1
|
Scorpion Peptide Smp24 Exhibits a Potent Antitumor Effect on Human Lung Cancer Cells by Damaging the Membrane and Cytoskeleton In Vivo and In Vitro. Toxins (Basel) 2022; 14:toxins14070438. [PMID: 35878176 PMCID: PMC9318729 DOI: 10.3390/toxins14070438] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
Smp24, a cationic antimicrobial peptide identified from the venom gland of the Egyptian scorpion Scorpio maurus palmatus, shows variable cytotoxicity on various tumor (KG1a, CCRF-CEM and HepG2) and non-tumor (CD34+, HRECs, HACAT) cell lines. However, the effects of Smp24 and its mode of action on lung cancer cell lines remain unknown. Herein, the effect of Smp24 on the viability, membrane disruption, cytoskeleton, migration and invasion, and MMP-2/-9 and TIMP-1/-2 expression of human lung cancer cells have been evaluated. In addition, its in vivo antitumor role and acute toxicity were also assessed. In our study, Smp24 was found to suppress the growth of A549, H3122, PC-9, and H460 with IC50 values from about 4.06 to 7.07 µM and show low toxicity to normal cells (MRC-5) with 14.68 µM of IC50. Furthermore, Smp24 could induce necrosis of A549 cells via destroying the integrity of the cell membrane and mitochondrial and nuclear membranes. Additionally, Smp24 suppressed cell motility by damaging the cytoskeleton and altering MMP-2/-9 and TIMP-1/-2 expression. Finally, Smp24 showed effective anticancer protection in a A549 xenograft mice model and low acute toxicity. Overall, these findings indicate that Smp24 significantly exerts an antitumor effect due to its induction of membrane defects and cytoskeleton disruption. Accordingly, our findings will open an avenue for developing scorpion venom peptides into chemotherapeutic agents targeting lung cancer cells.
Collapse
|
2
|
Nemani N, Shanmughapriya S, Madesh M. Molecular regulation of MCU: Implications in physiology and disease. Cell Calcium 2018; 74:86-93. [PMID: 29980025 PMCID: PMC6119482 DOI: 10.1016/j.ceca.2018.06.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 01/17/2023]
Abstract
Ca2+ flux across the inner mitochondrial membrane (IMM) regulates cellular bioenergetics, intra-cellular cytoplasmic Ca2+ signals, and various cell death pathways. Ca2+ entry into the mitochondria occurs due to the highly negative membrane potential (ΔΨm) through a selective inward rectifying MCU channel. In addition to being regulated by various mitochondrial matrix resident proteins such as MICUs, MCUb, MCUR1 and EMRE, the channel is transcriptionally regulated by upstream Ca2+ cascade, post transnational modification and by divalent cations. The mode of regulation either inhibits or enhances MCU channel activity and thus regulates mitochondrial metabolism and cell fate.
Collapse
Affiliation(s)
- Neeharika Nemani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Center for Precision Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229.
| |
Collapse
|
3
|
Bachmann M, Costa R, Peruzzo R, Prosdocimi E, Checchetto V, Leanza L. Targeting Mitochondrial Ion Channels to Fight Cancer. Int J Mol Sci 2018; 19:ijms19072060. [PMID: 30011966 PMCID: PMC6073807 DOI: 10.3390/ijms19072060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, several experimental evidences have underlined a new role of ion channels in cancer development and progression. In particular, mitochondrial ion channels are arising as new oncological targets, since it has been proved that most of them show an altered expression during tumor development and the pharmacological targeting of some of them have been demonstrated to be able to modulate cancer growth and progression, both in vitro as well as in vivo in pre-clinical mouse models. In this scenario, pharmacology of mitochondrial ion channels would be in the near future a new frontier for the treatment of tumors. In this review, we discuss the new advances in the field, by focusing our attention on the improvements in new drug developments to target mitochondrial ion channels.
Collapse
Affiliation(s)
| | - Roberto Costa
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Roberta Peruzzo
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Elena Prosdocimi
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | | | - Luigi Leanza
- Department of Biology, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
4
|
Onodera A, Yayama K, Morosawa H, Ishii Y, Tsutsumi Y, Kawai Y. Reduction of calcium flux from the extracellular region and endoplasmic reticulum by amorphous nano-silica particles owing to carboxy group addition on their surface. Biochem Biophys Rep 2017; 9:330-334. [PMID: 29114587 PMCID: PMC5632705 DOI: 10.1016/j.bbrep.2017.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 11/30/2022] Open
Abstract
Several studies have reported that amorphous nano-silica particles (nano-SPs) modulate calcium flux, although the mechanism remains incompletely understood. We thus analyzed the relationship between calcium flux and particle surface properties and determined the calcium flux route. Treatment of Balb/c 3T3 fibroblasts with nano-SPs with a diameter of 70 nm (nSP70) increased cytosolic calcium concentration, but that with SPs with a diameter of 300 or 1000 nm did not. Surface modification of nSP70 with a carboxy group also did not modulate calcium flux. Pretreatment with a general calcium entry blocker almost completely suppressed calcium flux by nSP70. Preconditioning by emptying the endoplasmic reticulum (ER) calcium stores slightly suppressed calcium flux by nSP70. These results indicate that nSP70 mainly modulates calcium flux across plasma membrane calcium channels, with subsequent activation of the ER calcium pump, and that the potential of calcium flux by nano-SPs is determined by the particle surface charge. Nano-silica particles increased cytosolic calcium flux in fibroblasts. Calcium flux by nano-SPs was suppressed by SKF96365 and thapsigargin. Calcium flux modulation by nano-SPs was determined by their surface structure.
Collapse
Affiliation(s)
- Akira Onodera
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Katsutoshi Yayama
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Hideto Morosawa
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Yukina Ishii
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Yasuo Tsutsumi
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuichi Kawai
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| |
Collapse
|
5
|
Ozil JP, Sainte-Beuve T, Banrezes B. [Mg 2+] o/[Ca 2+] o determines Ca 2+ response at fertilization: tuning of adult phenotype? Reproduction 2017; 154:675-693. [PMID: 28851827 DOI: 10.1530/rep-16-0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023]
Abstract
Alteration of the postnatal phenotype has sparked great concern about the developmental impact of culture media used at fertilization. However, the mechanisms and compounds involved are yet to be determined. Here, we used the Ca2+ responses from mouse eggs fertilized by ICSI as a dynamic and quantitative marker to understand the role of compounds in egg functioning and establish possible correlations with adult phenotypes. We computed 134 Ca2+ responses from the first to the last oscillation in media with specific formulations. Analyses demonstrate that eggs generated two times as many Ca2+ oscillations in KSOM as in M16 media (18.8 ± 7.0 vs 9.2 ± 2.5). Moreover, the time increment of the delay between two consecutive oscillations, named TIbO, is the most sensitive coefficient characterizing the mechanism that paces Ca2+ oscillations once the egg has been fertilized. Neither doubling external free Ca2+ nor dispermic fertilization increased significantly the total number of Ca2+ oscillations. In contrast, removing Mg2+ from the M16 boosted Ca2+ oscillations to 54.0 ± 35.2. Hence, [Mg2+]o/[Ca2+]o appears to determine the number, duration and frequency of the Ca2+ oscillations. These changes were correlated with long-term effects. The rate of female's growth was impacted with the 'KSOM' females having only half the fat deposit of 'M16' females. Moreover, adult animals issued from M16 had significantly smaller brain weight vs 'KSOM' and 'control' animals. TIbO is a new Ca2+ coefficient that gauges the very early functional impact of culture media. It offers the possibility of establishing correlations with postnatal consequences according to IVF medium formulation.Free French abstract: A French translation of this abstract is freely available at http://www.reproduction-online.org/content/154/5/675/suppl/DC2.
Collapse
Affiliation(s)
- Jean-Pierre Ozil
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | |
Collapse
|
6
|
Gefen A, Weihs D. Cytoskeleton and plasma-membrane damage resulting from exposure to sustained deformations: A review of the mechanobiology of chronic wounds. Med Eng Phys 2016; 38:828-33. [DOI: 10.1016/j.medengphy.2016.05.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
|
7
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
8
|
Azzolin L, von Stockum S, Basso E, Petronilli V, Forte MA, Bernardi P. The mitochondrial permeability transition from yeast to mammals. FEBS Lett 2010; 584:2504-9. [PMID: 20398660 PMCID: PMC2878904 DOI: 10.1016/j.febslet.2010.04.023] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/01/2010] [Accepted: 04/09/2010] [Indexed: 01/05/2023]
Abstract
Regulated permeability changes have been detected in mitochondria across species. We review here their key features, with the goal of assessing whether a "permeability transition" similar to that observed in higher eukaryotes is present in other species. The recent discoveries (i) that treatment with cyclosporin A (CsA) unmasks an inhibitory site for inorganic phosphate (Pi) [Basso, E., Petronilli, V., Forte, M.A. and Bernardi, P. (2008) Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J. Biol. Chem. 283, 26307-26311], the classical inhibitor of the permeability transition of yeast and (ii) that under proper experimental conditions a matrix Ca(2+)-dependence can be demonstrated in yeast as well [Yamada, A., Yamamoto, T., Yoshimura, Y., Gouda, S., Kawashima, S., Yamazaki, N., Yamashita, K., Kataoka, M., Nagata, T., Terada, H., Pfeiffer, D.R. and Shinohara Y. (2009) Ca(2+)-induced permeability transition can be observed even in yeast mitochondria under optimized experimental conditions. Biochim. Biophys. Acta 1787, 1486-1491] suggest that the mitochondrial permeability transition has been conserved during evolution.
Collapse
Affiliation(s)
| | | | | | | | - Michael A. Forte
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon
| | | |
Collapse
|
9
|
A. Asiri Y. Anticancer and Biochemical Effects of Calcium Chloride on Ehrlich Carcinoma Cell-Bearing Swiss Albino Mice. INT J PHARMACOL 2008. [DOI: 10.3923/ijp.2009.13.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Trahtemberg U, Atallah M, Krispin A, Verbovetski I, Mevorach D. Calcium, leukocyte cell death and the use of annexin V: fatal encounters. Apoptosis 2008; 12:1769-80. [PMID: 17578666 DOI: 10.1007/s10495-007-0097-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One hallmark of programmed cell death (PCD) is redistribution of phosphatidylserine (PS) to the plasma membrane's outer leaflet. Annexin V is widely used in cell death research due to its calcium-dependent ability to bind phosphatidylserine, thus marking apoptotic cells. However, calcium is invariably used at high concentrations in annexin V staining, at doses that can induce cell death. We used flow cytometric annexin V staining, together with propidium iodide and TMRM for determination of dissipation of mitochondrial potential, with a variety of calcium concentrations, cell media, and incubation times, to identify a possible bias in PCD determination of human primary leukocytes. Here we show that measurements of PCD in human monocytes, polymorphonuclear cells, and monocyte-derived dendritic cells using annexin V may be dramatically affected by calcium concentration, time of incubation on ice, and media choice. We propose a method that enables accurate and unbiased annexin V staining, without affecting results.
Collapse
Affiliation(s)
- Uriel Trahtemberg
- The Laboratory for Cellular and Molecular Immunology, Rheumatology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| | | | | | | | | |
Collapse
|
11
|
Kolachala VL, Bajaj R, Chalasani M, Sitaraman SV. Purinergic receptors in gastrointestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2008; 294:G401-10. [PMID: 18063703 DOI: 10.1152/ajpgi.00454.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Purinergic receptors comprise a family of transmembrane receptors that are activated by extracellular nucleosides and nucleotides. The two major classes of purinergic receptors, P1 and P2, are expressed widely in the gastrointestinal tract as well as immune cells. The purinergic receptors serve a variety of functions from acting as neurotransmitters, to autocoid and paracrine signaling, to cell activation and immune response. Nucleosides and nucleotide agonist of purinergic receptors are released by many cell types in response to specific physiological signals, and their levels are increased during inflammation. In the past decade, the advent of genetic knockout mice and the development of highly potent and selective agonists and antagonists for the purinergic receptors have significantly advanced the understanding of purinergic receptor signaling in health and inflammation. In fact, agonist/antagonists of purinergic receptors are emerging as therapeutic modalities to treat intestinal inflammation. In this article, the distribution of the purinergic receptors in the gastrointestinal tract and their physiological and pathophysiological role in intestinal inflammation will be reviewed.
Collapse
Affiliation(s)
- Vasantha L Kolachala
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
12
|
Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 2008; 12:815-33. [PMID: 17294078 DOI: 10.1007/s10495-007-0723-y] [Citation(s) in RCA: 389] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Current research on the mitochondrial permeability transition pore (PTP) and its role in cell death faces a paradox. Initially considered as an in vitro artifact of little pathophysiological relevance, in recent years the PTP has received considerable attention as a potential mechanism for the execution of cell death. The recent successful use of PTP desensitizers in several disease paradigms leaves little doubt about its relevance in pathophysiology; and emerging findings that link the PTP to key cellular signalling pathways are increasing the interest on the pore as a pharmacological target. Yet, recent genetic data have challenged popular views on the molecular nature of the PTP, and called into question many early conclusions about its structure. Here we review basic concepts about PTP structure, function and regulation within the framework of intracellular death signalling, and its role in disease pathogenesis.
Collapse
Affiliation(s)
- Andrea Rasola
- CNR Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Viale Giuseppe Colombo 3, I-35121 Padua, Italy.
| | | |
Collapse
|
13
|
Abstract
Physiological stimuli causing an increase of cytosolic free Ca2+ [Ca2+], or the release of Ca2+ from the endoplasmic reticulum invariably induce mitochondrial Ca2+ uptake, with a rise of mitochondrial matrix free [Ca2+] ([Ca2+]m). The [Ca2+]m rise occurs despite the low affinity of the mitochondrial Ca2+ uptake systems measured in vitro and the often limited amplitude of the cytoplasmic [Ca2+]c increases. The [Ca2+]m increase is typically in the 0.2-3 microM range, which allows the activation of Ca2(+)-regulated enzymes of the Krebs cycle; and it rapidly returns to the resting level if the [Ca2+], rise recedes due to activation of mitochondrial efflux mechanisms and matrix Ca2+ buffering. Mitochondria thus accumulate Ca2+ and efficiently control the spatial and temporal shape of cellular Ca2+ signals, yet this situation exposes them to the hazards of Ca2+ overload. Indeed, mitochondrial Ca2+, which is so important for metabolic regulation, can become a death factor by inducing opening of the permeability transition pore (PTP), a high conductance inner membrane channel. Persistent PTP opening is followed by depolarization with Ca2+ release, cessation of oxidative phosphorylation, matrix swelling with inner'membrane remodeling and eventually outer membrane rupture with release of cytochrome c and other apoptogenic proteins. Understanding the mechanisms through which the Ca2+ signal can be shifted from a physiological signal into a pathological effector is an unresolved problem of modern pathophysiology that holds great promise for disease treatment.
Collapse
Affiliation(s)
- P Bernardi
- Department of Biomedical Sciences, University of Padova, Viale Giuseppe Colombo 3, 35121 Padova, Italy
| | | |
Collapse
|
14
|
Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Blalchy-Dyson E, Di Lisa F, Forte MA. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 2006; 273:2077-99. [PMID: 16649987 DOI: 10.1111/j.1742-4658.2006.05213.x] [Citation(s) in RCA: 481] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mitochondrial permeability transition pore is a high conductance channel whose opening leads to an increase of mitochondrial inner membrane permeability to solutes with molecular masses up to approximately 1500 Da. In this review we trace the rise of the permeability transition pore from the status of in vitro artifact to that of effector mechanism of cell death. We then cover recent results based on genetic inactivation of putative permeability transition pore components, and discuss their meaning for our understanding of pore structure. Finally, we discuss evidence indicating that the permeability transition pore plays a role in pathophysiology, with specific emphasis on in vivo models of disease.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Li Q, Sato EF, Kira Y, Nishikawa M, Utsumi K, Inoue M. A possible cooperation of SOD1 and cytochrome c in mitochondria-dependent apoptosis. Free Radic Biol Med 2006; 40:173-81. [PMID: 16337891 DOI: 10.1016/j.freeradbiomed.2005.09.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 09/10/2005] [Accepted: 09/30/2005] [Indexed: 11/21/2022]
Abstract
A small amount of reactive oxygen species (ROS) is generated through aerobic respiration even under physiological conditions. Because ROS are known to have various deteriorating actions, the way cells could evade the effects of ROS in and around mitochondria would determine the fate of cells. We previously reported that Cu,Zn-superoxide dismutase (SOD1), a cytosolic enzyme, is also localized in mitochondria in various types of cells. Therefore, we undertook this study to elucidate the physiological significance of SOD1 localization in and around mitochondria. We analyzed the effects of various reagents that could modulate mitochondrial respiration, ROS metabolism, and subcellular localization of SOD1 and cytochrome c. Using rat liver mitochondria, we have shown that Ca2+, Fe2+, or long-chain fatty acids increased the mitochondrial generation of ROS and that the resulting ROS oxidized the critical thiol groups in adenine nucleotide translocase (ANT). The oxidation of ANT induced mitochondrial swelling followed by the release of SOD1 and cytochrome c. Although inhibitors of electron transport, such as rotenone, antimycin A, and KCN, also increased ROS generation, they failed to (i) oxidize the critical thiol groups in ANT, (ii) induce swelling, and (iii) release SOD1 and cytochrome c. These results suggest that the oxidation of ANT thiols and the opening of the membrane permeability transition pores induce the release of both SOD1 and cytochrome c. We demonstrated that the loss of SOD1 increases the susceptibility of mitochondria to oxidative stresses and that the simultaneous release of SOD1 enhances the vicious cycle of apoptotic reactions triggered by the released cytochrome c. Therefore, SOD1 must have important roles in protecting mitochondria from ROS-induced injury. Our data also suggest that SOD1 release parallels cytochrome c release under all conditions. We propose that intramembranously localized SOD1 is a third reagent (along with AIF) that will regulate apoptosis.
Collapse
Affiliation(s)
- Quan Li
- Department of Biochemistry and Molecular Pathology, Osaka City University Medical School, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P. Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 2005; 280:18558-61. [PMID: 15792954 DOI: 10.1074/jbc.c500089200] [Citation(s) in RCA: 635] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have studied the properties of the permeability transition pore (PTP) in mitochondria from the liver of mice where the Ppif gene encoding for mitochondrial Cyclophilin D (CyP-D) had been inactivated. Mitochondria from Ppif-/- mice had no CyP-D and displayed a striking desensitization of the PTP to Ca2+, in that pore opening required about twice the Ca2+ load necessary to open the pore in strain-matched, wild-type mitochondria. Mitochondria lacking CyP-D were insensitive to Cyclosporin A (CsA), which increased the Ca2+ retention capacity only in mitochondria from wild-type mice. The PTP response to ubiquinone 0, depolarization, pH, adenine nucleotides, and thiol oxidants was similar in mitochondria from wild-type and Ppif-/- mice. These experiments demonstrate that (i) the PTP can form and open in the absence of CyP-D, (ii) that CyP-D represents the target for PTP inhibition by CsA, and (iii) that CyP-D modulates the sensitivity of the PTP to Ca2+ but not its regulation by the proton electrochemical gradient, adenine nucleotides, and oxidative stress. These results have major implications for our current understanding of the PTP and its modulation in vitro and in vivo.
Collapse
Affiliation(s)
- Emy Basso
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Institute of Neuroscience, University of Padova, Viale Giuseppe Colombo 3, I-35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Crenesse D, Neuilly G, Gugenheim J, Ferre C, Hugues M. Mapacalcine specifically blocks hypoxia-induced calcium influx in rat hepatocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1952-7. [PMID: 12709054 DOI: 10.1046/j.1432-1033.2003.03558.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Post ischaemic cell calcium invasion has been described as one of the main causes of graft failure. Protective effects of calcium antagonists have been investigated but are not convincing and their mechanisms of action remain unclear. In this work we tested the protective effect of a new calcium inhibitor described to block a calcium current insensitive to all known calcium blockers. Specific mapacalcine receptors were first characterized on rat hepatocytes membranes using the 125I-labeled mapacalcine. 45Ca fluxes were then measured on cultured hepatocytes submitted (or not) to an hypoxic period. The action of mapacalcine was investigated on the ischaemia-induced calcium influx. We demonstrate here that: (a) there are specific receptors for mapacalcine in rat hepatocytes; (b) Mapacalcine is able to specifically block ischaemia-induced calcium influx with an IC50 of 0.3 micro m and does not significantly interact with the basal calcium flux. Our work demonstrates that the mapacalcine receptor is a cellular structure directly involved in the phenomenon of postischaemic cell invasion by calcium. Specific block of ischaemia-induced Ca2+ influx by mapacalcine suggests that the development of a panel of pharmacological drugs acting on this receptor could lead to the discovery of therapeutic agents able to protect cells against one of the events responsible for organ failure after transplantation or simply after an ischaemic period. Moreover, identification of the cellular protein which binds mapacalcine may become an important step in the research of mechanisms involved in postischaemic cell invasion by calcium.
Collapse
|
18
|
van den Dolder J, Vehof JWM, Spauwen PHM, Jansen JA. Bone formation by rat bone marrow cells cultured on titanium fiber mesh: effect of in vitro culture time. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 62:350-8. [PMID: 12209920 DOI: 10.1002/jbm.10189] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective of this study was to examine the effect of cell culture time on bone formation by rat bone marrow cells seeded in titanium fiber mesh. As a seeding technique, a high cell suspension was used (3 x 10(6) cells/mL). Therefore, 30 meshes were repeatedly rotated in a 10 mL tube (containing 30 x 10(6) cells) on a rotation plate (2 rpm) for 3 h. Osteogenic cells were cultured for 1, 4, and 8 days on titanium fiber mesh and finally implanted subcutaneously in rats. Meshes without cells were also implanted subcutaneously in rats. DNA and scanning electron microscopy (SEM) analyses and calcium measurements determined cellular proliferation and differentiation during the in vitro incubation period of the mesh implants. Four weeks after implant insertion, the animals were sacrificed. The implants, with their surrounding tissue, were retrieved and prepared for histologic evaluation and calcium measurements. DNA analysis of the in vitro experiment showed a lag phase from day 1 through day 4, but a 42% increase in DNA between days 4 and 8. SEM and calcium measurements indicated an increase in calcium from day 1 to day 4, yet only a small but significant increase from days 4 to 8. Histologic analysis demonstrated that bone was formed in all day 1 and day 4 implants, and that the bone-like tissue was present uniformly through the meshes. The bony tissue was morphologically characterized by osteocytes embedded in a mineralized matrix, with a layer of osteoid and osteoblasts at the surface. The day 8 implants showed only calcium phosphate deposition in the titanium fiber mesh. Calcium measurements of the implants revealed that calcification in day 1 implants was significantly higher (p < 0.05) compared to day 4 and day 8 implants. No significant difference in calcium content existed between day 4 and day 8 implants. On the basis of our results, we conclude that 1) bone formation was generated more effectively in osteogenic cells by a short culture time after seeding in titanium fiber mesh; 2) dynamic cell seeding is probably more effective than static cell seeding; and 3) selection of the right cells from the heterogenous bone marrow population remains a problem.
Collapse
Affiliation(s)
- Juliette van den Dolder
- Department of Biomaterials, College of Dental Science, University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
19
|
Huigsloot M, Tijdens IB, Mulder GJ, van de Water B. Differential regulation of doxorubicin-induced mitochondrial dysfunction and apoptosis by Bcl-2 in mammary adenocarcinoma (MTLn3) cells. J Biol Chem 2002; 277:35869-79. [PMID: 12107157 DOI: 10.1074/jbc.m200378200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Various anticancer drugs cause mitochondrial perturbations in association with apoptosis. Here we investigated the involvement of caspase- and Bcl-2-dependent pathways in doxorubicin-induced mitochondrial perturbations and apoptosis. For this purpose, we set up a novel three-color flow cytometric assay using rhodamine 123, annexin V-allophycocyanin, and propidium iodide to assess the involvement of the mitochondria in apoptosis caused by doxorubicin in the breast cancer cell line MTLn3. Doxorubicin-induced apoptosis was preceded by up-regulation of CD95 and CD95L and a collapse of mitochondrial membrane potential (Deltapsi) occurring prior to phosphatidylserine externalization. This drop in Deltapsi was independent of caspase activity, since benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone did not inhibit it. Benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone also blocked activation of caspase-8, thus excluding an involvement of the death receptor pathway in Deltapsi dissipation. Furthermore, although overexpression of Bcl-2 in MTLn3 cells inhibited apoptosis, dissipation of Deltapsi was still observed. No decrease in Deltapsi was observed in cells undergoing etoposide-induced apoptosis. Immunofluorescent analysis of Deltapsi and cytochrome c localization on a cell-to-cell basis indicates that the collapse of Deltapsi and cytochrome c release are mutually independent in both normal and Bcl-2-overexpressing cells. Together, these data indicate that doxorubicin-induced dissipation of the mitochondrial membrane potential precedes phosphatidylserine externalization and is independent of a caspase- or Bcl-2-controlled checkpoint.
Collapse
Affiliation(s)
- Merei Huigsloot
- Division of Toxicology, Leiden Amsterdam Center for Drug Research, Leiden University, Leiden 2300, The Netherlands
| | | | | | | |
Collapse
|
20
|
Maaser K, Höpfner M, Kap H, Sutter AP, Barthel B, von Lampe B, Zeitz M, Scherübl H. Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y(2)-receptors. Br J Cancer 2002; 86:636-44. [PMID: 11870549 PMCID: PMC2375265 DOI: 10.1038/sj.bjc.6600100] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2001] [Revised: 09/12/2001] [Accepted: 11/23/2001] [Indexed: 12/18/2022] Open
Abstract
Extracellular ATP is known to inhibit growth of various tumours by activating specific purinergic receptors (P2-receptors). Since the therapy of advanced oesophageal cancer is unsatisfying, new therapeutic approaches are mandatory. Here, we investigated the functional expression and potential antiproliferative effects of P2-purinergic receptors in human oesophageal cancer cells. Prolonged incubation of primary cell cultures of human oesophageal cancers as well as of the squamous oesophageal cancer cell line Kyse-140 with ATP or its stable analogue ATP gamma S dose-dependently inhibited cell proliferation. This was due to both an induction of apoptosis and cell cycle arrest. The expression of P2-receptors was examined by RT-PCR, immunocytochemistry, and [Ca(2+)](i)-imaging. Application of various extracellular nucleotides dose-dependently increased [Ca(2+)](i). The rank order of potency was ATP=UTP>ATP gamma S>ADP=UDP. 2-methylthio-ATP and alpha,beta-methylene-ATP had no effects on [Ca(2+)](i). Complete cross-desensitization between ATP and UTP was observed. Moreover, the phospholipase C inhibitor U73122 dose-dependently reduced the ATP triggered [Ca(2+)](i) signal. The pharmacological features strongly suggest the functional expression of G-protein coupled P2Y(2)-receptors in oesophageal squamous cancer cells. P2Y(2)-receptors are involved in the antiproliferative actions of extracellular nucleotides. Thus, P2Y(2)-receptors are promising target proteins for innovative approaches in oesophageal cancer therapy.
Collapse
Affiliation(s)
- K Maaser
- Medical Clinic I, Gastroenterology/Infectious Diseases/Rheumatology, Benjamin Franklin Clinics, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nagelkerke JF, de Bont HJGM. Video microscopy and confocal laser scan microscopy to study the mechanisms of cytotoxicity in individual living cells. Application and new developments. Chromatographia 2002. [DOI: 10.1007/bf02493348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Cui TX, Iwai M, Hamai M, Minokoshi Y, Shimazu T, Horiuchi M. Aggravation of chemically-induced injury in perfused rat liver by extracellular ATP. Life Sci 2000; 66:2593-601. [PMID: 10883737 DOI: 10.1016/s0024-3205(00)00593-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of purinergic receptor agonists on acute liver damage and hemodynamics were studied using chemically-induced liver injury. Rat livers were perfused in situ 24 h after treatment with D-galactosamine (800 mg/kg, i.p.). In these livers, infusion of ATP (50 microM) into the portal vein caused a rapid increase in the leakage of LDH and AST from perfused liver in a dose dependent manner, accompanied with flow reduction. The similar but less effective responses were also observed by the infusion of ADP. Infusion of adenosine, a P1-receptor agonist, induced only minimal changes of liver damage and flow rate. The ATP-induced changes were almost completely suppressed by P2-receptor antagonist, suramin, but not affected by P1-receptor antagonist, 8-phenyltheophylline. Pretreatment of rats with gadolinium chloride, which depletes Kupffer cells, did not inhibit the potentiation of liver damage caused by ATP, whereas hemodynamic effects of ATP were significantly attenuated by gadolinium. These results indicate that extracellular ATP aggravates acute liver injury mediated by P2-type purinergic receptors.
Collapse
Affiliation(s)
- T X Cui
- Department of Medical Biochemistry, Ehime University School of Medicine, Shigenobu, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Blom WM, de Bont HJ, Meijerman I, Mulder GJ, Nagelkerke JF. Prevention of cycloheximide-induced apoptosis in hepatocytes by adenosine and by caspase inhibitors. Biochem Pharmacol 1999; 58:1891-8. [PMID: 10591143 DOI: 10.1016/s0006-2952(99)00268-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism by which cycloheximide induces apoptosis in isolated rat hepatocytes was studied. Cycloheximide (1-300 microM) induced apoptosis within 3-4 hr in the hepatocytes. Specific apoptotic characteristics such as blebbing, phosphatidyl serine (PS) exposure, chromatin condensation, and nuclear fragmentation were induced. Cycloheximide (CHX) dose dependently activated the caspase-3-like proteases, but not the caspase-1-like proteases. Pretreatment of the hepatocytes with 100 microM of the caspase inhibitors z-Val-Ala-DL-Asp-fluoromethylketone or Ac-Asp-Glu-Val-Asp-aldehyde completely abrogated the caspase activation and the apoptosis. Addition of adenosine (100 microM) reduced phosphatidyl serine exposure and other morphological characteristics of apoptosis by 50%; however, it did not prevent the activation of the caspases, suggesting that adenosine inhibited downstream of caspase activation. The adenosine receptor antagonist 8-[4-[[[[(2-aminoethyl)amino]-carbonyl]methyl]oxy]phenyl]-1,3-dipropylxa nthine abolished the capacity of adenosine to prevent apoptosis, indicating that prevention was receptor-mediated. During apoptosis, the mitochondrial membrane potential in apoptotic cells (cells with PS exposition) was decreased to 50-60% of the control value; in the population viable cells, however, the mitochondrial membrane potential remained stable. Prevention of apoptosis by the caspase inhibitor z-Val-Ala-DL-Asp-fluoromethylketone or adenosine prevented the decrease in mitochondrial membrane potential. In conclusion, CHX rapidly induces apoptosis in isolated rat hepatocytes, which is inhibited by adenosine at a relatively late step.
Collapse
Affiliation(s)
- W M Blom
- Division of Toxicology, Leiden Amsterdam Centre for Drug Research, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F. Mitochondria and cell death. Mechanistic aspects and methodological issues. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:687-701. [PMID: 10491114 DOI: 10.1046/j.1432-1327.1999.00725.x] [Citation(s) in RCA: 523] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondria are involved in cell death for reasons that go beyond ATP supply. A recent advance has been the discovery that mitochondria contain and release proteins that are involved in the apoptotic cascade, like cytochrome c and apoptosis inducing factor. The involvement of mitochondria in cell death, and its being cause or consequence, remain issues that are extremely complex to address in situ. The response of mitochondria may critically depend on the type of stimulus, on its intensity, and on the specific mitochondrial function that has been primarily perturbed. On the other hand, the outcome also depends on the integration of mitochondrial responses that cannot be dissected easily. Here, we try to identify the mechanistic aspects of mitochondrial involvement in cell death as can be derived from our current understanding of mitochondrial physiology, with special emphasis on the permeability transition and its consequences (like onset of swelling, cytochrome c release and respiratory inhibition); and to critically evaluate methods that are widely used to monitor mitochondrial function in situ.
Collapse
Affiliation(s)
- P Bernardi
- CNR Unit for the Study of Biomembranes, Department of Biomedical Sciences, University of Padova, Italy.
| | | | | | | | | |
Collapse
|
25
|
Twiss IM, Pas O, Ramp-Koopmanschap W, Den Hartigh J, Vermeij P. The effects of nitrogen-containing bisphosphonates on human epithelial (Caco-2) cells, an in vitro model for intestinal epithelium. J Bone Miner Res 1999; 14:784-91. [PMID: 10320527 DOI: 10.1359/jbmr.1999.14.5.784] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitrogen-containing bisphosphonates (N-PCP) are bisphosphonates with an increased antiresorptive potency. Aminobisphosphonates, N-PCPs with an amino group, can cause nonspecific gastrointestinal complaints. It is not known whether these side effects are specific for these bisphosphonates or for the whole class of N-PCPs. In this study, we investigated the effects of two aminobisphosphonates (pamidronate and alendronate) and a structurally similar N-PCP (olpadronate) and their three respective calcium complexes on the viability and the intracellular calcium concentration ([Ca2+]i) of cultured Caco-2 cells a model for intestinal epithelium. These cells were also examined for apoptosis or necrosis. In the presence of calcium, pamidronate and alendronate were toxic to the cells, with pamidronate being more toxic than alendronate. Olpadronate induced toxicity only at concentrations more than ten times higher than the toxic concentrations of pamidronate. In the absence of calcium definite signs of toxicity were observed only with pamidronate at clinically relevant concentrations. The complexes of pamidronate and alendronate with calcium were considerably less soluble than the olpadronate calcium complex. There were no signs of apoptosis. [Ca2+]i was transiently raised after treatment with the N-PCPs. Doses at which responses were seen were, respectively, 0.02 mM (pamidronate), 0.3 mM (alendronate), and 2 mM (olpadronate). The peak of response was slightly greater after pamidronate treatment than after alendronate or olpadronate, respectively. In conclusion pamidronate, either as an ion or as a calcium complex, is the most toxic of the bisphosphonates tested for Caco-2 cells. Alendronate was less toxic while olpadronate was the least toxic in presence of calcium. The solubility of the bisphosphonate complexes with calcium may account for these differences in toxicity.
Collapse
Affiliation(s)
- I M Twiss
- Leiden University Medical Center, Department of Clinical Pharmacy, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Wiendl HS, Schneider C, Ogilvie A. Nucleotide metabolizing ectoenzymes are upregulated in A431 cells periodically treated with cytostatic ATP leading to partial resistance without preventing apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:282-98. [PMID: 9739153 DOI: 10.1016/s0167-4889(98)00040-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Extracellular ATP, when added as a single dose at concentrations higher than 0.1 mM to the culture medium, was growth inhibitory or even cytotoxic for human epidermoid carcinoma cells (A431). Adenosine at the same concentrations was much less potent. The molecular mechanism underlying the inhibitory effect of extracellular ATP has been investigated. The cytostatic as well as the cytotoxic effects of ATP could be prevented by supplying uridine as a pyrimidine source and, alternatively, by simultaneous addition of dipyridamole, which inhibits the uptake of adenosine. The data suggest that the long-term production and continuous uptake of adenosine, which is enzymatically generated from the ATP in the medium, led to an intracellular nucleotide imbalance with pyrimidine starvation. This triggered suicidal processes ending up in apoptosis of the cells. The tumor cells have been adapted to extracellular ATP with the aim to obtain cells which are more resistant to ATP. Therefore, growing cells were periodically treated with extracellular ATP. These cells were characterized by an enlargement of cell size, a decreased proliferation rate, and a reduced but not abolished sensitivity to cytostatic and cytotoxic ATP doses. The calcium response of adapted cells was shortened. The nucleotide hydrolyzing ectoenzyme activities (ecto-ATPase, ecto-ADPase, ecto-AMPase, ecto-Ap4Aase) were simultaneously upregulated. All phenotypic alterations of the adapted cells disappeared after cultivation for several generations in the absence of extracellular ATP. Considering ATP as a potential chemotherapeutic agent the adaptive phenomena of treated cells might be important.
Collapse
Affiliation(s)
- H S Wiendl
- Department of Anatomy II, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | |
Collapse
|
27
|
Schwarzbaum PJ, Frischmann ME, Krumschnabel G, Rossi RC, Wieser W. Functional role of ecto-ATPase activity in goldfish hepatocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R1031-8. [PMID: 9575966 DOI: 10.1152/ajpregu.1998.274.4.r1031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular [gamma-32P]ATP added to a suspension of goldfish hepatocytes can be hydrolyzed to ADP plus gamma-32Pi due to the presence of an ecto-ATPase located in the plasma membrane. Ecto-ATPase activity was a hyperbolic function of ATP concentration ([ATP]), with apparent maximal activity of 8.3 +/- 0.4 nmol P(i).(10(6) cells)-1.min-1 and substrate concentration at which a half-maximal hydrolysis rate is obtained of 667 +/- 123 microM. Ecto-ATPase activity was inhibited 70% by suramin but was insensitive to inhibitors of transport ATPases. Addition of 5 microM [alpha-32P]ATP to the hepatocyte suspension induced the extracellular release of alpha-32P(i) [8.2 pmol.(10(6) cells)-1.min-1] and adenosine, suggesting the presence of other ectonucleotidase(s). Exposure of cell suspensions to 5 microM [2,8-3H]ATP resulted in uptake of [2,8-3H]adenosine at 7.9 pmol.(10(6) cells)-1.min-1. Addition of low micromolar [ATP] strongly increased cytosolic free Ca2+ (Ca2+i). This effect could be partially mimicked by adenosine 5'-O-(3-thiotriphosphate), a nonhydrolyzable analog of ATP. The blockage of both glycolysis and oxidative phosphorylation led to a sixfold increase of Ca2+i and an 80% decrease of intracellular ATP, but ecto-ATPase activity was insensitive to these metabolic changes. Ecto-ATPase activity represents the first step leading to the complete hydrolysis of extracellular ATP, which allows 1) termination of the action of ATP on specific purinoceptors and 2) the resulting adenosine to be taken up by the cells.
Collapse
Affiliation(s)
- P J Schwarzbaum
- Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
28
|
Edde L, Zhou X, Eaton JW, Sherman MP. Induction of nitric oxide synthase in macrophages: inhibition by fructose-1,6-diphosphate. Biochem Biophys Res Commun 1998; 243:683-7. [PMID: 9500992 DOI: 10.1006/bbrc.1998.8163] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intravenous fructose-1,6-diphosphate (FDP) is reported to reverse shock and improves survival in animals given systemic lipopolysaccharide (LPS), although the mechanism is incompletely understood. Since endotoxin-related shock is associated with increased nitric oxide (NO) production, LPS-stimulated macrophages were treated with FDP, and the NO metabolite, nitrite, was measured 24 h later. Treatment of LPS-stimulated macrophages with 1, 5, or 10 mM FDP caused a dose-dependent reduction in mRNA expression for inducible NO synthase by Northern analysis and decreased the micromolar concentrations of nitrite produced by 17, 42, and 68%, respectively. Neither fructose nor sodium phosphate had these effects in LPS-exposed macrophages. Electrophoretic mobility shift assays revealed that FDP did not inhibit LPS-mediated activation of nuclear factor kappa B. Viability analysis showed that the FDP effect was not caused by cytotoxicity. Overall, these results suggest that fructose-1,6-diphosphate, a glycolytic intermediate with potential clinical use, may mitigate the adverse effects of LPS by regulating the generation of NO.
Collapse
Affiliation(s)
- L Edde
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
29
|
Nagelkerke JF, de Bont HJ. Use of video microscopy to study the mechanisms of cytotoxicity in vitro in individual living cells. Toxicol In Vitro 1997; 11:531-4. [PMID: 20654347 DOI: 10.1016/s0887-2333(97)00046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent technological innovations have made it possible to determine simultaneously multiple biochemical parameters in individual living cells. This new technique, commonly designated as video microscopy, makes use of fluorescent probes, specific for a certain cellular parameter. Cells are loaded with the probes and placed under a fluorescence microscope. After excitation at a specific wavelength the probes emit light of a longer wavelength. The intensity of the emitted light is proportional to the magnitude of the specific parameter. Emission is recorded with a video camera and the signal transferred to an image processor for extraction of quantitative data from the image, or to improve image quality. An overview of the technique itself and the necessary hardware, the major types of calculations and how to handle cells and probes is presented in this paper.
Collapse
Affiliation(s)
- J F Nagelkerke
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9503, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
30
|
de Broin E, Urata K, Giroux L, Lepage R, Huet PM. Effect of calcium antagonists on rat liver during extended cold preservation-reperfusion. Transplantation 1997; 63:1547-54. [PMID: 9197344 DOI: 10.1097/00007890-199706150-00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nisoldipine, a calcium antagonist, has been reported to improve the quality of grafted rat livers. We thus assessed the protective effect of two calcium antagonists, nisoldipine and nickel, during extended cold ischemia-reperfusion. METHODS Rat livers were isolated and perfused before or after 24 hr of cold ischemia in University of Wisconsin solution (4 degrees C) with or without nisoldipine or nickel. Sinusoidal endothelial cell and hepatocyte functions were measured by hyaluronic acid and taurocholate elimination, respectively. RESULTS Similar alterations in hepatocyte and sinusoidal cell functions were found in all groups after cold ischemia with or without calcium antagonists. In a second set of experiments, liver transplantation was performed in two groups of rats with livers stored under identical conditions with or without nisoldipine. Seven of 12 animals (62.5%) in both groups survived for over 10 days after 24-hr preservation in University of Wisconsin solution. Survival rates were similar in both groups. CONCLUSIONS Calcium antagonists do not appear to have a direct protective effect on sinusoidal endothelial cell and hepatocyte functions, nor on the overall liver preservation after extended cold preservation-reperfusion.
Collapse
Affiliation(s)
- E de Broin
- Centre de recherche clinique André-Viallet, Département des Laboratoires, Hôpital Saint-Luc and Université de Montréal, Québec,Canada
| | | | | | | | | |
Collapse
|
31
|
Gudz T, Eriksson O, Kushnareva Y, Saris NE, Novgorodov S. Effect of butylhydroxytoluene and related compounds on permeability of the inner mitochondrial membrane. Arch Biochem Biophys 1997; 342:143-56. [PMID: 9185623 DOI: 10.1006/abbi.1997.0113] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial inner membrane contains a latent pore (PTP) that when opened uncouples mitochondrial energy transduction and allows rapid equilibration of low-molecular-weight solutes between the matrix and exterior. Based on sensitivity of the PTP to well-known free radical scavenger butylhydroxytoluene (BHT), it has been proposed that increased steady-state level of oxygen radicals, and subsequent radical attack of proteins and lipids, is a central event in activation of this pore (Novgorodov et al., J. Bioenerg. Biomembr. 19, 191-202, 1987; Carbonera and Azzone, Biochim. Biophys. Acta 943, 245-255, 1988). Present studies revealed that DBT, a derivative of BHT devoid of radical scavenging activity, exerts an analogous effect on the permeability of the inner membrane. Inhibition of the Ca2+-induced PTP opening is essentially complete at dose range of 50-60 nmol/mg protein with IC50 values of about 32 and 23 nmol/mg protein for DBT and BHT, respectively. Electron microscopy and osmotic experiments utilizing polyethylene glycols with different Stokes radii showed that the apparent lack of inhibition seen at high concentrations of these compounds results from cyclosporin A- and Ca2+-insensitive pore formation in the inner membrane. Experiments employing antioxidants with similar structure but dissimilar hydrophobicity provided evidence for localization of the antioxidant binding sites within the hydrophobic zone of the inner membrane or in the matrix space. The data obtained do not refute the notion that oxygen radicals modulate the PTP, but rather indicate that BHT operates independently of its free radical scavenging activity. Overall, the sensitivity to BHT and other antioxidants is not always a reliable criterion for the involvement of free radical reactions in the processes under study.
Collapse
Affiliation(s)
- T Gudz
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russian Federation
| | | | | | | | | |
Collapse
|
32
|
Bernardi P, Petronilli V. The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 1996; 28:131-8. [PMID: 9132411 DOI: 10.1007/bf02110643] [Citation(s) in RCA: 344] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondria from a variety of sources possess an inner membrane channel, the permeability transition pore. The pore is a voltage-dependent channel, activated by matrix Ca2+ and inhibited by matrix H+, which can be blocked by cyclosporin A, presumably after binding to mitochondrial cyclophilin. The physiological function of the permeability transition pore remains unknown. Here we evaluate its potential role as a fast Ca2+ release channel involved in mitochondrial and cellular Ca2+ homeostasis. We (i) discuss the theoretical and experimental reasons why mitochondria need a fast, inducible Ca2+ release channel; (ii) analyze the striking analogies between the mitochondrial permeability transition pore and the sarcoplasmic reticulum ryanodine receptor-Ca2+ release channel; (iii) argue that the permeability transition pore can act as a selective release channel for Ca2+ despite its apparent lack of selectivity for the transported species in vitro; and (iv) discuss the importance of mitochondria in cellular Ca2+ homeostasis, and how disruption of this function could impinge upon cell viability, particularly under conditions of oxidative stress.
Collapse
Affiliation(s)
- P Bernardi
- CNR Unit for the Study of Biomembranes, Department of Biomedical Sciences, University of Padova, Italy
| | | |
Collapse
|
33
|
Cheng Y, Chen M, James-Kracke M, Wixom P, Sun AY. Enhanced lipid peroxidation by extracellular ATP in PC12 cells. Neurochem Res 1996; 21:27-33. [PMID: 8833220 DOI: 10.1007/bf02527668] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recently we have demonstrated that extracellular ATP acts as an excitatory neurotransmitter and enhances cell death in the presence of ferrous ions. By using a newly developed cis-parinaric acid fluorescence technique, we demonstrated that ATP, in a dose dependent manner, enhanced the increased membrane lipid peroxidation in PC12 cells when cells were incubated with micromolar FeCl2/DTP. P2 purinoceptor agonists, alpha,beta-methylene ATP and 2-methylthio-ATP, induced PC12 cell lipid peroxidation, but to a lesser extent than ATP. ATP-induced Ca(2+) influx via P2 purinoceptor activation significantly increased the intracellular Ca(2+)concentration, which may have triggered a free radical generating cascade(s), and led to membrane lipid peroxidation and cell death. Since oxidative stress has been implicated in certain neurodegenerative diseases such as aging, extracellular ATP may contribute to neuronal cell death by an oxidative mechanism involving lipid peroxidation.
Collapse
Affiliation(s)
- Y Cheng
- Department of Pharmacology, University of Missouri, Columbia 65212, USA
| | | | | | | | | |
Collapse
|
34
|
Palmeira CM, Moreno AJ, Madeira VM. Effects of paraquat, dinoseb and 2,4-D on intracellular calcium and on vasopressin-induced calcium mobilization in isolated hepatocytes. Arch Toxicol 1995; 69:460-6. [PMID: 8526741 DOI: 10.1007/s002040050199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of the herbicides paraquat, dinoseb and 2,4-D on intracellular Ca2+ levels and on vasopressin-induced Ca2+ mobilization were investigated in intact isolated hepatocytes. Incubation of rat hepatocytes with paraquat (5 mM for 60 min) and dinoseb (10 microM) resulted in a time-dependent loss of viability by approximately 25%. Viability of cells treated with 2,4-D decreased significantly, dropping to about 20% at 10 mM and 60 min incubation. Exposure of hepatocytes to paraquat (1-10 mM) for 60 min had no effect on the basal level of [Ca2+]i. Additionally, exposure to paraquat had no effect on the magnitude and on the duration of the [Ca2+]i response to vasopressin. In the presence of 2,4-D (1-10 mM), basal [Ca2+]i increases as a function of herbicide concentration. The magnitude of the delta[Ca2+]i response decreases from 256 +/- 8 nM in control to 220 +/- 5 nM, at 10 mM 2,4-D. Exposure of hepatocytes to dinoseb (1-10 microM) had no effect on the basal level of [Ca2+]i. However, a strong concentration-dependent decrease in the magnitude of delta[Ca2+]i in response to vasopressin was noticed at 60 min incubation. Dinoseb markedly inhibited the stimulation of the production of inositol phosphates by vasopressin stimulus. The present study demonstrates that paraquat, 2,4-D and dinoseb cause cell death in hepatocytes by mechanisms not related to an early increase in [Ca2+]i. Additionally, it has been shown for the first time that dinoseb disturbs the transduction mechanism promoted by vasopressin by inhibiting the formation of IP3.
Collapse
Affiliation(s)
- C M Palmeira
- Department of Zoology, University of Coimbra, Portugal
| | | | | |
Collapse
|
35
|
Hoek JB, Farber JL, Thomas AP, Wang X. Calcium ion-dependent signalling and mitochondrial dysfunction: mitochondrial calcium uptake during hormonal stimulation in intact liver cells and its implication for the mitochondrial permeability transition. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1271:93-102. [PMID: 7599232 DOI: 10.1016/0925-4439(95)00015-v] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hormones that elevate cytosolic Ca2+ concentrations ([Ca2+]cyt) often use Ca2+ as a messenger to activate intramitochondrial metabolic processes. However, the mitochondrial Ca2+ level also regulates the activation of the mitochondrial permeability transition (MPT), a process that involves the assembly of a high conductance proteinaceous pore across the inner and outer membrane. Studies on intact liver cells indicate that the MPT is a critical step in the cell killing induced by anoxia or respiratory inhibitors. In this study, we used freshly isolated hepatocytes to investigate to what extent the elevation of [Ca2+]cyt by vasopressin or other agonists causes Ca2+ accumulation in the mitochondria and how this treatment affects the mitochondrial susceptibility to undergo the MPT. Hepatocytes were incubated with vasopressin, glucagon, or with thapsigargin (an inhibitor of the endoplasmic reticulum Ca2+ pump) prior to permeabilization with digitonin. Mitochondrial Ca2+ accumulation was determined by following the ionomycin-induced Ca2+ release in permeabilized cells and mitochondrial swelling was studied by following cyclosporin A-sensitive light scattering changes induced by phenyl-arsenoxide and rotenone. The results indicate that agents that elevate [Ca2+]cyt cause a significant Ca2+ accumulation in the mitochondria. Excessive Ca2+ accumulation (> 10-fold increase over basal levels) was obtained with the combination of vasopressin and glucagon or with incubations containing thapsigargin. These conditions were also associated with a marked increase in rotenone-induced mitochondrial swelling. However, the more modest increase in mitochondrial Ca2+ content after treating cells with vasopressin alone did not enhance the swelling response; instead, vasopressin suppressed mitochondrial swelling compared to control incubations. Vasopressin also partly suppressed the swelling associated with thapsigargin treatment, although it did not significantly affect the Ca2+ accumulation under these conditions. This effect of vasopressin was mimicked by phorbol ester, suggesting a role for protein kinase C. The data indicate that mitochondrial Ca2+ accumulation following elevation of elevation of [Ca2+]cyt enhances the susceptibility for activation of the MPT, a response that may increase cell injury during anoxia or in response to other challenges. However, hormones also activate protective responses in the cell that suppress the MPT.
Collapse
Affiliation(s)
- J B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Based on our current understanding, we have developed a provisional model for hepatocyte necrosis that may be applicable to cell necrosis in general (Figure 6). Damage to mitochondria appears to be a key early event in the progression to necrosis. At least two pathways may be involved. In the first, inhibition of oxidative phosphorylation in the absence of the MMPT leads to ATP depletion, ion dysregulation, and enhanced degradative hydrolase activity. If oxygen is present, toxic oxygen species may be generated and lipid peroxidation can occur. Subsequent cytoskeleton and plasma membrane damage result in plasma membrane bleb formation. These steps are reversible if the insult to the cell is removed. However, if injury continues, bleb rupture and cell lysis occur. In the second pathway, mitochondrial damage results in an MMPT. This step is irreversible and leads to cell death by as yet uncertain mechanisms. It is important to note that MMPT may occur secondary to changes in the first pathway (e.g. oxidative stress, increased Cai2+, and ATP depletion) and that all the "downstream events" occurring in the first pathway may result from MMPT (e.g., ATP depletion, ion dysregulation, or hydrolase activation). Proof of this model's applicability to cell necrosis in general awaits further validation. In this review, we have attempted to highlight the advances in our understanding of the cellular mechanisms of necrotic injury. Recent advances in this understanding have allowed scientists and clinicians a better comprehension of liver pathophysiology. This knowledge has provided new avenues of therapy and played a key role in the practice of hepatology as evidenced by advances in organ preservation. Understanding the early reversible events leading to cellular and subcellular damage will be key to prevention and treatment of liver disease. Hopefully, disease and injury specific preventive or pharmacological strategies can be developed based on this expanding data base.
Collapse
Affiliation(s)
- B G Rosser
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
37
|
Cheng Y, Chen M, Wixom P, Sun AY. Extracellular ATP may induce neuronal degeneration by a free-radical mechanism. Ann N Y Acad Sci 1994; 738:431-5. [PMID: 7832452 DOI: 10.1111/j.1749-6632.1994.tb21834.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Y Cheng
- Department of Pharmacology, University of Missouri, Columbia 65212
| | | | | | | |
Collapse
|
38
|
Toxopeus C, van Holsteijn I, de Winther MP, van den Dobbelsteen D, Horbach GJ, Blaauboer BJ, Noordhoek J. Role of thiol homeostasis and adenine nucleotide metabolism in the protective effects of fructose in quinone-induced cytotoxicity in rat hepatocytes. Biochem Pharmacol 1994; 48:1682-92. [PMID: 7980636 DOI: 10.1016/0006-2952(94)90452-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Freshly-isolated rat hepatocytes were exposed in glucose (15 mM) or fructose (5 mM) medium to menadione (2-methyl-1,4-naphthoquinone) (85 microM) or 1,4-naphthoquinone (NQ) (50 microM). Menadione and NQ are closely related quinones and have an approximately equal potential to induce redox cycling. However, NQ has a higher potential to arylate and is more toxic than menadione. During 2 hr of incubation, cell viability, thiol status, adenine nucleotide level and lactate production were determined. LDH-leakage was used as a measure of cell viability. In glucose medium, exposure of hepatocytes to menadione or NQ resulted in a faster excretion rate of oxidized glutathione as compared to those cells in fructose medium. As a result, quinone-exposed hepatocytes in fructose medium retained higher amounts of oxidized glutathione. Menadione-exposed hepatocytes in fructose medium exhibited a diminished rate of transthiolation of protein thiols with oxidized glutathione as compared to those cells in glucose medium. The adenine nucleotide level of hepatocytes in glucose medium was markedly higher than in fructose medium. This was caused by an ATP decrease in hepatocytes in fructose medium resulting in a low energy charge (E.C.) (0.6) as compared to hepatocytes in glucose medium (0.9). Only menadione caused a decrease in the E.C. in glucose medium while NQ caused a decrease of all three adenine nucleotides. In fructose medium, quinone-exposed hepatocytes showed no change in their adenine nucleotides as compared to control cells. Despite the higher oxidized glutathione content and the lower ATP level of NQ-exposed hepatocytes in fructose medium, they had a better viability than those cells in glucose medium. From our results we conclude that a high ATP content is not always beneficial for cell survival.
Collapse
Affiliation(s)
- C Toxopeus
- Research Institute of Toxicology (RITOX), Utrecht University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Role of mitochondrial Ca2+ in the oxidative stress-induced dissipation of the mitochondrial membrane potential. Studies in isolated proximal tubular cells using the nephrotoxin 1,2-dichlorovinyl-L-cysteine. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36658-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|