamine: structural basis for asymmetric interaction with the mouse lectin dendritic cell inhibitory receptor 2. J Biol Chem 2013; 288:33598-33610. [PMID: 24108122 DOI: 10.1074/jbc.m113.513572] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dendritic cell inhibitory receptor 2 (DCIR2) is a C-type lectin expressed on classical dendritic cells. We recently identified the unique ligand specificity of mouse DCIR2 (mDCIR2) toward biantennary complex-type glycans containing bisecting N-acetylglucosamine (GlcNAc). Here, we report the crystal structures of the mDCIR2 carbohydrate recognition domain in unliganded form as well as in complex with an agalactosylated complex-type N-glycan unit carrying a bisecting GlcNAc residue. Bisecting GlcNAc and the α1-3 branch of the biantennary oligosaccharide asymmetrically interact with canonical and non-canonical mDCIR2 residues. Ligand-protein interactions occur directly through mDCIR2-characteristic amino acid residues as well as via a calcium ion and water molecule. Our structural and biochemical data elucidate for the first time the unique binding mode of mDCIR2 for bisecting GlcNAc-containing glycans, a mode that contrasts sharply with that of other immune C-type lectin receptors such as DC-SIGN.
Collapse
Affiliation(s)
- Masamichi Nagae
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kousuke Yamanaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Shinya Hanashima
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akemi Ikeda
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kana Morita-Matsumoto
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tadashi Satoh
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoki Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
42
|
Dall’Olio F, Vanhooren V, Chen CC, Slagboom PE, Wuhrer M, Franceschi C. N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev 2013; 12:685-98. [PMID: 22353383 DOI: 10.1016/j.arr.2012.02.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/24/2012] [Accepted: 02/06/2012] [Indexed: 01/31/2023]
Abstract
Glycosylation is a frequent co/post-translational modification of proteins which modulates a variety of biological functions. The analysis of N-glycome, i.e. the sugar chains N-linked to asparagine, identified new candidate biomarkers of aging such as N-glycans devoid of galactose residues on their branches, in a variety of human and experimental model systems, such as healthy old people, centenarians and their offspring and caloric restricted mice. These agalactosylated biantennary structures mainly decorate Asn297 of Fc portion of IgG (IgG-G0), and are present also in patients affected by progeroid syndromes and a variety of autoimmune/inflammatory diseases. IgG-G0 exert a pro-inflammatory effect through different mechanisms, including the lectin pathway of complement, binding to Fcγ receptors and formation of autoantibody aggregates. The age-related accumulation of IgG-G0 can contribute to inflammaging, the low-grade pro-inflammatory status that characterizes elderly, by creating a vicious loop in which inflammation is responsible for the production of aberrantly glycosylated IgG which, in turn, would activate the immune system, exacerbating inflammation. Moreover, recent data suggest that the N-glycomic shift observed in aging could be related not only to inflammation but also to alteration of important metabolic pathways. Thus, altered N-glycans are both powerful markers of aging and possible contributors to its pathogenesis.
Collapse
|
43
|
Miwa HE, Song Y, Alvarez R, Cummings RD, Stanley P. The bisecting GlcNAc in cell growth control and tumor progression. Glycoconj J 2012; 29:609-18. [PMID: 22476631 DOI: 10.1007/s10719-012-9373-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/11/2012] [Indexed: 11/30/2022]
Abstract
The bisecting GlcNAc is transferred to the core mannose residue of complex or hybrid N-glycans on glycoproteins by the β1,4-N-acetylglucosaminyltransferase III (GlcNAcT-III) or MGAT3. The addition of the bisecting GlcNAc confers unique lectin recognition properties to N-glycans. Thus, LEC10 gain-of-function Chinese hamster ovary (CHO) cells selected for the acquisition of ricin resistance, carry N-glycans with a bisecting GlcNAc, which enhances the binding of the erythroagglutinin E-PHA, but reduces the binding of ricin and galectins-1, -3 and -8. The altered interaction with galactose-binding lectins suggests that the bisecting GlcNAc affects N-glycan conformation. LEC10 mutants expressing polyoma middle T antigen (PyMT) exhibit reduced growth factor signaling. Furthermore, PyMT-induced mammary tumors lacking MGAT3, progress more rapidly than tumors with the bisecting GlcNAc on N-glycans of cell surface glycoproteins. In recent years, evidence for a new paradigm of cell growth control has emerged involving regulation of cell surface residency of growth factor and cytokine receptors via interactions and cross-linking of their branched N-glycans with a lattice of galectin(s). Specific cross-linking of glycoprotein receptors in the lattice regulates their endocytosis, leading to effects on growth factor-induced signaling. This review will describe evidence that the bisecting GlcNAc of N-glycans regulates cellular signaling and tumor progression, apparently through modulating N-glycan/galectin interactions.
Collapse
Affiliation(s)
- Hazuki E Miwa
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | | | |
Collapse
|
44
|
Selman MH, Derks RJ, Bondt A, Palmblad M, Schoenmaker B, Koeleman CA, van de Geijn FE, Dolhain RJ, Deelder AM, Wuhrer M. Fc specific IgG glycosylation profiling by robust nano-reverse phase HPLC-MS using a sheath-flow ESI sprayer interface. J Proteomics 2012; 75:1318-29. [DOI: 10.1016/j.jprot.2011.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/31/2011] [Accepted: 11/05/2011] [Indexed: 12/16/2022]
|
45
|
Taniguchi N, Korekane H. Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics. BMB Rep 2011; 44:772-81. [DOI: 10.5483/bmbrep.2011.44.12.772] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
46
|
Saeland E, Belo AI, Mongera S, van Die I, Meijer GA, van Kooyk Y. Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int J Cancer 2011; 131:117-28. [PMID: 21823122 DOI: 10.1002/ijc.26354] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 07/19/2011] [Indexed: 12/18/2022]
Abstract
Altered glycosylation in epithelial cancers may play an important role in tumour progression, as it may affect tumour cell migration and antigen presentation by antigen presenting cells. We specifically characterise the glycosylation patterns of two tumour antigens that are highly expressed in cancer tissue and often detected in their secreted form in serum: the epithelial mucin MUC1 and carcinoembryonic antigen (CEA, also called CEACAM5). We analysed 48 colorectal cancer patients, comparing normal colon and tumour epithelium within each patient. Lectin binding was studied by a standardised CEA/MUC1 capture ELISA, using several plant lectins, and the human C-type lectins MGL and DC-SIGN, and Galectin-3. Peanut agglutinin (PNA) bound to MUC1 from tumour tissue in particular, suggests increased expression of the Thomsen-Friedenreich antigen (TF-antigen) (Core 1, Galβ1-3GalNAc-Ser/Thr). Only small amounts of Tn-antigen (GalNAcα-Ser/Thr) expression was observed, but the human C-type lectin MGL showed increased binding to tumour-associated MUC1. Furthermore, sialylation was greatly enhanced. In sharp contrast, tumour-associated CEA (CEACAM5) contained high levels of the blood-group related carbohydrates, Lewis X and Lewis Y. This correlated strongly with the interaction of the human C-type lectin DC-SIGN to tumour-associated CEA, suggesting that CEA can be recognized and taken up by antigen presenting cells. In addition, increased mannose expression was observed and branched N-glycans were prominent, and this correlated well with human Galectin-3 binding. These data demonstrate that individual tumour antigens contain distinct glycan structures associated with cancer and, since glycans affect cellular interactions with its microenvironment, this may have consequences for progression of the disease.
Collapse
Affiliation(s)
- Eirikur Saeland
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Pinho SS, Seruca R, Gärtner F, Yamaguchi Y, Gu J, Taniguchi N, Reis CA. Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol Life Sci 2011; 68:1011-20. [PMID: 21104290 PMCID: PMC11114786 DOI: 10.1007/s00018-010-0595-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/30/2010] [Accepted: 11/05/2010] [Indexed: 01/19/2023]
Abstract
Several mechanisms have been proposed to explain the E-cadherin dysfunction in cancer, including genetic and epigenetic alterations. Nevertheless, a significant number of human carcinomas have been seen that show E-cadherin dysfunction that cannot be explained at the genetic/epigenetic level. A substantial body of evidence has appeared recently that supports the view that other mechanisms operating at the post-translational level may also affect E-cadherin function. The present review addresses molecular aspects related to E-cadherin N-glycosylation and evidence is presented showing that the modification of N-linked glycans on E-cadherin can affect the adhesive function of this adhesion molecule. The role of glycosyltransferases involved in the remodeling of N-glycans on E-cadherin, including N-acetylglucosaminyltransferase III (GnT-III), N-acetylglucosaminyltransferase V (GnT-V), and the α1,6 fucosyltransferase (FUT8) enzyme, is also discussed. Finally, this review discusses an alternative functional regulatory mechanism for E-cadherin operating at the post-translational level, N-glycosylation, that may underlie the E-cadherin dysfunction in some carcinomas.
Collapse
Affiliation(s)
- Salomé S. Pinho
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Raquel Seruca
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
- Medical Faculty, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fátima Gärtner
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal
| | - Yoshiki Yamaguchi
- Systems Glycobiology Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa Wako, Saitama, 351-0198 Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558 Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa Wako, Saitama, 351-0198 Japan
- Department of Disease Glycomics (Seikagaku Corporation), The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 Japan
| | - Celso A. Reis
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
- Medical Faculty, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal
| |
Collapse
|
48
|
Nett JH, Stadheim TA, Li H, Bobrowicz P, Hamilton SR, Davidson RC, Choi BK, Mitchell T, Bobrowicz B, Rittenhour A, Wildt S, Gerngross TU. A combinatorial genetic library approach to target heterologous glycosylation enzymes to the endoplasmic reticulum or the Golgi apparatus of Pichia pastoris. Yeast 2011; 28:237-52. [DOI: 10.1002/yea.1835] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/18/2010] [Indexed: 11/08/2022] Open
|
49
|
|
50
|
Decreased levels of bisecting GlcNAc glycoforms of IgG are associated with human longevity. PLoS One 2010; 5:e12566. [PMID: 20830288 PMCID: PMC2935362 DOI: 10.1371/journal.pone.0012566] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 08/04/2010] [Indexed: 01/12/2023] Open
Abstract
Background Markers for longevity that reflect the health condition and predict healthy aging are extremely scarce. Such markers are, however, valuable in aging research. It has been shown previously that the N-glycosylation pattern of human immunoglobulin G (IgG) is age-dependent. Here we investigate whether N-linked glycans reflect early features of human longevity. Methodology/Principal Findings The Leiden Longevity Study (LLS) consists of nonagenarian sibling pairs, their offspring, and partners of the offspring serving as control. IgG subclass specific glycosylation patterns were obtained from 1967 participants in the LLS by MALDI-TOF-MS analysis of tryptic IgG Fc glycopeptides. Several regression strategies were applied to evaluate the association of IgG glycosylation with age, sex, and longevity. The degree of galactosylation of IgG decreased with increasing age. For the galactosylated glycoforms the incidence of bisecting GlcNAc increased as a function of age. Sex-related differences were observed at ages below 60 years. Compared to males, younger females had higher galactosylation, which decreased stronger with increasing age, resulting in similar galactosylation for both sexes from 60 onwards. In younger participants (<60 years of age), but not in the older age group (>60 years), decreased levels of non-galactosylated glycoforms containing a bisecting GlcNAc reflected early features of longevity. Conclusions/Significance We here describe IgG glycoforms associated with calendar age at all ages and the propensity for longevity before middle age. As modulation of IgG effector functions has been described for various IgG glycosylation features, a modulatory effect may be expected for the longevity marker described in this study.
Collapse
|