1
|
Patton BL, Zhu P, ElSheikh A, Driggers CM, Shyng SL. Dynamic duo: Kir6 and SUR in K ATP channel structure and function. Channels (Austin) 2024; 18:2327708. [PMID: 38489043 PMCID: PMC10950283 DOI: 10.1080/19336950.2024.2327708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/14/2024] [Indexed: 03/17/2024] Open
Abstract
KATP channels are ligand-gated potassium channels that couple cellular energetics with membrane potential to regulate cell activity. Each channel is an eight subunit complex comprising four central pore-forming Kir6 inward rectifier potassium channel subunits surrounded by four regulatory subunits known as the sulfonylurea receptor, SUR, which confer homeostatic metabolic control of KATP gating. SUR is an ATP binding cassette (ABC) protein family homolog that lacks membrane transport activity but is essential for KATP expression and function. For more than four decades, understanding the structure-function relationship of Kir6 and SUR has remained a central objective of clinical significance. Here, we review progress in correlating the wealth of functional data in the literature with recent KATP cryoEM structures.
Collapse
Affiliation(s)
- Bruce L. Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Phillip Zhu
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
2
|
Dugbartey GJ, Atule S, Alornyo KK, Adams I. Hepatoprotective potential of alpha-lipoic acid against gliclazide-induced liver injury in high-glucose-exposed human liver cells and experimental type 2 diabetic rats. Biochem Pharmacol 2024; 227:116447. [PMID: 39038553 DOI: 10.1016/j.bcp.2024.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Growing clinical evidence shows that sulfonylurea therapy for patients with type 2 diabetic mellitus (T2DM) contributes to progressive worsening of their liver. The present study presents hepatotoxicity induced by gliclazide, a second-generation sulfonylurea, and alpha-lipoic acid (ALA) as a novel and promising drug for T2DM treatment. Normal human liver cells (HL-7702) were incubated with high-glucose DMEM in the presence or absence of gliclazide and ALA for 72 h, and cell viability and death were measured by flow cytometry. Next, Sprague-Dawley rats were subjected to 12 h of fasting, and fasting blood glucose was measured. The rats were randomized into four groups: HC (healthy control; n = 7), T2DM (diabetic rats without treatment; n = 9), GLC (diabetic rats with 15 mg/kg gliclazide treatment; n = 7) and GLC+ALA (diabetic rats with gliclazide and 60 mg/kg ALA treatment; n = 7). T2DM was induced by a bolus administration of 110 mg/kg nicotinamide and 55 mg/kg streptozotocin intraperitoneally. The experimental protocol lasted for 6 weeks after which the animals were sacrificed and pancreas, liver and blood samples were collected for biochemical, histological and molecular analyses. Compared to healthy control (HC) group, exposure of HL-7702 cells to high glucose induced significant cell death by 19 % (p < 0.001), which was exacerbated with gliclazide treatment by 29 % (p < 0.0001) but markedly reduced by 6 % to near HC value following ALA treatment. In vivo, GLC-treated rats had severe liver damage characterized by increased hepatocellular vacuolation, and significant expression of ED-1, iNOS and caspase-3 as well as markedly high levels of liver enzymes (aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase compared to T2DM rats. Interestingly, ALA administration prevented these pathological changes and protected the diabetic liver to levels comparable to HC rats. ALA showed hepatoprotective effect against gliclazide-induced hepatotoxicity by suppressing inflammation and apoptosis while activating antioxidant pathway in the diabetic liver. Abbreviations: ALA, Alpha-lipoic acid; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase; AMPK, Adenosine monophosphate-activated protein kinase; AST, Aspartate aminotransferase; ATP, Adenosine triphosphate; DMEM, Dulbecco's Modified Eagle Medium; EDTA, ethylenediaminetetraacetic acid; FBG, Fasting blood glucose; FBS, Fetal bovine serum; GLC, Gliclazide; GLUT4, Glucose transporter type 4; GSH, Glutathione; H&E, Hematoxylin/Eosin; HbA1c, Glycosylated haemoglobin A1c; HC, Healthy control; HG, Hyperglycemic group; HOMA-β, Homeostasis model assessment of β-cell function; IL-1β, Interleukin-1β; IL-6, Interleukin-6; iNOS, Inducible nitric oxide synthase; KATP, ATP-dependent potassium channels; MDA, Malondialdehyde; MPTP, Mitochondrial permeability transition pore; NO, Nitric oxide; P/S, Penicillin/streptomycin; PAS, Periodic acid-Schiff; RIA, Radioimmunoassay; ROS, Reactive oxygen species; SOD, Superoxide dismutase; T2DM, Type 2 diabetes mellitus; TBARS, Thiobarbituric acid reactive substances; TNF-α, Tumor necrosis factor-alpha.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Department of Physiology & Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana.
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Ismaila Adams
- Department of Medical Pharmacology, University of Ghana Medical School, Korle-Bu, Accra, Ghana
| |
Collapse
|
3
|
Martin GM, Patton BL, Shyng SL. K ATP channels in focus: Progress toward a structural understanding of ligand regulation. Curr Opin Struct Biol 2023; 79:102541. [PMID: 36807078 PMCID: PMC10023423 DOI: 10.1016/j.sbi.2023.102541] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 01/14/2023] [Indexed: 02/21/2023]
Abstract
KATP channels are hetero-octameric complexes of four inward rectifying potassium channels, Kir6.1 or Kir6.2, and four sulfonylurea receptors, SUR1, SUR2A, or SUR2B from the ABC transporter family. This unique combination enables KATP channels to couple intracellular ATP/ADP ratios, through gating, with membrane excitability, thus regulating a broad range of cellular activities. The prominence of KATP channels in human physiology, disease, and pharmacology has long attracted research interest. Since 2017, a steady flow of high-resolution KATP cryoEM structures has revealed complex and dynamic interactions between channel subunits and their ligands. Here, we highlight insights from recent structures that begin to provide mechanistic explanations for decades of experimental data and discuss the remaining knowledge gaps in our understanding of KATP channel regulation.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bruce L Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
4
|
Surve SK, Gurav R, Gurav A, Lasonkar P, Kondre J, Kalalawe V, Gawali SS, Hangirgekar S. Scrutiny of Novel Tosylacrylimidamide as Non‐Classical Bioisosteres of Sulfonylurea in Type II Diabetes Mellitus through Synthesis, In Vitro and Docking Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Santosh K. Surve
- Department of Chemistry Shivaji University, Vidya Nagar Kolhapur 416004 Maharashtra INDIA) E-mail: hangirgekar
| | - Rutikesh Gurav
- Department of Chemistry Shivaji University, Vidya Nagar Kolhapur 416004 Maharashtra INDIA) E-mail: hangirgekar
| | - Akshay Gurav
- Department of Chemistry Shivaji University, Vidya Nagar Kolhapur 416004 Maharashtra INDIA) E-mail: hangirgekar
| | - Pradeep Lasonkar
- Department of Chemistry Yogeshwari Mahavidyalaya Ambajogai 431517 Maharashtra (INDIA)
| | - Jeevan Kondre
- Department of Chemistry Yogeshwari Mahavidyalaya Ambajogai 431517 Maharashtra (INDIA)
| | - Veerabhadra Kalalawe
- Department of Chemistry Yogeshwari Mahavidyalaya Ambajogai 431517 Maharashtra (INDIA)
| | - Sunita S. Gawali
- Department of Chemistry Savitribai Phule Pune University Pune University Rd Pune 411007 Maharashtra INDIA
| | - Shankar Hangirgekar
- Department of Chemistry Shivaji University, Vidya Nagar Kolhapur 416004 Maharashtra INDIA) E-mail: hangirgekar
| |
Collapse
|
5
|
Tomlinson B, Patil NG, Fok M, Chan P, Lam CWK. The role of sulfonylureas in the treatment of type 2 diabetes. Expert Opin Pharmacother 2021; 23:387-403. [PMID: 34758676 DOI: 10.1080/14656566.2021.1999413] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Type 2 diabetes (T2D) is increasingly prevalent and associated with increased risk for cardiovascular and renal disease. After lifestyle modification, metformin is usually the first-line pharmacotherapy and sulfonylureas are traditionally added after metformin failure. However, with newer glucose lowering drugs that may have less risk of hypoglycemia or that may reduce cardiovascular and renal events, the position of sulfonylureas is being reevaluated. AREAS COVERED In this article, the authors review relevant publications related to the use of sulfonylureas. EXPERT OPINION Sulfonylureas are potent glucose lowering drugs. The risk of hypoglycemia varies with different drugs within the class and can be minimized by using the safer drugs, possibly in lower doses. Cardiovascular events do not appear to be increased with some of the newer generation drugs. The durability of glycemic control also appears comparable to other newer agents. Sulfonylureas are the preferred treatment for some types of monogenic diabetes and selection of T2D patients who may have greater benefit from sulfonylureas based on certain phenotypes and genotypes is likely to be refined further by precision medicine. Sulfonylureas are inexpensive and readily available everywhere and they are still the most frequently used second-line treatment for T2D in many parts of the world.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | | | - Manson Fok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | | |
Collapse
|
6
|
Caillé F, Gervais P, Auvity S, Coulon C, Marie S, Tournier N, Kuhnast B. Automated two-step manufacturing of [11C]glyburide radiopharmaceutical for PET imaging in humans. Nucl Med Biol 2020; 84-85:20-27. [DOI: 10.1016/j.nucmedbio.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/25/2022]
|
7
|
Abdel-Kader MS, Soliman GA, Abdel-Rahman RF, Saeedan AS, Abd-Elsalam RM, Ogaly HA. Effect of olive leaves extract on the antidiabetic effect of glyburide for possible herb-drug interaction. Saudi Pharm J 2019; 27:1182-1195. [PMID: 31885478 PMCID: PMC6921200 DOI: 10.1016/j.jsps.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/02/2019] [Indexed: 02/02/2023] Open
Abstract
The concomitant use of olive leaves (OL) and glyburide (GLB) is a possible therapy for diabetic patients. However, there is no report about the effect of OL on the antidiabetic effect of GLB till now. In the current study, the possible interaction of olive leaves extract (OLE) with GLB was assessed to determine if there was any pharmacological benefit over GLB alone. Seven groups of male Sprague Dawley rats were used. Normal rats of the 1st group treated with 2 mL/kg of 3% Tween 80 (vehicle). The 2nd–5th groups were diabetic rats received vehicle, GLB (5 mg/kg), OLE low dose and OLE high dose respectively, while the 6th–7th groups administered combinations of GLB plus OLE low dose and GLB plus OLE high dose, respectively. All treatments were administered orally once daily for 8 weeks. The use of GLB+OLE-500 obviously improved fasting blood glucose (FBG), insulin and glycated hemoglobin (HbA1c) in diabetic rats (95.5 ± 5.55 mg/dL, 6.8 ± 0.16 mg/dL and 6.1 ± 0.29%, respectively) compared to those treated with GLB monotherapy (140.0 ± 6.36 mg/dL, 5.4 ± 0.19 mg/dL and 7.0 ± 0.20%, respectively). The lipid profile [triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C)] was significantly improved in diabetic rats exposed to GLB+OLE-500 (35.6 ± 1.51 mg/dL, 48.5 ± 2.74 mg/dL, 25.1 ± 1.21 mg/dL and 17.0 ± 0.82 mg/dL, respectively) in comparison with diabetic group exposed to GLB alone (43.2 ± 2.15 mg/dL, 56.8 ± 2.14 mg/dL, 18.6 ± 0.96 mg/dL, 23.0 ± 1.26 mg/dL, respectively). Additionally, the benefit impacts of GLB+OLE-500GLB+OLE-500 therapy on the antioxidant and lipid peroxidation parameters in the pancreatic tissues of diabetic rats were higher than those of GLB monotherapy. Moreover, GLB plus OLE-500 combination had the greatest effect on restoration of the insulin content of Beta (β) cells and reduction of the glucagon and somatostatin of Alpha (α) and Delta (δ) endocrine cells in the pancreatic islets among the different treatment. The current study suggests that OL and GLB combination could cause herb-drug interactions through modulation of insulin receptor (INR), glucose transporter 2 (Slc2a2) and peroxisome proliferator-activated receptor α (PPAR-α) genes expression in the liver of diabetic rats.
Collapse
Affiliation(s)
- Maged S Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.,Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| | - Gamal A Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.,Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Reham M Abd-Elsalam
- Department of Pathology, College of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Biochemistry, College of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Sikimic J, McMillen TS, Bleile C, Dastvan F, Quast U, Krippeit-Drews P, Drews G, Bryan J. ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate K ATP channels. J Biol Chem 2018; 294:3707-3719. [PMID: 30587573 DOI: 10.1074/jbc.ra118.005236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/19/2018] [Indexed: 11/06/2022] Open
Abstract
Neuroendocrine-type ATP-sensitive K+ (KATP) channels are metabolite sensors coupling membrane potential with metabolism, thereby linking insulin secretion to plasma glucose levels. They are octameric complexes, (SUR1/Kir6.2)4, comprising sulfonylurea receptor 1 (SUR1 or ABCC8) and a K+-selective inward rectifier (Kir6.2 or KCNJ11). Interactions between nucleotide-, agonist-, and antagonist-binding sites affect channel activity allosterically. Although it is hypothesized that opening these channels requires SUR1-mediated MgATP hydrolysis, we show here that ATP binding to SUR1, without hydrolysis, opens channels when nucleotide antagonism on Kir6.2 is minimized and SUR1 mutants with increased ATP affinities are used. We found that ATP binding is sufficient to switch SUR1 alone between inward- or outward-facing conformations with low or high dissociation constant, KD , values for the conformation-sensitive channel antagonist [3H]glibenclamide ([3H]GBM), indicating that ATP can act as a pure agonist. Assembly with Kir6.2 reduced SUR1's KD for [3H]GBM. This reduction required the Kir N terminus (KNtp), consistent with KNtp occupying a "transport cavity," thus positioning it to link ATP-induced SUR1 conformational changes to channel gating. Moreover, ATP/GBM site coupling was constrained in WT SUR1/WT Kir6.2 channels; ATP-bound channels had a lower KD for [3H]GBM than ATP-bound SUR1. This constraint was largely eliminated by the Q1179R neonatal diabetes-associated mutation in helix 15, suggesting that a "swapped" helix pair, 15 and 16, is part of a structural pathway connecting the ATP/GBM sites. Our results suggest that ATP binding to SUR1 biases KATP channels toward open states, consistent with SUR1 variants with lower KD values causing neonatal diabetes, whereas increased KD values cause congenital hyperinsulinism.
Collapse
Affiliation(s)
- Jelena Sikimic
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Timothy S McMillen
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| | - Cita Bleile
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Frank Dastvan
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| | - Ulrich Quast
- Department of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, D-72074 Tübingen, Germany
| | - Peter Krippeit-Drews
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Gisela Drews
- From the Institute of Pharmacy, Department of Pharmacology, University of Tübingen, D-72076 Tübingen, Germany and
| | - Joseph Bryan
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, and
| |
Collapse
|
9
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
10
|
Jeong IS, Cho HJ, Cho JG, Kim SH, Na KJ, Kim JK. Influence of Thromboxane A2 on the Regulation of Adenosine Triphosphate-Sensitive Potassium Channels in Mouse Ventricular Myocytes. Korean Circ J 2016; 46:562-8. [PMID: 27482267 PMCID: PMC4965437 DOI: 10.4070/kcj.2016.46.4.562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/17/2015] [Accepted: 11/05/2015] [Indexed: 11/28/2022] Open
Abstract
Background and Objectives Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels play an important role in myocardial protection. We examined the effects of thromboxane A2 on the regulation of KATP channel activity in single ventricular myocytes. Subjects and Methods Single ventricular myocytes were isolated from the hearts of adult Institute of Cancer Research (ICR) mice by enzymatic digestion. Single channel activity was recorded by excised inside-out and cell-attached patch clamp configurations at −60 mV holding potential during the perfusion of an ATP-free K-5 solution. Results In the excised inside-out patches, the thromboxane A2 analog, U46619, decreased the KATP channel activity in a dose-dependent manner; however, the thromboxane A2 receptor antagonist, SQ29548, did not significantly attenuate the inhibitory effect of U46619. In the cell-attached patches, U46619 inhibited dinitrophenol (DNP)-induced KATP channel activity in a dose-dependent manner, and SQ29548 attenuated the inhibitory effects of U46619 on DNP-induced KATP channel activity. Conclusion Thromboxane A2 may inhibit KATP channel activity, and may have a harmful effect on ischemic myocardium.
Collapse
Affiliation(s)
- In Seok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Hwa Jin Cho
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea
| | - Jeong Gwan Cho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Sang Hyung Kim
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Kook Joo Na
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Jong-Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
11
|
Shih CH, Lin YJ, Chen CM, Ko WC. Butylidenephthalide antagonizes cromakalim-induced systolic pressure reduction in conscious normotensive rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:344. [PMID: 26438097 PMCID: PMC4594919 DOI: 10.1186/s12906-015-0877-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/23/2015] [Indexed: 11/14/2022]
Abstract
Background Butylidenephthalide (Bdph), a main constituent of Ligusticum chuanxiong Hort., was reported to have selective antianginal effect without changing blood pressure in conscious rat. Recently, we have observed that Bdph antagonized cromakalim, an ATP-dependent K+ channel opener, in guinea-pig trachea. Thus, we were interested in investigating whether Bdph at the dose without changing blood pressure antagonized cromakalim-induced systolic pressure reduction in conscious rats. Methods Systolic arterial pressures of conscious rats were determined by using the indirect tail-cuff method. Results Bdph (30 mg/kg, i.p.) did not affect baseline systolic pressure in conscious normotensive and spontaneous hypertensive rats. Bdph (30 mg/kg, i.p.) also did not affect log dose–response curves of prazosin, clonidine and Bay K 8644, a Ca2+ channel activator, in normotensive rats. However, Bdph (30 mg/kg, i.p.) similar to 4-aminopyridine (4-AP, 0.4 mg/kg, i.p.), a K+ channel blocker, non-parallelly but surmountably, and partially similar to glibenclamide (GBC, 10 mg/kg, i.v.), an ATP-sensitive K+ channel blocker, surmountably but not parallelly rightward shifted the log dose-systolic pressure reduction curve of cromakalim, an ATP-sensitive K+ channel opener, in normotensive rats, respectively. Discussion The antagonistic effect of Bdph against cromakalim was similar to that of 4-AP, a K+ channel blocker of Kv1 family, and partially similar to that of GBC, an ATP-sensitive K+ channel blocker. Thus, Bdph may be a kind of K+ channel blockers, which have been reviewed to have a potential clinical use for Alzheimer disease. Indeed, Bdph has also been reported to reverse the deficits of inhibitory avoidance performance and improve memory in rats. Recently, 4-AP was reported to treat Episodic ataxia type 2 (EA2) which is a form of hereditary neurological disorder. Consistently, Bdph was recently reported to have antihyperglycemic activity in mice, since GBC is a powerful oral hypoglycemic drug. Conclusions Bdph similar to 4-AP and partially similar to GBC may block Kv1 family and ATP-sensitive K+ channels in conscious normotensive rats.
Collapse
|
12
|
Kuramoto N, Yabe D, Kurose T, Seino Y. A case of hypoglycemia due to illegitimate sexual enhancement medication. Diabetes Res Clin Pract 2015; 108:e8-e10. [PMID: 25748828 DOI: 10.1016/j.diabres.2015.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
Sexual enhancement medication presents a large market for counterfeit versions. We report here a case of hypoglycemia caused by an illicit sexual enhancement medication containing an extremely large amount of the sulfonylurea drug glibenclamide together with a moderate amount sildenafil citrate.
Collapse
Affiliation(s)
- Naoki Kuramoto
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan
| | - Daisuke Yabe
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan; Center for Metabolism and Clinical Nutrition, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan.
| | - Takeshi Kurose
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan
| | - Yutaka Seino
- Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, 2-1-7 Fukushima-ku, Osaka 553-0003, Japan
| |
Collapse
|
13
|
da Costa AV, Calábria LK, de Souza Santos P, Goulart LR, Espindola FS. Glibenclamide treatment modulates the expression and localization of myosin-IIB in diabetic rat brain. J Neurol Sci 2014; 340:159-64. [PMID: 24725740 DOI: 10.1016/j.jns.2014.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Myosin-IIB is a non-muscle isoform in the brain with increased expression in the brains of diabetic rats. Chronic hyperglycemia caused by diabetes can impair learning and memory. Oral hypoglycemic agents such as glibenclamide have been used to control hyperglycemia. We report changes in the expression and distribution of myosin-IIB in the frontal cortex and hippocampus of diabetic rats treated with glibenclamide. METHODS The brains were removed after 43 days of treatment with glibenclamide (6 mg/kg bw orally), homogenized and analyzed by Western blotting, qRT-PCR and immunohistochemistry. RESULTS Myosin-IIB expression increased in the brains of diabetic rats. However, protein expression returned to control levels when treated with glibenclamide. In addition, the expression of MYH10 gene encoding non-muscle myosin heavy chain-B decreased in diabetic rats treated with glibenclamide. Moreover, we found weak myosin-IIB labeling in the hippocampus and frontal cortex of rats treated with glibenclamide. Therefore, the expression of myosin-IIB is affected by diabetes mellitus and may be modulated by glibenclamide treatment in rats. Structural changes in the hippocampus and prefrontal cortex are reversible, and glibenclamide treatment may reduce the patho-physiological changes in the brain. CONCLUSIONS Our findings can contribute to the understanding of the regulation of myosins in the brains of diabetic rats.
Collapse
Affiliation(s)
- Alice Vieira da Costa
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil
| | - Luciana Karen Calábria
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil; Faculty of Integrated Sciences, Federal University of Uberlândia, Campus Pontal, Ituiutaba, MG 38304-402, Brazil
| | - Paula de Souza Santos
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil
| | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil
| | - Foued Salmen Espindola
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG 38400-902, Brazil.
| |
Collapse
|
14
|
Vanitha P, Uma C, Suganya N, Bhakkiyalakshmi E, Suriyanarayanan S, Gunasekaran P, Sivasubramanian S, Ramkumar KM. Modulatory effects of morin on hyperglycemia by attenuating the hepatic key enzymes of carbohydrate metabolism and β-cell function in streptozotocin-induced diabetic rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:326-335. [PMID: 24384280 DOI: 10.1016/j.etap.2013.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 06/03/2023]
Abstract
The present study was aimed to evaluate the effect of morin on blood glucose, insulin level, hepatic glucose regulating enzyme activities and glycogen level in experimental diabetes. Diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (STZ) (50 mg/kg b.w.). Five days after STZ injection, diabetic rats received morin (25 and 50 mg/kg b.w.) orally for 30 days. Glibenclamide was used as reference drug. Morin treatment significantly reduced the blood glucose and improved the serum insulin levels. Further, a dose-dependent reduction in glucose-6-phosphatase and fructose-1,6-bisphosphatase was observed along with the increase in liver hexokinase and glucose-6-phosphate dehydrogenase activities. Morin supplement were found to be effective in preserving the normal histological appearance of pancreatic islets as well as to preserve insulin-positive β-cells in STZ-rats. Therefore, these findings suggest that morin displays beneficial effects in the treatment of diabetes, mediated through the regulation of carbohydrate metabolic enzyme activities.
Collapse
Affiliation(s)
- P Vanitha
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - C Uma
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - N Suganya
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - E Bhakkiyalakshmi
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamilnadu, India
| | - S Suriyanarayanan
- Department of Water and Health, JSS University, Mysore 570 015, Karnataka, India
| | - P Gunasekaran
- The King Institute of Preventive Medicine and Research, Guindy, Chennai 600 032, Tamilnadu, India
| | - S Sivasubramanian
- The King Institute of Preventive Medicine and Research, Guindy, Chennai 600 032, Tamilnadu, India
| | - K M Ramkumar
- SRM Research Institute, SRM University, Kattankulathur 603 203, Tamilnadu, India.
| |
Collapse
|
15
|
Patel AC. Clinical relevance of target identity and biology: implications for drug discovery and development. ACTA ACUST UNITED AC 2013; 18:1164-85. [PMID: 24080260 DOI: 10.1177/1087057113505906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many of the most commonly used drugs precede techniques for target identification and drug specificity and were developed on the basis of efficacy and safety, an approach referred to as classical pharmacology and, more recently, phenotypic drug discovery. Although substantial gains have been made during the period of focus on target-based approaches, particularly in oncology, these approaches have suffered a high overall failure rate and lower productivity in terms of new drugs when compared with phenotypic approaches. This review considers the importance of target identity and biology in clinical practice from the prescriber's viewpoint. In evaluating influences on prescribing behavior, studies suggest that target identity and mechanism of action are not significant factors in drug choice. Rather, patients and providers consistently value efficacy, safety, and tolerability. Similarly, the Food and Drug Administration requires evidence of safety and efficacy for new drugs but does not require knowledge of drug target identity or target biology. Prescribers do favor drugs with novel mechanisms, but this preference is limited to diseases for which treatments are either not available or suboptimal. Thus, while understanding of drug target and target biology is important from a scientific perspective, it is not particularly important to prescribers, who prioritize efficacy and safety.
Collapse
Affiliation(s)
- Anand C Patel
- 1Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Jarrard RE, Wang Y, Salyer AE, Pratt EPS, Soderling IM, Guerra ML, Lange AM, Broderick HJ, Hockerman GH. Potentiation of sulfonylurea action by an EPAC-selective cAMP analog in INS-1 cells: comparison of tolbutamide and gliclazide and a potential role for EPAC activation of a 2-APB-sensitive Ca2+ influx. Mol Pharmacol 2012; 83:191-205. [PMID: 23071106 DOI: 10.1124/mol.112.081943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tolbutamide and gliclazide block the K(ATP) channel K(ir)6.2/Sur1, causing membrane depolarization and stimulating insulin secretion in pancreatic beta cells. We examined the ability of the EPAC-selective cAMP analog 8-pCPT-2'-O-Me-cAMP-AM to potentiate the action of these drugs and the mechanism that might account for it. Insulin secretion stimulated by both 200 μM tolbutamide and 20 μM gliclazide, concentrations that had equivalent effects on membrane potential, was inhibited by thapsigargin (1 μM) or the L-type Ca(2+) channel blocker nicardipine (2 μM) and was potentiated by 8-pCPT-2'-O-Me-cAMP-AM at concentrations ≥2 μM in INS-1 cells. Ca(2+) transients stimulated by either tolbutamide or gliclazide were inhibited by thapsigargin or nicardipine and were significantly potentiated by 8-pCPT-2'-O-Me-cAMP-AM at 5 μM but not 1 μM. Both tolbutamide and gliclazide stimulated phospholipase C activity; however, only gliclazide did so independently of its activity at K(ATP) channels, and this activity was partially inhibited by pertussis toxin. 8-pCPT-2'-O-Me-cAMP-AM alone (5 μM) did not stimulate insulin secretion, but did increase intracellular Ca(2+) concentration significantly, and this activity was inhibited by 25 μM 2-aminoethoxydiphenylborate (2-APB) or the removal of extracellular Ca(2+). 8-pCPT-2'-O-Me-cAMP-AM potentiation of insulin secretion stimulated by tolbutamide was markedly inhibited by 2-APB (25 μM) and enhanced by the PKC inhibitor bisindolylmaleimide I (1 μM). Our data demonstrate that the actions of both tolbutamide and gliclazide are strongly potentiated by 8-pCPT-2'-O-Me-cAMP-AM, that gliclazide can stimulate phospholipase C activity via a partially pertussis toxin-sensitive mechanism, and that 8-pCPT-2'-O-Me-cAMP-AM potentiation of tolbutamide action may involve activation of a 2-APB-sensitive Ca(2+) influx.
Collapse
Affiliation(s)
- Rachel E Jarrard
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Leptihn S, Thompson JR, Ellory JC, Tucker SJ, Wallace MI. In vitro reconstitution of eukaryotic ion channels using droplet interface bilayers. J Am Chem Soc 2011; 133:9370-5. [PMID: 21591742 DOI: 10.1021/ja200128n] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to routinely study eukaryotic ion channels in a synthetic lipid environment would have a major impact on our understanding of how different lipids influence ion channel function. Here, we describe a straightforward, detergent-free method for the in vitro reconstitution of eukaryotic ion channels and ionotropic receptors into droplet interface bilayers and measure their electrical activity at both the macroscopic and single-channel level. We explore the general applicability of this method by reconstitution of channels from a wide range of sources including recombinant cell lines and native tissues, as well as preparations that are difficult to study by conventional methods including erythrocytes and mitochondria.
Collapse
Affiliation(s)
- Sebastian Leptihn
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Gristwood RW, Furman BL, Llenas J, Jauregui J, Berga P. The Calcium Channel Blocker LAS 30538, Unlike Nifedipine, Verapamil, Diltiazem or Flunarizine, Potently Inhibits Insulin Secretion In-vivo in Rats and Dogs. J Pharm Pharmacol 2011; 44:851-5. [PMID: 1360513 DOI: 10.1111/j.2042-7158.1992.tb03218.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
The effects of a novel calcium channel blocker, LAS 30538 (1-[2-(2,6-dimethylphenoxy)ethyl]-α,α-bis-(p-fluorophenyl)-4-piperidine methanol), were studied on glucose tolerance and insulin secretion in rats and dogs in-vitro and in-vivo. Some comparisons were made with nifedipine, verapamil, diltiazem, flunarizine, diazoxide, cromakalim and minoxidil. LAS 30538, like a number of calcium channel blockers, was found to inhibit insulin secretion in-vitro, but was 1000-fold more potent than verapamil or diltiazem in this respect. LAS 30538 differed from the other calcium channel blockers studied in that it also potently inhibited insulin secretion and impaired glucose tolerance in-vivo. The evidence that LAS 30538 is more potent than diazoxide as a hyperglycaemic agent in-vivo suggests that this could be a useful drug for the treatment of hyperinsulinaemia in man.
Collapse
Affiliation(s)
- R W Gristwood
- Division of Biological Sciences, Laboratorio Almirall S.A., Barcelona, Spain
| | | | | | | | | |
Collapse
|
21
|
Wu Z, Kandeel F. Radionuclide probes for molecular imaging of pancreatic beta-cells. Adv Drug Deliv Rev 2010; 62:1125-38. [PMID: 20854861 DOI: 10.1016/j.addr.2010.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/09/2010] [Accepted: 09/13/2010] [Indexed: 12/16/2022]
Abstract
Islet transplantation is a promising treatment option for patients with type 1 diabetes (T1D); however, the fate of the graft over time remains difficult to follow, due to the lack of available tools capable of monitoring graft rejection and inflammation prior to islet graft loss. Due to the challenges imposed by the location of the pancreas and the sparsely dispersed beta-cell population within the pancreas, currently, the clinical verification of beta-cell abnormalities can only be obtained indirectly via metabolic studies, which typically is not possible until after a significant deterioration in islet function has already occurred. The development of non-invasive imaging methods for the assessment of the pancreatic beta-cells, however, offers the potential for the early detection of beta-cell dysfunction prior to the clinical onset of T1D and type 2 diabetes (T2D). Ideal islet imaging agents would have an acceptable residence time in the human body, be capable of providing high-resolution images with minimal uptake in surrounding tissues (e.g., the liver), would not be toxic to islets, and would not require pre-treatment of islets prior to transplantation. A variety of currently available imaging techniques, including magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging have been tested for the study of beta-cell diseases. In this article, we summarize the recent advances made in nuclear imaging techniques for non-invasive imaging of pancreatic beta-cells. The use of radioactive probes for islet imaging is also discussed.
Collapse
|
22
|
Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 2010; 90:291-366. [PMID: 20086079 DOI: 10.1152/physrev.00021.2009] [Citation(s) in RCA: 1115] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inwardly rectifying K(+) (Kir) channels allow K(+) to move more easily into rather than out of the cell. They have diverse physiological functions depending on their type and their location. There are seven Kir channel subfamilies that can be classified into four functional groups: classical Kir channels (Kir2.x) are constitutively active, G protein-gated Kir channels (Kir3.x) are regulated by G protein-coupled receptors, ATP-sensitive K(+) channels (Kir6.x) are tightly linked to cellular metabolism, and K(+) transport channels (Kir1.x, Kir4.x, Kir5.x, and Kir7.x). Inward rectification results from pore block by intracellular substances such as Mg(2+) and polyamines. Kir channel activity can be modulated by ions, phospholipids, and binding proteins. The basic building block of a Kir channel is made up of two transmembrane helices with cytoplasmic NH(2) and COOH termini and an extracellular loop which folds back to form the pore-lining ion selectivity filter. In vivo, functional Kir channels are composed of four such subunits which are either homo- or heterotetramers. Gene targeting and genetic analysis have linked Kir channel dysfunction to diverse pathologies. The crystal structure of different Kir channels is opening the way to understanding the structure-function relationships of this simple but diverse ion channel family.
Collapse
Affiliation(s)
- Hiroshi Hibino
- Department of Pharmacology, Graduate School of Medicine and The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Gojkovic-Bukarica L, Novakovic A, Kanjuh V, Bumbasirevic M, Lesic A, Heinle H. A role of ion channels in the endothelium-independent relaxation of rat mesenteric artery induced by resveratrol. J Pharmacol Sci 2008; 108:124-30. [PMID: 18818483 DOI: 10.1254/jphs.08128fp] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recently it has been suggested that resveratrol relaxes different isolated arteries. The present study addressed the question whether different ion channels are involved in the endothelium-independent mechanism of vasodilatation induced by resveratrol. For that purpose, we tested the action of resveratrol on the rat mesenteric artery without endothelium. Resveratrol induced concentration-dependent relaxation of rat mesenteric artery. Among the K(+)-channel blockers, 4-amynopiridine (4-AP) moderately antagonized the resveratrol-induced relaxation, while glibenclamide, tetraethylammonium chloride, charybdotoxin, margatoxin, and barium chloride did not inhibit resveratrol-induced vasorelaxation. In rings, precontracted with 100 mM K(+), the relaxant responses to resveratrol were highly significantly shifted to the right compared to those obtained in rings precontracted with phenylephrine, but resveratrol-induced maximal relaxation was only slightly affected. In order to minimize the influence of K(+) channels and voltage-gated Ca(2+) channels (VGCCs) in vascular smooth muscle, the third contraction was made by 100 mM K(+) in the presence of nifedipine. The relaxant response to resveratrol was abolished. Thus, the mechanism of vasorelaxation induced by resveratrol probably involves activation of 4-AP-sensitive K(+) channels. Its ability to completely relax the mesenteric artery precontracted with K(+)-rich solution suggests that K(+) channel-independent mechanism(s) are involved in its vasorelaxant effect. It seems that interaction with VGCCs plays a part in this K(+) channel-independent effect of resveratrol.
Collapse
Affiliation(s)
- Ljiljana Gojkovic-Bukarica
- Department of Clinical Pharmacology, Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
24
|
Pallardo Sánchez L. Sulfonilureas en el tratamiento del paciente con diabetes mellitus tipo 2. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1575-0922(08)76259-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Vila-Carriles WH, Zhao G, Bryan J. Defining a binding pocket for sulfonylureas in ATP-sensitive potassium channels. FASEB J 2006; 21:18-25. [PMID: 17110465 DOI: 10.1096/fj.06-6730hyp] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sulfonylurea receptors SUR1 and SUR2 are the regulatory subunits of K(ATP) channels. Their differential affinity for hypoglycemic sulfonylureas provides a basis for the selectivity of these compounds for different K(ATP) channel isoforms. Sulfonylureas have a 100- to 1000-fold greater affinity for SUR1 vs. SUR2. Structure-activity studies suggested a bipartite binding pocket. Chimeric SUR1 approximately SUR2 receptors have shown TMD2, the third bundle of transmembrane helices, to be part of an "A" site that confers SUR1 selectivity for sulfonylureas. The purpose of this study is to determine the position of the "B" site. Previous photoaffinity labeling studies have placed the B site on the amino-terminal third of SUR and colabeled the associated K(IR). In our study, deletion of TMD0, the first bundle of transmembrane helices, did not compromise labeling. Further deletions into the cytoplasmic linker, L0, eliminated binding and labeling. Alanine substitutions in L0 identified a limited number of conserved residues, Y230 and W232, important for affinity labeling. A fragment of K(IR)6.2, missing M2 and the entire carboxyl terminal, assembles with SUR1 and is affinity labeled, while deletion of 10 or more amino-terminal residues compromises labeling. These studies indicate that the B site involves L0 and the K(IR) amino terminus, elements that are critical for control of channel gating.
Collapse
Affiliation(s)
- Wanda H Vila-Carriles
- Department of Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.
| | | | | |
Collapse
|
26
|
Crane L, Anastassiadou M, El Hage S, Stigliani JL, Baziard-Mouysset G, Payard M, Leger JM, Bizot-Espiard JG, Ktorza A, Caignard DH, Renard P. Design and synthesis of novel imidazoline derivatives with potent antihyperglycemic activity in a rat model of type 2 diabetes. Bioorg Med Chem 2006; 14:7419-33. [PMID: 16889967 DOI: 10.1016/j.bmc.2006.07.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 07/06/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Imidazoline derivatives have been reported to show antihyperglycemic activity in vivo. In the present study, we first showed that there was no correlation between the in vivo antidiabetic activity and the in vitro affinities for the I1/I2 binding sites for several substituted aryl imidazolines. Among these compounds, 2-(alpha-cyclohexyl-benzyl)-4,5-dihydro-1H-imidazole 2 exhibited potent antihyperglycemic properties. It was then chosen as lead compound. Thirty-six new derivatives were synthesized by replacing the cyclohexyl/benzyl group by various cyclic systems or the imidazoline ring by isosteric heterocycles. These compounds were evaluated in vivo for their antihyperglycemic activity using an oral glucose tolerance test (OGTT) in a rat model of type-2 diabetes obtained by giving a single intravenous (iv) injection of a low dose of streptozotocin to rats (STZ rats) and in normal rats. Nine compounds with an imidazoline moiety, possibly substituted by a methyl group, had a potent effect on the glucose tolerance in normal or STZ-diabetic rats, after an oral (po) administration of the test compound at a dose of 30 or 10 mg kg(-1), without any hypoglycemia. Replacement of the imidazoline ring by isosteric heterocycles resulted in a total loss of activity.
Collapse
Affiliation(s)
- Louis Crane
- Université Toulouse III, Faculté des Sciences Pharmaceutiques, Laboratoire de Chimie Pharmaceutique, F-31062 Toulouse Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Novakovic A, Bukarica LG, Kanjuh V, Heinle H. Potassium Channels-Mediated Vasorelaxation of Rat Aorta Induced by Resveratrol. Basic Clin Pharmacol Toxicol 2006; 99:360-4. [PMID: 17076688 DOI: 10.1111/j.1742-7843.2006.pto_531.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resveratrol, a phenolic substance present in grapes and a variety of medical plants, has been reported to induce vasorelaxation, however the mechanisms are uncertain. In this paper we investigate the possible participation of K(+) channels in the endothelium-independent vasodilatation of rat aorta induced by resveratrol. Resveratrol induced concentration-dependent relaxation of rings with endothelium and without endothelium. We used different potassium channel inhibitors to determine whether the K(+) channels mediated endothelium-independent relaxation of rat aorta induced by resveratrol. Highly selective blocker of ATP-sensitive K(+) channels, glibenclamide, as well as non-selective blockers of K(+) channels, tetraethylammonium, did not block resveratrol-induced relaxation of rat aortic rings. Charybdotoxin, a blocker of calcium-sensitive K(+) channels did not affect the resveratrol-induced relaxation. 4-Aminopiridine, non-selective blocker of voltage-gated K(+) (Kv) channels, and margatoxin that inhibits Kv1 channels abolished relaxation of rat aortic rings induced by resveratrol. In conclusion, we have shown that resveratrol potently relaxed rat aortic rings with denuded endothelium. It seems that 4-aminopiridine and margatoxin-sensitive K(+) channels located in the smooth muscle of rat aorta mediated this relaxation.
Collapse
|
28
|
Ghatta S, O'Rourke ST. Nitroglycerin-Induced Release of Calcitonin Gene-Related Peptide From Sensory Nerves Attenuates the Development of Nitrate Tolerance. J Cardiovasc Pharmacol 2006; 47:175-81. [PMID: 16495753 DOI: 10.1097/01.fjc.0000199681.35825.1d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was designed to determine if endogenous calcitonin gene-related peptide (CGRP) affects the process of nitrate tolerance development in blood vessels. Rat aortic rings were suspended in organ chambers and relaxations to nitroglycerin (10(-9) -10(-6) M) were obtained in nitrate tolerant and nontolerant rings contracted with norepinephrine (10(-7) M). Tolerance was induced by incubating the rings with (tolerant) or without (nontolerant) nitroglycerin (10(-4) M) for 90 minutes, followed by repeated rinsing for 1 hour. Some rings were treated with CGRP8-37 (10(-6) M), glyburide (10(-6) M), or iberiotoxin (10(-7) M) during the 90-minute desensitization period with nitroglycerin (10(-4) M), and were then washed out during the 1-hour rinsing period. Other rings were treated with capsaicin (10(-5) M) prior to the 90-minute desensitization period. Calcitonin gene-related peptide release was measured by radioimmunoassay. Relaxation to nitroglycerin was markedly reduced in tolerant rings, as compared with nontolerant. Incubation with CGRP8-37 (10(-6) M) specifically during the 90-minute desensitization period with nitroglycerin resulted in even greater impairment in the response to nitroglycerin in tolerant rings, even though the calcitonin gene-related peptide antagonist had been washed out before completion of the nitroglycerin dose-response curve. Similar results were obtained following depletion of calcitonin gene-related peptide stores in sensory nerves by treatment with capsaicin (10(-5) M) prior to the 90-minute desensitization period with nitroglycerin. Prior treatment with CGRP8-37 or capsaicin had no effect on the response to nitroglycerin in nontolerant rings. Incubation with glyburide (10(-6) M), but not iberiotoxin (10(-7) M), specifically during the 90-minute desensitization period, mimicked the effect of CGRP8-37 and capsaicin in tolerant rings, suggesting a role for KATP channels in the effect of calcitonin gene-related peptide. Nitroglycerin (10(-4) M) caused a greater than twofold increase over basal levels in calcitonin gene-related peptide release in nontolerant rings, which was abolished in rings treated with capsaicin and in nitrate tolerant rings. These results suggest that nitroglycerin releases calcitonin gene-related peptide from sensory nerves during the process of desensitization to nitrovasodilators, and that interference with either the release or action of endogenous calcitonin gene-related peptide during this period enhances the extent to which nitrate tolerance occurs. The finding that nitroglycerin-induced release of calcitonin gene-related peptide from sensory nerves attenuates the desensitizing effect of nitroglycerin represents a heretofore unknown event in the development of nitrate tolerance, and demonstrates a novel role for calcitonin gene-related peptide in the vasculature.
Collapse
Affiliation(s)
- Srinivas Ghatta
- Department of Pharmaceutical Sciences North Dakota State University, Fargo, North Dakota 58105-5055, USA
| | | |
Collapse
|
29
|
Nakamura T, Terajima T, Ogata T, Ueno K, Hashimoto N, Ono K, Yano S. Establishment and Pathophysiological Characterization of Type 2 Diabetic Mouse Model Produced by Streptozotocin and Nicotinamide. Biol Pharm Bull 2006; 29:1167-74. [PMID: 16755011 DOI: 10.1248/bpb.29.1167] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was performed in order to establish a mouse model that represents the non-obese type 2 diabetes reflecting a majority of diabetic patients among Asian races and to show its pathophysiological profiles. Streptozotocin (STZ) was administered to C57BL/6J mice with or without nicotinamide (120 or 240 mg/kg, STZ/NA120 or STZ/NA240), twice with an interval of 2 d, and plasma glucose concentration, body weight, water intake, insulin contents and insulin signal-related proteins were monitored. STZ-induced hyperglycemia (fasting and non-fasting), body weight loss and polyposia were significantly depressed by NA dose-dependently. In STZ/NA120 and STZ/NA240 mice, pancreatic insulin content was retained by 28 and 43% of normal control (10.5+/-0.93 microU/ml), respectively, and histological damage of pancreatic beta cells was also less severe than that observed in STZ mice. When given the calorie-controlled high fat diet, the STZ/NA mice caused hyperlipidemia, and significantly increased insulin resistance. These observations suggest that the combined administration of STZ and NA causes partial depletion of pancreatic insulin and that the high fat constituents lead to insulin resistance in this model. The present mouse model, therefore, well exhibits the recent diabetic pathophysiological characteristics of a majority of Asian patients.
Collapse
MESH Headings
- Animals
- Blood Glucose/analysis
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Dietary Fats/administration & dosage
- Dose-Response Relationship, Drug
- Drinking
- Drug Synergism
- Glucose Tolerance Test
- Glucose Transporter Type 4/metabolism
- Insulin/administration & dosage
- Insulin/blood
- Insulin Receptor Substrate Proteins/metabolism
- Insulin Resistance
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Niacinamide
- Pancreas/metabolism
- Pancreas/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Streptozocin
- Weight Gain
Collapse
Affiliation(s)
- Tomonori Nakamura
- Department of Molecular Pharmacology and Pharmacotherapeutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Novakovic A, Gojkovic-Bukarica L, Peric M, Nezic D, Djukanovic B, Markovic-Lipkovski J, Heinle H. The Mechanism of Endothelium-Independent Relaxation Induced by the Wine Polyphenol Resveratrol in Human Internal Mammary Artery. J Pharmacol Sci 2006; 101:85-90. [PMID: 16682785 DOI: 10.1254/jphs.fp0050863] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Resveratrol, a stilbene polyphenol found in grapes and red wine, produces vasorelaxation in both endothelium-dependent and endothelium-independent manners. The mechanisms by which resveratrol causes vasodilatation are uncertain. The aim of this study was to investigate the mechanism(s) of endothelium-independent resveratrol-induced vasorelaxation in human internal mammary artery (HIMA) obtained from male patients undergoing coronary artery bypass surgery and to clarify the contribution of different K+ channel subtypes in resveratrol action in this blood vessel. HIMA rings without endothelium were precontracted with phenylephrine. Resveratrol induced a concentration-dependent relaxation of the HIMA. A highly selective blocker of ATP-sensitive K+ channels, glibenclamide, as well as nonselective blockers of Ca2+-sensitive K+ channels, tetraethylammonium and charybdotoxin, did not block resveratrol induced relaxation of HIMA rings. 4-Aminopyridine (4-AP), non selective blocker of voltage gated K+ (KV) channels, and margatoxin that inhibits KV1.2, KV1.3, and KV1.6 channels abolished relaxation of HIMA rings induced by resveratrol. In conclusion, we have shown that resveratrol potently relaxed HIMA rings with denuded endothelium. It seems that 4-AP- and margatoxin-sensitive K+ channels located in smooth muscle of HIMA mediated this relaxation.
Collapse
Affiliation(s)
- Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Serbia and Montenegro
| | | | | | | | | | | | | |
Collapse
|
31
|
Mori K, Takasaki K, Katoh Y, Yano H, Ueno K, Ichimura M, Kusaka H, Nomoto Y, Higo K, Nakanishi S. Glucose concentration-dependent potentiation of insulin secretion by a new chemical entity, KCP256. Eur J Pharmacol 2005; 528:176-82. [PMID: 16316644 DOI: 10.1016/j.ejphar.2005.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 10/14/2005] [Accepted: 10/21/2005] [Indexed: 11/30/2022]
Abstract
The insulinotropic activity of KCP256 [(R)-8-benzyl-2-cyclopentyl-7, 8-dihydro-4-propyl-1H-imidazo[2,1-i]purin-5(4H)-one hydrochloride] was examined using MIN6 cells (a pancreatic beta-cell line) and pancreatic islets isolated from rats. Unlike sulfonylurea anti-diabetic drugs, KCP256 dose-dependently (0.1-10 microM) enhanced insulin secretion from MIN6 cells and its insulinotropic effect was exerted only at high concentrations of glucose (8.3-22 mM) but not at low concentrations of glucose (3.3-5.5 mM). Furthermore, the action mechanism of KCP256 was different because, unlike sulfonylurea drugs, KCP256 did not displace the binding of [3H]glibenclamide, and did not inhibit the 86Rb+ efflux nor K(ATP) channel activity. In isolated islets, KCP256 also enhanced insulin secretion in a dose- and a glucose-concentration-dependent manner. Plasma levels of insulin after glucose challenge in KCP256-administrated rats were higher than those in vehicle-administrated animals, indicating that KCP256 can enhance insulin secretion in vivo. Since the insulinotropic activity of KCP256 only occurs at high concentrations of glucose, this novel drug may exhibit a decreased risk of drug-induced hypoglycemia compared with sulfonylurea drugs when treating patients with diabetes.
Collapse
Affiliation(s)
- Kiyotoshi Mori
- Drug Discovery Research Laboratories, Pharmaceutical Research Center, Kyowa Hakko Kogyo Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim KY, Lee JH, Park JH, Yoo MA, Kwak YG, Kim SO, Yoo SE, Hong KW. Anti-apoptotic action of (2S,3S,4R)-N"-cyano-N-(6-amino-3,4-dihydro-3-hydroxy-2-methyl-2-dimethoxymethyl-2H-benzopyran-4-yl)-N'-benzylguanidine (KR-31378) by suppression of the phosphatase and tensin homolog deleted from chromosome 10 phosphorylation and increased phosphorylation of casein kinase2/Akt/ cyclic AMP response element binding protein via maxi-K channel opening in neuronal cells. Eur J Pharmacol 2005; 497:267-77. [PMID: 15336944 DOI: 10.1016/j.ejphar.2004.06.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 05/17/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
This study shows the signaling pathway by which (2S,3S,4R)-N"-cyano-N-(6-amino-3,4-dihydro-3-hydroxy-2-methyl-2-dimethoxymethyl-2H-benzopyran-4-yl)-N'-benzylguanidine (KR-31378) prevents tumor necrosis factor (TNF)-alpha-induced neuronal cell death. KR-31378 restored TNF-alpha-induced decreased cell viability of SK-N-SH. U87-MG cells (PTEN-null glioblastoma cell line) transfected with expression vectors for sense PTEN (phosphatase and tensin homolog deleted from chromosome 10) showed significantly decreased cell viability, which was restored by KR-31378. TNF-alpha-induced increased PTEN phosphorylation and decreased phosphorylation of Akt/cyclic AMP response element-binding protein (CREB) in SK-N-SH cells were concentration-dependently reversed by KR-31378, those of which were antagonized by iberiotoxin, a maxi-K channel blocker. TNF-alpha and apigenin, a casein kinase2 (CK2) inhibitor, showed decreased CK2 phosphorylation and increased PTEN phosphorylation, which were reversed by KR-31378. KR-31378 increased K(+) currents by activating the maxi-K channels in SK-N-SH cells, with suppression of TNF-alpha-induced increase in cytosolic Ca(2+) and elevation of suppressed mitochondrial membrane potential, all of which were antagonized by iberiotoxin. It is suggested that increase in cell viability by KR-31378 is ascribed to the maxi-K channel opening-coupled upregulation of CK2/Akt/CREB phosphorylation and downregulation of PTEN phosphorylation in association with increased Bcl-2 and decreased Bax levels.
Collapse
Affiliation(s)
- Ki Young Kim
- Medicinal Science Division, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 305-600, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hong SJ, Liang HC, Shen CJ. Alteration of cyclopiazonic acid-mediated contracture of mouse diaphragm after denervation. Pharmacology 2004; 73:180-9. [PMID: 15604590 DOI: 10.1159/000082755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 10/04/2004] [Indexed: 11/19/2022]
Abstract
As a major Ca(2+) source for muscle contraction, the sarcoplasmic reticulum (SR) of skeletal muscle maintains its Ca(2+) content by uptake of myoplasmic Ca(2+) and by replenishment with extracellular Ca(2+). Since transection of motor nerve alters the functions of SR Ca(2+) pump and sarcolemma ion channels, this study explored the effect of denervation on the contracture evoked by cyclopiazonic acid (CPA), an inhibitor of SR Ca(2+) pump. In innervated hemidiaphragm, CPA elicited a bimodal elevation of muscle tone, which was dependent on extracellular Ca(2+) and differentially inhibited by pretreatment with 2-aminoethoxydiphenylborane (APB) and U73122. Activation of muscle Na(+) channels to simulate denervation-induced membrane depolarization did not change the contracture profile. After denervation for 5-14 days when the contracture induced by caffeine was not yet depressed, CPA elicited only APB-sensitive monophasic contracture. Stimulation of ATP-regulated K(+) channels with lemakalim hyperpolarized muscle membrane and attenuated CPA contracture in denervated, but not innervated, hemidiaphragm. The effects of lemakalim were antagonized by glybenclamide. It is inferred that the bimodal CPA contracture is resulted from distinct recruitments of Ca(2+) entry and that denervation alters the voltage dependence and down-regulates CPA-mediated Ca(2+) influx.
Collapse
Affiliation(s)
- S J Hong
- Department of Pharmacology, College of Medicine, National Taiwan University, No.1, Sec.1, Jen-Ai Road, Taipei, Taiwan.
| | | | | |
Collapse
|
34
|
Tarasov A, Dusonchet J, Ashcroft F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 2004; 53 Suppl 3:S113-22. [PMID: 15561898 DOI: 10.2337/diabetes.53.suppl_3.s113] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Closure of ATP-sensitive K+ channels (KATP channels) is a key step in glucose-stimulated insulin secretion. The precise mechanism(s) by which glucose metabolism regulates KATP channel activity, however, remains controversial. It is widely believed that the principal determinants are the intracellular concentrations of the metabolic ligands, ATP and ADP, which have opposing actions on KATP channels, with ATP closing and MgADP opening the channel. However, the sensitivity of the channel to these nucleotides in the intact cell, and their relative contribution to the regulation of channel activity, remains unclear. The precise role of phosphoinositides and long-chain acyl-CoA esters, which are capable of modulating the channel ATP sensitivity, is also uncertain. Furthermore, it is still a matter of debate whether it is changes in the concentration of ATP, of MgADP, or of other agents, which couples glucose metabolism to KATP channel activity. In this article, we review current knowledge of the metabolic regulation of the KATP channel and provide evidence that MgADP (or MgATP hydrolysis), acting at the regulatory subunit of the channel, shifts the ATP concentration-response curve into a range in which the channel pore can respond to dynamic changes in cytosolic ATP. This metabolic pas de deux orchestrates the pivotal role of ATP in metabolic regulation of the KATP channel.
Collapse
Affiliation(s)
- Andrei Tarasov
- University Laboratory of Physiology, Parks Rd., Oxford OX1 3PT, UK
| | | | | |
Collapse
|
35
|
Rasgado-Flores H, Peña-Rasgado C, Ehrenpreis S. Cell volume and drug action: Some interactions and perspectives. Drug Dev Res 2004. [DOI: 10.1002/ddr.430360202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Schmitz A, Shiue CY, Feng Q, Shiue GG, Deng S, Pourdehnad MT, Schirrmacher R, Vatamaniuk M, Doliba N, Matschinsky F, Wolf B, Rösch F, Naji A, Alavi AA. Synthesis and evaluation of fluorine-18 labeled glyburide analogs as beta-cell imaging agents. Nucl Med Biol 2004; 31:483-91. [PMID: 15093819 DOI: 10.1016/j.nucmedbio.2003.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2003] [Revised: 11/28/2003] [Accepted: 12/03/2003] [Indexed: 01/20/2023]
Abstract
Glyburide is a prescribed hypoglycemic drug for the treatment of type 2 diabetic patients. We have synthesized two of its analogs, namely N-[4-[beta-(2-(2'-fluoroethoxy)-5-chlorobenzenecarboxamido)ethyl]benzenesulfonyl]-N'-cyclohexylurea (2-fluoroethoxyglyburide, 8b) and N-[4-[beta-(2-(2'-fluoroethoxy)-5-iodobenzenecarboxamido)ethyl]benzenesulfonyl]-N'-cyclohexylurea (2-fluoroethoxy-5-deschloro-5-iodoglyburide, 8a), and their fluorine-18 labeled analogs as beta-cell imaging agents. Both F-18 labeled compound 8a and compound 8b were synthesized by alkylation of the corresponding multistep synthesized hydroxy precursor 4a and 4b with 2-[(18)F]fluoroethyl tosylate in DMSO at 120 degrees C for 20 minutes followed by HPLC purification in an overall radiochemical yield of 5-10% with a synthesis time of 100 minutes from EOB. The octanol/water partition coefficients of compounds 8a and 8b were 141.21 +/- 27.77 (n = 8) and 124.33 +/- 21.61 (n = 8), respectively. Insulin secretion experiments of compounds 8a and 8b on rat islets showed that both compounds have a similar stimulating effect on insulin secretion as that of glyburide. In vitro binding studies showed that approximately 2% of compounds 8a and 8b bound to beta TC3 and Min6 cells and that the binding was saturable. Preliminary biodistribution studies in mice showed that the uptake of both compounds 8a and 8b in liver and small intestine were high, whereas the uptake in other organs studied including pancreas were low. Additionally, the uptake of compound 8b in vivo was nonsaturable. These results tend to suggest that compounds 8a and 8b may not be the ideal beta-cell imaging agents.
Collapse
Affiliation(s)
- A Schmitz
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, Bois P. Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol 2004; 558:75-83. [PMID: 15121803 PMCID: PMC1664929 DOI: 10.1113/jphysiol.2004.063974] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac arrhythmias, which occur in a wide variety of conditions where intracellular calcium is increased, have been attributed to the activation of a transient inward current (Iti). Iti is the result of three different [Ca]i-sensitive currents: the Na(+)-Ca2+ exchange current, a Ca(2+)-activated chloride current and a Ca(2+)-activated non-selective cationic current. Using the cell-free configuration of the patch-clamp technique, we have characterized the properties of a Ca(2+)-activated non-selective cation channel (NSC(Ca)) in freshly dissociated human atrial cardiomyocytes. In excised inside-out patches, the channel presented a linear I-V relationship with a conductance of 19 +/- 0.4 pS. It discriminated poorly among monovalent cations (Na+ and K+) and was slightly permeable to Ca2+ ions. The channel's open probability was increased by depolarization and a rise in internal calcium, for which the Kd for [Ca2+]i was 20.8 microM. Channel activity was reduced in the presence of 0.5 mM ATP or 10 microM glibenclamide on the cytoplasmic side to 22.1 +/- 16.8 and 28.5 +/- 8.6%, respectively, of control. It was also inhibited by 0.1 mM flufenamic acid. The channel shares several properties with TRPM4b and TRPM5, two members of the 'TRP melastatin' subfamily. In conclusion, the NSC(Ca) channel is a serious candidate to support the delayed after-depolarizations observed in [Ca2+] overload and thus may be implicated in the genesis of arrhythmias.
Collapse
Affiliation(s)
- Romain Guinamard
- Institut de Physiologie et Biologie Cellulaires, CNRS UMR 6187, Université de Poitiers, 86022 Poitiers, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Sieg A, Su J, Muñoz A, Buchenau M, Nakazaki M, Aguilar-Bryan L, Bryan J, Ullrich S. Epinephrine-induced hyperpolarization of islet cells without KATP channels. Am J Physiol Endocrinol Metab 2004; 286:E463-71. [PMID: 14613926 DOI: 10.1152/ajpendo.00365.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examines the effect of epinephrine, a known physiological inhibitor of insulin secretion, on the membrane potential of pancreatic islet cells from sulfonylurea receptor-1 (ABCC8)-null mice (Sur1KO), which lack functional ATP-sensitive K+ (KATP) channels. These channels have been argued to be activated by catecholamines, but epinephrine effectively inhibits insulin secretion in both Sur1KO and wild-type islets and in mice. Isolated Sur1KO beta-cells are depolarized in both low (2.8 mmol/l) and high (16.7 mmol/l) glucose and exhibit Ca(2+)-dependent action potentials. Epinephrine hyperpolarizes Sur1KO beta-cells, inhibiting their spontaneous action potentials. This effect, observed in standard whole cell patches, is abolished by pertussis toxin and blocked by BaCl2. The epinephrine effect is mimicked by clonidine, a selective alpha2-adrenoceptor agonist and inhibited by alpha-yohimbine, an alpha2-antagonist. A selection of K+ channel inhibitors, tetraethylammonium, apamin, dendrotoxin, iberiotoxin, E-4130, chromanol 293B, and tertiapin did not block the epinephrine-induced hyperpolarization. Analysis of whole cell currents revealed an inward conductance of 0.11 +/- 0.04 nS/pF (n = 7) and a TEA-sensitive outward conductance of 0.55 +/- 0.08 nS/pF (n = 7) at -60 and 0 mV, respectively. Guanosine 5'-O-(3-thiotriphosphate) (100 microM) in the patch pipette did not significantly alter these currents or activate novel inward-rectifying K+ currents. We conclude that epinephrine can hyperpolarize beta-cells in the absence of KATP channels via activation of low-conductance BaCl2-sensitive K+ channels that are regulated by pertussis toxin-sensitive G proteins.
Collapse
Affiliation(s)
- Andrea Sieg
- Institut für Neurophysiologie, Universität zu Köln, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee EK, Kwon M, Ko JH, Yi H, Hwang MG, Chang S, Cho MH. Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. PLANT PHYSIOLOGY 2004; 134:528-38. [PMID: 14684837 PMCID: PMC316332 DOI: 10.1104/pp.103.027045] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 06/09/2003] [Accepted: 08/21/2003] [Indexed: 05/20/2023]
Abstract
Recently, a new member of the ABC transporter superfamily of Arabidopsis, AtMRP5, was identified and characterized. In the present work, we found that AtMRP5 can bind specifically to sulfonurea when it is expressed in HEK293 cells. We also present evidence for a new role of AtMRP5 in the salt stress response of Arabidopsis. We used reverse genetics to identify an Arabidopsis mutant (atmrp5-2) in which the AtMRP5 gene was disrupted by transferred DNA insertion. In root-bending assays using Murashige and Skoog medium supplemented with 100 mm NaCl, root growth of atmrp5-2 was substantially inhibited in contrast to the almost normal growth of wild-type seedlings. This hypersensitive response of the atmrp5-2 mutant was not observed during mannitol treatment. The root growth of the wild-type plant grown in Murashige and Skoog medium supplemented with the MRP inhibitor glibenclamide and NaCl was inhibited to a very similar extent as the root growth of atmrp5-2 grown in NaCl alone. The Na(+)-dependent reduction of root growth of the wild-type plant in the presence of glibenclamide was partially restored by diazoxide, a known K+ channel opener that reverses the inhibitory effects of sulfonylureas in animal cells. Moreover, the atmrp5-2 mutant was defective in 86Rb+ uptake. When seedlings were treated with 100 mm NaCl, atmrp5-2 seedlings accumulated less K+ and more Na+ than those of the wild type. These observations suggest that AtMRP5 is a putative sulfonylurea receptor that is involved in K+ homeostasis and, thus, also participates in the NaCl stress response.
Collapse
Affiliation(s)
- Eun Kyung Lee
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Paolisso G, Rizzo MR, Barbieri M, Manzella D, Ragno E, Maugeri D. Cardiovascular risk in type 2 diabetics and pharmacological regulation of mealtime glucose excursions. DIABETES & METABOLISM 2003; 29:335-40. [PMID: 14526261 DOI: 10.1016/s1262-3636(07)70044-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In type 2 diabetic patients mealtime glucose fluctuations are important determinants of overall glucose control and overall risk of diabetes cardiovascular complications. In fact, acute elevation of plasma glucose concentrations trigger an array of tissue response that may contribute to development of such vascular complications since it may result in a thrombophilic condition, causes endothelial dysfunction (possibly through a reduction of nitric oxide availability) and is responsible for non-enzymatic glycation and production of free- radicals with ensuing oxidative stress. To keep post-prandial glucose with narrow range, metiglinide analogues drugs have been developed. In particular, repaglinide and nateglinide seem the most useful ones. In fact, both drugs improve 1(st) phase insulin release but they do not affect the total daily amount of insulin released by the pancreas. Due to the mechanism of action and to pharmacokinetic properties, repaglinide and nateglinide allow diabetic patients to get a more tight metabolic glucose control with a contemporary reduction in the cases of severe hypoglycaemia. In conclusions, repaglinide and nateglinide are new and powerful pharmacological tools not only for achieving a better metabolic glucose control but also for preventing the development of diabetes-related cardiovascular complications.
Collapse
Affiliation(s)
- G Paolisso
- Dipartimento di Geriatria e Malattie del Metabolismo, II Università degli Studi di Napoli, Napoli.
| | | | | | | | | | | |
Collapse
|
41
|
Demidchik V, Nichols C, Oliynyk M, Dark A, Glover BJ, Davies JM. Is ATP a signaling agent in plants? PLANT PHYSIOLOGY 2003; 133:456-61. [PMID: 14555773 PMCID: PMC1540337 DOI: 10.1104/pp.103.024091] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Vadim Demidchik
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Neogi P, Lakner FJ, Medicherla S, Cheng J, Dey D, Gowri M, Nag B, Sharma SD, Pickford LB, Gross C. Synthesis and structure-activity relationship studies of cinnamic acid-based novel thiazolidinedione antihyperglycemic agents. Bioorg Med Chem 2003; 11:4059-67. [PMID: 12927868 DOI: 10.1016/s0968-0896(03)00393-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of 2,4-thiazolidinedione derivatives of -phenyl substituted cinnamic acid were synthesized and studied for their PPAR agonist activity. The E-isomer of cinnamic acid, 11, showed moderate PPAR transactivation. The corresponding Z-isomer, 23, and double bond reduced derivative, 15, were found to be much less potent. Although the E-isomer showed a moderate PPAR gamma transactivation, it demonstrated a strong glucose-lowering effect in a genetic rodent model of diabetes. Results of pharmacokinetic, metabolism and permeability studies are consistent with 11 being an active prodrug with an active metabolite, 14, that has similar glucose lowering and PPAR gamma agonist properties.
Collapse
Affiliation(s)
- Partha Neogi
- Department of Chemistry, Calyx Therapeutics Inc., 3513 Breakwater Avenue, Hayward, CA 94545, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cyrino FZGA, Bottino DA, Coelho FC, Ravel D, Bouskela E. Effects of sulfonylureas on K(ATP) channel-dependent vasodilation. J Diabetes Complications 2003; 17:6-10. [PMID: 12623162 DOI: 10.1016/s1056-8727(02)00273-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Sulfonylureas are widely prescribed for the treatment of type 2 diabetes. Their therapeutic efficacy resides in the ability to bind to sulfonylurea receptors (SURs) present on the beta-cell plasma membrane, to close the ATP-regulated potassium (K(ATP)) channel, and thereby to enhance glucose-stimulated insulin secretion. These receptors are also found in a wide variety of extra-pancreatic tissues such as brain, peripheral nerves, heart, and vascular smooth muscle where they contribute to the regulation of the vascular tone. OBJECTIVE The objective of the present study was to determine the potency of three sulfonylureas, glibenclamide, gliclazide, and glimepiride, in antagonizing the vasorelaxant action of diazoxide, an ATP-regulated K(+) channel (K(ATP)) opener, in vivo, using the hamster cheek pouch preparation and evaluating the changes in mean internal diameter and blood flow of arterioles and venules. MATERIAL AND METHODS Cheek pouches of anesthetized male hamsters superfused with a HEPES-supported HCO(3)(-)-buffered saline solution were placed under an intravital microscope coupled to a closed-circuit TV system. All substances were applied topically. MEASUREMENTS Mean arteriolar and venular internal diameters using an image shearing device, red blood cell (RBC) velocity by the dual-slit photometric technique and microvessel volume flow was calculated from diameters and RBC velocities. RESULTS The numbers are given in order, first diameter and then flow, always for the highest concentration of diazoxide tested, by itself or in combination with a given sulfonylurea: (1) diazoxide, used in doses of 0.01, 1, and 100 microM, elicited a dose-dependent dilation and flow increase in arterioles [increase of 52.1% (P<.01) and 41.2% (P<.01)] and venules [37.9% (P<.05) and 57.6% (P<.01)]; (2) glibenclamide (0.81 microM)+diazoxide 29.3% (P=.172) and 25.0% (P=.064) for arterioles and 8% (P=.654) and 3.7% (P=.769) for venules; (3) gliclazide (12 microM)+diazoxide 51.0% (P<.01) and 46.7% (P<.01) for arterioles and 59.0% (P<.01) and 45.2% (P<.01) for venules; (4) glimepiride (0.82 microM)+diazoxide 22.8% (P=.228) and 12.5% (P=.305) for arterioles and 15.6% (P=.415) and 16.0% (P=.291) for venules. CONCLUSION These results suggest that, in contrast to glibenclamide and glimepiride, therapeutic concentrations of gliclazide produce no cross-reactivity with smooth muscle cell K(ATP) channels in the microvessels of the hamster cheek pouch. Previous studies have confirmed these results in isolated aortic rings of rats and guinea pigs.
Collapse
Affiliation(s)
- Fatima Z G A Cyrino
- Laboratório de Pesquisas em Microcirculaçāo, Pavilhão Reitor Haroldo Lisboa da Cunha, térreo, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524 20550-013, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
44
|
Ravel D, Levens N, Félétou M, Néliat G, Auclair J, Bouskela E. Differential effects of sulphonylureas on the vasodilatory response evoked by K(ATP) channel openers. Fundam Clin Pharmacol 2003; 17:61-9. [PMID: 12588631 DOI: 10.1046/j.1472-8206.2003.00144.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The potency of three sulphonylureas, glibenclamide, glimepiride and gliclazide in antagonizing the vasorelaxant action of openers of adenosine triphosphate (ATP)-regulated K+ channel (KATP) was studied in vivo and in vitro in micro- and macrovessels, respectively. In the hamster cheek pouch, the vasodilatation and the increase in vascular diameter and blood flow induced by diazoxide were markedly reduced by the addition of either glibenclamide or glimepiride (0.8 microm) while they were not affected by gliclazide up to 12 microm. Similarly, in rat and guinea-pig isolated aortic rings, glibenclamide, glimepiride and gliclazide reduced the vasodilator activity of cromakalim. However, the inhibitory effect of gliclazide was considerably less when compared with either glimepiride or glibenclamide. These results suggest that, in contrast to glibenclamide and glimepiride, therapeutically relevant concentrations of gliclazide do not block the vascular effects produced by KATP channel openers in various in vitro and in vivo animal models.
Collapse
Affiliation(s)
- Denis Ravel
- Institut de Recherches Internationales Servier, Courbevoie, France
| | | | | | | | | | | |
Collapse
|
45
|
Klein M, Perfus-Barbeoch L, Frelet A, Gaedeke N, Reinhardt D, Mueller-Roeber B, Martinoia E, Forestier C. The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:119-29. [PMID: 12943546 DOI: 10.1046/j.1365-313x.2003.016012.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbon dioxide uptake and water release through stomata, controlling the opening and closure of stomatal pore size in the leaf surface, is critical for optimal plant performance. Stomatal movements are regulated by multiple signalling pathways involving guard cell ion channels. Using reverse genetics, we recently isolated a T-DNA insertion mutant for the Arabidopsis ABC-transporter AtMRP5 (mrp5-1). Guard cells from mrp5-1 mutant plants were found to be insensitive to the sulfonylurea compound glibenclamide, which in the wild type induces stomatal opening in the dark. Here, we report that the knockout in AtMRP5 affects several signalling pathways controlling stomatal movements. Stomatal apertures of mrp5-1 and wild-type Ws-2 were identical in the dark. In contrast, opening of stomata of mrp5-1 plants was reduced in the light. In the light, stomatal closure of mrp5-1 was insensitive to external calcium and abscisic acid, a phytohormone responsible for stomatal closure during drought stress. In contrast to Ws-2, the phytohormone auxin could not stimulate stomatal opening in the mutant in darkness. All stomatal phenotypes were complemented in transgenic mrp5-1 plants transformed with a cauliflower mosaic virus (CaMV) 35S-AtMRP5 construct. Both whole-plant and single-leaf gas exchange measurements demonstrated a reduced transpiration rate of mrp5-1 in the light. Excised leaves of mutant plants exhibited reduced water loss, and water uptake was strongly decreased at the whole-plant level. Finally, if plants were not watered, mrp5-1 plants survived much longer due to reduced water use. Analysis of CO2 uptake and transpiration showed that mrp5-1 plants have increased water use efficiency. Mutant plants overexpressing AtMRP5 under the control of the CaMV 35S promoter again exhibited wild-type characteristics. These results demonstrate that multidrug resistance-associated proteins (MRPs) are important components of guard cell functioning.
Collapse
Affiliation(s)
- Markus Klein
- Institut de Botanique, Laboratoire de Physiologie Végétale, Université de Neuchâtel, Rue Emile Argand 13, CH-2007 Neuchâtel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Schwanstecher C, Schwanstecher M. Nucleotide sensitivity of pancreatic ATP-sensitive potassium channels and type 2 diabetes. Diabetes 2002; 51 Suppl 3:S358-62. [PMID: 12475775 DOI: 10.2337/diabetes.51.2007.s358] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes is generally perceived as a polygenic disorder, with disease development being influenced by both hereditary and environmental factors. However, despite intensive investigations, little progress has been made in identifying the genes that impart susceptibility to the common late-onset forms of the disease. E23K, a common single nucleotide polymorphism in K(IR)6.2, the pore-forming subunit of pancreatic beta-cell ATP-sensitive K(+) (K(ATP)) channels, significantly enhances the spontaneous open probability of these channels, and thus modulates sensitivities toward inhibitory and activatory adenine nucleotides. Based on previous association studies, we present evidence that with an estimated attributable proportion of 15% in Caucasians, E23K in K(IR)6.2 appears to be the most important genetic risk factor for type 2 diabetes yet identified.
Collapse
Affiliation(s)
- Christina Schwanstecher
- Institute of Pharmacology and Toxicology, University of Braunschweig, Braunschweig, Germany.
| | | |
Collapse
|
47
|
Gomes P, Soares-Da-Silva P. D2-like receptor-mediated inhibition of Na+-K+-ATPase activity is dependent on the opening of K+ channels. Am J Physiol Renal Physiol 2002; 283:F114-23. [PMID: 12060593 DOI: 10.1152/ajprenal.00244.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the effects of D2-like dopamine receptor activation on Na+-K+-ATPase activity while apical-to-basal, ouabain-sensitive, amphotericin B-induced increases in short-circuit current and basolateral K+ (I(K)) currents in opossum kidney cells were measured. The inhibitory effect of dopamin on Na+-K+-ATPase activity was completely abolished by either D1- or D2-like receptor antagonists and mimicked by D1- and D2-like receptor agonists SKF-38393 and quinerolane, respectively. Blockade of basolateral K+ channels with BaCl2 (1 mM) or glibenclamide (10 microM), but not apamin (1 microM), totally prevented the inhibitory effects of quinerolane. The K+ channel opener pinacidil decreased Na+-K+-ATPase activity. The inhibitory effect of quinerolane on Na+-K+- ATPase activity was abolished by pretreatment of opossum kidney cells with pertussis toxin (PTX). Quinerolane increased I(K) across the basolateral membrane in a concentration-dependent manner; this effect was abolished by pretreatment with PTX, S-sulpiride, and glibenclamide. SKF-38393 did not change I(K). Both H-89 (protein kinase A inhibitor) and chelerythrine (protein kinase C inhibitor) failed to prevent the stimulatory effect of quinerolane on I(K). The stimulation of the D2-like receptor was associated with a rapid hyperpolarizing effect, whereas D1-like receptor activation was accompanied by increases in cell membrane potential. It is concluded that stimulation of D2-like receptors leads to inhibition of Na+-K+-ATPase activity and hyperpolarization; both effects are associated with the opening of K+ channels.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Amphotericin B/pharmacology
- Animals
- Antifungal Agents/pharmacology
- Cardiotonic Agents/pharmacology
- Cell Line
- Dopamine/pharmacology
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Female
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Glyburide/pharmacology
- Hypoglycemic Agents/pharmacology
- Ion Channel Gating/physiology
- Kidney/cytology
- Kidney/metabolism
- Opossums
- Pertussis Toxin
- Pinacidil/pharmacology
- Potassium Channels/metabolism
- Quinolines/pharmacology
- Receptors, Dopamine D2/metabolism
- Sodium/pharmacokinetics
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Sodium-Potassium-Exchanging ATPase/metabolism
- Sulpiride/pharmacology
- Vasodilator Agents/pharmacology
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- Pedro Gomes
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200 Porto, Portugal
| | | |
Collapse
|
48
|
Kim SH, Lubec G. Decreased alpha-endosulfine, an endogenous regulator of ATP-sensitive potassium channels, in brains from adult Down syndrome patients. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2002:1-9. [PMID: 11771735 DOI: 10.1007/978-3-7091-6262-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Alpha-endosulfine has the ability to block ATP-sensitive potassium (K(ATP)) channels and stimulate insulin release in beta cells like sulfonylurea. Alpha-endosulfine is expressed in a wide range of tissue, including brain and endocrine tissues. Although K(ATP) channels are also present in brain and its regulators have been reported to be involved in the release of neurotransmitters such as acetylcholine that plays an important role in cognitive function, the neurobiological role of alpha-endosulfine has not been studied yet. We examined the expression levels of alpha-endosulfine protein in frontal cortex and cerebellum from patients with Down syndrome (DS) showing Alzheimer's disease (AD) pathology using Western blotting. In frontal cortex, alpha-endosulfine was detected in all of 10 controls, but only 1 (from female) out of 8 DS with weak density. In cerebellum, alpha-endosulfine was also detected in all of 9 controls, but only 1 (from male) out of 6 DS with weak density. The considerably decreased alpha-endosulfine could result in the continuous opening of K(ATP) channels and the subsequent decrease of neurotransmitters release associated with cognition. This study is of significance providing evidence for a biological role of alpha-endosulfine in brain and alpha-endosulfine protein could be a pharmacological target for therapeutic intervention.
Collapse
Affiliation(s)
- S H Kim
- Department of Pediatrics, University of Vienna, Austria
| | | |
Collapse
|
49
|
Ichikawa K, Maruyama K, Murakami M, Tsuji A, Yamato T, Kusama H, Kojima M. Absence of exacerbation of myocardial stunning in anesthetized dogs treated with KAD-1229, a novel hypoglycemic agent. Eur J Pharmacol 2001; 431:331-8. [PMID: 11730726 DOI: 10.1016/s0014-2999(01)01461-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effect of (+)-momocalcium bis[(2S,3a,7a-cis)-alpha-benzylhexahydro-gamma-oxo-2-isoindolinebutyrate]dihydrate (KAD-1229), a novel hypoglycemic agent with a chemical structure different from that of the sulfonylureas, on myocardial stunning was assessed in anesthetized dogs by comparison with that of glibenclamide, a sulfonylurea. Even though their hypoglycemic effects were of similar magnitude, glibenclamide (1 mg/kg, i.v.), but not KAD-1229, exacerbated the myocardial stunning induced by occlusion/reperfusion of the descending coronary artery. In a receptor-binding experiment, unlabeled glibenclamide completely inhibited [(3)H]glibenclamide binding to the myocardium, but KAD-1229 did not. These results suggest that the difference in binding properties of KAD-1229 and glibenclamide toward cardiac sulfonylurea receptors is one of the causes of their different effects on myocardial stunning. It is likely that KAD-1229 is highly specific for pancreatic sulfonylurea receptors and is speculated to be a safer hypoglycemic agent than, at least, glibenclamide.
Collapse
Affiliation(s)
- K Ichikawa
- Pharmacology Research R&D, Kissei Pharmaceutical Co., Ltd., Hotaka, Nagano, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The loss of early-phase insulin secretion is an important and early event in the natural history of type 2 diabetes. Because a normal pattern of insulin secretion is essential for the effective control of postprandial metabolism, a rational basis for the development of agents that target early-phase insulin release exists. Conventional oral hypoglycaemic agents do not target, or adequately control, postprandial glycaemia. The emergence of new classes of oral agent with a more specific mode of action provides, for the first time, an opportunity to restore early-phase insulin release. One such drug class is the meglitinide analogues (repaglinide, nateglinide, and mitiglinide). These drugs are ideally suited for combination use with metformin. They could also prove effective in combination with a thiazolidinedione, a drug class that targets insulin resistance. Exogenous insulin is frequently required in the late management of type 2 diabetes. However, one hope for newer combinations of diabetic drugs is that the functional life of the beta cell can be extended, thereby delaying the need for insulin injections.
Collapse
Affiliation(s)
- A Dornhorst
- Department of Metabolic Medicine, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Road, W12 0NN, London, UK.
| |
Collapse
|