1
|
Gardinier JD. The Diminishing Returns of Mechanical Loading and Potential Mechanisms that Desensitize Osteocytes. Curr Osteoporos Rep 2021; 19:436-443. [PMID: 34216359 PMCID: PMC9306018 DOI: 10.1007/s11914-021-00693-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Adaptation to mechanical loading is critical to maintaining bone mass and offers therapeutic potential to preventing age-related bone loss and osteoporosis. However, increasing the duration of loading is met with "diminishing returns" as the anabolic response quickly becomes saturated. As a result, the anabolic response to daily activities and repetitive bouts of loading is limited by the underlying mechanisms that desensitize and render bone unresponsive at the cellular level. Osteocytes are the primary cells that respond to skeletal loading and facilitate the overall anabolic response. Although many of osteocytes' signaling mechanisms activated in response to loading are considered anabolic in nature, several of them can also render osteocytes insensitive to further stimuli and thereby creating a negative feedback loop that limits osteocytes' overall response. The purpose of this review is to examine the potential mechanisms that may contribute to the loss of mechanosensitivity. In particular, we examined the inactivation/desensitization of ion channels and signaling molecules along with the potential role of endocytosis and cytoskeletal reorganization. The significance in defining the negative feedback loop is the potential to identify unique targets for enabling osteocytes to maintain their sensitivity. In doing so, we can begin to cultivate new strategies that capitalize on the anabolic nature of daily activities that repeatedly load the skeleton.
Collapse
|
2
|
Glucose and NAADP trigger elementary intracellular β-cell Ca 2+ signals. Sci Rep 2021; 11:10714. [PMID: 34021189 PMCID: PMC8140081 DOI: 10.1038/s41598-021-88906-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
Pancreatic β-cells release insulin upon a rise in blood glucose. The precise mechanisms of stimulus-secretion coupling, and its failure in Diabetes Mellitus Type 2, remain to be elucidated. The consensus model, as well as a class of currently prescribed anti-diabetic drugs, are based around the observation that glucose-evoked ATP production in β-cells leads to closure of cell membrane ATP-gated potassium (KATP) channels, plasma membrane depolarisation, Ca2+ influx, and finally the exocytosis of insulin granules. However, it has been demonstrated by the inactivation of this pathway using genetic and pharmacological means that closure of the KATP channel alone may not be sufficient to explain all β-cell responses to glucose elevation. We have previously proposed that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells. Here we show using total internal reflection fluorescence (TIRF) microscopy that glucose as well as the Ca2+ mobilising messenger nicotinic acid adenine dinucleotide phosphate (NAADP), known to operate in β-cells, lead to highly localised elementary intracellular Ca2+ signals. These were found to be obscured by measurements of global Ca2+ signals and the action of powerful SERCA-based sequestration mechanisms at the endoplasmic reticulum (ER). Building on our previous work demonstrating that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells, we provide here the first demonstration of elementary Ca2+ signals in response to NAADP, whose occurrence was previously suspected. Optical quantal analysis of these events reveals a unitary event amplitude equivalent to that of known elementary Ca2+ signalling events, inositol trisphosphate (IP3) receptor mediated blips, and ryanodine receptor mediated quarks. We propose that a mechanism based on these highly localised intracellular Ca2+ signalling events mediated by NAADP may initially operate in β-cells when they respond to elevations in blood glucose.
Collapse
|
3
|
Simulation of intracellular $$\hbox {Ca}^{2+}$$ Ca 2 + transients in osteoblasts induced by fluid shear stress and its application. Biomech Model Mechanobiol 2016; 16:509-520. [DOI: 10.1007/s10237-016-0833-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
|
4
|
Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling. PLoS Comput Biol 2016; 12:e1004995. [PMID: 27367445 PMCID: PMC4930170 DOI: 10.1371/journal.pcbi.1004995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/23/2016] [Indexed: 11/19/2022] Open
Abstract
The molecular complexity within a cell may be seen as an evolutionary response to the external complexity of the cell’s environment. This suggests that the external environment may be harnessed to interrogate the cell’s internal molecular architecture. Cells, however, are not only nonlinear and non-stationary, but also exhibit heterogeneous responses within a clonal, isogenic population. In effect, each cell undertakes its own experiment. Here, we develop a method of cellular interrogation using programmable microfluidic devices which exploits the additional information present in cell-to-cell variation, without requiring model parameters to be fitted to data. We focussed on Ca2+ signalling in response to hormone stimulation, which exhibits oscillatory spiking in many cell types and chose eight models of Ca2+ signalling networks which exhibit similar behaviour in simulation. We developed a nonlinear frequency analysis for non-stationary responses, which could classify models into groups under parameter variation, but found that this question alone was unable to distinguish critical feedback loops. We further developed a nonlinear amplitude analysis and found that the combination of both questions ruled out six of the models as inconsistent with the experimentally-observed dynamics and heterogeneity. The two models that survived the double interrogation were mathematically different but schematically identical and yielded the same unexpected predictions that we confirmed experimentally. Further analysis showed that subtle mathematical details can markedly influence non-stationary responses under parameter variation, emphasising the difficulty of finding a “correct” model. By developing questions for the pathway being studied, and designing more versatile microfluidics, cellular interrogation holds promise as a systematic strategy that can complement direct intervention by genetics or pharmacology. We have developed a cellular interrogation methodology that combines programmable microfluidics, fluorescence microscopy and mathematical analysis and have used it to discriminate between models of repetitive Ca2+ spiking in HeLa cells. Our approach exploits the natural variability in response of individual cells in a clonal population and the non-steady state behavior of the response in each cell, thereby providing more powerful discrimination. Interrogation consists of steps or pulses of histamine of fixed concentration and width but varying frequency. Eight mathematical models of repetitive Ca2+ spiking were chosen from the literature and methods of nonlinear frequency and nonlinear amplitude analysis were developed which ruled out all but two of the models, without having to fit the models to the data. Further analysis of the remaining models yielded predictions that were experimentally confirmed. Cellular interrogation offers a general approach to ruling out competing hypotheses about molecular mechanisms, which is complementary to traditional methods of genetics and biochemistry.
Collapse
|
5
|
Guzmán-Silva A, Vázquez de Lara LG, Torres-Jácome J, Vargaz-Guadarrama A, Flores-Flores M, Pezzat Said E, Lagunas-Martínez A, Mendoza-Milla C, Tanzi F, Moccia F, Berra-Romani R. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts. PLoS One 2015; 10:e0134564. [PMID: 26230503 PMCID: PMC4521834 DOI: 10.1371/journal.pone.0134564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/11/2015] [Indexed: 12/12/2022] Open
Abstract
Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF.
Collapse
Affiliation(s)
- Alejandro Guzmán-Silva
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Luis G. Vázquez de Lara
- Experimental Medicine Laboratory, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Julián Torres-Jácome
- Physiology Institute, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Ajelet Vargaz-Guadarrama
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Marycruz Flores-Flores
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Elias Pezzat Said
- Experimental Medicine Laboratory, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Alfredo Lagunas-Martínez
- Instituto Nacional de Salud Pública, Centro de Investigación sobre Enfermedades Infecciosas, Cuernavaca, Morelos, México
| | - Criselda Mendoza-Milla
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City, México
| | - Franco Tanzi
- Laboratory of General Physiology, Department of Biology and Biotechnology ‘‘Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology ‘‘Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| |
Collapse
|
6
|
Miyamoto A, Miyauchi H, Kogure T, Miyawaki A, Michikawa T, Mikoshiba K. Apoptosis induction-related cytosolic calcium responses revealed by the dual FRET imaging of calcium signals and caspase-3 activation in a single cell. Biochem Biophys Res Commun 2015; 460:82-7. [PMID: 25998736 DOI: 10.1016/j.bbrc.2015.02.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/20/2023]
Abstract
Stimulus-induced changes in the intracellular Ca(2+) concentration control cell fate decision, including apoptosis. However, the precise patterns of the cytosolic Ca(2+) signals that are associated with apoptotic induction remain unknown. We have developed a novel genetically encoded sensor of activated caspase-3 that can be applied in combination with a genetically encoded sensor of the Ca(2+) concentration and have established a dual imaging system that enables the imaging of both cytosolic Ca(2+) signals and caspase-3 activation, which is an indicator of apoptosis, in the same cell. Using this system, we identified differences in the cytosolic Ca(2+) signals of apoptotic and surviving DT40 B lymphocytes after B cell receptor (BCR) stimulation. In surviving cells, BCR stimulation evoked larger initial Ca(2+) spikes followed by a larger sustained elevation of the Ca(2+) concentration than those in apoptotic cells; BCR stimulation also resulted in repetitive transient Ca(2+) spikes, which were mediated by the influx of Ca(2+) from the extracellular space. Our results indicate that the observation of both Ca(2+) signals and cells fate in same cell is crucial to gain an accurate understanding of the function of intracellular Ca(2+) signals in apoptotic induction.
Collapse
Affiliation(s)
- Akitoshi Miyamoto
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroshi Miyauchi
- Saitama Medical University Hospital, Iruma, Saitama 350-0495, Japan
| | - Takako Kogure
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Takayuki Michikawa
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Brain Science Institute, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
7
|
Zhou Y, Park M, Cheung E, Wang L, Lu XL. The effect of chemically defined medium on spontaneous calcium signaling of in situ chondrocytes during long-term culture. J Biomech 2015; 48:990-6. [PMID: 25700610 DOI: 10.1016/j.jbiomech.2015.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 01/06/2023]
Abstract
Chemically defined serum-free medium has been shown to better maintain the mechanical integrity of articular cartilage explants than serum-supplemented medium during long-term in vitro culture, but little is known about its effect on cellular mechanisms. We hypothesized that the chemically defined culture medium could regulate the spontaneous calcium signaling of in situ chondrocytes, which may modulate the cellular metabolic activities. Bovine cartilage explants were cultured in chemically defined serum-free or serum-supplemented medium for four weeks. The spontaneous intracellular calcium ([Ca(2+)]i) signaling of in situ chondrocytes was longitudinally measured together along with the biomechanical properties of the explants. The spontaneous [Ca(2+)]i oscillations in chondrocytes were enhanced at the initial exposure of serum-supplemented medium, but were significantly dampened afterwards. In contrast, cartilage explants in chemically defined medium preserved the level of calcium signaling, and showed more responsive cells with higher and more frequent [Ca(2+)]i peaks throughout the four week culture in comparison to those in serum medium. Regardless of the culture medium that the explants were exposed, a positive correlation was detected between the [Ca(2+)]i responsive rate and the stiffness of cartilage (Spearman's rank correlation coefficient=0.762). A stable pattern of [Ca(2+)]i peaks was revealed for each chondrocyte, i.e., the spatiotemporal features of [Ca(2+)]i peaks from a cell were highly consistent during the observation period (15 min). This study showed that the beneficial effect of chemically defined culture of cartilage explants is associated with the spontaneous [Ca(2+)]i signaling of chondrocytes in cartilage.
Collapse
Affiliation(s)
- Yilu Zhou
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - Miri Park
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - Enoch Cheung
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 USA.
| |
Collapse
|
8
|
Ishida S, Matsu-ura T, Fukami K, Michikawa T, Mikoshiba K. Phospholipase C-β1 and β4 contribute to non-genetic cell-to-cell variability in histamine-induced calcium signals in HeLa cells. PLoS One 2014; 9:e86410. [PMID: 24475116 PMCID: PMC3903530 DOI: 10.1371/journal.pone.0086410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/12/2013] [Indexed: 11/18/2022] Open
Abstract
A uniform extracellular stimulus triggers cell-specific patterns of Ca(2+) signals, even in genetically identical cell populations. However, the underlying mechanism that generates the cell-to-cell variability remains unknown. We monitored cytosolic inositol 1,4,5-trisphosphate (IP3) concentration changes using a fluorescent IP3 sensor in single HeLa cells showing different patterns of histamine-induced Ca(2+) oscillations in terms of the time constant of Ca(2+) spike amplitude decay and the Ca(2+) oscillation frequency. HeLa cells stimulated with histamine exhibited a considerable variation in the temporal pattern of Ca(2+) signals and we found that there were cell-specific IP3 dynamics depending on the patterns of Ca(2+) signals. RT-PCR and western blot analyses showed that phospholipase C (PLC)-β1, -β3, -β4, -γ1, -δ3 and -ε were expressed at relatively high levels in HeLa cells. Small interfering RNA-mediated silencing of PLC isozymes revealed that PLC-β1 and PLC-β4 were specifically involved in the histamine-induced IP3 increases in HeLa cells. Modulation of IP3 dynamics by knockdown or overexpression of the isozymes PLC-β1 and PLC-β4 resulted in specific changes in the characteristics of Ca(2+) oscillations, such as the time constant of the temporal changes in the Ca(2+) spike amplitude and the Ca(2+) oscillation frequency, within the range of the cell-to-cell variability found in wild-type cell populations. These findings indicate that the heterogeneity in the process of IP3 production, rather than IP3-induced Ca(2+) release, can cause cell-to-cell variability in the patterns of Ca(2+) signals and that PLC-β1 and PLC-β4 contribute to generate cell-specific Ca(2+) signals evoked by G protein-coupled receptor stimulation.
Collapse
Affiliation(s)
- Sachiko Ishida
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Japan
| | - Toru Matsu-ura
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takayuki Michikawa
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Japan
- Calcium Oscillation Project, ICORP-SORST, Japan Science and Technology Agency, Kawaguchi, Japan
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Japan
- * E-mail: (TM); (KM)
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Japan
- Calcium Oscillation Project, ICORP-SORST, Japan Science and Technology Agency, Kawaguchi, Japan
- * E-mail: (TM); (KM)
| |
Collapse
|
9
|
Turovsky EA, Turovskaya MV, Dolgacheva LP, Zinchenko VP, Dynnik VV. Acetylcholine promotes Ca2+ and NO-oscillations in adipocytes implicating Ca2+→NO→cGMP→cADP-ribose→Ca2+ positive feedback loop--modulatory effects of norepinephrine and atrial natriuretic peptide. PLoS One 2013; 8:e63483. [PMID: 23696827 PMCID: PMC3656004 DOI: 10.1371/journal.pone.0063483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/03/2013] [Indexed: 02/05/2023] Open
Abstract
PURPOSE This study investigated possible mechanisms of autoregulation of Ca(2+) signalling pathways in adipocytes responsible for Ca(2+) and NO oscillations and switching phenomena promoted by acetylcholine (ACh), norepinephrine (NE) and atrial natriuretic peptide (ANP). METHODS Fluorescent microscopy was used to detect changes in Ca(2+) and NO in cultures of rodent white adipocytes. Agonists and inhibitors were applied to characterize the involvement of various enzymes and Ca(2+)-channels in Ca(2+) signalling pathways. RESULTS ACh activating M3-muscarinic receptors and Gβγ protein dependent phosphatidylinositol 3 kinase induces Ca(2+) and NO oscillations in adipocytes. At low concentrations of ACh which are insufficient to induce oscillations, NE or α1, α2-adrenergic agonists act by amplifying the effect of ACh to promote Ca(2+) oscillations or switching phenomena. SNAP, 8-Br-cAMP, NAD and ANP may also produce similar set of dynamic regimes. These regimes arise from activation of the ryanodine receptor (RyR) with the implication of a long positive feedback loop (PFL): Ca(2+)→NO→cGMP→cADPR→Ca(2+), which determines periodic or steady operation of a short PFL based on Ca(2+)-induced Ca(2+) release via RyR by generating cADPR, a coagonist of Ca(2+) at the RyR. Interplay between these two loops may be responsible for the observed effects. Several other PFLs, based on activation of endothelial nitric oxide synthase or of protein kinase B by Ca(2+)-dependent kinases, may reinforce functioning of main PFL and enhance reliability. All observed regimes are independent of operation of the phospholipase C/Ca(2+)-signalling axis, which may be switched off due to negative feedback arising from phosphorylation of the inositol-3-phosphate receptor by protein kinase G. CONCLUSIONS This study presents a kinetic model of Ca(2+)-signalling system operating in adipocytes and integrating signals from various agonists, which describes it as multivariable multi feedback network with a family of nested positive feedback.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Mariya V. Turovskaya
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Ludmila P. Dolgacheva
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Valery P. Zinchenko
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Vladimir V. Dynnik
- Department of Intracellular Signalling, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
- Department of System Biochemistry, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
- * E-mail:
| |
Collapse
|
10
|
Jovic A, Howell B, Cote M, Wade SM, Mehta K, Miyawaki A, Neubig RR, Linderman JJ, Takayama S. Phase-locked signals elucidate circuit architecture of an oscillatory pathway. PLoS Comput Biol 2010; 6:e1001040. [PMID: 21203481 PMCID: PMC3009597 DOI: 10.1371/journal.pcbi.1001040] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 11/27/2010] [Indexed: 12/26/2022] Open
Abstract
This paper introduces the concept of phase-locking analysis of oscillatory cellular signaling systems to elucidate biochemical circuit architecture. Phase-locking is a physical phenomenon that refers to a response mode in which system output is synchronized to a periodic stimulus; in some instances, the number of responses can be fewer than the number of inputs, indicative of skipped beats. While the observation of phase-locking alone is largely independent of detailed mechanism, we find that the properties of phase-locking are useful for discriminating circuit architectures because they reflect not only the activation but also the recovery characteristics of biochemical circuits. Here, this principle is demonstrated for analysis of a G-protein coupled receptor system, the M3 muscarinic receptor-calcium signaling pathway, using microfluidic-mediated periodic chemical stimulation of the M3 receptor with carbachol and real-time imaging of resulting calcium transients. Using this approach we uncovered the potential importance of basal IP3 production, a finding that has important implications on calcium response fidelity to periodic stimulation. Based upon our analysis, we also negated the notion that the Gq-PLC interaction is switch-like, which has a strong influence upon how extracellular signals are filtered and interpreted downstream. Phase-locking analysis is a new and useful tool for model revision and mechanism elucidation; the method complements conventional genetic and chemical tools for analysis of cellular signaling circuitry and should be broadly applicable to other oscillatory pathways. Key to robust discernment of cell circuit architecture is to have as many distinct response features as possible for comparison and evaluation. One under-appreciated characteristic of oscillatory circuits is that under periodic stimulation, these systems will exhibit responses synchronized to this stimulatory input, a phenomenon termed phase-locking. We demonstrate that phase-locked response characteristics vary noticeably depending on circuit activation and recovery properties; these response characteristics thereby provide a unique set of criteria for oscillatory circuit architecture analysis. The concept is validated through experiments on an oscillatory calcium pathway in mammalian cells; the experimental setup allowed us to explore, for the first time, the properties of chemically induced phase-locking of intracellular signals. Observations of this phenomenon were then used to test the predictions of several existing mathematical models of calcium signaling. Most of the models we evaluated were unable to match all our experimental observations, suggesting that current models are missing mechanistic elements in the context of calcium signaling for the cell type and receptor/stimulant tested. The observations of phase-locking further led us to identify one simple mechanistic modification that would account for all the experimental observations. The techniques and methodology presented should be broadly applicable to a variety of biological oscillators.
Collapse
Affiliation(s)
- Andreja Jovic
- Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bryan Howell
- Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michelle Cote
- Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Susan M. Wade
- Pharmacology Department, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Khamir Mehta
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Center, Brain Science Institute, Wako City, Saitama, Japan
| | - Richard R. Neubig
- Pharmacology Department, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (ST); (JJL)
| | - Shuichi Takayama
- Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (ST); (JJL)
| |
Collapse
|
11
|
Ohtani M, Daly JW, Oka T. Co-existence of muscarinic and nicotinic receptors and their functional interaction in mouse Beta-TC6 cells. Eur J Pharmacol 2009; 604:150-7. [DOI: 10.1016/j.ejphar.2008.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/22/2008] [Accepted: 12/09/2008] [Indexed: 12/17/2022]
|
12
|
Tengholm A, Gylfe E. Oscillatory control of insulin secretion. Mol Cell Endocrinol 2009; 297:58-72. [PMID: 18706473 DOI: 10.1016/j.mce.2008.07.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/30/2008] [Accepted: 07/10/2008] [Indexed: 11/17/2022]
Abstract
Pancreatic beta-cells possess an inherent ability to generate oscillatory signals that trigger insulin release. Coordination of the secretory activity among beta-cells results in pulsatile insulin secretion from the pancreas, which is considered important for the action of the hormone in the target tissues. This review focuses on the mechanisms underlying oscillatory control of insulin secretion at the level of the individual beta-cell. Recent studies have demonstrated that oscillations of the cytoplasmic Ca(2+) concentration are synchronized with oscillations in beta-cell metabolism, intracellular cAMP concentration, phospholipase C activity and plasma membrane phosphoinositide lipid concentrations. There are complex interdependencies between the different messengers and signalling pathways that contribute to amplitude regulation and shaping of the insulin secretory response to nutrient stimuli and neurohormonal modulators. Several of these pathways may be important pharmacological targets for improving pulsatile insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Box 571, SE-75123 Uppsala, Sweden.
| | | |
Collapse
|
13
|
Kinnear NP, Wyatt CN, Clark JH, Calcraft PJ, Fleischer S, Jeyakumar LH, Nixon GF, Mark Evans A. Lysosomes co-localize with ryanodine receptor subtype 3 to form a trigger zone for calcium signalling by NAADP in rat pulmonary arterial smooth muscle. Cell Calcium 2008; 44:190-201. [PMID: 18191199 PMCID: PMC3982125 DOI: 10.1016/j.ceca.2007.11.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/26/2007] [Accepted: 11/17/2007] [Indexed: 11/26/2022]
Abstract
In arterial myocytes the Ca(2+) mobilizing messenger NAADP evokes spatially restricted Ca(2+) bursts from a lysosome-related store that are subsequently amplified into global Ca(2+) waves by Ca(2+)-induced Ca(2+)-release from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs). Lysosomes facilitate this process by forming clusters that co-localize with a subpopulation of RyRs on the SR. We determine here whether RyR subtypes 1, 2 or 3 selectively co-localize with lysosomal clusters in pulmonary arterial myocytes using affinity purified specific antibodies. The density of: (1) alphalgP120 labelling, a lysosome-specific protein, in the perinuclear region of the cell (within 1.5mum of the nucleus) was approximately 4-fold greater than in the sub-plasmalemmal (within 1.5mum of the plasma membrane) and approximately 2-fold greater than in the extra-perinuclear (remainder) regions; (2) RyR3 labelling within the perinuclear region was approximately 4- and approximately 14-fold greater than that in the extra-perinuclear and sub-plasmalemmal regions, and approximately 2-fold greater than that for either RyR1 or RyR2; (3) despite there being no difference in the overall densities of fluorescent labelling of lysosomes and RyR subtypes between cells, co-localization with alphalgp120 labelling within the perinuclear region was approximately 2-fold greater for RyR3 than for RyR2 or RyR1; (4) co-localization between alphalgp120 and each RyR subtype declined markedly outside the perinuclear region. Furthermore, selective block of RyR3 and RyR1 with dantrolene (30muM) abolished global Ca(2+) waves but not Ca(2+) bursts in response to intracellular dialysis of NAADP (10nM). We conclude that a subpopulation of lysosomes cluster in the perinuclear region of the cell and form junctions with SR containing a high density of RyR3 to comprise a trigger zone for Ca(2+) signalling by NAADP.
Collapse
Affiliation(s)
- Nicholas P. Kinnear
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Christopher N. Wyatt
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Jill H. Clark
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Peter J. Calcraft
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Sidney Fleischer
- Department of Biological Sciences, Vanderbilt University, Nashville. TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37235, USA
| | - Loice H. Jeyakumar
- Department of Medicine/Gastroenterology, Vanderbilt University Medical School, Nashville, TN 37235, USA
| | - Graeme F. Nixon
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - A. Mark Evans
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| |
Collapse
|
14
|
Thul R, Bellamy TC, Roderick HL, Bootman MD, Coombes S. Calcium oscillations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 641:1-27. [PMID: 18783168 DOI: 10.1007/978-0-387-09794-7_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Changes in cellular Ca2+ concentration control a wide range of physiological processes, from the subsecond release of synaptic neurotransmitters, to the regulation of gene expression over months or years. Ca2+ can also trigger cell death through both apoptosis and necrosis, and so the regulation of cellular Ca2+ concentration must be tightly controlled through the concerted action of pumps, channels and buffers that transport Ca2+ into and out of the cell cytoplasm. A hallmark of cellular Ca2+ signalling is its spatiotemporal complexity: stimulation of cells by a hormone or neurotransmitter leads to oscillations in cytoplasmic Ca2+ concentration that can vary markedly in time course, amplitude, frequency, and spatial range. In this chapter we review some of the biological roles of Ca2+, the experimental characterisation of complex dynamic changes in Ca2+ concentration, and attempts to explain this complexity using computational models. We consider the 'toolkit' of cellular proteins which influence Ca2+ concentrarion, describe mechanistic models of key elements of the toolkit, and fit these into the framework of whole cell models of Ca2+ oscillations and waves. Finally, we will touch on recent efforts to use stochastic modelling to elucidate elementary Ca2+ signal events, and how these may evolve into global signals.
Collapse
Affiliation(s)
- Ruediger Thul
- School of Mathematical Sciences, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
15
|
Kang M, Othmer HG. The variety of cytosolic calcium responses and possible roles of PLC and PKC. Phys Biol 2007; 4:325-43. [DOI: 10.1088/1478-3975/4/4/009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Godin LM, Suzuki S, Jacobs CR, Donahue HJ, Donahue SW. Mechanically induced intracellular calcium waves in osteoblasts demonstrate calcium fingerprints in bone cell mechanotransduction. Biomech Model Mechanobiol 2006; 6:391-8. [PMID: 17082961 PMCID: PMC2874246 DOI: 10.1007/s10237-006-0059-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
An early response to mechanical stimulation of bone cells in vitro is an increase in intracellular calcium concentration ([Ca (2+)](i)). This study analyzed the [Ca (2+)](i) wave area, magnitude, duration, rise time, fall time, and time to onset in individual osteoblasts for two identical bouts of mechanical stimulation separated by a 30-min rest period. The area under the [Ca (2+)](i) wave increased in the second loading bout compared to the first. This suggests that rest periods may potentiate mechanically induced intracellular calcium signals. Furthermore, many of the [Ca (2+)](i) wave parameters were strongly, positively correlated between the two bouts of mechanical stimulation. For example, in individual primary osteoblasts, if a cell had a large [Ca (2+)](i) wave area in the first bout it was likely to have a large [Ca (2+)](i) wave area in the second bout (r (2) = 0.933). These findings support the idea that individual bone cells have "calcium fingerprints" (i.e., a unique [Ca (2+)](i) wave profile that is reproducible for repeated exposure to a given stimulus).
Collapse
Affiliation(s)
- Lindsay M Godin
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA
| | | | | | | | | |
Collapse
|
17
|
Matsu-ura T, Michikawa T, Inoue T, Miyawaki A, Yoshida M, Mikoshiba K. Cytosolic inositol 1,4,5-trisphosphate dynamics during intracellular calcium oscillations in living cells. ACTA ACUST UNITED AC 2006; 173:755-65. [PMID: 16754959 PMCID: PMC2063891 DOI: 10.1083/jcb.200512141] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We developed genetically encoded fluorescent inositol 1,4,5-trisphosphate (IP3) sensors that do not severely interfere with intracellular Ca2+ dynamics and used them to monitor the spatiotemporal dynamics of both cytosolic IP3 and Ca2+ in single HeLa cells after stimulation of exogenously expressed metabotropic glutamate receptor 5a or endogenous histamine receptors. IP3 started to increase at a relatively constant rate before the pacemaker Ca2+ rise, and the subsequent abrupt Ca2+ rise was not accompanied by any acceleration in the rate of increase in IP3. Cytosolic [IP3] did not return to its basal level during the intervals between Ca2+ spikes, and IP3 gradually accumulated in the cytosol with a little or no fluctuations during cytosolic Ca2+ oscillations. These results indicate that the Ca2+-induced regenerative IP3 production is not a driving force of the upstroke of Ca2+ spikes and that the apparent IP3 sensitivity for Ca2+ spike generation progressively decreases during Ca2+ oscillations.
Collapse
MESH Headings
- Calcium/metabolism
- Calcium Channels/metabolism
- Calcium Signaling/physiology
- Cell Membrane/metabolism
- Cytosol/metabolism
- HeLa Cells
- Humans
- In Vitro Techniques
- Inositol 1,4,5-Trisphosphate/biosynthesis
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Protein Binding
- Receptor, Metabotropic Glutamate 5
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Histamine/metabolism
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Time Factors
Collapse
Affiliation(s)
- Toru Matsu-ura
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Evans AM, Wyatt CN, Kinnear NP, Clark JH, Blanco EA. Pyridine nucleotides and calcium signalling in arterial smooth muscle: from cell physiology to pharmacology. Pharmacol Ther 2005; 107:286-313. [PMID: 16005073 DOI: 10.1016/j.pharmthera.2005.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2005] [Indexed: 10/25/2022]
Abstract
It is generally accepted that the mobilisation of intracellular Ca2+ stores plays a pivotal role in the regulation of arterial smooth muscle function, paradoxically during both contraction and relaxation. However, the spatiotemporal pattern of different Ca2+ signals that elicit such responses may also contribute to the regulation of, for example, differential gene expression. These findings, among others, demonstrate the importance of discrete spatiotemporal Ca2+ signalling patterns and the mechanisms that underpin them. Of fundamental importance in this respect is the realisation that different Ca2+ storing organelles may be selected by the discrete or coordinated actions of multiple Ca2+ mobilising messengers. When considering such messengers, it is generally accepted that sarcoplasmic reticulum (SR) stores may be mobilised by the ubiquitous messenger inositol 1,4,5 trisphosphate. However, relatively little attention has been paid to the role of Ca2+ mobilising pyridine nucleotides in arterial smooth muscle, namely, cyclic adenosine diphosphate-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). This review will therefore focus on these novel mechanisms of calcium signalling and their likely therapeutic potential.
Collapse
Affiliation(s)
- A Mark Evans
- Division of Biomedical Sciences, School of Biology, Bute Building, University of St. Andrews, St. Andrews, Fife KY16 9TS, UK.
| | | | | | | | | |
Collapse
|
19
|
Batra NN, Li YJ, Yellowley CE, You L, Malone AM, Kim CH, Jacobs CR. Effects of short-term recovery periods on fluid-induced signaling in osteoblastic cells. J Biomech 2005; 38:1909-17. [PMID: 16023480 DOI: 10.1016/j.jbiomech.2004.08.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2004] [Indexed: 11/21/2022]
Abstract
It is well known that cyclic mechanical loading can produce an anabolic response in bone. In vivo studies have shown that the insertion of short-term recovery periods (10-15 s) into mechanical loading profiles led to an increased osteogenic response compared to continuous cyclic loading of bone. Although this is suggestive of temporal processing at the bone cell level, there is little evidence to support such a hypothesis. Therefore, the current study investigated the cellular mechanism of bone's response to rest inserted vs. continuous mechanical loading. Cell responses to rest inserted mechanical loading were quantified by applying oscillatory fluid flow (OFF) to osteoblastic cells and quantifying real-time intracellular calcium [Ca2+]i, prostaglandin E2 (PGE2) release, and osteopontin (OPN) mRNA levels. Cells were exposed to OFF (1 Hz) at shear stresses of 1 and 2 Pa with rest periods of 5, 10, and 15s inserted every 10 loading cycles. The insertion of 10 and 15s rest periods into the flow profile resulted in multiple [Ca2+]i responses by individual cells, increased [Ca2+]i response magnitudes, and increased overall percent of cells responding compared to continuously loaded control groups. We determined the source of the multiple calcium responses to be from intracellular stores. In addition, rest inserted OFF led to similar levels of PGE2 release and increased levels of relative OPN mRNA compared to cells exposed to continuous OFF. Our study suggests that the cellular mechanism of bone adaptation to rest inserted mechanical loading may involve modulation of intracellular levels of calcium (frequency, magnitude, percent of cells responding).
Collapse
Affiliation(s)
- Nikhil N Batra
- Bone and Joint Rehabilitation R&D Center, Veterans Affairs Medical Center, Palo Alto, CA, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kinnear NP, Boittin FX, Thomas JM, Galione A, Evans AM. Lysosome-sarcoplasmic reticulum junctions. A trigger zone for calcium signaling by nicotinic acid adenine dinucleotide phosphate and endothelin-1. J Biol Chem 2004; 279:54319-26. [PMID: 15331591 DOI: 10.1074/jbc.m406132200] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies on pulmonary arterial smooth muscle cells have shown that nicotinic acid adenine dinucleotide phosphate (NAADP) evokes highly localized intracellular Ca(2+) signals by mobilizing thapsigargin-insensitive stores. Such localized Ca(2+) signals may initiate global Ca(2+) waves and contraction of the myocytes through the recruitment of ryanodine receptors on the sarcoplasmic reticulum via Ca(2+)-induced Ca(2+) release. Here we show that NAADP evokes localized Ca(2+) signals by mobilizing a bafilomycin A1-sensitive, lysosome-related Ca(2+) store. These lysosomal stores facilitate this process by co-localizing with a portion of the sarcoplasmic reticulum expressing ryanodine receptors to comprise a highly specialized trigger zone for NAADP-dependent Ca(2+) signaling by the vasoconstrictor hormone, endothelin-1. These findings further advance our understanding of how the spatial organization of discrete, organellar Ca(2+) stores may underpin the generation of differential Ca(2+) signaling patterns by different Ca(2+)-mobilizing messengers.
Collapse
Affiliation(s)
- Nicholas P Kinnear
- Division of Biomedical Sciences, School of Biology, Bute Building, University of St. Andrews, St. Andrews, Fife KY16 9TS, UK
| | | | | | | | | |
Collapse
|
21
|
Yamasaki M, Masgrau R, Morgan AJ, Churchill GC, Patel S, Ashcroft SJH, Galione A. Organelle selection determines agonist-specific Ca2+ signals in pancreatic acinar and beta cells. J Biol Chem 2003; 279:7234-40. [PMID: 14660554 DOI: 10.1074/jbc.m311088200] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How different extracellular stimuli can evoke different spatiotemporal Ca2+ signals is uncertain. We have elucidated a novel paradigm whereby different agonists use different Ca2+-storing organelles ("organelle selection") to evoke unique responses. Some agonists select the endoplasmic reticulum (ER), and others select lysosome-related (acidic) organelles, evoking spatial Ca2+ responses that mirror the organellar distribution. In pancreatic acinar cells, acetylcholine and bombesin exclusively select the ER Ca2+ store, whereas cholecystokinin additionally recruits a lysosome-related organelle. Similarly, in a pancreatic beta cell line MIN6, acetylcholine selects only the ER, whereas glucose mobilizes Ca2+ from a lysosome-related organelle. We also show that the key to organelle selection is the agonist-specific coupling messenger(s) such that the ER is selected by recruitment of inositol 1,4,5-trisphosphate (or cADP-ribose), whereas lysosome-related organelles are selected by NAADP.
Collapse
Affiliation(s)
- Michiko Yamasaki
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Pakhtusova N, Zaostrovskaya L, Lindström P, Larsson-Nyrén G. Cell-specific Ca(2+) responses in glucose-stimulated single and aggregated beta-cells. Cell Calcium 2003; 34:121-9. [PMID: 12810054 DOI: 10.1016/s0143-4160(03)00027-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A rise in the cytoplasmic calcium concentration ([Ca(2+)](i)) is a key event for insulin exocytosis. We have recently found that the 'early [Ca(2+)](i) response' in single ob/ob mouse beta-cells is reproduced during consecutive glucose stimulations. It, therefore, appears that the response pattern is a characteristic of the individual beta-cell. We have now investigated if a cell-specific [Ca(2+)](i) response is a general phenomenon in rodent beta-cells, and if it can be observed when cells are functionally coupled. With the use of the fura-2 technique, we have studied the 'early [Ca(2+)](i) response' in single dispersed beta-cells, in beta-cell clusters of different size and in intact islets from the ob/ob mouse during repeated glucose stimulation (20mM). beta-Cells from lean mouse and rat, and intact islets from lean mouse were also investigated. Significant correlations between the first and second stimulation were found for the parameters lag-time for Ca(2+) rise (calculated as the time from start of stimulation of the cell until the first value above an extrapolated baseline), nadir of initial lowering (difference between the baseline and lowest [Ca(2+)](i) value), and peak height (difference between baseline and the highest [Ca(2+)](i) value of the first calcium peak) in single dispersed beta-cells, in 'single beta-cell within a small cluster', in clusters of medium and large size, and in single dispersed beta-cells from lean mouse and rat. The lag-times for Ca(2+) rise and peak heights were correlated within the pairs of stimulation also in intact ob/ob islets. In summary, despite a large heterogeneity of the 'early [Ca(2+)](i) response' among individual cells, the lag-time for [Ca(2+)](i) rise, the nadir of initial lowering and the height of the first peak response can be identified as cell-specific markers in beta-cells.
Collapse
Affiliation(s)
- Natalia Pakhtusova
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
23
|
Donahue SW, Donahue HJ, Jacobs CR. Osteoblastic cells have refractory periods for fluid-flow-induced intracellular calcium oscillations for short bouts of flow and display multiple low-magnitude oscillations during long-term flow. J Biomech 2003; 36:35-43. [PMID: 12485636 DOI: 10.1016/s0021-9290(02)00318-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Partitioning a daily mechanical stimulus into discrete loading bouts enhances bone formation in rat tibiae (J. Bone Mineral Res. 15(8) (2000) 1596). We hypothesized that a refractory period exists in primary rat osteoblastic cells, during which fluid-flow-induced [Ca(2+)](i) oscillations are insensitive to additional short bouts (2 min) of fluid flow. Because the frequency of [Ca(2+)](i) oscillations is believed to be important for regulating cellular activity and long-term fluid flow alters gene expression in bone cells, we also hypothesized that long-term (15 min) oscillating fluid flow produces multiple [Ca(2+)](i) oscillations in osteoblastic cells. Primary osteoblastic cells from rat long bones were exposed to 2 min of oscillating fluid flow that produced shear stresses of 2 Pa at 2 Hz. After a rest period of 5, 30, 60, 300, 600, 900, 1800, or 2700 s, the cells were exposed to a second 2-min bout of flow. A 600 s rest period was required to recover the percentage of cells responding to fluid flow and a 900 s rest period was required to recover the [Ca(2+)](i) oscillation magnitude. The magnitude and shape of the two [Ca(2+)](i) oscillations were strikingly similar for individual cells after a 900 s rest period. During 15 min of continuous oscillating flow, some individual cells displayed between 1 and 9 oscillations subsequent to the initial [Ca(2+)](i) oscillation. However, only 54% of the cells that responded initially displayed subsequent [Ca(2+)](i) oscillations during long-term flow and the magnitude of the subsequent oscillations was only 28% of the initial response.
Collapse
Affiliation(s)
- Seth W Donahue
- Department of Biomedical Engineering, Michigan Technological University, 312 Chemical Science Building, 1400 Townsend Drive, Houghton, MI 49931-1295, USA.
| | | | | |
Collapse
|
24
|
Larsson-Nyrén G, Pakhtusova N, Sehlin J. Isolated mouse pancreatic beta-cells show cell-specific temporal response pattern. Am J Physiol Cell Physiol 2002; 282:C1199-204. [PMID: 11997233 DOI: 10.1152/ajpcell.00009.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The length of the silent lag time before elevation of the cytosolic free Ca2+ concentration ([Ca2+]i) differs between individual pancreatic beta-cells. One important question is whether these differences reflect a random phenomenon or whether the length of lag time is inherent in the individual beta-cell. We compared the lag times, initial dips, and initial peak heights for [Ca2+]i from two consecutive glucose stimulations (with either 10 or 20 mM glucose) in individual ob/ob mouse beta-cells with the fura 2 technique in a microfluorimetric system. There was a strong correlation between the lengths of the lag times in each beta-cell (10 mM glucose: r = 0.94, P < 0.001; 20 mM glucose: r = 0.96, P < 0.001) as well as between the initial dips in [Ca2+]i (10 mM glucose: r = 0.93, P < 0.001; 20 mM glucose: r = 0.79, P < 0.001) and between the initial peak heights (10 mM glucose: r = 0.51, P < 0.01; 20 mM glucose: r = 0.77, P < 0.001). These data provide evidence that the response pattern, including both the length of the lag time and the dynamics of the subsequent [Ca2+]i, is specific for the individual beta-cell.
Collapse
Affiliation(s)
- Gerd Larsson-Nyrén
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | |
Collapse
|
25
|
Gilon P, Henquin JC. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev 2001; 22:565-604. [PMID: 11588141 DOI: 10.1210/edrv.22.5.0440] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acetylcholine (ACh), the major parasympathetic neurotransmitter, is released by intrapancreatic nerve endings during the preabsorptive and absorptive phases of feeding. In beta-cells, ACh binds to muscarinic M(3) receptors and exerts complex effects, which culminate in an increase of glucose (nutrient)-induced insulin secretion. Activation of PLC generates diacylglycerol. Activation of PLA(2) produces arachidonic acid and lysophosphatidylcholine. These phospholipid-derived messengers, particularly diacylglycerol, activate PKC, thereby increasing the efficiency of free cytosolic Ca(2+) concentration ([Ca(2+)](c)) on exocytosis of insulin granules. IP3, also produced by PLC, causes a rapid elevation of [Ca(2+)](c) by mobilizing Ca(2+) from the endoplasmic reticulum; the resulting fall in Ca(2+) in the organelle produces a small capacitative Ca(2+) entry. ACh also depolarizes the plasma membrane of beta-cells by a Na(+)- dependent mechanism. When the plasma membrane is already depolarized by secretagogues such as glucose, this additional depolarization induces a sustained increase in [Ca(2+)](c). Surprisingly, ACh can also inhibit voltage-dependent Ca(2+) channels and stimulate Ca(2+) efflux when [Ca(2+)](c) is elevated. However, under physiological conditions, the net effect of ACh on [Ca(2+)](c) is always positive. The insulinotropic effect of ACh results from two mechanisms: one involves a rise in [Ca(2+)](c) and the other involves a marked, PKC-mediated increase in the efficiency of Ca(2+) on exocytosis. The paper also discusses the mechanisms explaining the glucose dependence of the effects of ACh on insulin release.
Collapse
Affiliation(s)
- P Gilon
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, B-1200 Brussels, Belgium.
| | | |
Collapse
|
26
|
Pletjushkina OJ, Rajfur Z, Pomorski P, Oliver TN, Vasiliev JM, Jacobson KA. Induction of cortical oscillations in spreading cells by depolymerization of microtubules. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:235-44. [PMID: 11276073 DOI: 10.1002/cm.1012] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Actomyosin-based cortical contractility is a common feature of eukaryotic cells but the capability to produce rhythmic contractions is found in only a few types such as cardiomyocytes. Mechanisms responsible for the acquisition of this capability remain largely unknown. Rhythmic contractility can be induced in non-muscle cells by microtubule depolymerization. Spreading epithelial cells and fibroblasts in which microtubules were depolymerized with nocodazole or colcemid underwent rhythmic oscillations of the body that lasted for several hours before the cells acquired a stable, flattened shape. By contrast, control cells spread and flattened into discoid shapes in a smooth and regular manner. Quantitative analysis of the oscillations showed that they have a period of about 50 seconds. The kinase inhibitors, HA 1077 and H7, and the more specific rho-kinase inhibitor, Y 27632, caused the oscillations to immediately cease and the cells to become flat. Transient increases in cytoplasmic calcium preceded the contractile phase of the oscillations. Wrinkle formation by cells plated on elastic substrata indicated that the contractility of colcemid-treated cells increased in comparison to controls but was drastically decreased after HA 1077 addition. These data suggest that an intact microtubular system normally prevents pulsations by moderating excessive rho-mediated actin myosin contractility. Possible mechanistic interactions between rho-mediated and calcium activated contractile pathways that could produce morphological oscillations are discussed.
Collapse
Affiliation(s)
- O J Pletjushkina
- A. N. Belozersky Institute of Physical and Chemical Biology, Moscow State University, Vorobyevy Gory, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
27
|
Schöfl C, Börger J, Mader T, Waring M, von zur Mühlen A, Brabant G. Tolbutamide and diazoxide modulate phospholipase C-linked Ca(2+) signaling and insulin secretion in beta-cells. Am J Physiol Endocrinol Metab 2000; 278:E639-47. [PMID: 10751197 DOI: 10.1152/ajpendo.2000.278.4.e639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine vasopressin (AVP), bombesin, and ACh increase cytosolic free Ca(2+) and potentiate glucose-induced insulin release by activating receptors linked to phospholipase C (PLC). We examined whether tolbutamide and diazoxide, which close or open ATP-sensitive K(+) channels (K(ATP) channels), respectively, interact with PLC-linked Ca(2+) signals in HIT-T15 and mouse beta-cells and with PLC-linked insulin secretion from HIT-T15 cells. In the presence of glucose, the PLC-linked Ca(2+) signals were enhanced by tolbutamide (3-300 microM) and inhibited by diazoxide (10-100 microM). The effects of tolbutamide and diazoxide on PLC-linked Ca(2+) signaling were mimicked by BAY K 8644 and nifedipine, an activator and inhibitor of L-type voltage-sensitive Ca(2+) channels, respectively. Neither tolbutamide nor diazoxide affected PLC-linked mobilization of internal Ca(2+) or store-operated Ca(2+) influx through non-L-type Ca(2+) channels. In the absence of glucose, PLC-linked Ca(2+) signals were diminished or abolished; this effect could be partly antagonized by tolbutamide. In the presence of glucose, tolbutamide potentiated and diazoxide inhibited AVP- or bombesin-induced insulin secretion from HIT-T15 cells. Nifedipine (10 microM) blocked both the potentiating and inhibitory actions of tolbutamide and diazoxide on AVP-induced insulin release, respectively. In glucose-free medium, AVP-induced insulin release was reduced but was again potentiated by tolbutamide, whereas diazoxide caused no further inhibition. Thus tolbutamide and diazoxide regulate both PLC-linked Ca(2+) signaling and insulin secretion from pancreatic beta-cells by modulating K(ATP) channels, thereby determining voltage-sensitive Ca(2+) influx.
Collapse
Affiliation(s)
- C Schöfl
- Abteilung Klinische Endokrinologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Schermerhorn T, Sharp GW. Norepinephrine acts on the KATP channel and produces different effects on [Ca2+]i in oscillating and non-oscillating HIT-T15 cells. Cell Calcium 2000; 27:163-73. [PMID: 11007129 DOI: 10.1054/ceca.2000.0107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Norepinephrine (NE) is an inhibitor of insulin secretion that acts, in part, by decreasing intracellular free calcium ([Ca2+]i). We examined the effects of NE on [Ca2+]i in individual HIT-T15 cells loaded with indo 1. Cells were categorized as oscillators or non-oscillators on the basis of the pattern of the calcium response to glucose and the effect of NE on [Ca2+]i was subsequently measured in each cell. NE caused a simple decrease in [Ca2+]i in nonoscillators. In oscillators, NE decreased the amplitude and frequency of the oscillations. Furthermore, the duration of the NE effect in oscillators was longer than in non-oscillators. NE did not affect the rise in [Ca2+]i elicited by depolarizing concentrations of 20 mM or 35 mM KCl alone, or in the presence of 20 mM KCl, 100 microM diazoxide, and 10 mM glucose. In other experiments, NE had no effect on [Ca2+]i when the KATP channels were fully clamped with diazoxide or tolbutamide. We conclude that the action of NE to decrease [Ca2+]i in both oscillators and non-oscillators is mediated via activation of the KATP channel. Despite this common mechanism, NE exerts different effects on oscillating and non-oscillating cells.
Collapse
Affiliation(s)
- T Schermerhorn
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University Ithaca, New York 14853, USA
| | | |
Collapse
|
29
|
Schöfl C, Mader T, Krämer C, Waring M, Krippeit-Drews P, Prank K, von zur Mühlen A, Drews G, Brabant G. Ca2+/calmodulin inhibition and phospholipase C-linked Ca2+ Signaling in clonal beta-cells. Endocrinology 1999; 140:5516-23. [PMID: 10579314 DOI: 10.1210/endo.140.12.7180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neurotransmitters and hormones, such as arginine vasopressin (AVP) and bombesin, evoke frequency-modulated repetitive Ca2+ transients in insulin-secreting HIT-T15 cells by binding to receptors linked to phospholipase C (PLC). The role of calmodulin (CaM)-dependent mechanisms in the generation of PLC-linked Ca2+ transients was investigated by use of the naphthalenesulfonamide CaM antagonists W-7 and W-13 and their dechlorinated control analogs W-5 and W-12. W-7 (10-30 microM) and W-13 (30-100 microM), but not W-5 (100 microM) and W-12 (300 microM), reversibly inhibited the AVP- and bombesin-induced Ca2+ transients. As the generation of PLC-linked Ca2+ transients requires mobilization of internal Ca2+ and Ca2+ influx through voltage-sensitive (VSCC) and -insensitive (VICC) Ca2+ channels, the effects of the W compounds on these processes were further investigated. First, W-7 dose dependently diminished K+ (45 mM)-induced Ca2+ signals (IC50, approximately 25 microM), and W-13 (100 microM) reduced the K+ (45 mM)-induced [Ca2+]i rise by about 40-60%, whereas W-5 (100 microM) and W-12 (300 microM) had no effect. In addition, W-7 (100 microM) inhibited whole cell Ca2+ currents in mouse beta-cells by about 60%. Second, pretreatment of cells (5 min) with W-7 (30 microM), but not W-5 (30 microM), inhibited agonist-induced internal Ca2+ mobilization by about 75% in Ca2+-free medium. Neither W-7 (30 microM) nor W-5 (30 microM) affected AVP (100 nM)-stimulated formation of IP3. Third, capacitative Ca2+ influx through VICC activated by thapsigargin (2 microM) in the presence of verapamil (50 microM) was inhibited by W-7 (30 microM) but not by W-5 (30 microM). As all of the W compound effects corresponded well to their reported anticalmodulin activity, a specific anticalmodulin action can be assumed. Thus, Ca2+ via activation of CaM-dependent processes could provide positive feedback on the generation of PLC-linked Ca2+ transients in HIT-T15 cells. This appears to involve CaM-dependent regulation of both mobilization of internal Ca2+ and Ca2+ influx through VSCC and VICC.
Collapse
Affiliation(s)
- C Schöfl
- Abteilung für Klinische Endokrinologie, Medizinische Hochschule Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Schoutteten L, Denjean P, Joliff-Botrel G, Bernard C, Pansu D, Pansu RB. Development of Intracellular Calcium Measurement by Time-resolved Photon-counting Fluorescence. Photochem Photobiol 1999. [DOI: 10.1111/j.1751-1097.1999.tb08273.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Bouscarel B, Kroll SD, Fromm H. Signal transduction and hepatocellular bile acid transport: cross talk between bile acids and second messengers. Gastroenterology 1999; 117:433-52. [PMID: 10419927 DOI: 10.1053/gast.1999.0029900433] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- B Bouscarel
- Division of Gastroenterology and Nutrition, Department of Medicine, George Washington University Medical Center, Washington, D.C., USA
| | | | | |
Collapse
|
32
|
Gromada J, Høy M, Renström E, Bokvist K, Eliasson L, Göpel S, Rorsman P. CaM kinase II-dependent mobilization of secretory granules underlies acetylcholine-induced stimulation of exocytosis in mouse pancreatic B-cells. J Physiol 1999; 518 ( Pt 3):745-59. [PMID: 10420011 PMCID: PMC2269462 DOI: 10.1111/j.1469-7793.1999.0745p.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Measurements of cell capacitance were used to investigate the mechanisms by which acetylcholine (ACh) stimulates Ca2+-induced exocytosis in single insulin-secreting mouse pancreatic B-cells. 2. ACh (250 microM) increased exocytotic responses elicited by voltage-clamp depolarizations 2.3-fold. This effect was mediated by activation of muscarinic receptors and dependent on elevation of the cytoplasmic Ca2+ concentration ([Ca2+]i) attributable to mobilization of Ca2+ from intracellular stores. The latter action involved interference with the buffering of [Ca2+]i and the time constant (tau) for the recovery of [Ca2+]i following a voltage-clamp depolarization increased 5-fold. As a result, Ca2+ was present at concentrations sufficient to promote the replenishment of the readily releasable pool of granules (RRP; > 0.2 microM) for much longer periods in the presence than in the absence of the agonist. 3. The effect of Ca2+ on exocytosis was mediated by activation of CaM kinase II, but not protein kinase C, and involved both an increased size of the RRP from 40 to 140 granules and a decrease in tau for the refilling of the RRP from 31 to 19 s. 4. Collectively, the effects of ACh on the RRP and tau result in a > 10-fold stimulation of the rate at which granules are supplied for release.
Collapse
Affiliation(s)
- J Gromada
- Department of Islet Cell Physiology, Islet Discovery Research, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsvaerd, Denmark.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
In single, superfused, FURA-2AM loaded insulin producing HIT-T15 cells, gastrin releasing peptide (GRP) induced a peak in cytoplasmnic Cu2+ ([Ca2+]i) followed by a sustained (high GRP concentrations) or oscillatory (low GRP concentrations) [Ca2+]i pattern. The GRP (25-50 microM)-induced [Ca2+]i oscillations ceased upon removal of glucose or addition of thapsigargin (1 microM), EGTA (2 mM), or diazoxide (200 microM), whereas nifedipine (10 microM) reduced their amplitude (by 35%). Both protein kinase C (PKC)-activation or PKC-inhibition disrupted GRP induced [Ca2+]i oscillations. GRP induced [Ca2+]i oscillations in insulin producing cells therefore rely on intracellular Ca2+ mobilization, voltage-dependent and voltage-independent Ca2+ entry mechanisms and the integrity of protein kinase C.
Collapse
Affiliation(s)
- S Karlsson
- Department of Medicine, Lund University, Malmö University Hospital, Sweden
| | | |
Collapse
|
34
|
Shuai J, Kashimori Y, Kambara T. Electroreceptor model of the weakly electric fish Gnathonemus petersii. I. The model and the origin of differences between A- and B-receptors. Biophys J 1998; 75:1712-26. [PMID: 9746513 PMCID: PMC1299843 DOI: 10.1016/s0006-3495(98)77613-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We present an electroreceptor model of the A- and B-receptors of the weakly electric fish Gnathonemus petersii. The model consists of a sensory cell, whose membrane is separated into an apical and basal portions by support cells, and an afferent fiber. The apical membrane of the cell contains only leak channels, while the basal membrane contains voltage-sensitive Ca2+ channels, voltage-sensitive and Ca2+-activated K+ channels, and leak channels. The afferent fiber is described with the modified Hodgkin-Huxley equation, in which the voltage-sensitive gate of the K+ channels is a dynamic variable. In our model we suggest that the electroreceptors detect and process the information provided by an electric organ discharge (EOD) as follows: the current caused by an EOD stimulus depolarizes the basal membrane to a greatly depolarized state. Then the release of transmitter excites the afferent fiber to oscillate after a certain time interval. Due to the resistance-capacitance structure of the cells, they not only perceive the EOD intensity, but also sense the variation of the EOD waveform, which can be strongly distorted by the capacitive component of an object. Because of the different morphologies of A- and B-cells, as well as the different conductance of leak ion channels in the apical membrane and the different capacitance of A- and B-cells, A-receptors mainly respond to the EOD intensity, while B-receptors are sensitive to the variation of EOD waveform.
Collapse
Affiliation(s)
- J Shuai
- Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | | | | |
Collapse
|
35
|
Bosco D, Meda P. Reconstructing islet function in vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 426:285-98. [PMID: 9544286 DOI: 10.1007/978-1-4899-1819-2_39] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D Bosco
- Department of Morphology, University of Geneva, Switzerland
| | | |
Collapse
|
36
|
Hamada H, Damron DS, Hong SJ, Van Wagoner DR, Murray PA. Phenylephrine-induced Ca2+ oscillations in canine pulmonary artery smooth muscle cells. Circ Res 1997; 81:812-23. [PMID: 9351455 DOI: 10.1161/01.res.81.5.812] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Modulation of [Ca2+]i in response to receptor activation is a critical determinant of vascular smooth muscle tone. In this study, we examined the effect of continuous stimulation of alpha 1-adrenoceptors with phenylephrine (PE) on [Ca2+]i in single pulmonary artery smooth muscle cells (PASMCs) cultured from explants of canine intrapulmonary artery. Fura 2-loaded PASMCs pretreated with propranolol (5 mumol/L) were continuously superfused with PE at 37 degrees C on the stage of an inverted fluorescence microscope, and [Ca2+]i was measured using a dual-wavelength spectrofluorometer. Resting values of [Ca2+]i were 96 +/- 4 nmol/L. PE (10 mumol/L) stimulated oscillations in [Ca2+]i at a frequency of 1.35 +/- 0.07/min, which reached a peak [Ca2+]i of 650 +/- 26 nmol/L (n = 69 cells). The oscillations lasted for > 30 minutes and were constant in amplitude and frequency. Both the amplitude and frequency of PE-induced [Ca2+]i oscillations increased in a dose-dependent (3 x 10(-8) to 10(-4) mol/L) manner. Pretreatment with the alpha 1-adrenoceptor antagonist prazosin (50 nmol/L) or removal of extracellular Ca2+ abolished the repetitive [Ca2+]i oscillations induced by PE. The voltage-operated Ca2+ channel blockers nifedipine (1 mumol/L) and verapamil (1 mumol/L) had no effect on the [Ca2+]i oscillations. In contrast, inhibition of phospholipase C with U73122 (10(-7) to 10(-5) mol/L) attenuated the oscillations in a dose-dependent fashion. The nonselective protein kinase inhibitor staurosporine (10(-9) to 10(-7) mol/L) had a minimal inhibitory effect on the oscillations. Caffeine (30 mmol/L) and thapsigargin (1 mumol/L) abolished the oscillations, whereas pretreatment with ryanodine (1 to 100 mumol/L) had no effect. In freshly dispersed PASMCs, PE (10 mumol/L) induced oscillations in [Ca2+]i similar to those observed in cultured cells, and patch-clamp experiments revealed oscillations in membrane potential. These results indicate that PE induces [Ca2+]i oscillations in PASMCs via stimulation of alpha 1-adrenoceptors coupled to phospholipase C activation. Voltage-operated Ca2+ channels and protein kinases are not required for the oscillations. The requirement for extracellular Ca2+ and intracellular Ca2+ stores indicates that both Ca2+ influx and intracellular Ca2+ release play a role in the maintenance of the oscillations.
Collapse
Affiliation(s)
- H Hamada
- Center for Anesthesiology Research-FF4, Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | |
Collapse
|
37
|
Zhu DM, Tekle E, Chock PB, Huang CY. Reversible phosphorylation as a controlling factor for sustaining calcium oscillations in HeLa cells: Involvement of calmodulin-dependent kinase II and a calyculin A-inhibitable phosphatase. Biochemistry 1996; 35:7214-23. [PMID: 8679550 DOI: 10.1021/bi952471h] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The role of reversible phosphorylation in histamine-induced Ca2+ oscillations in HeLa cells has been investigated by using various activators and inhibitors of protein kinases and phosphatases. Electroporation was employed to introduce impermeable materials into single cells, which proved to be a useful and convenient tool. Of the kinases examined, cAMP-dependent kinase, protein kinase C, and calmodulin-dependent kinase II (CaMK II), only CaMK II was essential. When added during oscillations, both W-7, a calmodulin antagonist, and KN-62, a specific CaMK II inhibitor, caused one large Ca2+ spike before halting the process. Introduction of the Ca2+/calmodulin-independent catalytic domain of CaMK II into the cells forestalled their response to histamine. These results show that intracellular Ca2+ cannot oscillate when CaMK II is locked in either the inactive or the stimulated state. External Ca2+ electroporated into cells preloaded with the catalytic domains was quickly removed (but not when the cells were pretreated with the endoplasmic reticulum Ca(2+)-ATPase inhibitor, tapsigargin), indicating that the ATP-driven Ca2+ pump was somehow activated by CaMK II. Protein phosphatase inhibitors calyculin A and okadaic acid abolished ongoing oscillations and, when added at low concentrations, prolonged the interspike interval. Immunoprecipitation experiments with 32P(i)-labeled cells provided the first evidence that inositol 1,4,5-trisphosphate receptor (IP3R) was phosphorylated by CaMK II in vivo. The extent of phosphorylation was increased in the presence of histamine, significantly enhanced by calyculin A, and greatly reduced by W-7. Our observations are consistent with the concept that repetitive phosphorylation-dephosphorylation cycles regulating IP3R and Ca2+ pumps are a controlling factor for sustained Ca2+ oscillations in HeLa, and possibly other, cells.
Collapse
Affiliation(s)
- D M Zhu
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-0340, USA
| | | | | | | |
Collapse
|
38
|
Li G, Wollheim CB, Pralong WF. Oscillations of cytosolic free calcium in bombesin-stimulated HIT-T15 cells. Cell Calcium 1996; 19:535-46. [PMID: 8842521 DOI: 10.1016/s0143-4160(96)90063-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+]i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 microM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+]i fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hyperpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca(2+)-ATPase of endoplasmic reticulum and by affecting Ca(2+)-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-cresol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i. It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.
Collapse
Affiliation(s)
- G Li
- Division of Clinical Biochemistry, University of Geneva Medical School, Switzerland
| | | | | |
Collapse
|
39
|
Kraus M, Wolf B, Wolf B. Crosstalk between cellular morphology and calcium oscillation patterns. Insights from a stochastic computer model. Cell Calcium 1996; 19:461-72. [PMID: 8842513 DOI: 10.1016/s0143-4160(96)90055-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Agonist-induced oscillations in the concentration of intracellular free calcium ([Ca2+]i) display a wide variety of temporal and spatial patterns. In non-excitable cells, typical oscillatory patterns are somewhat cell-type specific and range from frequency-encoded, repetitive Ca2+ spikes to oscillations that are more sinusoidal in shape. Although the response of a cell population, even to the same stimulus, is often extremely heterogeneous, the response of the same cell to successive exposures can be remarkably similar. We propose that such "Ca2+ fingerprints' can be a consequence of cell-specific morphological properties. The hypothesis is tested by means of a stochastic computer simulation of a two-dimensional model for oscillatory Ca2+ waves which encompasses the basic elements of the two-pool oscillator introduced by Goldbeter et al. (Goldbeter A., Dupont G., Berridge M.J. Minimal model for signal-induced Ca(2+)-oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 1990; 87: 1461-1465). In the framework of our extended spatiotemporal model, single cells can display various oscillation patterns which depend on the agonist dose, Ca2+ diffusibility, and several morphological parameters. These are, for example, size and shape of the cell and the cell nucleus, the amount and distribution of Ca2+ stores, and the subcellular location of the inositol(1,4,5)-trisphosphate-generating apparatus.
Collapse
Affiliation(s)
- M Kraus
- AG Medizinische Physik und Elektronenmikroskopie, Institut für Immunbiologie der Albert-Ludwigs-Universität Freiburg, Germany
| | | | | |
Collapse
|
40
|
Schöfl C, Rössig L, Leitolf H, Mader T, von zur Mühlen A, Brabant G. Generation of repetitive Ca2+ transients by bombesin requires intracellular release and influx of Ca2+ through voltage-dependent and voltage independent channels in single HIT cells. Cell Calcium 1996; 19:485-93. [PMID: 8842515 DOI: 10.1016/s0143-4160(96)90057-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study, the bombesin-induced changes in cytosolic free Ca2+ ([Ca2+]i) were investigated in single Fura-2 loaded SV-40 transformed hamster beta-cells (HIT). Bombesin (50-500 pM) caused frequency-modulated repetitive Ca2+ transients. The average frequency of the Ca2+ transients induced by bombesin (200 pM) was 0.58 +/- 0.02 min-1 (n = 121 cells). High concentrations of bombesin (> or = 2 nM) triggered a large initial Ca2+ transient followed by a sustained plateau or by a decrease to basal levels. In Ca(2+)- free medium, bombesin caused only one or two Ca2+ transients and withdrawal of extracellular Ca2+ abolished the Ca2+ transients. The voltage-dependent Ca2+ channel (VDCC) blockers, verapamil (50 microM) and nifedipine (10 microM), reduced amplitude and frequency of the Ca2+ transients and stopped the Ca2+ transients in some cells. Thapsigargin caused a sustained rise in [Ca2+]i in the presence of extracellular Ca2+ while in its absence the rise in [Ca2+]i was transient. Verapamil (50 microM) inhibited the thapsigargin-induced increase in [Ca2+]i by about 50%. Depletion of intracellular Ca2+ stores by repetitive stimulation with increasing concentrations of bombesin or thapsigargin in Ca(2+)-free medium caused an agonist-independent increase in [Ca2+]i when extracellular Ca2+ was restored, which was larger than in control cells that had been incubated in Ca(2+)-free medium for the same period of time. This rise in [Ca2+]i and the thapsigargin-induced increase in [Ca2+]i were only partly inhibited by VDCC-blockers. Thus, depletion of the agonist-sensitive Ca2+ pool enhances Ca2+ influx through VDCC and voltage-independent Ca2+ channels (VICC). In conclusion, the bombesin-induced Ca2+ response in single HIT cells is periodic in nature with frequency-modulated repetitive Ca2+ transients. Intracellular Ca2+ is mobilized during each Ca2+ transient, but Ca2+ influx through VDCC and VICC is required for maintaining the sustained nature of the Ca2+ response. Ca2+ influx in whole or part is activated by a capacitative Ca2+ entry mechanism.
Collapse
Affiliation(s)
- C Schöfl
- Abteilung Klinische Endokrinologie, Medizinische Hochschule Hannover, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Yagodin S, Holtzclaw LA, Russell JT. Subcellular calcium oscillators and calcium influx support agonist-induced calcium waves in cultured astrocytes. Mol Cell Biochem 1995; 149-150:137-44. [PMID: 8569723 DOI: 10.1007/bf01076572] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have analysed Ca2+ waves induced by norepinephrine in rat cortical astrocytes in primary culture using fluorescent indicators fura-2 or fluo-3. The temporal pattern of the average [Ca2+]i responses were heterogeneous from cell to cell and most cells showed an oscillatory response at concentrations of agonist around EC50 (200 nM). Upon receptor activation, [Ca2+]i signals originated from a single cellular locus and propagated throughout the cell as a wave. Wave propagation was supported by specialized regenerative calcium release loci along the length of the cell. The periods of oscillations, amplitudes, and the rates of [Ca2+]i rise of these subcellular oscillators differ from each other. These intrinsic kinetic properties of the regenerative loci support local waves when stimulation is continued over long periods of time. The presence of local waves at specific, invariant cellular sites and their inherent kinetic properties provide for the unique and reproducible pattern of response seen in a given cell. We hypothesize that these loci are local specializations in the endoplasmic reticulum where the magnitude of the regenerative Ca2+ release is higher than other regions of the cell. Removal of extracellular Ca2+ or blockade of Ca2+ channels by inorganic cations (Cd2+ and Ni2+) during stimulation of adrenergic receptors alter the sustained plateau component of the [Ca2+]i response. In the absence of Ca2+ release, due to store depletion with thapsigargin, agonist occupation alone does not induce Ca2+ influx in astrocytes. This finding suggests that, under these conditions, receptor-operated Ca2+ entry is not operative. Furthermore, our experiments provide evidence for local Ca2+ oscillations in cells which can support both wave propagation as well as spatially discrete Ca2+ signalling.
Collapse
Affiliation(s)
- S Yagodin
- Laboratory of Cellular and Molecular Neurophysiology of NICHD, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
42
|
Pasti L, Pozzan T, Carmignoto G. Long-lasting changes of calcium oscillations in astrocytes. A new form of glutamate-mediated plasticity. J Biol Chem 1995; 270:15203-10. [PMID: 7797504 DOI: 10.1074/jbc.270.25.15203] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Long-term changes of synaptic strength in the central nervous system are mediated by an increase of cytosolic calcium concentration ([Ca2+]i) following activation of excitatory neurotransmitter receptors. These phenomena, which represent a possible cellular basis for learning and memory processes in eukaryotes, are believed to be restricted to neurons. Here we provide evidence for a long-term change of the response elicited by the excitatory neurotransmitter glutamate in a non-neuronal cell population of the central nervous system, i.e. visual cortical astrocytes in culture. Stimulation with glutamate induces in astrocytes a regular pattern of [Ca2+]i oscillations. A second stimulation, after an interval ranging from 2 to 60 min, induces an oscillatory response characterized by an increased frequency. Induction of this change in the astrocyte response is abolished by a specific inhibitor of the nitric oxide synthase and recovers upon exogenous nitric oxide generation or addition of a permeant cGMP analogue. Local brief pulses of glutamate to individual astrocytes, at a rate of 1 Hz, also elicit [Ca2+]i oscillations whose frequency increases following a second series of pulses. The long-lasting modification in the [Ca2+]i oscillatory response induced by glutamate in astrocytes demonstrates that in the central nervous system cellular memory is not a unique feature of neurons.
Collapse
Affiliation(s)
- L Pasti
- Department of Biomedical Sciences, University of Padova, Italy
| | | | | |
Collapse
|
43
|
Rathouz MM, Vijayaraghavan S, Berg DK. Acetylcholine differentially affects intracellular calcium via nicotinic and muscarinic receptors on the same population of neurons. J Biol Chem 1995; 270:14366-75. [PMID: 7782297 DOI: 10.1074/jbc.270.24.14366] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Multiple receptor subtypes activated by the same ligand but coupled to different second messengers can produce divergent signaling in a cell, while receptors activated by different ligands but sharing the same second messenger can produce convergent signaling. We show here that chick ciliary ganglion neurons have three classes of receptors activated by the same neurotransmitter, acetylcholine, and that all three regulate the same second messenger, intracellular free calcium. Activation of muscarinic receptors on the neurons stimulates phosphatidylinositol turnover and induces calcium oscillations that are initiated and maintained by calcium release from caffeine/ryanodine-insensitive intracellular stores. Extracellular calcium is required to sustain the oscillations, while cadmium abolishes them. Activation of either of two classes of nicotinic receptors, distinguished both by location on the neurons and by subunit composition, induces a single, rapid elevation in intracellular calcium without inducing phosphatidylinositol turnover. The nicotinic responses are entirely dependent on extracellular calcium, show no dependence on release from internal stores, and do not display oscillations. Low concentrations of the native agonist, acetylcholine, induce repetitive calcium spikes in the neurons characteristic of muscarinic receptors, while higher concentrations induce nonoscillating increases in intracellular calcium that include contributions from nicotinic receptors. The three classes of receptors also differ in the acetylcholine concentration required to elicit a response. These differences, together with differences in receptor location and sources of calcium mobilized, may enable the receptor subtypes to target different sets of calcium-dependent processes for regulation.
Collapse
Affiliation(s)
- M M Rathouz
- Department of Biology, University of California at San Diego, La Jolla 92093-0357, USA
| | | | | |
Collapse
|
44
|
Schöfl C, Schulte P, Rössig L, von zur Mühlen A, Brabant G. Vasopressin induces frequency-modulated repetitive calcium transients in single insulin-secreting hit cells. Mol Cell Endocrinol 1995; 108:185-92. [PMID: 7758834 DOI: 10.1016/0303-7207(95)03474-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ca2+ is central to the stimulation of insulin secretion from pancreatic beta-cells. Arginine-vasopressin (AVP) may participate in the modulation of insulin release. In the present study, the AVP-induced changes in cytosolic free Ca2+ ([Ca2+]i) were investigated in single fura-2 loaded insulin-secreting HIT cells. Stimulation with AVP (0.1-5 nM) caused repetitive Ca2+ transients. The frequency but not the amplitude of the Ca2+ transients was modulated by the concentration of AVP. High concentrations of AVP (10-100 nM) triggered a biphasic rise in [Ca2+]i. In Ca(2+)-free medium AVP caused only one or two Ca2+ transients. Withdrawal of extracellular Ca2+ rapidly abolished the AVP-induced Ca2+ transients in all cells tested. The Ca2+ channel blocker, verapamil (50 microM), reduced amplitude and frequency of the Ca2+ transients by about 25% and 60%, respectively, and terminated the Ca2+ transients in 2 of 6 cells. When HIT cells were incubated in Ca(2+)-free medium, and extracellular Ca2+ was restored, there was a small increase in [Ca2+]i. If, however, the agonist-sensitive Ca2+ pool was functionally depleted by repetitive stimulation with high concentrations of AVP or thapsigargin in Ca(2+)-free medium before extracellular Ca2+ was restored, an agonist-independent increase in [Ca2+]i was observed, which was transiently larger than in the control cells, and was mainly preserved in the presence of verapamil. Thus, depletion of the agonist-sensitive Ca2+ pool enhances the influx of extracellular Ca2+ through a Ca2+ entry mechanism independent from verapamil-sensitive voltage-dependent Ca2+ channels (VDCC).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Schöfl
- Abteilung Klinische Endokrinologie, Medizinische Hochschule Hannover, Germany
| | | | | | | | | |
Collapse
|
45
|
Ridefelt P, Yokote K, Claesson-Welsh L, Siegbahn A. PDGF-BB triggered cytoplasmic calcium responses in cells with endogenous or stably transfected PDGF beta-receptors. Growth Factors 1995; 12:191-201. [PMID: 8619925 DOI: 10.3109/08977199509036879] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) triggered signal transduction was investigated in human foreskin fibroblasts with endogenous PDGF beta-receptors, and porcine aortic endothelial (PAE) cells with stably transfected PDGF beta-receptors. Immunoprecipitation and immunoblotting showed that PDGF induced dose-dependent autophosphorylation of PDGF beta-receptor, and the PLC-gamma associates with autophosphorylated PDGF beta-receptors and becomes phosphorylated. Activation of PLC-gamma is known to induce fluctuations of the concentration of cytoplasmic calcium ([Ca2+]i). Microfluorometry and digital imaging were employed for measurements of the concentration of [Ca2+]i. In both cell types the growth factor induced four types of [Ca2+]i responses; no rise, a small and sluggish monophasic rise, a biphasic rise with an initial transient peak followed by a sustain elevation, and finally regular oscillations. The frequencies and amplitudes of the oscillatory responses were independent of agonist concentration after stimulation with PDGF-BB. Latency, the period from application of stimulus to the first [Ca2+]i peak, was reduced at higher concentrations of agonist. Also, the proportion of responding cells increased with higher concentrations of ligand. Oscillations of [Ca2+]i were elicited at submaximal concentrations of agonist. In PAE cells PDGF-BB triggered a single [Ca2+]i peak in absence of external Ca2+. Ligand-induced oscillations and sustained increases of [Ca2+]i were counteracted by the inorganic Ca2+ channel blocker Ce3+. These results show that similar types of [Ca2+]i responses occur in different cell types independently of whether the PDGF beta-receptors are expressed endogeneously or after transfection. Potentially, the different [Ca2+]i responses have distinct physiological consequences.
Collapse
Affiliation(s)
- P Ridefelt
- Dept of Clinical Chemistry, Uppsala University, Sweden
| | | | | | | |
Collapse
|
46
|
Roth BJ, Yagodin SV, Holtzclaw L, Russell JT. A mathematical model of agonist-induced propagation of calcium waves in astrocytes. Cell Calcium 1995; 17:53-64. [PMID: 7553781 DOI: 10.1016/0143-4160(95)90102-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In astrocytes, calcium signals evoked by neurotransmitters appear as waves within single cells, which spread to other cells in the network. Recent analysis has shown that waves are initiated at a single invariant site in the cell and propagated within the cell in a nonlinear and saltatory manner by regenerative amplification at specific predestined cellular sites. In order to gain insight into local cellular waves and wave collisions we have developed a mathematical model of cellular wave amplification loci. This model is in good agreement with experimental data which includes: ambient calcium gradients in resting cells, wave origination and local amplification and generation of local waves. As observed in experiments, the model also predicts that different locations in the cell can have different frequencies of oscillation. The amplification loci are thought to be specialized areas of the endoplasmic reticulum membrane containing a higher density or higher sensitivity of IP3 receptors. Our analysis suggests that the cellular loci act as weakly coupled oscillators each with its intrinsic latency and frequency of oscillation. Thus the appearance of the propagated calcium wave may be a reflection of these differences rather than an actual diffusional wave propagation.
Collapse
Affiliation(s)
- B J Roth
- Biomedical Engineering and Instrumentation Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
47
|
Blondel O, Bell GI, Moody M, Miller RJ, Gibbons SJ. Creation of an inositol 1,4,5-trisphosphate-sensitive Ca2+ store in secretory granules of insulin-producing cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46962-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Lipp P, Niggli E. Modulation of Ca2+ release in cultured neonatal rat cardiac myocytes. Insight from subcellular release patterns revealed by confocal microscopy. Circ Res 1994; 74:979-90. [PMID: 8156645 DOI: 10.1161/01.res.74.5.979] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is well established that in heart muscle the influx of Ca2+ through Ca2+ channels during the action potential is the main trigger for Ca2+ release from the sarcoplasmic reticulum (SR), but intact cardiac tissue and single myocytes are also known to exhibit spontaneous Ca2+ release from the SR under a variety of circumstances. Although conditions favoring spontaneous activity have been examined extensively, mechanisms modulating or regulating spontaneous as well as triggered Ca2+ release are still largely unknown. Using the high spatial and temporal resolution of laser-scanning confocal microscopy, we investigated subcellular aspects of spontaneous and triggered Ca2+ release in isolated rat neonatal myocytes loaded with the Ca(2+)-sensitive fluorescent dye fluo 3. Three distinct patterns of spontaneous Ca2+ release were identified: (1) a homogeneous Ca2+ release, presumably corresponding to Ca2+ release during a spontaneous action potential, (2) a focal or spatially restricted Ca2+ release with no or only limited subcellular propagation, and (3) a Ca2+ release propagating as a wave throughout the entire cell. Pharmacologic tools that interfere with the SR revealed that all release types were critically dependent on the Ca2+ release and uptake function of the SR. From our results we conclude that the probability, extent, and pattern of Ca2+ release are modulated on the subcellular level. The observed spectrum of release patterns can be explained by a space- and time-dependent variability in the positive feedback of the Ca(2+)-induced Ca(2+)-release mechanism within an individual myocyte. Presumably, this variability depends on the existence of subcellular functional elements of the SR. The actual degree of positive feedback may be modulated locally by the Ca(2+)-loading state of each SR element.
Collapse
Affiliation(s)
- P Lipp
- Department of Physiology, University of Bern, Switzerland
| | | |
Collapse
|
49
|
Yagodin SV, Holtzclaw L, Sheppard CA, Russell JT. Nonlinear propagation of agonist-induced cytoplasmic calcium waves in single astrocytes. JOURNAL OF NEUROBIOLOGY 1994; 25:265-80. [PMID: 8195790 DOI: 10.1002/neu.480250307] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In astrocytes in primary culture, activation of neurotransmitter receptors results in intracellular calcium signals that propagate as waves across the cell. Similar agonist-induced calcium waves have been observed in astrocytes in organotypic cultures in response to synaptic activation. By using primary cultured astrocytes grown on glass coverslips, in conjunction with fluorescence microscopy we have analyzed agonist-induced Ca2+ wave initiation and propagation in individual cells. Both norepinephrine and glutamate elicited Ca2+ signals which were initiated focally and discretely in one region of the cell, from where the signals spread as waves along the entire length of the cell. Analysis of the wave propagation and the waveform revealed that the propagation was nonlinear with one or more focal loci in the cytoplasm where the wave was regeneratively amplified. These individual loci appear as discrete focal areas 7-15 microns in diameter and having intrinsic oscillatory properties that differ from each other. The wave initiation locus and the different amplification loci remained invariant in space during the course of the experiment and supported an identical spatiotemporal pattern of signalling in any given cell in response to multiple agonist applications and when stimulated with different agonists which are coupled via InsP3. Cytoplasmic Ca2+ concentration at rest was consistently higher (17 +/- 4 nM, mean +/- S.E.M.) in the wave initiation locus compared with the rest of the cytoplasm. The nonlinear propagation results from significant changes in signal rise times, amplitudes, and wave velocity in cellular regions of active loci. Analysis of serial slices across the cell revealed that the rise times and amplitudes of local signals were as much as three- to fourfold higher in the loci of amplification. A phenomenon of hierarchy in local amplitudes of the signal in the amplification loci was observed with the wave initiation locus having the smallest and the most distal locus having the largest amplitude. By this mechanism locally very high concentrations of Ca2+ are achieved in strategic locations in the cell in response to receptor activation. While the average wave velocity calculated over the length of the cell was 10-15 microns/s, in the active loci rates as high as 40 microns/s were measured. Wave velocity was fivefold lower in regions of the cell separating active loci. The differences in the intrinsic oscillatory periods give rise to local Ca2+ waves that show the properties of collision and annihilation. It is hypothesized that the wave front provokes regenerative Ca2+ release from specialized areas in the cell where the endoplasmic reticulum is endowed with higher density of InsP3 receptor channels.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S V Yagodin
- Section on Neuronal Secretory Systems, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
50
|
Lakkakorpi JT, Rajaniemi HJ. Regulation of intracellular free Ca2+ by the LH/CG receptor in an established cell line 293 expressing transfected rat receptor. Mol Cell Endocrinol 1994; 99:39-47. [PMID: 8187959 DOI: 10.1016/0303-7207(94)90144-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Luteinizing hormone (LH)/chorionic gonadotropin (CG) receptor (LHR) regulation of intracellular free Ca2+, [Ca2+]i, was studied by spectrofluorometric analysis and digital imaging of intracellularly trapped fura-2 fluorescence in a stable cell line 293 expressing transfected rat LHR. Exposure of the suspensions of 293-LHR cells to human CG (hCG) resulted in single, dose-dependent burst of elevated [Ca2+]i, the maximum being obtained at 0.1-1 microgram hCG/ml. The subconfluent individual 293-LHR cells responded to 1 microgram hCG/ml with either a single or oscillating [Ca2+]i bursts, the appearance of the oscillation being dependent upon the presence of extracellular Ca2+ ([Ca2+]e). 72% of the cells produced oscillation in response to hCG in the presence of [Ca2+]e and only 33% in the absence. Moreover, removal of [Ca2+]e from the incubation medium lowered the elevated basal [Ca2+]i level to or below the prestimulatory level and concomitantly damped out the oscillation, while its readdition without hCG was capable of re-elevating [Ca2+]i level and of gradually restoring the oscillation. The 293-LHR cells exposed to increasing doses of hCG also developed a dose-dependent desensitization of [Ca2+]i increase to renewed hormonal stimulation. The [Ca2+]i bursts within individual 293-LHR cells appeared in particular regions at the cell peripheries rather than distributed uniformly throughout the cytoplasm, pointing to compartmentation of the Ca2+ stores and to a local differences in receptor number in most cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|