1
|
Krämer L, Dalheimer N, Räschle M, Storchová Z, Pielage J, Boos F, Herrmann JM. MitoStores: chaperone-controlled protein granules store mitochondrial precursors in the cytosol. EMBO J 2023; 42:e112309. [PMID: 36704946 PMCID: PMC10068336 DOI: 10.15252/embj.2022112309] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Hundreds of nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. However, the early processes associated with mitochondrial protein targeting remain poorly understood. Here, we show that in Saccharomyces cerevisiae, the cytosol has the capacity to transiently store mitochondrial matrix-destined precursors in dedicated deposits that we termed MitoStores. Competitive inhibition of mitochondrial protein import via clogging of import sites greatly enhances the formation of MitoStores, but they also form during physiological cell growth on nonfermentable carbon sources. MitoStores are enriched for a specific subset of nucleus-encoded mitochondrial proteins, in particular those containing N-terminal mitochondrial targeting sequences. Our results suggest that MitoStore formation suppresses the toxic potential of aberrantly accumulating mitochondrial precursor proteins and is controlled by the heat shock proteins Hsp42 and Hsp104. Thus, the cytosolic protein quality control system plays an active role during the early stages of mitochondrial protein targeting through the coordinated and localized sequestration of mitochondrial precursor proteins.
Collapse
Affiliation(s)
- Lena Krämer
- Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Niko Dalheimer
- Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
- Present address:
Cellular BiochemistryMax Planck Institute of BiochemistryMartinsriedGermany
| | - Markus Räschle
- Molecular GeneticsUniversity of KaiserslauternKaiserslauternGermany
| | - Zuzana Storchová
- Molecular GeneticsUniversity of KaiserslauternKaiserslauternGermany
| | - Jan Pielage
- Zoology and NeurobiologyUniversity of KaiserslauternKaiserslauternGermany
| | - Felix Boos
- Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
- Present address:
Department of GeneticsStanford UniversityStanfordCAUSA
| | | |
Collapse
|
2
|
Broz M, Furlan V, Lešnik S, Jukič M, Bren U. The Effect of the Ala16Val Mutation on the Secondary Structure of the Manganese Superoxide Dismutase Mitochondrial Targeting Sequence. Antioxidants (Basel) 2022; 11:antiox11122348. [PMID: 36552556 PMCID: PMC9774195 DOI: 10.3390/antiox11122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Manganese Superoxide Dismutase (MnSOD) represents a mitochondrial protein that scavenges reactive oxygen species (ROS) responsible for oxidative stress. A known single nucleotide polymorphism (SNP) rs4880 on the SOD2 gene, causing a mutation from alanine to valine (Ala16Val) in the primary structure of immature MnSOD, has been associated with several types of cancer and other autoimmune diseases. However, no conclusive correlation has been established yet. This study aims to determine the effect of the alanine to valine mutation on the secondary structure of the MnSOD mitochondrial targeting sequence (MTS). A model for each variant of the MTS was prepared and extensively simulated with molecular dynamics simulations using the CHARMM36m force field. The results indicate that the alanine variant of the MTS preserves a uniform α-helical secondary structure favorable for the protein transport into mitochondria, whereas the valine variant quickly breaks down its α-helix. Thus, the alanine MTS represents the more active MnSOD variant, the benefits of which have yet to be determined experimentally.
Collapse
Affiliation(s)
- Matic Broz
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Samo Lešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Marko Jukič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Correspondence:
| |
Collapse
|
3
|
Deponte M. GFP tagging sheds light on protein translocation: implications for key methods in cell biology. Cell Mol Life Sci 2012; 69:1025-33. [PMID: 22349212 PMCID: PMC11115126 DOI: 10.1007/s00018-012-0932-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/27/2011] [Accepted: 01/26/2012] [Indexed: 01/05/2023]
Abstract
Green fluorescent protein (GFP) is a powerful tool for studying gene expression, protein localization, protein-protein interactions, calcium concentrations, and redox potentials owing to its intrinsic fluorescence. However, GFP not only contains a chromophore but is also tightly folded in a temperature-dependent manner. The latter property of GFP has recently been exploited (1) to characterize the translocase of the outer mitochondrial membrane and (2) to discriminate between protein transport across and into biomembranes in vivo. I therefore suggest that GFP could be a valuable tool for the general analysis of protein transport machineries and pathways in a variety of organisms. Moreover, results from such studies could be important for the interpretation and optimization of classical experiments using GFP tagging.
Collapse
Affiliation(s)
- Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University, Heidelberg, Germany.
| |
Collapse
|
4
|
Claiborn K. A mystery unfolds: Franz-Ulrich Hartl and Arthur L. Horwich win the 2011 Albert Lasker Basic Medical Research Award. J Clin Invest 2011; 121:3774-7. [PMID: 22059237 DOI: 10.1172/jci60889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Voronova A, Meyer-Klaucke W, Meyer T, Rompel A, Krebs B, Kazantseva J, Sillard R, Palumaa P. Oxidative switches in functioning of mammalian copper chaperone Cox17. Biochem J 2007; 408:139-48. [PMID: 17672825 PMCID: PMC2049083 DOI: 10.1042/bj20070804] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cox17, a copper chaperone for cytochrome-c oxidase, is an essential and highly conserved protein in eukaryotic organisms. Yeast and mammalian Cox17 share six conserved cysteine residues, which are involved in complex redox reactions as well as in metal binding and transfer. Mammalian Cox17 exists in three oxidative states, each characterized by distinct metal-binding properties: fully reduced mammalian Cox17(0S-S) binds co-operatively to four Cu+; Cox17(2S-S), with two disulfide bridges, binds to one of either Cu+ or Zn2+; and Cox17(3S-S), with three disulfide bridges, does not bind to any metal ions. The E(m) (midpoint redox potential) values for two redox couples of Cox17, Cox17(3S-S)<-->Cox17(2S-S) (E(m1)) and Cox17(2S-S)<-->Cox17(0S-S) (E(m2)), were determined to be -197 mV and -340 mV respectively. The data indicate that an equilibrium exists in the cytosol between Cox17(0S-S) and Cox17(2S-S), which is slightly shifted towards Cox17(0S-S). In the IMS (mitochondrial intermembrane space), the equilibrium is shifted towards Cox17(2S-S), enabling retention of Cox17(2S-S) in the IMS and leading to the formation of a biologically competent form of the Cox17 protein, Cox17(2S-S), capable of copper transfer to the copper chaperone Sco1. XAS (X-ray absorption spectroscopy) determined that Cu4Cox17 contains a Cu4S6-type copper-thiolate cluster, which may provide safe storage of an excess of copper ions.
Collapse
Affiliation(s)
- Anastassia Voronova
- *Department of Gene Technology, Tallinn Technical University, Akadeemia tee 15, 12618 Tallinn, Estonia
| | | | - Thomas Meyer
- ‡Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Annette Rompel
- ‡Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Bernt Krebs
- ‡Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Jekaterina Kazantseva
- *Department of Gene Technology, Tallinn Technical University, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Rannar Sillard
- *Department of Gene Technology, Tallinn Technical University, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Peep Palumaa
- *Department of Gene Technology, Tallinn Technical University, Akadeemia tee 15, 12618 Tallinn, Estonia
- To whom correspondence should be addressed (email )
| |
Collapse
|
6
|
MacKenzie JA, Payne RM. Mitochondrial protein import and human health and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1772:509-23. [PMID: 17300922 PMCID: PMC2702852 DOI: 10.1016/j.bbadis.2006.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 12/31/2022]
Abstract
The targeting and assembly of nuclear-encoded mitochondrial proteins are essential processes because the energy supply of humans is dependent upon the proper functioning of mitochondria. Defective import of mitochondrial proteins can arise from mutations in the targeting signals within precursor proteins, from mutations that disrupt the proper functioning of the import machinery, or from deficiencies in the chaperones involved in the proper folding and assembly of proteins once they are imported. Defects in these steps of import have been shown to lead to oxidative stress, neurodegenerative diseases, and metabolic disorders. In addition, protein import into mitochondria has been found to be a dynamically regulated process that varies in response to conditions such as oxidative stress, aging, drug treatment, and exercise. This review focuses on how mitochondrial protein import affects human health and disease.
Collapse
Affiliation(s)
- James A MacKenzie
- Department of Biological Sciences, 133 Piez Hall, State University of New York at Oswego, Oswego, NY 13126, USA.
| | | |
Collapse
|
7
|
Rassow J, Pfanner N. Molecular chaperones and intracellular protein translocation. Rev Physiol Biochem Pharmacol 2006; 126:199-264. [PMID: 7886379 DOI: 10.1007/bfb0049777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Rassow
- Biochemisches Institut, Universität Freiburg, Germany
| | | |
Collapse
|
8
|
MacKenzie JA, Payne RM. Preparation of ribosomes loaded with truncated nascent proteins to study ribosome binding to mammalian mitochondria. Mitochondrion 2006; 6:64-70. [PMID: 16513430 DOI: 10.1016/j.mito.2006.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 12/13/2005] [Accepted: 01/11/2006] [Indexed: 11/23/2022]
Abstract
Supporting a co-translational model of protein import into mitochondria, we have previously shown that ribosome-nascent chain complexes (RNCs) specifically bind to mitochondria. When producing RNCs using the rabbit reticulocyte lysate in vitro translation system, it was necessary to maximize ribosome loading with truncated nascent proteins because it had a direct impact on RNC binding. We describe here the optimal conditions for preparing RNCs. We show that translation temperature and reaction time are two critical factors, with 30 degrees Celsius and 15min being optimal, respectively. We also show that transcription reactions can be used directly in the translation reaction to create RNCs.
Collapse
Affiliation(s)
- James A MacKenzie
- Department of Biological Sciences, Oswego State University of New York, Oswego, NY 13126, USA
| | | |
Collapse
|
9
|
Luk E, Carroll M, Baker M, Culotta VC. Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc Natl Acad Sci U S A 2003; 100:10353-7. [PMID: 12890866 PMCID: PMC193565 DOI: 10.1073/pnas.1632471100] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Manganese-containing superoxide dismutase (SOD2) plays a critical role in guarding against mitochondrial oxidative stress and is essential for survival of many organisms. Despite the recognized importance of SOD2, nothing is known regarding the mechanisms by which this nuclear-encoded protein is converted to an active enzyme in the mitochondrial matrix. To search for factors that participate in the posttranslational activation of SOD2, we screened for yeast genes that when mutated lead to SOD2 inactivation and identified a single ORF, YGR257c. The encoded protein localizes to the mitochondria and represents a member of the yeast mitochondrial carrier family. YGR257c was previously recognized as the homologue to human CGI-69, a widely expressed mitochondrial carrier family of unknown function. Our studies suggest a connection with SOD2, and we have named the yeast gene MTM1 for manganese trafficking factor for mitochondrial SOD2. Inactivation of yeast MTM1 leads to loss of SOD2 activity that is restored only when cells are treated with high supplements of manganese, but not other heavy metals, indicative of manganese deficiency in the SOD2 polypeptide. Surprisingly, the mitochondrial organelle of mtm1 Delta mutants shows no deficiency in manganese levels. Moreover, mtm1 Delta mutations do not impair activity of a cytosolic version of manganese SOD. We propose that Mtm1p functions in the mitochondrial activation of SOD2 by specifically facilitating insertion of the essential manganese cofactor.
Collapse
Affiliation(s)
- Edward Luk
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
10
|
Zhang X, Roe SM, Hou Y, Bartlam M, Rao Z, Pearl LH, Danpure CJ. Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1. J Mol Biol 2003; 331:643-52. [PMID: 12899834 DOI: 10.1016/s0022-2836(03)00791-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A deficiency of the liver-specific enzyme alanine:glyoxylate aminotransferase (AGT) is responsible for the potentially lethal hereditary kidney stone disease primary hyperoxaluria type 1 (PH1). Many of the mutations in the gene encoding AGT are associated with specific enzymatic phenotypes such as accelerated proteolysis (Ser205Pro), intra-peroxisomal aggregation (Gly41Arg), inhibition of pyridoxal phosphate binding and loss of catalytic activity (Gly82Glu), and peroxisome-to-mitochondrion mistargeting (Gly170Arg). Several mutations, including that responsible for AGT mistargeting, co-segregate and interact synergistically with a Pro11Leu polymorphism found at high frequency in the normal population. In order to gain further insights into the mechanistic link between genotype and enzymatic phenotype in PH1, we have determined the crystal structure of normal human AGT complexed to the competitive inhibitor amino-oxyacetic acid to 2.5A. Analysis of this structure allows the effects of these mutations and polymorphism to be rationalised in terms of AGT tertiary and quaternary conformation, and in particular it provides a possible explanation for the Pro11Leu-Gly170Arg synergism that leads to AGT mistargeting.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Danpure CJ, Lumb MJ, Birdsey GM, Zhang X. Alanine:glyoxylate aminotransferase peroxisome-to-mitochondrion mistargeting in human hereditary kidney stone disease. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:70-5. [PMID: 12686111 DOI: 10.1016/s1570-9639(03)00055-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pyridoxal-phosphate (PLP)-dependent enzyme alanine:glyoxylate aminotransferase (AGT) is mistargeted from peroxisomes to mitochondria in patients with the hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) due to the synergistic interaction between a common Pro(11)Leu polymorphism and a PH1-specific Gly(170)Arg mutation. The kinetic partitioning of newly synthesised AGT between peroxisomes and mitochondria is determined by the combined effects of (1) the generation of cryptic mitochondrial targeting information, and (2) the inhibition of AGT dimerization. The crystal structure of AGT has recently been solved, allowing the effects of the various polymorphisms and mutations to be rationalised in terms of AGT's three-dimensional conformation. Procedures that increase dimer stability and/or increase the rate of dimer formation have potential in the formulation of novel strategies to treat this otherwise intractable life-threatening disease.
Collapse
Affiliation(s)
- Christopher J Danpure
- Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
12
|
Tokatlidis K. Directing proteins to mitochondria by fusion to mitochondrial targeting signals. Methods Enzymol 2001; 327:305-17. [PMID: 11044993 DOI: 10.1016/s0076-6879(00)27286-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- K Tokatlidis
- School of Biological Sciences, University of Manchester, England, United Kingdom
| |
Collapse
|
13
|
Bhagwat SV, Biswas G, Anandatheerthavarada HK, Addya S, Pandak W, Avadhani NG. Dual targeting property of the N-terminal signal sequence of P4501A1. Targeting of heterologous proteins to endoplasmic reticulum and mitochondria. J Biol Chem 1999; 274:24014-22. [PMID: 10446170 DOI: 10.1074/jbc.274.34.24014] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies from our laboratory showed that the beta-naphthoflavone-inducible cytochrome P4501A1 is targeted to both the endoplasmic reticulum (ER) and mitochondria. In the present study, we have further investigated the ability of the N-terminal signal sequence (residues 1-44) of P4501A1 to target heterologous proteins, dihydrofolate reductase, and the mature portion of the rat P450c27 to the two subcellular compartments. In vitro transport and in vivo expression experiments show that N-terminally fused 1-44 signal sequence of P4501A1 targets heterologous proteins to both the ER and mitochondria, whereas the 33-44 sequence strictly functions as a mitochondrial targeting signal. Site-specific mutations show that positively charged residues at the 34th and 39th positions are critical for mitochondrial targeting. Cholesterol 27-hydroxylase activity of the ER-associated 1-44/1A1-CYP27 fusion protein can be reconstituted with cytochrome P450 reductase, but the mitochondrial associated fusion protein is functional with adrenodoxin + adrenodoxin reductase. Consistent with these differences, the fusion protein in the two organelle compartments exhibited distinctly different membrane topology. The results on the chimeric nature of the N-terminal signal of P4501A1 coupled with interaction with different electron transport proteins suggest a co-evolutionary nature of some of the xenobiotic inducible microsomal and mitochondrial P450s.
Collapse
Affiliation(s)
- S V Bhagwat
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6047, USA
| | | | | | | | | | | |
Collapse
|
14
|
Lumb MJ, Drake AF, Danpure CJ. Effect of N-terminal alpha-helix formation on the dimerization and intracellular targeting of alanine:glyoxylate aminotransferase. J Biol Chem 1999; 274:20587-96. [PMID: 10400689 DOI: 10.1074/jbc.274.29.20587] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unparalleled peroxisome-to-mitochondrion mistargeting of alanine:glyoxylate aminotransferase (AGT) in the hereditary disease primary hyperoxaluria type 1 is caused by the combined presence of a common Pro11 --> Leu polymorphism and a disease-specific Gly170 --> Arg mutation. The Pro11 --> Leu replacement generates a functionally weak N-terminal mitochondrial targeting sequence (MTS), the efficiency of which is increased by the additional presence of the Gly170 --> Arg replacement. AGT dimerization is inhibited in the combined presence of both replacements but not when each is present separately. In this paper we have attempted to identify the structural determinants of AGT dimerization and mitochondrial mistargeting. Unlike most MTSs, the polymorphic MTS of AGT has little tendency to adopt an alpha-helical conformation in vitro. Nevertheless, it is able to target efficiently a monomeric green fluorescent (GFP) fusion protein, but not dimeric AGT, to mitochondria in transfected COS-1 cells. Increasing the propensity of this MTS to fold into an alpha-helix, by making a double Pro11 --> Leu + Pro10 --> Leu replacement, enabled it to target both GFP and AGT efficiently to mitochondria. The double Pro11 --> Leu + Pro10 --> Leu replacement retarded AGT dimerization in vitro as did the disease-causing double Pro11 --> Leu + Gly170 --> Arg replacement. These data suggest that N-terminal alpha-helix formation is more important for maintaining AGT in a conformation (i. e. monomeric) compatible with mitochondrial import than it is for the provision of mitochondrial targeting information. The parallel effects of the Pro10 --> Leu and Gly170 --> Arg replacements on the dimerization and intracellular targeting of polymorphic AGT (containing the Pro11 --> Leu replacement) raise the possibility that they might achieve their effects by the same mechanism.
Collapse
Affiliation(s)
- M J Lumb
- MRC Laboratory for Molecular Cell Biology and the Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
15
|
Mattingly JR, Torella C, Iriarte A, Martinez-Carrion M. Conformation of aspartate aminotransferase isozymes folding under different conditions probed by limited proteolysis. J Biol Chem 1998; 273:23191-202. [PMID: 9722549 DOI: 10.1074/jbc.273.36.23191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The partially homologous mitochondrial (mAAT) and cytosolic (cAAT) aspartate aminotransferase have nearly identical three-dimensional structures but differ in their folding rates in cell-free extracts and in their affinity for binding to molecular chaperones. In its native state, each isozyme is protease-resistant. Using limited proteolysis as an index of their conformational states, we have characterized these proteins (a) during the early stages of spontaneous refolding; (b) as species trapped in stable complexes with the chaperonin GroEL; or (c) as newly translated polypeptides in cell-free extracts. Treatment of the refolding proteins with trypsin generates reproducible patterns of large proteolytic fragments that are consistent with the formation of defined folding domains soon after initiating refolding. Binding to GroEL affords considerable protection to both isozymes against proteolysis. The tryptic fragments are similar in size for both isozymes, suggesting a common distribution of compact and flexible regions in their folding intermediates. cAAT synthesized in cell-free extracts becomes protease-resistant almost instantaneously, whereas trypsin digestion of the mAAT translation product produces a pattern of fragments qualitatively akin to that observed with the protein refolding in buffer. Analysis of the large tryptic peptides obtained with the GroEL-bound proteins reveals that the cleavage sites are located in analogous regions of the N-terminal portion of each isozyme. These results suggest that (a) binding to GroEL does not cause unfolding of AAT, at least to an extent detectable by proteolysis; (b) the compact folding domains identified in AAT bound to GroEL (or in mAAT fresh translation product) are already present at the early stages of refolding of the proteins in buffer alone; and (c) the two isozymes seem to bind in a similar fashion to GroEL, with the more compact C-terminal portion completely protected and the more flexible N-terminal first 100 residues still partially accessible to proteolysis.
Collapse
Affiliation(s)
- J R Mattingly
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA
| | | | | | | |
Collapse
|
16
|
Schülke N, Sepuri NB, Pain D. In vivo zippering of inner and outer mitochondrial membranes by a stable translocation intermediate. Proc Natl Acad Sci U S A 1997; 94:7314-9. [PMID: 9207088 PMCID: PMC23818 DOI: 10.1073/pnas.94.14.7314] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It was previously assumed that the import of cytoplasmically synthesized precursor proteins into mitochondria occurs through a single structure spanning both outer and inner membranes at contact sites. Based on recent findings, however, the two membranes appear to contain independent translocation elements that reversibly cooperate during protein import. This feature makes it difficult to generate a means of isolating a fully integrated and functional translocation complex. To study these independent translocases in vitro and in vivo, we have constructed a chimeric protein consisting of an N-terminal authentic mitochondrial precursor (delta1-pyrroline-5-carboxylate dehydrogenase) linked, through glutathione S-transferase, to IgG binding domains derived from staphylococcal protein A. This construct becomes trapped en route to the matrix, spanning both outer and inner membranes in such a way that the entire signal-less delta1-pyrroline-5-carboxylate dehydrogenase moiety reaches the matrix, while only the folded protein A domain remains outside. During in vivo import of this precursor, outer and inner membranes of yeast mitochondria become progressively "zippered" together, forming long stretches of close contact. Using this novel intermediate, the outer and inner mitochondrial membrane channels, which normally interact only transiently, can be tightly joined (both in vitro and in vivo), forming a stable association. This suggests a method for isolating the functional translocation complex as a single entity.
Collapse
Affiliation(s)
- N Schülke
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | |
Collapse
|
17
|
Danpure CJ. Variable peroxisomal and mitochondrial targeting of alanine: glyoxylate aminotransferase in mammalian evolution and disease. Bioessays 1997; 19:317-26. [PMID: 9136629 DOI: 10.1002/bies.950190409] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Under the putative influence of dietary selection pressure, the subcellular distribution of alanine:glyoxylate aminotransferase 1 (AGT) has changed on many occasions during the evolution of mammals. Depending on the particular species, AGT can be found either in peroxisomes or mitochondria, or in both peroxisomes and mitochondria. This variable localization depends on the differential expression of N-terminal mitochondrial and C-terminal peroxisomal targeting sequences by the use of alternative transcription and translation initiation sites. AGT is peroxisomal in most humans, but it is mistargeted to the mitochondria in a subset of patients suffering from the rare hereditary disease primary hyperoxaluria type 1. Mistargeting is due to the unlikely combination of a normally occurring polymorphism that generates a functionally weak mitochondrial targeting sequence and a disease-specific mutation which, in combination with the polymorphism, inhibits AGT dimerization. The mechanisms by which AGT can be targeted differentially to peroxisomes and/or mitochondria highlight the different molecular requirements for protein import into these two organelles.
Collapse
Affiliation(s)
- C J Danpure
- MRC Laboratory for Molecular Cell Biology, University College London, UK
| |
Collapse
|
18
|
Abstract
Mitochondria import many hundreds of different proteins that are encoded by nuclear genes. These proteins are targeted to the mitochondria, translocated through the mitochondrial membranes, and sorted to the different mitochondrial subcompartments. Separate translocases in the mitochondrial outer membrane (TOM complex) and in the inner membrane (TIM complex) facilitate recognition of preproteins and transport across the two membranes. Factors in the cytosol assist in targeting of preproteins. Protein components in the matrix partake in energetically driving translocation in a reaction that depends on the membrane potential and matrix-ATP. Molecular chaperones in the matrix exert multiple functions in translocation, sorting, folding, and assembly of newly imported proteins.
Collapse
Affiliation(s)
- W Neupert
- Institut für Physiologische Chemie der Universität München, Germany
| |
Collapse
|
19
|
Abstract
In vitro import studies have confirmed the participation of cytosolic protein factors in the import of various precursor proteins into mitochondria. The requirement for extramitochondrial adenosine triphosphate for the import of a group of precursor proteins seems to be correlated with the chaperone activity of the cytosolic protein factors. One of the cytosolic protein factors is hsp70, which generally recognizes and binds unfolded proteins in the cytoplasm. Hsp70 keeps the newly synthesized mitochondrial precursor proteins in import-competent unfolded conformations. Another cytosolic protein factor that has been characterized is mitochondrial import stimulation factor (MSF), which seems to be specific to mitochondrial precursor proteins. MSF recognizes the mitochondrial precursor proteins, forms a complex with them and targets them to the receptors on the outer surface of mitochondria.
Collapse
Affiliation(s)
- K Mihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
20
|
Abstract
The last few years has seen enormous progress in understanding of protein targeting and translocation across biological membranes. Many of the key molecules involved have been identified, isolated, and the corresponding genes cloned, opening up the way for detailed analysis of the structure and function of these molecular machines. It has become clear that the protein translocation machinery of the endoplasmic reticulum is very closely related to that of bacteria, and probably represents an ancient solution to the problem of how to get a protein across a membrane. One of the thylakoid translocation systems looks as if it will also be very similar, and probably represents a pathway inherited from the ancestral endosymbiont. It is interesting that, so far, there is a perfect correlation between thylakoid proteins which are present in photosynthetic prokaryotes and those which use the sec pathway in chloroplasts; conversely, OE16 and 23 which use the delta pH pathway are not found in cyanobacteria. To date, no Sec-related proteins have been found in mitochondria, although these organelles also arose as a result of endosymbiotic events. However, virtually nothing is known about the insertion of mitochondrially encoded proteins into the inner membrane. Is the inner membrane machinery which translocates cytoplasmically synthesized proteins capable of operating in reverse to export proteins from the matrix, or is there a separate system? Alternatively, do membrane proteins encoded by mitochondrial DNA insert independently of accessory proteins? Unlike nuclear-encoded proteins, proteins encoded by mtDNA are not faced with a choice of membrane and, in principle, could simply partition into the inner membrane. The ancestors of mitochondria almost certainly had a Sec system; has this been lost along with many of the proteins once encoded in the endosymbiont genome, or is there still such a system waiting to be discovered? The answer to this question may also shed light on the controversy concerning the sorting of the inter-membrane space proteins cytochrome c1 and cytochrome b2, as the conservative-sorting hypothesis would predict re-export of matrix intermediates via an ancestral (possibly Sec-type) pathway. Whereas the ER and bacterial systems clearly share homologous proteins, the protein import machineries of mitochondria and chloroplasts appear to be analogous rather than homologous. In both cases, import occurs through contact sites and there are separate translocation complexes in each membrane, however, with the exception of some of the chaperone molecules, the individual protein components do not appear to be related. Their similarities may be a case of convergent rather than divergent evolution, and may reflect what appear to be common requirements for translocation, namely unfolding, a receptor, a pore complex and refolding. There are also important differences. Translocation across the mitochondrial inner membrane is absolutely dependent upon delta psi, but no GTP requirement has been identified. In chloroplasts the reverse is the case. The roles of delta psi and GTP, respectively, remain uncertain, but it is tempting to speculate that they may play a role in regulating the import process, perhaps by controlling the assembly of a functional translocation complex. In the case of peroxisomes, much still remains to be learned. Many genes involved in peroxisome biogenesis have been identified but, in most cases, the biochemical function remains to be elucidated. In this respect, understanding of peroxisome biogenesis is at a similar stage to that of the ER 10 years ago. The coming together of genetic and biochemical approaches, as with the other organelles, should provide many of the answers.
Collapse
Affiliation(s)
- A Baker
- Department of Biochemistry, University of Cambridge, UK
| | | | | |
Collapse
|
21
|
Gasset M, Mancheño JM, Lacadena J, Martinez del Pozo A, Oñaderra M, Gavilanes JG. Spectroscopic characterization of the alkylated alpha-sarcin cytotoxin: analysis of the structural requirements for the protein-lipid bilayer hydrophobic interaction. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1252:43-52. [PMID: 7548165 DOI: 10.1016/0167-4838(95)00106-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
alpha-Sarcin is a ribosome-inactivating protein that translocates across lipid bilayers, these two abilities explaining its cytotoxic character. This protein is composed of a single polypeptide chain with two disulfide bridges. Reduction and carboxyamidomethylation of alpha-sarcin results in protein unfolding, based on the results of the spectroscopic characterization of the chemically modified protein. The absorption and fluorescence emission bands of the tryptophan residues of the modified protein appear blue- and red-shifted, respectively. Far-UV circular dichroism analysis reveals the presence of residual secondary structure (beta-strands and turns) in the alkylated protein. This retains its ability to interact with lipid bilayers. It promotes vesicle aggregation, lipid-mixing between bilayers and leakage of the intravesicular aqueous contents. The modified protein tends to abolish the phase transition of acid phospholipids as detected by differential scanning calorimetry and depolarization measurements of fluorescence-labelled vesicles. The protein gain access to vesicle-entrapped trypsin. The fluorescence emission of the tryptophan residues is blue-shifted upon interaction of the protein with the bilayers, and anthracene incorporated into the hydrophobic core of the membranes quenches the tryptophan fluorescence emission of the protein. The secondary structure of the alkylated protein interacting with lipid vesicles has been studied by infrared spectroscopy. An increase in the alpha-helix and turn contents and a concomitant decrease in the beta-structure content are observed upon interaction with the bilayers. The results obtained are discussed in terms of the structural requirements for the interaction of alpha-sarcin with lipid membranes.
Collapse
Affiliation(s)
- M Gasset
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Srinivasan M, Kalousek F, Curthoys NP. In vitro characterization of the mitochondrial processing and the potential function of the 68-kDa subunit of renal glutaminase. J Biol Chem 1995; 270:1185-90. [PMID: 7836378 DOI: 10.1074/jbc.270.3.1185] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rat renal mitochondrial glutaminase (GA) is initially synthesized in primary cultures of proximal tubule cells as a 74-kDa precursor and is processed via a 72-kDa intermediate to generate a heterotetrameric enzyme which contains three 66-kDa subunits and one 68-kDa subunit (Perera, S. Y., Chen, T. C., and Curthoys, N. P. (1990) J. Biol. Chem. 265, 17764-17770). The two mature subunits may be derived by either of two possible mechanisms: 1) alternative proteolytic processing or 2) initial synthesis of the 66-kDa subunit followed by its covalent modification to generate the 68-kDa subunit. An in vitro system was utilized to further characterize this unique processing pathway and to investigate the potential function of the 68-kDa subunit. In vitro transcription and translation of the GA cDNA yields a single 74-kDa precursor. Upon incubation with isolated rat liver mitochondria, the precursor is translocated into the mitochondria and processed via a 72-kDa intermediate to yield a 3:1 ratio of the 66- and 68-kDa subunits, respectively. The kinetics of the in vitro processing reaction also closely approximate the kinetics observed in cultured cells. Mitochondrial processing is blocked by o-phenanthroline, an inhibitor of the matrix processing peptidase (MPP). The 72-amino acid presequence of the 66-kDa subunit contains a large proportion of basic amino acids. Two-dimensional gel electrophoresis of mature GA established that the 68-kDa subunit is slightly more basic than the 66-kDa subunit. In addition, incubation of the 74-kDa precursor with purified MPP yields equimolar amounts of the two mature peptides. A cDNA construct, p delta GA, was created which lacks the nucleotides that encode the amino acid residues 32 through 72 of GA. When transcribed and translated in vitro, p delta GA yields a 70-kDa precursor. This precursor is processed by mitochondria to a single mature subunit with a M of 66 kDa. This observation suggests that the 68-kDa subunit is not produced by covalent modification of the 66-kDa subunit and further supports the conclusion that the two mature subunits of GA are produced by alternative processing reactions which can be catalyzed by MPP. However, the yield of products obtained in intact mitochondria may be determined by some unidentified accessory factor. Submitochondrial fractionation of imported GA and delta GA precursors suggest that the 68-kDa subunit may function to retain the mature GA within the mitochondrial matrix.
Collapse
Affiliation(s)
- M Srinivasan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|
23
|
Shore GC, McBride HM, Millar DG, Steenaart NA, Nguyen M. Import and insertion of proteins into the mitochondrial outer membrane. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:9-18. [PMID: 7851447 DOI: 10.1111/j.1432-1033.1995.tb20354.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear-encoded proteins destined for insertion into the mitochondrial outer membrane, follow the same general pathway for import as proteins that are translocated to interior compartments within the organelle. This observation is true both for beta-barrel-type proteins and for proteins that contain hydrophobic alpha-helical transmembrane segments. In this review, we describe what is known about the various steps leading to protein insertion into the outer membrane, and discuss the energetics that favor vectorial translocation into and across this membrane. The selection of the outer membrane during import may involve a lateral release of the translocating polypeptide from the import machinery so that the appropriate domains of the protein become embedded in the lipid bilayer. One type of topogenic domain that can guarantee such selection of the outer membrane is a signal-anchor sequence of the type characterized for the bitopic protein Mas70p. It is suggested that a signal-anchor sequence selective for the mitochondrial outer membrane causes abrogation of polypeptide translocation and triggers the release of the transmembrane segment into the surrounding lipid bilayer, prior to any possibility for the commitment of translocation to the interior of the organelle. Specific structural features of the signal-anchor sequence specify its orientation in the membrane, and can confer on this sequence the ability to form homo-oligomers and hetero-oligomers. Strategies other than a signal-anchor sequence may be employed by other classes of proteins for selection of the outer-membrane. Of note is the ability of the outer-membrane import machinery to catalyze integration of the correct set of proteins into the outer-membrane bilayer, while allowing proteins that are destined for integration into the bilayer of the inner membrane to pass through unimpeded. Again, however, different proteins may employ different strategies. One model proposes that this can be accomplished by a combination of a matrix-targeting signal and a distal stop-transfer sequence. In this model, the formation of contact sites, which is triggered when the matrix-targeting signal engages the import machinery of the inner membrane, may prevent the outer-membrane translocon from recognizing and responding to the downstream stop-transfer domain. This allows the transmembrane segment to pass across the outer-membrane, and subsequently integrate into the inner membrane.
Collapse
Affiliation(s)
- G C Shore
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
24
|
Cyr DM, Ungermann C, Neupert W. Analysis of mitochondrial protein import pathway in Saccharomyces cerevisiae with translocation intermediates. Methods Enzymol 1995; 260:241-52. [PMID: 8592449 DOI: 10.1016/0076-6879(95)60142-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D M Cyr
- Institute for Physiological Chemistry, Physical Biochemistry and Cell Biology, University of Munich, Germany
| | | | | |
Collapse
|
25
|
Falnes P, Choe S, Madshus I, Wilson B, Olsnes S. Inhibition of membrane translocation of diphtheria toxin A-fragment by internal disulfide bridges. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37208-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
America T, Hageman J, Guéra A, Rook F, Archer K, Keegstra K, Weisbeek P. Methotrexate does not block import of a DHFR fusion protein into chloroplasts. PLANT MOLECULAR BIOLOGY 1994; 24:283-294. [PMID: 8111032 DOI: 10.1007/bf00020168] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein import into chloroplasts requires the movement of a precursor protein across the envelope membranes. The conformation of a precursor as it passes from the aqueous medium across the hydrophobic membranes is not known in detail. To address this problem we examined precursor conformation during translocation using the chimeric precursor PCDHFR, which contains the plastocyanin (PC) transit peptide in front of mouse cytosolic dihydrofolate reductase (DHFR). The chimeric protein is targeted to chloroplasts and is competent for import. The conformation of PCDHFR can be stabilized by complexing with methotrexate, an analogue of the substrate of DHFR. Methotrexate strongly inhibits DHFR import into yeast mitochondria (M. Eilers and G. Schatz, Nature 322 (1986) 228-232), presumably because the precursor must unfold to cross the membrane and it cannot do so when complexed with methotrexate. We show here that methotrexate does not block PCDHFR import into chloroplasts. Methotrexate does slow the rate of import, and protects DHFR from degradation once inside chloroplasts. The processed protein is localized in the stroma, indicating that import into thylakoids is impeded. Protease sensitivity assays indicate that the complex of precursor protein with methotrexate changes in conformation during the translocation across the envelope.
Collapse
Affiliation(s)
- T America
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Zardeneta G, Horowitz PM. Physical characterization of a reactivatable liposome-bound rhodanese folding intermediate. Biochemistry 1993; 32:13941-8. [PMID: 8268170 DOI: 10.1021/bi00213a025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently, we described the formation of a complex between liposomes and the unfolded protein rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1), which could be liberated and efficiently reactivated after treatment of the complex with detergents [Zardeneta, G., & Horowitz, P. M. (1992) Eur. J. Biochem. 210, 831-837]. Previous data suggested that liposome-bound rhodanese was in the form of a folding intermediate. We have characterized in greater detail the nature of the conformation of the bound rhodanese. Physical characterization of the bound rhodanese intermediate was carried out using proteolysis, fluorescence studies with 1,8-anilinonapthalene-8-sulfonic acid, a probe for hydrophobic site exposure, intrinsic fluorescence to determine tryptophan accessibility using the quenchers acrylamide and iodide, and circular dichroism to detect extent of secondary structure. These studies show that the rhodanese intermediates bound to either cardiolipin or phosphatidylserine liposomes are not identical, the former being in a less compact conformation yet having more secondary structure than the latter, an observation which may explain why the reactivation of the former intermediate is more effective. Finally, turbidimetric and proteolytic studies raise the possibility that each rhodanese intermediate binds to several liposomes. This finding suggests that a possible reason for the differential reactivation yields obtained may be due to the fact that unfolded rhodanese has more binding sites for cardiolipin than for phosphatidylserine liposomes. A greater number of binding sites would result in better anchoring of rhodanese's interactive surfaces and thus reduce the likelihood of misfolding.
Collapse
Affiliation(s)
- G Zardeneta
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284
| | | |
Collapse
|
28
|
Glick BS, Wachter C, Reid GA, Schatz G. Import of cytochrome b2 to the mitochondrial intermembrane space: the tightly folded heme-binding domain makes import dependent upon matrix ATP. Protein Sci 1993; 2:1901-17. [PMID: 8268801 PMCID: PMC2142280 DOI: 10.1002/pro.5560021112] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome b2 is synthesized as a precursor in the cytoplasm and imported to the intermembrane space of yeast mitochondria. We show here that the precursor contains a tightly folded heme-binding domain and that translocation of this domain across the outer membrane requires ATP. Surprisingly, it is ATP in the mitochondrial matrix rather than external ATP that drives import of the heme-binding domain. When the folded structure of the heme-binding domain is disrupted by mutation or by urea denaturation, import and correct processing take place in ATP-depleted mitochondria. These results indicate that (1) cytochrome b2 reaches the intermembrane space without completely crossing the inner membrane, and (2) some precursors fold outside the mitochondria but remain translocation-competent, and import of these precursors in vitro does not require ATP-dependent cytosolic chaperone proteins.
Collapse
Affiliation(s)
- B S Glick
- Biocenter, University of Basel, Switzerland
| | | | | | | |
Collapse
|
29
|
Abstract
Recent in vitro and in vivo experiments suggest that the synthesis and import of mitochondrial proteins are very tightly coupled and that a co-translational import reaction may be mandatory for some proteins. These results are entirely consistent with early experiments which suggested that import occurs co-translationally and that cytosolic polysomes synthesizing mitochondrial proteins are bound to protein import sites on isolated mitochondria. This article discusses and seemingly contradictory reports concerning the involvement of co-translational and post-translational mechanisms in the import process and examines the impact of recent developments in the field.
Collapse
Affiliation(s)
- K Verner
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey 17033
| |
Collapse
|
30
|
Affiliation(s)
- E A Craig
- Department of Biomolecular Chemistry, University of Wisconsin, Madison 53706
| |
Collapse
|
31
|
Lathrop JT, Timko MP. Regulation by heme of mitochondrial protein transport through a conserved amino acid motif. Science 1993; 259:522-5. [PMID: 8424176 DOI: 10.1126/science.8424176] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A conserved motif, termed the heme regulatory motif (HRM), was identified in the presequences of the erythroid delta-aminolevulinate synthase precursors and was shown to be involved in hemin inhibition of transport of these proteins into mouse mitochondria in vitro. When the HRM was inserted into the presequence of the ornithine transcarbamoylase precursor, a normally unregulated mitochondrial protein, it conferred hemin inhibition on the transport of the chimeric protein. The conserved cysteine within the HRM was shown by site-directed mutagenesis to be required for hemin inhibition.
Collapse
Affiliation(s)
- J T Lathrop
- Department of Biology, University of Virginia, Charlottesville 22901
| | | |
Collapse
|
32
|
Fujiki M, Verner K. Coupling of cytosolic protein synthesis and mitochondrial protein import in yeast. Evidence for cotranslational import in vivo. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53941-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Zardeneta G, Horowitz PM. Cardiolipin liposomes sequester a reactivatable partially folded rhodanese intermediate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:831-7. [PMID: 1483467 DOI: 10.1111/j.1432-1033.1992.tb17486.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interaction was studied between the mitochondrial enzyme thiosulfate sulfurtransferase and liposomes, in the form of large unilamellar vesicles (LUV), prepared from either cardiolipin (CL), PtdCho or PtdSer. At equivalent concentrations of lipid, more partially folded thiosulfate sulfurtransferase bound to CL/LUV than to PtdSer/LUV, and only traces were bound to PtdCho/LUV. Native thiosulfate sulfurtransferase did not bind to any of these LUV. We show that CL/LUV-sequestered thiosulfate sulfurtransferase is inactive but may be reactivated (approximately 56%) with the aid of detergents, thiosulfate, beta-mercaptoethanol and phosphate buffer. Reactivations in the presence of PtdSer/LUV or PtdCho/LUV was only 9% or 1%, respectively. Analysis of the complex by protease digestion and fluorescence spectroscopy indicated that thiosulfate sulfurtransferase was held by CL/LUV and PtdSer/LUV as a folding intermediate. Data presented here suggest that detergents may not interact directly with the protein, but, rather, their primary role in reactivation is to disrupt the LUV, allowing flexibility to the anchored thiosulfate sulfurtransferase molecule, thereby promoting folding. These studies complement other reports which imply a possible role for CL in protein translocation across the mitochondria, since we find that CL binds to thiosulfate sulfurtransferase and sequesters it in a translocation-competent prefolded conformation, which may readily lead to a correctly folded enzyme.
Collapse
Affiliation(s)
- G Zardeneta
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | |
Collapse
|
34
|
Analysis of the perturbation of phospholipid model membranes by rhodanese and its presequence. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35749-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Hansen H, Didion T, Thiemann A, Veenhuis M, Roggenkamp R. Targeting sequences of the two major peroxisomal proteins in the methylotrophic yeast Hansenula polymorpha. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:269-78. [PMID: 1465101 DOI: 10.1007/bf00279370] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dihydroxyacetone synthase (DAS) and methanol oxidase (MOX) are the major enzyme constituents of the peroxisomal matrix in the methylotrophic yeast Hansenula polymorpha when grown on methanol as a sole carbon source. In order to characterize their topogenic signals the localization of truncated polypeptides and hybrid proteins was analysed in transformed yeast cells by subcellular fractionation and electron microscopy. The C-terminal part of DAS, when fused to the bacterial beta-lactamase or mouse dihydrofolate reductase, directed these hybrid polypeptides to the peroxisome compartment. The targeting signal was further delimited to the extreme C-terminus, comprising the sequence N-K-L-COOH, similar to the recently identified and widely distributed peroxisomal targeting signal (PTS) S-K-L-COOH in firefly luciferase. By an identical approach, the extreme C-terminus of MOX, comprising the tripeptide A-R-F-COOH, was shown to be the PTS of this protein. Furthermore, on fusion of a C-terminal sequence from firefly luciferase including the PTS, beta-lactamase was also imported into the peroxisomes of H. polymorpha. We conclude that, besides the conserved PTS (or described variants), other amino acid sequences with this function have evolved in nature.
Collapse
Affiliation(s)
- H Hansen
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, FRG
| | | | | | | | | |
Collapse
|
36
|
Bruch MD, Hoyt DW. Conformational analysis of a mitochondrial presequence derived from the F1-ATPase beta-subunit by CD and NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1159:81-93. [PMID: 1390913 DOI: 10.1016/0167-4838(92)90078-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies on mitochondrial targeting presequences have indicated that formation of an amphiphillic helix may be required for efficient targeting of the precursor protein into mitochondria, but the structural details are not well understood. We have used CD and NMR spectroscopy to characterize in detail the structure of a synthetic peptide corresponding to the presequence for the beta-subunit of F1-ATPase, a mitochondrial matrix protein. Although this peptide is essentially unstructured in water, alpha-helix formation is induced when the peptide is placed in structure-promoting environments, such as SDS micelles or aqueous trifluoroethanol (TFE). In 50% TFE (by volume), the peptide is in dynamic equilibrium between random coil and alpha-helical conformations, with a significant population of alpha-helix throughout the entire peptide. The helix is somewhat more stable in the N-terminal part of the presequence (residues 4-10), and this result is consistent with the structure proposed previously for the presequence of another mitochondrial matrix protein, yeast cytochrome oxidase subunit IV. Addition of increasing amounts of TFE causes the alpha-helical content to increase even further, and the TFE titration data for the presequence peptide of the F1-ATPase beta-subunit are not consistent with a single, cooperative transition from random coil to alpha-helix. There is evidence that helix formation is initiated in two different regions of the peptide. This result helps to explain the redundancy of the targeting information contained in the presequence for the F1-ATPase beta-subunit.
Collapse
Affiliation(s)
- M D Bruch
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas
| | | |
Collapse
|
37
|
Nagao M, Tanaka K. FAD-dependent regulation of transcription, translation, post-translational processing, and post-processing stability of various mitochondrial acyl-CoA dehydrogenases and of electron transfer flavoprotein and the site of holoenzyme formation. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37131-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
The mitochondrial F1ATPase alpha-subunit is necessary for efficient import of mitochondrial precursors. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42097-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
39
|
Abstract
Protein import into mitochondria involves a number of complex steps occurring in the cytosol, on the mitochondrial surface, and inside the organelle. Once an initial interaction between mitochondrial proteins and their specific receptors occurs, the proteins are transported into the organelle in a series of reactions involving (in the case of a protein to be translocated into the mitochondrial matrix) the mitochondrial membrane potential, ATP hydrolysis and an undetermined number of membrane components. Inside the organelle, mitochondrial proteins are processed and sorted to their final intramitochondrial destinations. The earliest steps in the import process take place in the cytosol and include the synthesis of the mitochondrial proteins themselves, their interaction with cytosolic factors, and perhaps the establishment of cotranslational import complexes on the mitochondrial surface. These early events are important because it is during this phase that the system as a whole is most sensitive to cytosolic conditions that may exert control over the entire import process.
Collapse
Affiliation(s)
- K Verner
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey 17033
| |
Collapse
|
40
|
Abstract
In the cell, as in vitro, the final conformation of a protein is determined by its amino-acid sequence. But whereas some isolated proteins can be denatured and refolded in vitro in the absence of other macromolecular cellular components, folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.
Collapse
Affiliation(s)
- M J Gething
- Department of Biochemistry, University of Texas Southwestern Medical Centre, Dallas 75235
| | | |
Collapse
|
41
|
Abstract
Protein translocation across biological membranes is of fundamental importance for the biogenesis of organelles and in protein secretion. We will give an overview of the recent achievements in the understanding of protein translocation across mitochondrial membranes. In particular we will focus on recently identified components of the mitochondrial import apparatus.
Collapse
Affiliation(s)
- U Wienhues
- Institut für Physiologische Chemie, München, Germany
| | | |
Collapse
|
42
|
|
43
|
Douwe de Boer A, Weisbeek PJ. Chloroplast protein topogenesis: import, sorting and assembly. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:221-53. [PMID: 1958688 DOI: 10.1016/0304-4157(91)90015-o] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A Douwe de Boer
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | |
Collapse
|
44
|
Jeng JJ, Weiner H. Purification and characterization of catalytically active precursor of rat liver mitochondrial aldehyde dehydrogenase expressed in Escherichia coli. Arch Biochem Biophys 1991; 289:214-22. [PMID: 1898068 DOI: 10.1016/0003-9861(91)90464-t] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cDNA coding for the precursor (p-ALDH) or mature (m-ALDH) rat liver mitochondrial aldehyde dehydrogenase was cloned in an expression vector pT7-7 and expressed in Escherichia coli strain BL21 (DE3)/plysS. The p-ALDH expressed in E. coli was a soluble tetrameric protein. It exhibited virtually the same specific activity and KmS for substrates as m-ALDH. N-terminal sequencing of isolated p-ALDH provided the evidence that the catalytic activity was not derived from a partially processed mature-like enzyme. The assembly states of both p-ALDH and m-ALDH synthesized in a rabbit reticulocyte lysate were also determined. Both of them were monomers and could not bind to a 5'-AMP-Sepharose column, showing that the monomeric form of the enzyme is inactive. The stabilities in vivo and in vitro were compared between p-ALDH and m-ALDH expressed in E. coli. p-ALDH was less stable than was m-ALDH both in vivo and in vitro. Thus, although the conformations of p-ALDH and m-ALDH are similar, the presence of signal peptide is a destabilizing factor to the p-ALDH. p-ALDH expressed in E. coli could bind to and be translocated into rat liver mitochondria, however, with lower efficiency when compared to the import of p-ALDH synthesized in reticulocyte lysate.
Collapse
Affiliation(s)
- J J Jeng
- Departmen of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
45
|
Taroni F, Rosenberg L. The precursor of the biotin-binding subunit of mammalian propionyl-CoA carboxylase can be translocated into mitochondria as apo- or holoprotein. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98833-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
46
|
Coupling of protein synthesis and mitochondrial import in a homologous yeast in vitro system. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89577-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Abstract
Many newly synthesized proteins must be translocated across one or more membranes to reach their destination in the individual organelles or membrane systems. Translocation, mostly requiring an energy source, a signal on the protein itself, loose conformation of the protein and the presence of cytosolic and/or membrane receptor-like proteins, is often accompanied by covalent modifications of transported proteins. In this review I discuss these aspects of protein transport via the classical secretory pathway and/or special translocation mechanisms in the unicellular eukaryotic organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- J Horák
- Institute of Physiology, Czechoslovak Academy of Sciences, Prague
| |
Collapse
|
48
|
Söllner T, Rassow J, Pfanner N. Analysis of mitochondrial protein import using translocation intermediates and specific antibodies. Methods Cell Biol 1991; 34:345-58. [PMID: 1943808 DOI: 10.1016/s0091-679x(08)61689-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- T Söllner
- Institut für Physiologische Chemie, Universität München, Germany
| | | | | |
Collapse
|
49
|
|
50
|
Krieg UC, Scherer PE. Purified precursor proteins for studying protein import into yeast mitochondria. Methods Cell Biol 1991; 34:409-18. [PMID: 1943815 DOI: 10.1016/s0091-679x(08)61695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- U C Krieg
- Department of Biochemistry, University of Basel, Switzerland
| | | |
Collapse
|