1
|
Steimann T, Heite Z, Germer A, Blank LM, Büchs J, Mann M, Magnus JB. Understanding exopolysaccharide byproduct formation in Komagataella phaffii fermentation processes for recombinant protein production. Microb Cell Fact 2024; 23:131. [PMID: 38711081 DOI: 10.1186/s12934-024-02403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.
Collapse
Affiliation(s)
- Thomas Steimann
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Zoe Heite
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Andrea Germer
- iAMB-Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Lars Mathias Blank
- iAMB-Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Marcel Mann
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jørgen Barsett Magnus
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
2
|
The Influence of Yarrowia lipolytica Glycosylation on the Biochemical Properties and Oligomerization of Heterologous Invertase. SUSTAINABILITY 2022. [DOI: 10.3390/su14137926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Invertases are important enzymes used in the food industry. Despite many studies on the invertase-encoding SUC2 gene expression in the industrial yeast Yarrowia lipolytica, no biochemical characteristics of this enzyme expressed as heterologous protein have been provided. Here, two isoforms of extracellular invertase produced by Y. lipolytica were detected using ion-exchange chromatography. Specific activities of 226.45 and 432.66 U/mg for the first and second isoform, respectively, were determined. Basic characteristics of this enzyme were similar to the one isolated from Saccharomyces cerevisiae (optimum pH and temperature, metal ions inhibition, substrate specificity and fructooligosaccharides (FOS) biosynthesis). The apparent differences were higher KM for sucrose (67 mM) and lower molecular mass (66 kDa) resulting from lower N-glycosylation level (9.1% of mass). The N-glycan structures determined by MALDI-TOF and HPLC represented high mannose structures, though with much shorter chains than hypermannosylated glycans from S. cerevisiae. Furthermore, galactose was detected as the modifying sugar in the glycan structures of invertase expressed in Y. lipolytica. N-glycans did not affect invertase activity but were important for its oligomerization. The expressed enzyme aggregated into dimers, tetramers, hexamers, and octamers, as well as structures of higher molecular mass, which might be decamers, which have not been described so far in the literature.
Collapse
|
3
|
Structure and Dynamics of Meprin β in Complex with a Hydroxamate-Based Inhibitor. Int J Mol Sci 2021; 22:ijms22115651. [PMID: 34073350 PMCID: PMC8197800 DOI: 10.3390/ijms22115651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
The astacin protease Meprin β represents an emerging target for drug development due to its potential involvement in disorders such as acute and chronic kidney injury and fibrosis. Here, we elaborate on the structural basis of inhibition by a specific Meprin β inhibitor. Our analysis of the crystal structure suggests different binding modes of the inhibitor to the active site. This flexibility is caused, at least in part, by movement of the C-terminal region of the protease domain (CTD). The CTD movement narrows the active site cleft upon inhibitor binding. Compared with other astacin proteases, among these the highly homologous isoenzyme Meprin α, differences in the subsites account for the unique selectivity of the inhibitor. Although the inhibitor shows substantial flexibility in orientation within the active site, the structural data as well as binding analyses, including molecular dynamics simulations, support a contribution of electrostatic interactions, presumably by arginine residues, to binding and specificity. Collectively, the results presented here and previously support an induced fit and substantial movement of the CTD upon ligand binding and, possibly, during catalysis. To the best of our knowledge, we here present the first structure of a Meprin β holoenzyme containing a zinc ion and a specific inhibitor bound to the active site. The structural data will guide rational drug design and the discovery of highly potent Meprin inhibitors.
Collapse
|
4
|
Oyama K, Ohkuri T, Inoue M, Caaveiro JMM, Ueda T. High-level expression of human CH2 domain from the Fc region in Pichia pastoris and preparation of anti-CH2 antibodies. J Biochem 2021; 170:289-297. [PMID: 33772592 DOI: 10.1093/jb/mvab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Pichia pastoris is a popular eukaryotic system employed for the fast, simple and inexpensive production of recombinant protein including biotherapeutics such as human albumin. The CH2 domain of human IgG is a promising scaffold for developing novel therapeutics. To accelerate the research of CH2 domain, we have established a procedure to highly express human CH2 domain (∼ 150 mg/L) as well as human Fc (∼ 30 mg/L) by yeast Pichia pastoris. The procedure yields, simultaneously, a major glycosylated (∼ 70%) and non-glycosylated (∼ 30%) fractions. That can be easily separated and with high purity. Although both forms of CH2 domain have essentially the same secondary structure, the presence of the short glycan increased the thermal stability of the CH2 domain by about 5 °C as determined from calorimetry. The purified glycosylated CH2 domain elicited polyclonal antibodies in mouse, recognizing not only the CH2 domain, but also recombinant human Fc and the commercial IgG1 antibody Rituxan. Protein A and Protein G binding to the kink region between CH2 domain and CH3 domain of human Fc are used to purify therapeutic proteins. Therefore, these antibodies are candidates to develop a novel affinity material to purify human antibodies using their CH2 domain.
Collapse
Affiliation(s)
- Kosuke Oyama
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Mao Inoue
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Jose M M Caaveiro
- Department of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Tadashi Ueda
- Department of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
5
|
Insights into the effects of N-glycosylation on the characteristics of the VC1 domain of the human receptor for advanced glycation end products (RAGE) secreted by Pichia pastoris. Glycoconj J 2019; 36:27-38. [DOI: 10.1007/s10719-018-09855-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 01/11/2023]
|
6
|
Hamilton BS, Wilson JD, Shumakovich MA, Fisher AC, Brooks JC, Pontes A, Naran R, Heiss C, Gao C, Kardish R, Heimburg-Molinaro J, Azadi P, Cummings RD, Merritt JH, DeLisa MP. A library of chemically defined human N-glycans synthesized from microbial oligosaccharide precursors. Sci Rep 2017; 7:15907. [PMID: 29162910 PMCID: PMC5698433 DOI: 10.1038/s41598-017-15891-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022] Open
Abstract
Synthesis of homogenous glycans in quantitative yields represents a major bottleneck to the production of molecular tools for glycoscience, such as glycan microarrays, affinity resins, and reference standards. Here, we describe a combined biological/enzymatic synthesis that is capable of efficiently converting microbially-derived precursor oligosaccharides into structurally uniform human-type N-glycans. Unlike starting material obtained by chemical synthesis or direct isolation from natural sources, which can be time consuming and costly to generate, our approach involves precursors derived from renewable sources including wild-type Saccharomyces cerevisiae glycoproteins and lipid-linked oligosaccharides from glycoengineered Escherichia coli. Following deglycosylation of these biosynthetic precursors, the resulting microbial oligosaccharides are subjected to a greatly simplified purification scheme followed by structural remodeling using commercially available and recombinantly produced glycosyltransferases including key N-acetylglucosaminyltransferases (e.g., GnTI, GnTII, and GnTIV) involved in early remodeling of glycans in the mammalian glycosylation pathway. Using this approach, preparative quantities of hybrid and complex-type N-glycans including asymmetric multi-antennary structures were generated and subsequently used to develop a glycan microarray for high-throughput, fluorescence-based screening of glycan-binding proteins. Taken together, these results confirm our combined synthesis strategy as a new, user-friendly route for supplying chemically defined human glycans simply by combining biosynthetically-derived precursors with enzymatic remodeling.
Collapse
Affiliation(s)
- Brian S Hamilton
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | - Joshua D Wilson
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | | | - Adam C Fisher
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | - James C Brooks
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | - Alyssa Pontes
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | - Radnaa Naran
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Kardish
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Judith H Merritt
- Glycobia, Inc., 33 Thornwood Drive, Suite 104, Ithaca, New York, 14850, USA
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
7
|
Saveleva NV, Burlakovskiy MS, Yemelyanov VV, Lutova LA. Transgenic plants as bioreactors to produce substances for medical and veterinary uses. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079059716060071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Irani ZA, Kerkhoven EJ, Shojaosadati SA, Nielsen J. Genome-scale metabolic model ofPichia pastoriswith native and humanized glycosylation of recombinant proteins. Biotechnol Bioeng 2015; 113:961-9. [DOI: 10.1002/bit.25863] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Zahra Azimzadeh Irani
- Biotechnology Group; Faculty of Chemical Engineering; Tarbiat Modares University; Tehran Iran
| | - Eduard J. Kerkhoven
- Systems and Synthetic Biology; Department of Biology and Biological Engineering; Chalmers University of Technology; Göteborg Sweden
| | | | - Jens Nielsen
- Systems and Synthetic Biology; Department of Biology and Biological Engineering; Chalmers University of Technology; Göteborg Sweden
- Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Hørsholm Denmark
| |
Collapse
|
9
|
Degani G, Colzani M, Tettamanzi A, Sorrentino L, Aliverti A, Fritz G, Aldini G, Popolo L. An improved expression system for the VC1 ligand binding domain of the receptor for advanced glycation end products in Pichia pastoris. Protein Expr Purif 2015; 114:48-57. [PMID: 26118699 DOI: 10.1016/j.pep.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 11/19/2022]
Abstract
The receptor for the advanced glycation end products (RAGE) is a type I transmembrane glycoprotein belonging to the immunoglobulin superfamily and binds a variety of unrelated ligands sharing a negative charge. Most ligands bind to the extracellular V or VC1 domains of the receptor. In this work, V and VC1 of human RAGE were produced in the methylotrophic yeast Pichia pastoris and directed to the secretory pathway. Fusions to a removable C-terminal His-tag evidenced proteolytic processing of the tag by extracellular proteases and also intracellular degradation of the N-terminal portion of V-His. Expression of untagged forms was attempted. While the V domain was retained intracellularly, VC1 was secreted into the medium and was functionally active in binding AGEs. The glycosylation state of VC1 was analyzed by mass spectrometry and peptide-N-glycosidase F digestion. Like RAGE isolated from mammalian sources, the degree of occupancy of the N-glycosylation sites was full at Asn25 and partial at Asn81 which was also subjected to non-enzymatic deamidation. A simple procedure for the purification to homogeneity of VC1 from the medium was developed. The folded state of the purified protein was assessed by thermal shift assays. Recombinant VC1 from P. pastoris showed a remarkably high thermal stability as compared to the protein expressed in bacteria. Our in vivo approach indicates that the V and C1 domains constitute a single folding unit. The stability and solubility of the yeast-secreted VC1 may be beneficial for future in vitro studies aimed to identify new ligands or inhibitors of RAGE.
Collapse
Affiliation(s)
- Genny Degani
- Department of Biosciences, Via Celoria 26, University of Milan, 20133 Milano, Italy
| | - Mara Colzani
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, University of Milan, 20133 Milano, Italy
| | - Alberto Tettamanzi
- Department of Biosciences, Via Celoria 26, University of Milan, 20133 Milano, Italy
| | - Luca Sorrentino
- Department of Biosciences, Via Celoria 26, University of Milan, 20133 Milano, Italy
| | - Alessandro Aliverti
- Department of Biosciences, Via Celoria 26, University of Milan, 20133 Milano, Italy
| | - Guenter Fritz
- Institute for Neuropathology, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Via Mangiagalli 25, University of Milan, 20133 Milano, Italy
| | - Laura Popolo
- Department of Biosciences, Via Celoria 26, University of Milan, 20133 Milano, Italy.
| |
Collapse
|
10
|
Improving the Secretory Production of the Heterologous Protein in Pichia pastoris by Focusing on Protein Folding. Appl Biochem Biotechnol 2014; 175:535-48. [DOI: 10.1007/s12010-014-1292-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/09/2014] [Indexed: 01/07/2023]
|
11
|
Aguiar TQ, Maaheimo H, Heiskanen A, Wiebe MG, Penttilä M, Domingues L. Characterization of the Ashbya gossypii secreted N-glycome and genomic insights into its N-glycosylation pathway. Carbohydr Res 2013; 381:19-27. [DOI: 10.1016/j.carres.2013.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/04/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
|
12
|
Madzak C, Beckerich JM. Heterologous Protein Expression and Secretion in Yarrowia lipolytica. YARROWIA LIPOLYTICA 2013. [DOI: 10.1007/978-3-642-38583-4_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Goossens KVY, De Greve H, Willaert RG. Cloning, expression, and purification of the N-terminal domain of the Flo1 flocculation protein from Saccharomyces cerevisiae in Pichia pastoris. Protein Expr Purif 2012; 88:114-9. [PMID: 23247087 DOI: 10.1016/j.pep.2012.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/14/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
Abstract
Saccharomyces cerevisiae flocculation is governed by FLO genes, encoding Flo proteins (flocculins). Flo proteins are cell wall proteins consisting of three domains, sticking out of the cell wall and interacting with other yeast cells using their N-terminal mannose-binding domain. Until recently, flocculation research was focused on the genetic and cellular level. To extend the knowledge about flocculation to the protein level, we isolated the N-terminal domain of the Flo1p (N-Flo1p) that contains the mannose-binding domain, which is responsible for the strong interaction (flocculation) of S. cerevisiae cells. To obtain a high production yield and a more uniform and lower glycosylation of N-Flo1p, it was cloned in Pichia pastoris. The expression and the purification of N-Flo1p were optimised towards a one-step purification protocol. The activity of the protein, i.e. the binding of the purified protein to mannose using fluorescence spectroscopy, was demonstrated.
Collapse
Affiliation(s)
- Katty V Y Goossens
- Lab. Structural Biology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.
| | | | | |
Collapse
|
14
|
Constitutive high-level expression of a codon-optimized β-fructosidase gene from the hyperthermophile Thermotoga maritima in Pichia pastoris. Appl Microbiol Biotechnol 2012; 97:1201-12. [PMID: 22821437 DOI: 10.1007/s00253-012-4270-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/24/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Enzymes for use in the sugar industry are preferred to be thermotolerant. In this study, a synthetic codon-optimized gene encoding a highly thermostable β-fructosidase (BfrA, EC 3.2.1.26) from the bacterium Thermotoga maritima was expressed in the yeast Pichia pastoris. The gradual increase of the transgene dosage from one to four copies under the control of the constitutive glyceraldehyde 3-phosphate dehydrogenase promoter had an additive effect on BfrA yield without causing cell toxicity. Maximal values of cell biomass (115 g/l, dry weight) and overall invertase activity (241 U/ml) were reached at 72 h in fed-batch fermentations using cane sugar as the main carbon source for growth. Secretion driven by the Saccharomyces cerevisiae α-factor signal peptide resulted in periplasmic retention (44 %) and extracellular release (56 %) of BfrA. The presence of N-linked oligosaccharides did not influence the optimal activity, thermal stability, kinetic properties, substrate specificity, and exo-type action mode of the yeast-secreted BfrA in comparison to the native unglycosylated enzyme. Complete inversion of cane sugar at initial concentration of 60 % (w/v) was achieved by periplasmic BfrA in undisrupted cells reacting at pH 5.5 and 70 °C, with average productivity of 4.4 g of substrate hydrolyzed per grams of biomass (wet weight) per hour. The high yield of fully active glycosylated BfrA here attained by recombinant P. pastoris in a low-cost fermentation process appears to be attractive for the large-scale production of this thermostable enzyme useful for the manufacture of inverted sugar syrup.
Collapse
|
15
|
Tanapongpipat S, Promdonkoy P, Watanabe T, Tirasophon W, Roongsawang N, Chiba Y, Eurwilaichitr L. Heterologous protein expression in Pichia thermomethanolica BCC16875, a thermotolerant methylotrophic yeast and characterization of N-linked glycosylation in secreted protein. FEMS Microbiol Lett 2012; 334:127-34. [DOI: 10.1111/j.1574-6968.2012.02628.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sutipa Tanapongpipat
- Bioresources Technology Unit; National Center for Genetic Engineering and Biotechnology; National Science and Technology Development Agency; Pathum Thani; Thailand
| | - Peerada Promdonkoy
- Bioresources Technology Unit; National Center for Genetic Engineering and Biotechnology; National Science and Technology Development Agency; Pathum Thani; Thailand
| | - Toru Watanabe
- Research Center for Medical Glycoscience; National Institute of Advanced Industrial Science and Technology (AIST); Ibaraki; Japan
| | - Witoon Tirasophon
- The Institute of Molecular Biosciences; Mahidol University; Nakhonpathom; Thailand
| | - Niran Roongsawang
- Bioresources Technology Unit; National Center for Genetic Engineering and Biotechnology; National Science and Technology Development Agency; Pathum Thani; Thailand
| | - Yasunori Chiba
- Research Center for Medical Glycoscience; National Institute of Advanced Industrial Science and Technology (AIST); Ibaraki; Japan
| | - Lily Eurwilaichitr
- Bioresources Technology Unit; National Center for Genetic Engineering and Biotechnology; National Science and Technology Development Agency; Pathum Thani; Thailand
| |
Collapse
|
16
|
Miller J, Doss M, McQuillen R, Shaller CC, Tolner B, Yu JQ, Chester K, Robinson MK. Impact of expression system on the function of the C6.5 diabody PET radiotracer. Tumour Biol 2012; 33:617-27. [PMID: 22383295 DOI: 10.1007/s13277-012-0361-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/13/2012] [Indexed: 02/07/2023] Open
Abstract
The ability of engineered antibodies to rapidly and selectively target tumors that express their target antigen makes them well suited for use as radioimaging tracers. The combination of molecular size and bivalent nature makes diabody molecules a particularly promising structure for use as radiotracers for diagnostic imaging. Previous data have demonstrated that the anti-HER2 C6.5 diabody (C6.5db) is an effective radiotracer in preclinical models of HER2-positive cancer. The aim of this study was to evaluate the impact on radiotracer performance, associated with expressing the C6.5db in the Pichia pastoris (P-C6.5db) system as compared to Escherichia coli (E. C6.5db). Glycosylation of P-C6.5db led to faster blood clearance and lower overall tumor uptake than seen with E. coli-produced C6.5db. However, P-C6.5db achieved high tumor/background ratios that are critical for effective imaging. Dosimetry measurements determined in this study for both (124)I-P-C6.5db and (124)I-E-C6.5db suggest that they are equivalent to other radiotracers currently being administered to patients.
Collapse
Affiliation(s)
- Joshua Miller
- Developmental Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pabst M, Grass J, Toegel S, Liebminger E, Strasser R, Altmann F. Isomeric analysis of oligomannosidic N-glycans and their dolichol-linked precursors. Glycobiology 2011; 22:389-99. [DOI: 10.1093/glycob/cwr138] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
18
|
Öberg F, Sjöhamn J, Fischer G, Moberg A, Pedersen A, Neutze R, Hedfalk K. Glycosylation increases the thermostability of human aquaporin 10 protein. J Biol Chem 2011; 286:31915-23. [PMID: 21733844 DOI: 10.1074/jbc.m111.242677] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human aquaporin10 (hAQP10) is a transmembrane facilitator of both water and glycerol transport in the small intestine. This aquaglyceroporin is located in the apical membrane of enterocytes and is believed to contribute to the passage of water and glycerol through these intestinal absorptive cells. Here we overproduced hAQP10 in the yeast Pichia pastoris and observed that the protein is glycosylated at Asn-133 in the extracellular loop C. This finding confirms one of three predicted glycosylation sites for hAQP10, and its glycosylation is unique for the human aquaporins overproduced in this host. Nonglycosylated protein was isolated using both glycan affinity chromatography and through mutating asparagine 133 to a glutamine. All three forms of hAQP10 where found to facilitate the transport of water, glycerol, erythritol, and xylitol, and glycosylation had little effect on functionality. In contrast, glycosylated hAQP10 showed increased thermostability of 3-6 °C compared with the nonglycosylated protein, suggesting a stabilizing effect of the N-linked glycan. Because only one third of hAQP10 was glycosylated yet the thermostability titration was mono-modal, we suggest that the presence of at least one glycosylated protein within each tetramer is sufficient to convey an enhanced structural stability to the remaining hAQP10 protomers of the tetramer.
Collapse
Affiliation(s)
- Fredrik Öberg
- Department of Chemistry/Biochemistry, University of Gothenburg, P. O. Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Gustafsson A, Sjöblom M, Strindelius L, Johansson T, Fleckenstein T, Chatzissavidou N, Lindberg L, Angström J, Rova U, Holgersson J. Pichia pastoris-produced mucin-type fusion proteins with multivalent O-glycan substitution as targeting molecules for mannose-specific receptors of the immune system. Glycobiology 2011; 21:1071-86. [PMID: 21474492 DOI: 10.1093/glycob/cwr046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mannose-binding proteins like the macrophage mannose receptor (MR), the dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and mannose-binding lectin (MBL) play crucial roles in both innate and adaptive immune responses. Immunoglobulin fusion proteins of the P-selectin glycoprotein ligand-1 (PSGL-1/mIgG(2b)) carrying mostly O-glycans and, as a control, the α1-acid glycoprotein (AGP/mIgG(2b)) carrying mainly N-linked glycans were stably expressed in the yeast Pichia pastoris. Pichia pastoris-produced PSGL-1/mIgG(2b) was shown to carry O-glycans that mediated strong binding to mannose-specific lectins in a lectin array and were susceptible to cleavage by α-mannosidases including an α1,2- but not an α1,6-mannosidase. Electrospray ionization ion-trap mass spectrometry confirmed the presence of O-glycans containing up to nine hexoses with the penta- and hexasaccharides being the predominant ones. α1,2- and α1,3-linked, but not α1,6-linked, mannose residues were detected by (1)H-nuclear magnetic resonance spectroscopy confirming the results of the mannosidase cleavage. The apparent equilibrium dissociation constants for binding of PNGase F-treated mannosylated PSGL-1/mIgG(2b) to MR, DC-SIGN and MBL were shown by surface plasmon resonance to be 126, 56 and 16 nM, respectively. In conclusion, PSGL-1/mIgG(2b) expressed in P. pastoris carried O-glycans mainly comprised of α-linked mannoses and with up to nine residues. It bound mannose-specific receptors with high apparent affinity and may become a potent targeting molecule for these receptors in vivo.
Collapse
|
20
|
Winiarska B, Dwornik A, Dębski J, Grzelak K, Bystranowska D, Zalewska M, Dadlez M, Ożyhar A, Kochman M. N-linked glycosylation of G. mellonella juvenile hormone binding protein - comparison of recombinant mutants expressed in P. pastoris cells with native protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:610-21. [PMID: 21315851 DOI: 10.1016/j.bbapap.2011.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
Abstract
Juvenile hormone (JH) regulates insect growth and development. JH present in the hemolymph is bound to juvenile hormone binding protein (hJHBP) which protects JH from degradation. In G. mellonella, this protein is glycosylated only at one (Asn(94)) of the two potential N-linked glycosylation sites (Asn(4) and Asn(94)). To investigate the function of glycosylation, each of the two potential glycosylation sites in the rJHBP molecule was examined by site-directed mutagenesis. MS analysis revealed that rJHBP overexpressed in the P. pastoris system may appear in a non-glycosylated as well as in a glycosylated form at both sites. We found that mutation at position Asn(94) reduces the level of protein secretion whereas mutation at the Asn(4) site has no effect on protein secretion. Purified rJHBP and its mutated forms (N4W and N94A) have the same JH binding activities similar to that of hJHBP. However, both mutants devoid of the carbohydrate chain are more susceptible to thermal inactivation. It is concluded that glycosylation of JHBP molecule is important for its thermal stability and secretion although it is not required for JH binding activity.
Collapse
Affiliation(s)
- Beata Winiarska
- Department of Biochemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Basso A, Spizzo P, Ferrario V, Knapic L, Savko N, Braiuca P, Ebert C, Ricca E, Calabrò V, Gardossi L. Endo- and exo-inulinases: enzyme-substrate interaction and rational immobilization. Biotechnol Prog 2010; 26:397-405. [PMID: 19941325 DOI: 10.1002/btpr.334] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three-dimensional models of exoinulinase from Bacillus stearothermophilus and endoinulinase from Aspergillus niger were built up by means of homology modeling. The crystal structure of exoinulinase from Aspergillus awamori was used as a template, which is the sole structure of inulinase resolved so far. Docking and molecular dynamics simulations were performed to investigate the differences between the two inulinases in terms of substrate selectivity. The analysis of the structural differences between the two inulinases provided the basis for the explanation of their different regio-selectivity and for the understanding of enzyme-substrate interactions. Surface analysis was performed to point out structural features that can affect the efficiency of enzymes also after immobilization. The computational analysis of the three-dimensional models proved to be an effective tool for acquiring information and allowed to formulate an optimal immobilized biocatalyst even more active that the native one, thus enabling the full exploitation of the catalytic potential of these enzymes.
Collapse
Affiliation(s)
- Alessandra Basso
- Laboratory of Applied and Computational Biocatalysis, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Trieste, Piazzale Europa, Trieste 1-34127, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Structural and functional characterization of recombinant human serum transferrin secreted from Pichia pastoris. Biosci Biotechnol Biochem 2010; 74:309-15. [PMID: 20139607 DOI: 10.1271/bbb.90635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serum transferrin is an iron-binding glycoprotein with a bilobal structure. It binds iron ions in the blood serum and delivers them into target cells via transferrin receptor. We identified structural and functional characteristics of recombinant human transferrin which is produced in the yeast Pichia pastoris. Using the signal sequence of the alpha factor of the yeast Saccharomyces cerevisiae, high-level secretion was obtained, up to 30 mg/l of culture medium. Correct processing at designed sites was confirmed by N-terminal sequence analysis. Carbohydrate modification was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis after digestion with endo-beta-N-acetylglucosaminidase H. Reflecting the secondary structure, the circular dichroism spectrum of the recombinant protein was indistinguishable from that of serum transferrin. Consequently, the recombinant product had an iron binding function just as the serum specimen has: two Fe(3+) sites existed in a recombinant transferrin molecule, as estimated by titration analysis using visible absorption, fluorescence spectra, and electrophoretic behavior in urea denaturing polyacrylamide gel electrophoresis (PAGE).
Collapse
|
23
|
Yang ZJ, Wang CY, Lee LH, Chuang KP, Lien YY, Yin HS, Tong DW, Xu XG, Liu HJ. Development of ELISA kits for antibodies against avian reovirus using the σC and σB proteins expressed in the methyltropic yeast Pichia pastoris. J Virol Methods 2010; 163:169-74. [DOI: 10.1016/j.jviromet.2009.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/06/2009] [Accepted: 07/20/2009] [Indexed: 11/24/2022]
|
24
|
Schmidt SA, Tan EL, Brown S, Nasution UJ, Pettolino F, Macintyre OJ, Lopes MDB, Waters EJ, Anderson PA. Hpf2 glycan structure is critical for protection against protein haze formation in white wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3308-3315. [PMID: 19301818 DOI: 10.1021/jf803254s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Grape-derived proteins can form haze in wine. Some cell-wall glycoproteins of Saccharomyces cerevisiae are capable of reducing protein haze formation. The basis of their haze protective activity is not yet understood. One of the S. cerevisiae cell-wall proteins, Hpf2, was produced in Pichia pastoris . An altered glycan structure in the P. pastoris -produced protein was associated with decreased solubility in water and reduced capacity to mitigate haze formation compared to native Hpf2 protein from S. cerevisiae. alpha-1,2-Linked mannose in the glycan chain was shown to be required for haze protective activity using a series of S. cerevisiae deletion mutants (mnn1-Delta, mnn2-Delta, mnn4-Delta, and mnn5-Delta), defective in different aspects of glycan processing. The effect of media additives phthalate, casamino acids, and yeast nitrogen base on Hpf2 production in P. pastoris were also evaluated. Casamino acids were shown to suppress Hpf2 production in P. pastoris .
Collapse
Affiliation(s)
- Simon A Schmidt
- The Australian Wine Research Institute, Glen Osmond 5064, South Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Blanchard V, Gadkari RA, Gerwig GJ, Leeflang BR, Dighe RR, Kamerling JP. Characterization of the N-linked oligosaccharides from human chorionic gonadotropin expressed in the methylotrophic yeast Pichia pastoris. Glycoconj J 2007; 24:33-47. [PMID: 17146714 DOI: 10.1007/s10719-006-9010-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human chorionic gonadotropin (hCG) is a heterodimeric, placental glycoprotein hormone involved in the maintenance of the corpus luteum during the first trimester of pregnancy. Biologically active hCG has been successfully expressed in the yeast Pichia pastoris (phCG). In the context of structural studies and therapeutic applications of phCG, detailed information about its glycosylation pattern is a prerequisite. To this end N-glycans were released with peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase F and fractionated via anion-exchange chromatography (Resource Q) yielding both neutral (80%) and charged, phosphate-containing (20%) high-mannose-type structures. Subfractionations were carried out via normal phase (Lichrosorb-NH(2)) and high-pH anion-exchange (CarboPac PA-1) chromatography. Structural analyses of the released N-glycans were carried out by using HPLC profiling of fluorescent 2-aminobenzamide derivatives, MALDI-TOF mass spectrometry, and 500-MHz(1)H-NMR spectroscopy. Detailed neutral oligosaccharide structures, in the range of Man(8)GlcNAc(2) to Man(11)GlcNAc(2) including molecular isomers, could be established, and structures up to Man(15)GlcNAc(2) were indicated. Phosphate-containing oligosaccharides ranged from Man(9)PGlcNAc(2) to Man(13)PGlcNAc(2). Mannosyl O-glycans were not detected. Profiling studies carried out on different production batches showed that the oligosaccharide structures are similar, but their relative amounts varied with the culturing media.
Collapse
Affiliation(s)
- Véronique Blanchard
- Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Tolner B, Smith L, Begent RHJ, Chester KA. Production of recombinant protein in Pichia pastoris by fermentation. Nat Protoc 2007; 1:1006-21. [PMID: 17406338 DOI: 10.1038/nprot.2006.126] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This protocol is applicable to recombinant protein expression by small-scale fermentation using the Pichia pastoris expression system. P. pastoris has the capacity to produce large quantities of protein with eukaryotic processing. Expression is controlled by a methanol-inducible promoter, which allows a biomass-generation phase before protein production is initiated. The target protein is secreted directly into a protein-free mineral salt medium, and is relatively easy to purify. The protocol is readily interfaced with expanded bed adsorption for immediate capture and purification of recombinant protein. The setting up of the bioreactor plus the fermentation itself takes 1 wk. Making the master and user seed lots takes approximately 2 wk for each individual clone.
Collapse
Affiliation(s)
- Berend Tolner
- Department of Oncology, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
27
|
Expression of Recombinant Proteins in Pichia Pastoris. Appl Biochem Biotechnol 2007; 142:105-24. [PMID: 18025573 DOI: 10.1007/s12010-007-0003-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/16/2006] [Accepted: 05/23/2006] [Indexed: 10/23/2022]
|
28
|
Basso A, Braiuca P, Cantone S, Ebert C, Linda P, Spizzo P, Caimi P, Hanefeld U, Degrassi G, Gardossi L. In Silico Analysis of Enzyme Surface and Glycosylation Effect as a Tool for Efficient Covalent Immobilisation of CalB and PGA on Sepabeads®. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200600337] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Schenk J, Balazs K, Jungo C, Urfer J, Wegmann C, Zocchi A, Marison IW, von Stockar U. Influence of specific growth rate on specific productivity and glycosylation of a recombinant avidin produced by aPichia pastoris Mut+ strain. Biotechnol Bioeng 2007; 99:368-77. [PMID: 17636485 DOI: 10.1002/bit.21565] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A recombinant avidin-producing Mut+ Pichia pastoris strain was used as a model organism to study the influence of the methanol feeding strategy on the specific product productivity (q(p)) and protein glycosylation. Fed-batch cultivations performed at various specific growth rates (micro) and residual methanol concentrations showed that the specific avidin productivity is growth-dependent. The specific productivity increases strongly with the specific growth rate for micro ranging from 0 to 0.02 h(-1), and increases only slightly with the specific growth rate above this limit. N-terminal glycosylation was also found to be influenced by the specific growth rate, since 9-mannose glycans were the most abundant form at low growth rates, whereas 10-mannose carbohydrate chains were favored at higher micro. These results show that culture parameters, such as the specific growth rate, may significantly affect the activity of glycoproteins produced in Pichia pastoris. In terms of process optimization, this suggests that a compromise on the specific growth rate may have to be found, in certain cases, to work with an acceptable productivity while avoiding the addition of many mannoses.
Collapse
Affiliation(s)
- Jonas Schenk
- Laboratory of Chemical and Biochemical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Recombinant and native proteins of Pichia pastoris can be O-mannosylated on serine and threonine residues, allowing further elongation reactions to generate short O-linked oligosaccha-rides of mannose. Methods for release from the protein with alkaline beta-elimination with or without reduction of the released saccharides, and for subsequent chromatographic and enzymatic characterization of these saccharides are described.
Collapse
Affiliation(s)
- Roger K Bretthauer
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
31
|
Tan BH, Fu JL, Sugrue RJ. Characterization of the dengue virus envelope glycoprotein expressed in Pichia pastoris. Methods Mol Biol 2007; 379:163-76. [PMID: 17502678 DOI: 10.1007/978-1-59745-393-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The full-length and truncated forms of recombinant envelope (E) glycoprotein from Dengue virus type 1, Singapore strain S275/90 were expressed in the yeast, Pichia pastoris, using a secretory vector. A truncated form of the E protein in which the transmembrane domain was deleted was secreted successfully into the culture medium. The E protein was also co-expressed with C and prM proteins using a non-secretory yeast vector. The co-expression of C, prM and E proteins resulted in the spontaneous formation of virus-like particles (VLPs), which were confirmed by sucrose gradient analysis and transmission electron microscopy. Furthermore, the VLPs were used to immunise rabbits, and shown to be immunogenic by immunofluorescence staining of dengue virus-infected Vero cells. The yeast-expressed E protein was treated with PNGase F, which showed that although the protein was modified by the addition of N-linked glycans, the recombinant expressed E protein was not hyperglycosylated.
Collapse
Affiliation(s)
- Boon-Huan Tan
- Virology Group Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore
| | | | | |
Collapse
|
32
|
Kogelberg H, Tolner B, Sharma SK, Lowdell MW, Qureshi U, Robson M, Hillyer T, Pedley RB, Vervecken W, Contreras R, Begent RHJ, Chester KA. Clearance mechanism of a mannosylated antibody-enzyme fusion protein used in experimental cancer therapy. Glycobiology 2006; 17:36-45. [PMID: 17000699 DOI: 10.1093/glycob/cwl053] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MFECP1 is a mannosylated antibody-enzyme fusion protein used in antibody-directed enzyme prodrug therapy (ADEPT). The antibody selectively targets tumor cells and the targeted enzyme converts a prodrug into a toxic drug. MFECP1 is obtained from expression in the yeast Pichia pastoris and produced to clinical grade. The P. pastoris-derived mannosylation of the fusion protein aids rapid normal tissue clearance required for successful ADEPT. The work presented provides evidence that MFECP1 is cleared by the endocytic and phagocytic mannose receptor (MR), which is known to bind to mannose-terminating glycans. MR-transfected fibroblast cells internalize MFECP1 as revealed by flow cytometry and confocal microscopy. Immunofluorescence microscopy shows that in vivo clearance in mice occurs predominantly by MR on liver sinusoidal endothelial cells, although MR is also expressed on adjacent Kupffer cells. In the spleen, MFECP1 is taken up by MR-expressing macrophages residing in the red pulp and not by dendritic cells which are found in the marginal zone and white pulp. Clearance can be inhibited in vivo by the MR inhibitor mannan as shown by increased enzyme activities in blood. The work improves understanding of interactions of MFECP1 with normal tissue, shows that glycosylation can be exploited in the design of recombinant anticancer therapeutics and opens the ways for optimizing pharmacokinetics of mannosylated recombinant therapeutics.
Collapse
Affiliation(s)
- Heide Kogelberg
- Cancer Research UK Targeting and Imaging Group, Department of Oncology, Royal Free & University College Medical School, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhou JM, Tang YX, Fang DY, Zhou JJ, Liang Y, Guo HY, Jiang LF. Secreted Expression and Purification of Dengue 2 Virus Full-length Nonstructural Glycoprotein NS1 in Pichia. pastoris. Virus Genes 2006; 33:27-32. [PMID: 16791415 DOI: 10.1007/s11262-005-0036-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 09/27/2005] [Indexed: 10/24/2022]
Abstract
The dengue 2 virus (DEN-2) RNA (NGC strain) was used as a substrate to produce DNA clones of the full-length NS1 genes via reverse transcriptase synthesis of cDNA followed by polymerase chain reaction amplification of the NS1 region. Products were cloned into pPICZalphaB vector for sequencing and into Pichia pastoris for expression. A recombinant protein with a molecular size of approximately 80 KDa was secreted into the supernatant from the yeast cells when induced with methanol. The expressed protein was able to bind with mouse polyclonal antibody or NS1-specific monoclonal antibody of dengue 2 virus. Purified NS1-poly(His)-tagged fusion protein was obtained from the expressed product by passing through a metal-chelating affinity chromatographic (MCAC) column. The study also verified that our purified rNS1 protein retained its antigenicity. High-level production of the rNS1 protein up to 70 mg/l indicates that P. pastoris is an efficient expression system for dengue virus full-length NS1 glycoprotein.
Collapse
Affiliation(s)
- Jun-mei Zhou
- Department of Microbiology, Zhongshan Medical College, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510089, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Sainz-Pastor N, Tolner B, Huhalov A, Kogelberg H, Lee YC, Zhu D, Begent RHJ, Chester KA. Deglycosylation to obtain stable and homogeneous Pichia pastoris-expressed N–A1 domains of carcinoembryonic antigen. Int J Biol Macromol 2006; 39:141-50. [PMID: 16678252 DOI: 10.1016/j.ijbiomac.2006.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 03/12/2006] [Accepted: 03/13/2006] [Indexed: 02/01/2023]
Abstract
Carcinoembryonic antigen (CEA) is a seven domain membrane glycoprotein widely used as a tumour marker for adenocarcinomas and as a target for antibody-directed therapies. Structural models have proposed that the first two domains of CEA (the N terminal and adjoining A1 domains) bind MFE-23, a single chain Fv antibody in experimental clinical use. We aimed to produce recombinant N-A1 to test this hypothesis. The N-A1 domains were expressed as soluble protein with a C-terminal hexahistidine tag (His6-tag) in the yeast Pichia pastoris. His6-tagged N-A1 was captured from the supernatant by batch purification with copper-loaded Streamline Chelating, an immobilised metal affinity chromatography (IMAC) matrix usually utilised in expanded bed techniques. Purified N-A1 was heterogeneous with a molecular weight range from 38 to 188 kDa. Deglycosylation with endoglycosidase H (Endo H) resulted in three discrete molecular weight forms of N-A1, one partially mannosylated, one fully Endo H-digested and one fully Endo H-digested but lacking the His6-tag. These were separated by concanavalin A chromatography followed by HiTrap IMAC. The procedure resulted in single-band-purity, mannose-free N-A1. The binding interaction of MFE-23 to N-A1 was analysed by surface plasmon resonance. The affinity constants retrieved were KD = 4.49 x 10(-9)M for the P. pastoris expressed, native N-A1, and 5.33 x 10(-9) M for the Endo H-treated N-A1. To our knowledge this is the first time that two consecutive domains of CEA have been stably expressed and purified from P. pastoris. This work confirms that the CEA epitope recognised by MFE-23 resides in N-A1.
Collapse
Affiliation(s)
- Noelia Sainz-Pastor
- Department of Oncology, Royal Free and University College Medical School, UCL, Rowland Hill Street, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ciaccio C, Gambacurta A, De Sanctis G, Spagnolo D, Sakarikou C, Petrella G, Coletta M. rhEPO (recombinant human eosinophil peroxidase): expression in Pichia pastoris and biochemical characterization. Biochem J 2006; 395:295-301. [PMID: 16396635 PMCID: PMC1422775 DOI: 10.1042/bj20051385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 12/02/2005] [Accepted: 01/06/2006] [Indexed: 11/17/2022]
Abstract
A Pichia pastoris expression system has for the first time been successfully developed to produce rhEPO (recombinant human eosinophil peroxidase). The full-length rhEPO coding sequence was cloned into the pPIC9 vector in frame with the yeast alpha-Factor secretion signal under the transcriptional control of the AOX (acyl-CoA oxidase) promoter, and transformed into P. pastoris strain GS115. Evidence for the production of rhEPO by P. pastoris as a glycosylated dimer precursor of approx. 80 kDa was determined by SDS/PAGE and gel filtration chromatography. Recombinant hEPO undergoes proteolytic processing, similar to that in the native host, to generate two chains of approx. 50 and 20 kDa. A preliminary biochemical characterization of purified rhEPO demonstrated that the spectral and kinetic properties of the recombinant wild-type EPO are comparable with those of the native enzyme and are accompanied by oxidizing activity towards several physiological anionic substrates such as SCN-, Br- and Cl-. On the basis of the estimated K(m) and kcat values it is evident that the pseudohalide SCN- is the most specific substrate for rhEPO, consistent with the catalytic properties of other mammalian EPOs purified from blood.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Wu PC, Su HY, Lee LH, Lin DT, Yen PC, Liu HJ. Secreted expression of the VP2 protein of very virulent infectious bursal disease virus in the methylotrophic yeast Pichia pastoris. J Virol Methods 2005; 123:221-5. [PMID: 15620405 DOI: 10.1016/j.jviromet.2004.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 10/05/2004] [Accepted: 10/18/2004] [Indexed: 11/28/2022]
Abstract
The VP2-encoding gene of very virulent infectious bursal disease virus (vvIBDV) was amplified using reverse transcription (RT)-polymerase chain reaction (PCR) and inserted into pPICZalphaA vector. Recombinant plasmid DNA was integrated into the chromosome of the transformed Pichia pastoris by electroporation and expressed protein identified by SDS-PAGE and Western blotting. High-level secreted expression was performed by determining the Mut+ phenotype and secreting multi-copy integrants in the recombinant yeast. A recombinant protein of approximately 67 kDa was secreted into the supernatant from the yeast when induced with methanol. The expressed supernatant was bound with chicken anti-IBDV polyclonal antibodies. Western blotting with antibodies against vvIBDV indicated that the recombinant VP2 protein retained its antigenicity. High-level production (10 mg/100 ml) of the recombinant VP2 protein indicated that P. pastoris was an efficent expression system for vvIBDV VP2 protein.
Collapse
Affiliation(s)
- Pei C Wu
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
González LJ, Cremata JA, Guanche Y, Ramos Y, Triguero A, Cabrera G, Montesino R, Huerta V, Pons T, Boué O, Farnós O, Rodríguez M. The cattle tick antigen, Bm95, expressed in Pichia pastoris contains short chains of N- and O-glycans. Arch Biochem Biophys 2005; 432:205-11. [PMID: 15542059 DOI: 10.1016/j.abb.2004.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 09/21/2004] [Indexed: 10/26/2022]
Abstract
Bm95 is an antigen isolated from Boophilus microplus strains with low susceptibility to antibodies developed in cattle vaccinated with the recombinant Bm86 antigen (Gavac, HeberBiotec S.A., Cuba). It is a Bm86-like surface protein, which by similarity contains seven EGF-like domains and a lipid-binding GPI-anchor site at the C-terminal region. The primary structure of the recombinant (rBm95) protein expressed in Pichia pastoris was completely verified by LC/MS. The four potential glycosylation sites (Asn 122, 163, 329, and 363) are glycosylated partially with short N-glycans, from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) of which, Man(8-9)GlcNAc(2) were the most abundant. O-Glycopeptides are distributed mostly towards the protein N-terminus. While the first N-glycosylated site (Asn(122)) is located between EGF-like domains 2 and 3, where the O-glycopeptides were found, two other N-glycosylated sites (Asn(329) and Asn(363)) are located between EGF-like domains 5 and 6, a region devoid of O-glycosylated Ser or Thr.
Collapse
Affiliation(s)
- Luis J González
- Division of Physical-Chemistry, Department of Proteomics, Havana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Barderas R, Villalba M, Rodríguez R. Che a 1: Recombinant Expression, Purification and Correspondence to the Natural Form. Int Arch Allergy Immunol 2004; 135:284-92. [PMID: 15564769 DOI: 10.1159/000082321] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 08/12/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pollinosis to chenopods is one of the main causes of allergy in desertic regions and it is increasing in the South of Europe and Western USA. Che a 1 is a major allergen for chenopod-allergic subjects and belongs to the Ole-e-1-like family of proteins. METHODS Pichia pastoris yeast has been used as expression system to produce the recombinant form of Che a 1 (rChe a 1). The allergen was isolated using a gel permeation column and reverse-phase/high-performance liquid chromatography. Molecular characterization was performed using Edman degradation, mass spectrometry and concanavalin A staining. Sera from patients allergic to chenopod pollen, as well as polyclonal and monoclonal antibodies raised against Ole e 1, were used in immunoblotting, ELISA and inhibition assays for immunological characterization of rChe a 1. RESULTS The allergen was purified to homogeneity with a final yield of 15 mg/l of cell culture and showed a glycosylated character. N-terminal amino acid sequence of rChe a 1 and molecular mass were according to those of the protein isolated from chenopod pollen. The recombinant allergen maintained the IgG and IgE epitopes of the natural allergen deduced from the immunological assays. CONCLUSIONS Structural and in vitro immunological properties of rChe a 1 produced in P. pastoris were equivalent to those of the natural form of the allergen and, thus, it could be used in testing patients allergic to chenopods.
Collapse
Affiliation(s)
- Rodrigo Barderas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | | | | |
Collapse
|
39
|
Carotti C, Ragni E, Palomares O, Fontaine T, Tedeschi G, Rodríguez R, Latgé JP, Vai M, Popolo L. Characterization of recombinant forms of the yeast Gas1 protein and identification of residues essential for glucanosyltransferase activity and folding. ACTA ACUST UNITED AC 2004; 271:3635-45. [PMID: 15355340 DOI: 10.1111/j.1432-1033.2004.04297.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gas1p is a glycosylphosphatidylinositol-anchored plasma membrane glycoprotein of Saccharomyces cerevisiae and is a representative of Family GH72 of glycosidases/transglycosidases, which also includes proteins from human fungal pathogens. Gas1p, Phr1-2p from Candida albicans and Gel1p from Aspergillus fumigatus have been shown to be beta-(1,3)-glucanosyltransferases required for proper cell wall assembly and morphogenesis. Gas1p is organized into three modules: a catalytic domain; a cys-rich domain; and a highly O-glycosylated serine-rich region. In order to provide an experimental system for the biochemical and structural analysis of Gas1p, we expressed soluble forms in the methylotrophic yeast Pichia pastoris. Here we report that 48 h after induction with methanol, soluble Gas1p was produced at a yield of approximately 10 mg x L(-1) of medium, and this value was unaffected by the further removal of the serine-rich region or by fusion to a 6 x His tag. Purified soluble Gas1 protein showed beta-(1,3)-glucanosyltransferase activity that was abolished by replacement of the putative catalytic residues, E161 and E262, with glutamine. Spectral studies confirmed that the recombinant soluble Gas1 protein assumed a stable conformation in P. pastoris. Interestingly, thermal denaturation studies demonstrated that Gas1p is highly resistant to heat denaturation, and a complete refolding of the protein following heat treatment was observed. We also showed that Gas1p contains five intrachain disulphide bonds. The effects of the C74S, C103S and C265S substitutions in the membrane-bound Gas1p were analyzed in S. cerevisiae. The Gas1-C74S protein was totally unable to complement the phenotype of the gas1 null mutant. We found that C74 is an essential residue for the proper folding and maturation of Gas1p.
Collapse
Affiliation(s)
- Cristina Carotti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tempel W, Karaveg K, Liu ZJ, Rose J, Wang BC, Moremen KW. Structure of Mouse Golgi α-Mannosidase IA Reveals the Molecular Basis for Substrate Specificity among Class 1 (Family 47 Glycosylhydrolase) α1,2-Mannosidases. J Biol Chem 2004; 279:29774-86. [PMID: 15102839 DOI: 10.1074/jbc.m403065200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three subfamilies of mammalian Class 1 processing alpha1,2-mannosidases (family 47 glycosidases) play critical roles in the maturation of Asn-linked glycoproteins in the endoplasmic reticulum (ER) and Golgi complex as well as influencing the timing and recognition for disposal of terminally unfolded proteins by ER-associated degradation. In an effort to define the structural basis for substrate recognition among Class 1 mannosidases, we have crystallized murine Golgi mannosidase IA (space group P2(1)2(1)2(1)), and the structure was solved to 1.5-A resolution by molecular replacement. The enzyme assumes an (alphaalpha)(7) barrel structure with a Ca(2+) ion coordinated at the base of the barrel similar to other Class 1 mannosidases. Critical residues within the barrel structure that coordinate the Ca(2+) ion or presumably bind and catalyze the hydrolysis of the glycone are also highly conserved. A Man(6)GlcNAc(2) oligosaccharide attached to Asn(515) in the murine enzyme was found to extend into the active site of an adjoining protein unit in the crystal lattice in a presumed enzyme-product complex. In contrast to an analogous complex previously isolated for Saccharomyces cerevisiae ER mannosidase I, the oligosaccharide in the active site of the murine Golgi enzyme assumes a different conformation to present an alternate oligosaccharide branch into the active site pocket. A comparison of the observed protein-carbohydrate interactions for the murine Golgi enzyme with the binding cleft topologies of the other family 47 glycosidases provides a framework for understanding the structural basis for substrate recognition among this class of enzymes.
Collapse
Affiliation(s)
- Wolfram Tempel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
41
|
Miura M, Hirose M, Miwa T, Kuwae S, Ohi H. Cloning and characterization in Pichia pastoris of PNO1 gene required for phosphomannosylation of N-linked oligosaccharides. Gene 2004; 324:129-37. [PMID: 14693378 DOI: 10.1016/j.gene.2003.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The yeast Pichia pastoris PNO1 (Phosphomannosylation of N-linked Oligosaccharides) gene, which is involved in phosphomannosylation of N-linked oligosaccharides, was cloned using the Saccharomyces cerevisiae MNN4 gene [Glycobiology 6 (1996) 805] as a probe. The PNO1 open reading frame (ORF) encodes a type II membrane protein composed of 777 amino acid residues. Only in the short region extending from amino acid position 450 to 606 of Pno1p, sequence homology to S. cerevisiae Mnn4p was observed at a level of 45%. The tandem repeat sequence of Lys-Lys-Lys-Lys-Glu-Glu-Glu-Glu characteristic of the C-terminal region of S. cerevisiae Mnn4p is not present in Pno1p. To investigate the function of the PNO1 gene, we constructed a PNO1 gene disruptant by replacement with an expression cassette of human antithrombin (AT), a glycoprotein in plasma. The cell growth and recombinant human antithrombin (rAT) production levels of the disruptant were similar to those of recombinant human antithrombin-expressing wild-type strains. Moreover, the level of alcian blue dye cell staining, which shows the presence of acidic sugar chains on the cell surface, was also similar. However, the phosphomannosylation ratio of N-linked oligosaccharides on recombinant human antithrombin decreased dramatically from 20% in wild-type strains to less than 1% in the PNO1 disruptant. When the PNO1 gene was re-introduced into the disruptant, the phosphomannosylation ratio recovered to the original level. These results suggest that the newly cloned PNO1 gene promotes phosphomannosylation only to core-like oligosaccharides, and not to the hypermannosylated outer chain, and that it has a different function from the MNN4 gene, which promotes the phosphomannosylation of both core and outer sugar chains.
Collapse
Affiliation(s)
- Masami Miura
- Protein Research Laboratory, Mitsubishi Pharma Corporation, Shodai-Ohtani, Hirakata, Osaka 573-1153, Japan.
| | | | | | | | | |
Collapse
|
42
|
Baer JW, Gerhartz B, Hoffmann T, Rosche F, Demuth HU. Characterisation of human DP IV produced by a Pichia pastoris expression system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 524:103-8. [PMID: 12675229 DOI: 10.1007/0-306-47920-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
43
|
Li H, Ma Y, Su T, Che Y, Dai C, Sun M. Expression, purification, and characterization of recombinant human neurturin secreted from the yeast Pichia pastoris. Protein Expr Purif 2003; 30:11-7. [PMID: 12821316 DOI: 10.1016/s1046-5928(03)00054-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neurturin (NTN), a potent neurotrophic factor acting specifically on dopaminergic neurons, is comprised of 102 amino acids as a mature protein. We artificially synthesized a gene for mature human NTN (hNTN) using codons preferred by the yeast Pichia pastoris. This synthesized gene, fused in frame with sequences encoding the alpha-factor signal peptide gene from Saccharomyces cerevisiae was cloned into P. pastoris expression vector pPIC9K. The recombinant plasmid pPIC9K-alpha-hNTN was then transformed into the yeast and stable multicopy recombinant P. pastoris strains were selected by G418 resistance. SDS-PAGE and Western blot assays of culture broth from a methanol-induced expression strain demonstrated that recombinant hNTN, a 16kDa glycosylated protein, was secreted into the culture medium. The recombinant protein was purified to greater than 95% using CM-Sepharose ion exchange and Superdex 75 size-exclusion chromatography steps. Bioactivity of the recombinant hNTN was confirmed by the ability of the protein to stimulate growth of nerve fibers from the dorsal root ganglia of chick embryos in vitro.
Collapse
Affiliation(s)
- Hongjun Li
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, Yunnan 650118, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
44
|
Bos IGA, de Bruin EC, Karuntu YA, Modderman PW, Eldering E, Hack CE. Recombinant human C1-inhibitor produced in Pichia pastoris has the same inhibitory capacity as plasma C1-inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1648:75-83. [PMID: 12758149 DOI: 10.1016/s1570-9639(03)00107-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Therapeutic application of the serpin C1-inhibitor (C1-Inh) in inflammatory diseases like sepsis, acute myocardial infarction and vascular leakage syndrome seems promising, but large doses may be required. Therefore, a high-yield recombinant expression system for C1-Inh is very interesting. Earlier attempts to produce high levels of C1-Inh resulted in predominantly inactive C1-Inh. We describe the high yield expression of rhC1-Inh in Pichia pastoris, with 180 mg/l active C1-Inh at maximum. On average, 30 mg/l of 80-100% active C1-Inh was obtained. Progress curves were used to study the interaction with C1s, kallikrein, coagulation factor XIIa and XIa, and demonstrated that rhC1-Inh had the same inhibitory capacity as plasma C1-Inh. Structural integrity, as monitored via heat stability, was comparable despite differences in extent and nature of glycosylation. We conclude that the P. pastoris system is capable of high-level production of functionally and structurally intact human C1 inhibitor.
Collapse
Affiliation(s)
- Ineke G A Bos
- Dept. of Immunopathology, Sanquin Research at CLB, and Landsteiner Laboratory, Academical Medical Centre, University of Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
45
|
Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 2003; 100:5022-7. [PMID: 12702754 PMCID: PMC154291 DOI: 10.1073/pnas.0931263100] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The secretory pathway of Pichia pastoris was genetically re-engineered to perform sequential glycosylation reactions that mimic early processing of N-glycans in humans and other higher mammals. After eliminating nonhuman glycosylation by deleting the initiating alpha-1,6-mannosyltransferase gene from P. pastoris, several combinatorial genetic libraries were constructed to localize active alpha-1,2-mannosidase and human beta-1,2-N-acetylglucosaminyltransferase I (GnTI) in the secretory pathway. First, >32 N-terminal leader sequences of fungal type II membrane proteins were cloned to generate a leader library. Two additional libraries encoding catalytic domains of alpha-1,2-mannosidases and GnTI from mammals, insects, amphibians, worms, and fungi were cloned to generate catalytic domain libraries. In-frame fusions of the respective leader and catalytic domain libraries resulted in several hundred chimeric fusions of fungal targeting domains and catalytic domains. Although the majority of strains transformed with the mannosidase/leader library displayed only modest in vivo [i.e., low levels of mannose (Man)(5)-(GlcNAc)(2)] activity, we were able to isolate several yeast strains that produce almost homogeneous N-glycans of the (Man)(5)-(GlcNAc)(2) type. Transformation of these strains with a UDP-GlcNAc transporter and screening of a GnTI leader fusion library allowed for the isolation of strains that produce GlcNAc-(Man)(5)-(GlcNAc)(2) in high yield. Recombinant expression of a human reporter protein in these engineered strains led to the formation of a glycoprotein with GlcNAc-(Man)(5)-(GlcNAc)(2) as the primary N-glycan. Here we report a yeast able to synthesize hybrid glycans in high yield and open the door for engineering yeast to perform complex human-like glycosylation.
Collapse
Affiliation(s)
- Byung-Kwon Choi
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wei HY, Jiang LF, Xue YH, Fang DY, Guo HY. Secreted expression of dengue virus type 2 full-length envelope glycoprotein in Pichia pastoris. J Virol Methods 2003; 109:17-23. [PMID: 12668263 DOI: 10.1016/s0166-0934(03)00039-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The full-length envelope glycoprotein gene of dengue virus type 2 was cloned using an RT-PCR method from the infected C6/36 cells and inserted into pPICZaB vector. The recombinant plasmid was integrated into Pichia pastoris by electroporation and the expressed product was identified by SDS-PAGE and Western blotting. High-level secreted expression was performed by determining the Mut(+) phenotype and screening multi-copy integrants in the recombinant yeast cells. A recombinant protein with a molecular size of approximately 69 kDa was secreted into the supernatant from the yeast cells when induced with methanol. The expressed supernatant was able to bind with mouse polyclonal antibody or E-specific monoclonal antibody of dengue-2 virus. Purified E-poly (His)-tagged fusion protein was obtained from the expressed product by passing through a metal-chelating affinity chromatographic (MCAC) column. The results of Western blotting and solid-phase ELISA using dengue virus antibodies indicated that the purified recombinant E glycoprotein retained its antigenicity. High-level production of the recombinant E protein up to 100 mg/l indicates that P. pastoris is an efficient expression system for dengue virus full-length envelope glycoprotein.
Collapse
Affiliation(s)
- Hui-yong Wei
- Department of Microbiology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou 510089, People's Republic of China.
| | | | | | | | | |
Collapse
|
47
|
Bär J, Weber A, Hoffmann T, Stork J, Wermann M, Wagner L, Aust S, Gerhartz B, Demuth HU. Characterisation of Human Dipeptidyl Peptidase IV Expressed in Pichia pastoris. A Structural and Mechanistic Comparison between the Recombinant Human and the Purified Porcine Enzyme. Biol Chem 2003; 384:1553-63. [PMID: 14719797 DOI: 10.1515/bc.2003.172] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dipeptidyl peptidase IV/CD26 (DP IV) is a multifunctional serine protease cleaving off dipeptides from the N-terminus of peptides. The enzyme is expressed on the surface of epithelial and endothelial cells as a type II transmembrane protein. However, a soluble form of DP IV is also present in body fluids. Large scale expression of soluble human recombinant His(6)-37-766 DP IV, using the methylotrophic yeast Pichia pastoris, yielded 1.7 mg DP IV protein per litre of fermentation supernatant. The characterisation of recombinant DP IV confirmed proper folding and glycosylation similar to DP IV purified from porcine kidney. Kinetic comparison of both proteins using short synthetic substrates and inhibitors revealed similar characteristics. However, interaction analysis of both proteins with the gastrointestinal hormone GLP-1(7-36) resulted in significantly different binding constants for the human and the porcine enzyme (Kd = 153.0 +/- 17.0 microM and Kd = 33.4 +/- 2.2 microM, respectively). In contrast, the enzyme adenosine deaminase binds stronger to human than to porcine DP IV (Kd = 2.15 +/- 0.18 nM and Kd = 7.38 +/- 0.54 nM, respectively). Even though the sequence of porcine DP IV, amplified by RT-PCR, revealed 88% identity between both enzymes, the species-specific variations between amino acids 328 to 341 are likely to be responsible for the differences in ADA-binding.
Collapse
Affiliation(s)
- Joachim Bär
- Probiodrug AG, Department of Enzymology, D-06120 Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cipollo JF, Costello CE, Hirschberg CB. The fine structure of Caenorhabditis elegans N-glycans. J Biol Chem 2002; 277:49143-57. [PMID: 12361949 DOI: 10.1074/jbc.m208020200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the fine structure of a nearly contiguous series of N-glycans from the soil nematode Caenorhabditis elegans. Five major classes are revealed including high mannose, mammalian-type complex, hybrid, fuco-pausimannosidic (five mannose residues or fewer substituted with fucose), and phosphocholine oligosaccharides. The high mannose, complex, and hybrid N-glycan series show a high degree of conservation with the mammalian biosynthetic pathways. The fuco-pausimannosidic glycans contain a novel terminal fucose substitution of mannose. The phosphocholine oligosaccharides are high mannose type and are multiply substituted with phosphocholine. Although phosphocholine oligosaccharides are known immunomodulators in human nematode and trematode infections, C. elegans is unique as a non-parasitic nematode containing phosphocholine N-glycans. Therefore, studies in C. elegans should aid in the elucidation of the biosynthetic pathway(s) of this class of biomedically relevant compounds. Results presented here show that C. elegans has a functional orthologue for nearly every known enzyme found to be deficient in congenital disorders of glycosylation types I and II. This nematode is well characterized genetically and developmentally. Therefore, elucidation of its N-glycome, as shown in this report, may place it among the useful systems used to investigate human disorders of glycoconjugate synthesis such as the congenital disorders of glycosylation syndromes.
Collapse
Affiliation(s)
- John F Cipollo
- Department of Molecular and Cell Biology, Goldman School of Dental Medicine, Boston University, 715 Albany Street, Boston, MA 02118-2526, USA
| | | | | |
Collapse
|
49
|
Chiba Y, Sakuraba H, Kotani M, Kase R, Kobayashi K, Takeuchi M, Ogasawara S, Maruyama Y, Nakajima T, Takaoka Y, Jigami Y. Production in yeast of alpha-galactosidase A, a lysosomal enzyme applicable to enzyme replacement therapy for Fabry disease. Glycobiology 2002; 12:821-8. [PMID: 12499404 DOI: 10.1093/glycob/cwf096] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A mammalian-like sugar moiety was created in glycoprotein by Saccharomyces cerevisiae in combination with bacterial alpha-mannosidase to produce a more economic enzyme replacement therapy for patients with Fabry disease. We introduced the human alpha-galactosidase A (alpha-GalA) gene into an S. cerevisiae mutant that was deficient in the outer chains of N-linked mannan. The recombinant alpha-GalA contained both neutral (Man(8)GlcNAc(2)) and acidic ([Man-P](1-2)Man(8)GlcNAc(2)) sugar chains. Because an efficient incorporation of alpha-GalA into lysosomes of human cells requires mannose-6-phosphate (Man-6-P) residues that should be recognized by the specific receptor, we trimmed down the sugar chains of the alpha-GalA by a newly isolated bacterial alpha-mannosidase. Treatment of the alpha-GalA with the alpha-mannosidase resulted in the exposure of a Man-6-P residue on a nonreduced end of oligosaccharide chains after the removal of phosphodiester-linked nonreduced-end mannose. The treated alpha-GalA was efficiently incorporated into fibroblasts derived from patients with Fabry disease. The uptake was three to four times higher than that of the nontreated alpha-GalA and was inhibited by the addition of 5 mM Man-6-P. Incorporated alpha-GalA was targeted to the lysosome, and hydrolyzed ceramide trihexoside accumulated in the Fabry fibroblasts after 5 days. This method provides an effective and economic therapy for many lysosomal disorders, including Fabry disease.
Collapse
Affiliation(s)
- Yasunori Chiba
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Reddy ST, Dahms NM. High-level expression and characterization of a secreted recombinant cation-dependent mannose 6-phosphate receptor in Pichia pastoris. Protein Expr Purif 2002; 26:290-300. [PMID: 12406684 DOI: 10.1016/s1046-5928(02)00542-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mannose 6-phosphate receptors (MPRs) form essential components of the lysosomal enzyme targeting system by binding newly synthesized acid hydrolases with high (nM) affinity. We report the use of Pichia pastoris as a host to efficiently express the extracytoplasmic ligand-binding domain of the cation-dependent mannose 6-phosphate receptor. A truncated and glycosylation-deficient form of the receptor AF-Asn(81)/Stop(155) was secreted into the culture medium, yielding approximately 28mg/L after purification, which is an improvement of 10-100-fold compared to expression in baculovirus-infected insect cells and mammalian cells, respectively. Enzymatic deglycosylation indicated high-mannose sugars at the single potential glycosylation site of Asn 81. The extent and heterogeneity of N-glycans were revealed by applying matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In the case of AF-Asn(81)/Stop(155), the majority (75%) of the oligosaccharides contained chain lengths of Man(8-10)GlcNAc(2) while Man(11-12)GlcNAc(2) comprised the remaining (25%) N-linked sugars. A comparative MALDI-TOF spectra of Asn(81)/Stop(155) purified from insect cells indicated that Man(2-3)GlcNAc(2) and GlcNAcMan(2-3)GlcNAc(2) share the oligosaccharide pool. The receptor isolated from yeast was functional with respect to ligand binding and acid-dependent dissociation properties, as determined by pentamannosyl phosphate-agarose affinity chromatography. In addition, the protein was biochemically and functionally similar to Asn(81)/Stop(155) expressed in insect cells concerning its oligomeric state and binding affinity to the lysosomal enzyme, beta-glucuronidase (K(d)=1.4nM). These results demonstrate that P. pastoris is a convenient system for the production of large quantities of functional recombinant MPRs suitable for structure-function studies.
Collapse
Affiliation(s)
- Sreelatha T Reddy
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|