1
|
Bejarano E, Domenech-Bendaña A, Avila-Portillo N, Rowan S, Edirisinghe S, Taylor A. Glycative stress as a cause of macular degeneration. Prog Retin Eye Res 2024; 101:101260. [PMID: 38521386 DOI: 10.1016/j.preteyeres.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alicia Domenech-Bendaña
- Department of Biomedical Sciences, School of Health Sciences and Veterinary School, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | | | - Sheldon Rowan
- JM USDA Human Nutrition Research Center on Aging at Tufts University, United States
| | - Sachini Edirisinghe
- Tufts University Friedman School of Nutrition Science and Policy, United States
| | - Allen Taylor
- Tufts University Friedman School of Nutrition Science and Policy, United States.
| |
Collapse
|
2
|
Mashahreh B, Armony S, Johansson KE, Chappleboim A, Friedman N, Gardner RG, Hartmann-Petersen R, Lindorff-Larsen K, Ravid T. Conserved degronome features governing quality control associated proteolysis. Nat Commun 2022; 13:7588. [PMID: 36481666 PMCID: PMC9732359 DOI: 10.1038/s41467-022-35298-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The eukaryotic proteome undergoes constant surveillance by quality control systems that either sequester, refold, or eliminate aberrant proteins by ubiquitin-dependent mechanisms. Ubiquitin-conjugation necessitates the recognition of degradation determinants, termed degrons, by their cognate E3 ubiquitin-protein ligases. To learn about the distinctive properties of quality control degrons, we performed an unbiased peptidome stability screen in yeast. The search identify a large cohort of proteome-derived degrons, some of which exhibited broad E3 ligase specificity. Consequent application of a machine-learning algorithm establishes constraints governing degron potency, including the amino acid composition and secondary structure propensities. According to the set criteria, degrons with transmembrane domain-like characteristics are the most probable sequences to act as degrons. Similar quality control degrons are present in viral and human proteins, suggesting conserved degradation mechanisms. Altogether, the emerging data indicate that transmembrane domain-like degron features have been preserved in evolution as key quality control determinants of protein half-life.
Collapse
Affiliation(s)
- Bayan Mashahreh
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shir Armony
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kristoffer Enøe Johansson
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alon Chappleboim
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nir Friedman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Matyshevska OP, Grigorieva MV, Danilova VM, Komisarenko SV. Ubiquitin and its role in proteolisis: the 2004 Nobel prize in chemistry. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the early 1980-s, Aaron Ciechanover, Avram Hershko, and Irwin Rose discovered one of the most important cyclic cellular processes – a regulated ATP-dependent protein degradation, for which they were awarded the 2004 Nobel Prize in Chemistry. These scientists proved the existence of a non-lysosomal proteolysis pathway and completely changed the perception of intracellular protein degradation mechanisms. They demonstrated pre-labelling of a doomed protein in a cell with a biochemical marker called ubiquitin. Polyubiquitylation of a protein as a signal for its proteolysis was a new mechanism discovered as a result of collaborative efforts of three scientists on isolation of enzymes involved in this sequential process, clarification of the biochemical stages, and substantiating the energy dependence mechanism. The article contains biographical data of the Nobel laureates, the methods applied, and the history of the research resulted in the discovery of the phenomenon of proteasomal degradation of ubiquitin-mediated proteins. Keywords: PROTAC, regulated protein degradation, ubiquitin, І. Rose, А. Ciechanover, А. Hershko
Collapse
|
4
|
Fry M. Question-driven stepwise experimental discoveries in biochemistry: two case studies. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:12. [PMID: 35320436 DOI: 10.1007/s40656-022-00491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Philosophers of science diverge on the question what drives the growth of scientific knowledge. Most of the twentieth century was dominated by the notion that theories propel that growth whereas experiments play secondary roles of operating within the theoretical framework or testing theoretical predictions. New experimentalism, a school of thought pioneered by Ian Hacking in the early 1980s, challenged this view by arguing that theory-free exploratory experimentation may in many cases effectively probe nature and potentially spawn higher evidence-based theories. Because theories are often powerless to envisage workings of complex biological systems, theory-independent experimentation is common in the life sciences. Some such experiments are triggered by compelling observation, others are prompted by innovative techniques or instruments, whereas different investigations query big data to identify regularities and underlying organizing principles. A distinct fourth type of experiments is motivated by a major question. Here I describe two question-guided experimental discoveries in biochemistry: the cyclic adenosine monophosphate mediator of hormone action and the ubiquitin-mediated system of protein degradation. Lacking underlying theories, antecedent data bases, or new techniques, the sole guides of the two discoveries were respective substantial questions. Both research projects were similarly instigated by theory-free exploratory experimentation and continued in alternating phases of results-based interim working hypotheses, their examination by experiment, provisional hypotheses again, and so on. These two cases designate theory-free, question-guided, stepwise biochemical investigations as a distinct subtype of the new experimentalism mode of scientific enquiry.
Collapse
Affiliation(s)
- Michael Fry
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, POB 9649, 31096, Haifa, Israel.
| |
Collapse
|
5
|
Ella H, Reiss Y, Ravid T. The Hunt for Degrons of the 26S Proteasome. Biomolecules 2019; 9:biom9060230. [PMID: 31200568 PMCID: PMC6628059 DOI: 10.3390/biom9060230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023] Open
Abstract
Since the discovery of ubiquitin conjugation as a cellular mechanism that triggers proteasomal degradation, the mode of substrate recognition by the ubiquitin-ligation system has been the holy grail of research in the field. This entails the discovery of recognition determinants within protein substrates, which are part of a degron, and explicit E3 ubiquitin (Ub)-protein ligases that trigger their degradation. Indeed, many protein substrates and their cognate E3′s have been discovered in the past 40 years. In the course of these studies, various degrons have been randomly identified, most of which are acquired through post-translational modification, typically, but not exclusively, protein phosphorylation. Nevertheless, acquired degrons cannot account for the vast diversity in cellular protein half-life times. Obviously, regulation of the proteome is largely determined by inherent degrons, that is, determinants integral to the protein structure. Inherent degrons are difficult to predict since they consist of diverse sequence and secondary structure features. Therefore, unbiased methods have been employed for their discovery. This review describes the history of degron discovery methods, including the development of high throughput screening methods, state of the art data acquisition and data analysis. Additionally, it summarizes major discoveries that led to the identification of cognate E3 ligases and hitherto unrecognized complexities of degron function. Finally, we discuss future perspectives and what still needs to be accomplished towards achieving the goal of understanding how the eukaryotic proteome is regulated via coordinated action of components of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Hadar Ella
- Department of Biological Chemistry, Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yuval Reiss
- Department of Biological Chemistry, Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Tommer Ravid
- Department of Biological Chemistry, Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
6
|
From Precise Slicing to General SHREDding: The Ubiquitin Ligase Ubr1 Roqs as a Multipurpose Protein Terminator. Mol Cell 2019; 70:989-990. [PMID: 29932909 DOI: 10.1016/j.molcel.2018.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the current issue of Molecular Cell, Szoradi et al. (2018) present compelling data demonstrating how the newly identified SHRED pathway in yeast selectively shifts the E3 ligase Ubr1 specificity from N-end rule substrates to misfolded proteins in cells under proteostatic stress.
Collapse
|
7
|
Streich FC, Lima CD. Strategies to Trap Enzyme-Substrate Complexes that Mimic Michaelis Intermediates During E3-Mediated Ubiquitin-Like Protein Ligation. Methods Mol Biol 2018; 1844:169-196. [PMID: 30242710 DOI: 10.1007/978-1-4939-8706-1_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Most cellular functions rely on pathways that catalyze posttranslational modification of cellular proteins by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. Like other posttranslational modifications that require distinct writers, readers, and erasers during signaling, Ub/Ubl pathways employ distinct enzymes that catalyze Ub/Ubl attachment, Ub/Ubl recognition, and Ub/Ubl removal. Ubl protein conjugation typically relies on parallel but distinct enzymatic cascades catalyzed by an E1-activating enzyme, an E2 carrier protein, and an E3 ubiquitin-like protein ligase. One major class of E3, with ca. 600 members, harbors RING or the RING-like SP-RING or Ubox domains. These RING/RING-like domains bind and activate the E2-Ubl thioester by stabilizing a conformation that is optimal for nucleophilic attack by the side chain residue (typically lysine) on the substrate. These RING/RING-like domains typically function together with other domains or protein complexes that often serve to recruit particular substrates. How these RING/RING-like E3 domains function to activate the E2-Ubl thioester while engaged with substrate remains poorly understood. We describe a strategy to generate and purify a unique E2Ubc9-UblSUMO thioester mimetic that can be cross-linked to the SubstratePCNA at Lys164, a conjugation site that is only observed in the presence of E3Siz1. We describe two techniques to cross-link the E2Ubc9-UblSUMO thioester mimetic active site to the site of modification on PCNA and the subsequent purification of these complexes. Finally, we describe the reconstitution and purification of the E2Ubc9-UblSUMO-PCNA complex with the E3Siz1 and purification that enabled its crystallization and structure determination. We think this technique can be extended to other E2-Ubl-substrate/E3 complexes to better probe the function and specificity of RING-based E3 Ubl ligases.
Collapse
Affiliation(s)
- Frederick C Streich
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA.
- Howard Hughes Medical Institute, 1275 York Ave, New York, NY, USA.
| |
Collapse
|
8
|
McDowell G, Philpott A. New Insights Into the Role of Ubiquitylation of Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:35-88. [DOI: 10.1016/bs.ircmb.2016.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Lee JH, Jiang Y, Kwon YT, Lee MJ. Pharmacological Modulation of the N-End Rule Pathway and Its Therapeutic Implications. Trends Pharmacol Sci 2015; 36:782-797. [PMID: 26434644 DOI: 10.1016/j.tips.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 11/26/2022]
Abstract
The N-end rule pathway is a proteolytic system in which single N-terminal amino acids of short-lived substrates determine their metabolic half-lives. Substrates of this pathway have been implicated in the pathogenesis of many diseases, including malignancies, neurodegeneration, and cardiovascular disorders. This review provides a comprehensive overview of current knowledge about the mechanism and functions of the N-end rule pathway. Pharmacological strategies for the modulation of target substrate degradation are also reviewed, with emphasis on their in vivo implications. Given the rapid advances in structural and biochemical understanding of the recognition components (N-recognins) of the N-end rule pathway, small-molecule inhibitors and activating ligands of N-recognins emerge as therapeutic agents with novel mechanisms of action.
Collapse
Affiliation(s)
- Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Yanxialei Jiang
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Protein Metabolism Medical Research Center, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Neuroscience Research Institute, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|
10
|
Różycka M, Wojtas M, Jakób M, Stigloher C, Grzeszkowiak M, Mazur M, Ożyhar A. Intrinsically disordered and pliable Starmaker-like protein from medaka (Oryzias latipes) controls the formation of calcium carbonate crystals. PLoS One 2014; 9:e114308. [PMID: 25490041 PMCID: PMC4260845 DOI: 10.1371/journal.pone.0114308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 01/31/2023] Open
Abstract
Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed.
Collapse
Affiliation(s)
- Mirosława Różycka
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Michał Jakób
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Christian Stigloher
- Division of Electron Microscopy, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mikołaj Grzeszkowiak
- NanoBioMedical Centre and Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
- * E-mail:
| |
Collapse
|
11
|
Zhou MJ, Chen FZ, Chen HC. Ubiquitination involved enzymes and cancer. Med Oncol 2014; 31:93. [PMID: 25023052 DOI: 10.1007/s12032-014-0093-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/21/2014] [Indexed: 12/21/2022]
Abstract
Ubiquitination is a post-translational modification process that regulates multiple cell functions. It also plays important roles in the development of cancer. Mechanistically, ubiquitination is a complex process that is comprised of a series of events involving ubiquitin-activating enzymes, ubiquitin-conjugating enzymes and ubiquitin ligases. In general, covalent attachment of ubiquitin to the target proteins marks them for degradation. Dysregulation of the ubiquitination process may cause carcinogenesis. In this review, we summarize recent developments in understanding the relationship between ubiquitination enzymes and carcinogenesis.
Collapse
Affiliation(s)
- Mei-juan Zhou
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China,
| | | | | |
Collapse
|
12
|
McDowell GS, Philpott A. Non-canonical ubiquitylation: mechanisms and consequences. Int J Biochem Cell Biol 2013; 45:1833-42. [PMID: 23732108 DOI: 10.1016/j.biocel.2013.05.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/10/2013] [Accepted: 05/22/2013] [Indexed: 01/04/2023]
Abstract
Post-translational protein modifications initiate, regulate, propagate and terminate a wide variety of processes in cells, and in particular, ubiquitylation targets substrate proteins for degradation, subcellular translocation, cell signaling and multiple other cellular events. Modification of substrate proteins is widely observed to occur via covalent linkages of ubiquitin to the amine groups of lysine side-chains. However, in recent years several new modes of ubiquitin chain attachment have emerged. For instance, covalent modification of non-lysine sites in substrate proteins is theoretically possible according to basic chemical principles underlying the ubiquitylation process, and evidence is building that sites such as the N-terminal amine group of a protein, the hydroxyl group of serine and threonine residues and even the thiol groups of cysteine residues are all employed as sites of ubiquitylation. However, the potential importance of this "non-canonical ubiquitylation" of substrate proteins on sites other than lysine residues has been largely overlooked. This review aims to highlight the unusual features of the process of non-canonical ubiquitylation and the consequences of these events on the activity and fate of a protein.
Collapse
Affiliation(s)
- Gary S McDowell
- Department of Oncology, University of Cambridge, Hutchison/Medical Research Council (MRC) Research Centre, Cambridge, UK
| | | |
Collapse
|
13
|
Micel LN, Tentler JJ, Smith PG, Eckhardt GS. Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol 2013; 31:1231-8. [PMID: 23358974 DOI: 10.1200/jco.2012.44.0958] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin proteasome system (UPS) regulates the ubiquitination, and thus degradation and turnover, of many proteins vital to cellular regulation and function. The UPS comprises a sequential series of enzymatic processes using four key enzyme families: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-carrier proteins), E3 (ubiquitin-protein ligases), and E4 (ubiquitin chain assembly factors). Because the UPS is a crucial regulator of the cell cycle, and abnormal cell-cycle control can lead to oncogenesis, aberrancies within the UPS pathway can result in a malignant cellular phenotype and thus has become an attractive target for novel anticancer agents. This article will provide an overall review of the mechanics of the UPS, describe aberrancies leading to cancer, and give an overview of current drug therapies selectively targeting the UPS.
Collapse
|
14
|
Medina B, Paraskevopoulos K, Boehringer J, Sznajder A, Robertson M, Endicott J, Gordon C. The ubiquitin-associated (UBA) 1 domain of Schizosaccharomyces pombe Rhp23 is essential for the recognition of ubiquitin-proteasome system substrates both in vitro and in vivo. J Biol Chem 2012; 287:42344-51. [PMID: 23038266 PMCID: PMC3516777 DOI: 10.1074/jbc.m112.419838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system is essential for maintaining a functional cell. Not only does it remove incorrectly folded proteins, it also regulates protein levels to ensure their appropriate spatial and temporal distribution. Proteins marked for degradation by the addition of Lys(48)-linked ubiquitin (Ub) chains are recognized by shuttle factors and transported to the 26 S proteasome. One of these shuttle factors, Schizosaccharomyces pombe Rhp23, has an unusual domain architecture. It comprises an N-terminal ubiquitin-like domain that can recognize the proteasome followed by two ubiquitin-associated (UBA) domains, termed UBA1 and UBA2, which can bind Ub. This architecture is conserved up to humans, suggesting that both domains are important for Rhp23 function. Such an extent of conservation raises the question as to why, in contrast to all other shuttle proteins, does Rhp23 require two UBA domains? We performed in vitro Ub binding assays using domain swap chimeric proteins and mutated domains in isolation as well as in the context of the full-length protein to reveal that the Ub binding properties of the UBA domains are context-dependent. In vivo, the internal Rhp23 UBA1 domain provides sufficient Ub recognition for the protein to function without UBA2.
Collapse
Affiliation(s)
- Bethan Medina
- From the Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom and
| | - Konstantinos Paraskevopoulos
- From the Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom and
| | - Jonas Boehringer
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Anna Sznajder
- From the Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom and
| | - Morag Robertson
- From the Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom and
| | - Jane Endicott
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Colin Gordon
- From the Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom and
| |
Collapse
|
15
|
Adaptive response, evidence of cross-resistance and its potential clinical use. Int J Mol Sci 2012; 13:10771-10806. [PMID: 23109822 PMCID: PMC3472714 DOI: 10.3390/ijms130910771] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 12/15/2022] Open
Abstract
Organisms and their cells are constantly exposed to environmental fluctuations. Among them are stressors, which can induce macromolecular damage that exceeds a set threshold, independent of the underlying cause. Stress responses are mechanisms used by organisms to adapt to and overcome stress stimuli. Different stressors or different intensities of stress trigger different cellular responses, namely induce cell repair mechanisms, induce cell responses that result in temporary adaptation to some stressors, induce autophagy or trigger cell death. Studies have reported life-prolonging effects of a wide variety of so-called stressors, such as oxidants, heat shock, some phytochemicals, ischemia, exercise and dietary energy restriction, hypergravity, etc. These stress responses, which result in enhanced defense and repair and even cross-resistance against multiple stressors, may have clinical use and will be discussed, while the emphasis will be on the effects/cross-effects of oxidants.
Collapse
|
16
|
Shang F, Taylor A. Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina: implications in the pathogenesis of age-related macular degeneration. Mol Aspects Med 2012; 33:446-66. [PMID: 22521794 PMCID: PMC3417153 DOI: 10.1016/j.mam.2012.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
The accumulation of damaged or postsynthetically modified proteins and dysregulation of inflammatory responses and angiogenesis in the retina/RPE are thought be etiologically related to formation of drusen and choroidal neovascularization (CNV), hallmarks of age-related macular degeneration (AMD). The ubiquitin-proteasome pathway (UPP) plays crucial roles in protein quality control, cell cycle control and signal transduction. Selective degradation of aberrant proteins by the UPP is essential for timely removal of potentially cytotoxic damaged or otherwise abnormal proteins. Proper function of the UPP is thought to be required for cellular function. In contrast, age--or stress induced--impairment the UPP or insufficient UPP capacity may contribute to the accumulation of abnormal proteins, cytotoxicity in the retina, and AMD. Crucial roles for the UPP in eye development, regulation of signal transduction, and antioxidant responses are also established. Insufficient UPP capacity in retina and RPE can result in dysregulation of signal transduction, abnormal inflammatory responses and CNV. There are also interactions between the UPP and lysosomal proteolytic pathways (LPPs). Means that modulate the proteolytic capacity are making their way into new generation of pharmacotherapies for delaying age-related diseases and may augment the benefits of adequate nutrition, with regard to diminishing the burden of AMD.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Boston, MA 02111, USA.
| | | |
Collapse
|
17
|
Shoji I. Roles of the two distinct proteasome pathways in hepatitis C virus infection. World J Virol 2012; 1:44-50. [PMID: 24175210 PMCID: PMC3782266 DOI: 10.5501/wjv.v1.i2.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/22/2012] [Accepted: 03/05/2012] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) infection often causes chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The development of a HCV cell culture system enabled us to investigate its whole HCV life cycle and develop a better understanding of the pathogenesis of this virus. Post-translational modification plays a crucial role in HCV replication and in the maturation of viral particles. There is growing evidence also suggesting that the ubiquitin-proteasome pathway and the ubiquitin-independent proteasome pathway are involved in the stability control of HCV proteins. Many viruses are known to manipulate the proteasome pathways to modulate the cell cycle, inhibit apoptosis, evade the immune system, and activate cell signaling, thereby contributing to persistent infection and viral carcinogenesis. The identification of functional interactions between HCV and the proteasome pathways will therefore shed new light on the life cycle and pathogenesis of HCV. This review summarizes the current knowledge on the involvement of the ubiquitin-dependent and -independent proteasome pathways in HCV infection and discusses the roles of these two distinct mechanisms in HCV pathogenesis.
Collapse
Affiliation(s)
- Ikuo Shoji
- Ikuo Shoji, Division of Microbiology, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| |
Collapse
|
18
|
Shang F, Taylor A. Role of the ubiquitin-proteasome in protein quality control and signaling: implication in the pathogenesis of eye diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:347-96. [PMID: 22727427 DOI: 10.1016/b978-0-12-397863-9.00010-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) plays important roles in many cellular functions, such as protein quality control, cell cycle control, and signal transduction. The selective degradation of aberrant proteins by the UPP is essential for the timely removal of potential cytotoxic damaged or otherwise abnormal proteins. Conversely, accumulation of the cytotoxic abnormal proteins in eye tissues is etiologically associated with many age-related eye diseases such as retina degeneration, cataract, and certain types of glaucoma. Age- or stress-induced impairment or overburdening of the UPP appears to contribute to the accumulation of abnormal proteins in eye tissues. Cell cycle and signal transduction are regulated by the conditional UPP-dependent degradation of the regulators of these processes. Impairment or overburdening of the UPP could also result in dysregulation of cell cycle control and signal transduction. The consequences of the improper cell cycle and signal transduction include defects in ocular development, wound healing, angiogenesis, or inflammatory responses. Methods that enhance or preserve UPP function or reduce its burden may be useful strategies for preventing age-related eye diseases.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Boston, Massachusetts, USA
| | | |
Collapse
|
19
|
Verhelst K, Carpentier I, Beyaert R. Regulation of TNF-induced NF-κB activation by different cytoplasmic ubiquitination events. Cytokine Growth Factor Rev 2011; 22:277-86. [DOI: 10.1016/j.cytogfr.2011.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Shang F, Taylor A. Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 2011; 51:5-16. [PMID: 21530648 PMCID: PMC3109097 DOI: 10.1016/j.freeradbiomed.2011.03.031] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/08/2011] [Accepted: 03/26/2011] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in noncanonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. Whereas many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin-conjugating enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin-conjugating enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells seem to be an indicator of mild oxidative stress.
Collapse
Affiliation(s)
- Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | |
Collapse
|
21
|
Shimoji T, Murakami K, Sugiyama Y, Matsuda M, Inubushi S, Nasu J, Shirakura M, Suzuki T, Wakita T, Kishino T, Hotta H, Miyamura T, Shoji I. Identification of annexin A1 as a novel substrate for E6AP-mediated ubiquitylation. J Cell Biochem 2009; 106:1123-35. [DOI: 10.1002/jcb.22096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Hershko A. Some lessons from my work on the biochemistry of the ubiquitin system. J Biol Chem 2008; 284:10291-5. [PMID: 19075010 DOI: 10.1074/jbc.x800016200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Avram Hershko
- Unit of Biochemistry, The B. Rappaport Faculty of Medicine, Israel.
| |
Collapse
|
23
|
Abstract
The ubiquitin-proteasome system degrades an enormous variety of proteins that contain specific degradation signals, or 'degrons'. Besides the degradation of regulatory proteins, almost every protein suffers from sporadic biosynthetic errors or misfolding. Such aberrant proteins can be recognized and rapidly degraded by cells. Structural and functional data on a handful of degrons allow several generalizations regarding their mechanism of action. We focus on different strategies of degron recognition by the ubiquitin system, and contrast regulatory degrons that are subject to signalling-dependent modification with those that are controlled by protein folding or assembly, as frequently occurs during protein quality control.
Collapse
|
24
|
DeBose-Boyd RA. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 2008; 18:609-21. [PMID: 18504457 DOI: 10.1038/cr.2008.61] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids. The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism. Here, I will discuss recent advances that shed light on one mechanism for control of reductase, which involves rapid degradation of the enzyme. Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2. Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78, which initiates ubiquitination of reductase. This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes. Thus, sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).
Collapse
Affiliation(s)
- Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
25
|
Mogk A, Schmidt R, Bukau B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 2007; 17:165-72. [PMID: 17306546 DOI: 10.1016/j.tcb.2007.02.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/08/2007] [Accepted: 02/02/2007] [Indexed: 01/02/2023]
Abstract
The N-end rule states that the half-life of a protein is determined by the nature of its N-terminal residue. This fundamental principle of regulated proteolysis is conserved from bacteria to mammals. Although prokaryotes and eukaryotes employ distinct proteolytic machineries for degradation of N-end rule substrates, recent findings indicate that they share common principles of substrate recognition. In eukaryotes substrate recognition is mediated by N-recognins, a class of E3 ligases that labels N-end rule substrates via covalent linkage to ubiquitin, allowing the subsequent substrate delivery to the 26S proteasome. In bacteria, the adaptor protein ClpS exhibits homology to the substrate binding site of N-recognin. ClpS binds to the destabilizing N-termini of N-end rule substrates and directly transfers them to the ClpAP protease.
Collapse
Affiliation(s)
- Axel Mogk
- ZMBH, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | |
Collapse
|
26
|
Downs C, Downs A. Preliminary examination of short-term cellular toxicological responses of the coral Madracis mirabilis to acute Irgarol 1051 exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 52:47-57. [PMID: 17136316 DOI: 10.1007/s00244-005-0213-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 04/04/2006] [Indexed: 05/12/2023]
Abstract
Irgarol 1051 is an s-triazine herbicide formulated with Cu2O in antifouling paints. Recent studies have shown that Irgarol 1051 inhibits coral photosynthesis at environmentally relevant concentrations, consistent with its mode of action as a photosystem II inhibitor. Related toxicologic effects of this herbicide on coral cellular physiology have not yet been investigated. We used cellular diagnostics to measure changes in 18 toxicologic cellular parameters in endosymbiotic algal (dinoflagellate) and cnidarian (host) fractions of the common branching coral Madracis mirabilis associated with in vivo 8- and 24-hour exposures to a nominal initial Irgarol 1051 concentration of 10 microg L(-1). Responses measured were (1) xenobiotic response, which includes total and dinoflagellate multixenobiotic resistance (MXR), cnidarian cytochrome (CYP) P450-3 and P450-6 classes, cnidarian, and dinoflagellate glutathione-s-transferase (GST); (2) oxidative damage and response, which includes cnidarian and dinoflagellate Cu/Zn and Mn superoxide dismutase (SOD), cnidarian and dinoflagellate glutathione peroxidase (GPx), cnidarian catalase, and total protein carbonyl); (3) metabolic homeostasis, which includes chloroplast and invertebrate small heat-shock proteins (sHsp), cnidarian protoporphyrinogen oxidase IX (PPO), cnidarian ferrochelatase, and cnidarian heme oxygenase; and (4) protein metabolic condition, which includes cnidarian and dinoflagellate heat shock proteins (hsp70 and hsp60), total ubiquitin, and cnidarian ubiquitin ligase. Acute responses to Irgarol 1051 exposure included significant increases in total and dinoflagellate MXR, dinoflagellate Cu/Zn SOD, dinoflagellate chloroplast sHsp, and cnidarian PPO. Irgarol 1051 exposure resulted in decreases in cnidarian GPx, cnidarian ferrochelatase, cnidarian catalase, and cnidarian CYP 450-3 and -6 classes. Related implications of Irgarol 1051 exposure to coral cellular condition are discussed.
Collapse
Affiliation(s)
- C Downs
- Haereticus Environmental Laboratory, P.O. Box 93, Clifford, VA 24533, USA.
| | | |
Collapse
|
27
|
Hershko A. The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). Angew Chem Int Ed Engl 2006; 44:5932-43. [PMID: 16142823 DOI: 10.1002/anie.200501724] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Avram Hershko
- Unit of Biochemistry, the B. Rappaport Faculty of Medicine, Technion-Israel Institute for Technology, Haifa 31096, Israel.
| |
Collapse
|
28
|
Mani A, Oh AS, Bowden ET, Lahusen T, Lorick KL, Weissman AM, Schlegel R, Wellstein A, Riegel AT. E6AP Mediates Regulated Proteasomal Degradation of the Nuclear Receptor Coactivator Amplified in Breast Cancer 1 in Immortalized Cells. Cancer Res 2006; 66:8680-6. [PMID: 16951183 DOI: 10.1158/0008-5472.can-06-0557] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The steroid receptor coactivator oncogene, amplified in breast cancer 1 (AIB1; also known as ACTR/RAC-3/TRAM-1/SRC-3/p/CIP), is amplified and overexpressed in a variety of epithelial tumors. AIB1 has been reported to have roles in both steroid-dependent and steroid-independent transcription during tumor progression. In this report, we describe that the cellular levels of AIB1 are controlled through regulated proteasomal degradation. We found that serum withdrawal or growth in high cell density caused rapid degradation of AIB1 protein, but not mRNA, in immortalized cell lines. Proteasome inhibitors prevented this process, and high molecular weight ubiquitylated species of AIB1 were detected. Nuclear export was required for proteasomal degradation of AIB1 and involved the ubiquitin ligase, E6AP. AIB1/E6AP complexes were detected in cellular extracts, and reduction of cellular E6AP levels with E6AP short interfering RNA prevented proteasomal degradation of AIB1. Conversely, overexpression of E6AP promoted AIB1 degradation. The COOH terminus of AIB1 interacted with E6AP in vitro and deletion of this region in AIB1 rendered it resistant to degradation in cells. From our results, we propose a model whereby signals promoted by changes in the cellular milieu initiate E6AP-mediated proteasomal degradation of AIB1 and thus contribute to the control of steady-state levels of this protein.
Collapse
Affiliation(s)
- Aparna Mani
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The 2004 Nobel Prize in chemistry for the discovery of protein ubiquitination has led to the recognition of cellular proteolysis as a central area of research in biology. Eukaryotic proteins targeted for degradation by this pathway are first 'tagged' by multimers of a protein known as ubiquitin and are later proteolyzed by a giant enzyme known as the proteasome. This article recounts the key observations that led to the discovery of ubiquitin-proteasome system (UPS). In addition, different aspects of proteasome biology are highlighted. Finally, some key roles of the UPS in different areas of biology and the use of inhibitors of this pathway as possible drug targets are discussed.
Collapse
Affiliation(s)
- Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore.
| | | | | | | |
Collapse
|
30
|
Marques C, Guo W, Pereira P, Taylor A, Patterson C, Evans PC, Shang F. The triage of damaged proteins: degradation by the ubiquitin-proteasome pathway or repair by molecular chaperones. FASEB J 2006; 20:741-3. [PMID: 16469848 PMCID: PMC2100384 DOI: 10.1096/fj.05-5080fje] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Accumulation of damaged proteins is causally related to many age-related diseases. The ubiquitin-proteasome pathway (UPP) plays a role in selective degradation of damaged proteins, whereas molecular chaperones, such as heat shock proteins, are involved in refolding denatured proteins. This work demonstrates for the first time that the UPP and molecular chaperones work in a competitive manner and that the fates of denatured proteins are determined by the relative activities of the UPP and molecular chaperones. Enhanced UPP activity suppresses the refolding of denatured proteins whereas elevated chaperone activity inhibits the degradation of denatured proteins. CHIP, a co-chaperone with E3 activity, plays a pivotal role in determining the fates of the damaged proteins. The delicate balance between UPP-mediated degradation and refolding of denatured proteins is governed by relative levels of CHIP and other molecular chaperones. Isopeptidases, the enzymes that reverse the actions of CHIP, also play an important role in determining the fate of denatured proteins.
Collapse
Affiliation(s)
- Carla Marques
- Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
- Center of Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra, Portugal
| | - Weimin Guo
- Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Paulo Pereira
- Center of Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra, Portugal
| | - Allen Taylor
- Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Cam Patterson
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, North Carolina
| | - Paul C. Evans
- BHF Cardiovascular Medicine, Imperial College, London, United Kingdom
| | - Fu Shang
- Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| |
Collapse
|
31
|
Eytan E, Moshe Y, Braunstein I, Hershko A. Roles of the anaphase-promoting complex/cyclosome and of its activator Cdc20 in functional substrate binding. Proc Natl Acad Sci U S A 2006; 103:2081-6. [PMID: 16455800 PMCID: PMC1413726 DOI: 10.1073/pnas.0510695103] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin-protein ligase that targets for degradation cell-cycle regulatory proteins during exit from mitosis and in the G1 phase of the cell cycle. The activity of APC/C in mitosis and in G1 requires interaction with the activator proteins Cdc20 and Cdh1, respectively. Substrates of APC/C-Cdc20 contain a recognition motif called the "destruction box" (D-box). The mode of the action of APC/C activators and their possible role in substrate binding remain poorly understood. Several investigators suggested that Cdc20 and Cdh1 mediate substrate recognition, whereas others proposed that substrates bind to APC/C or to APC/C-activator complexes. All these studies used binding assays, which do not necessarily indicate that substrate binding is functional and leads to product formation. In the present investigation we examined this problem by an "isotope-trapping" approach that directly demonstrates productive substrate binding. With this method we found that the simultaneous presence of both APC/C and Cdc20 is required for functional substrate binding. By contrast, with conventional binding assays we found that either Cdc20 or APC/C can bind substrate by itself, but only at low affinity and relaxed selectivity for D-box. Our results are consistent with models in which interaction of substrate with specific binding sites on both APC/C and Cdc20 is involved in selective and productive substrate binding.
Collapse
Affiliation(s)
- Esther Eytan
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
| | - Yakir Moshe
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
| | - Ilana Braunstein
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
| | - Avram Hershko
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Hershko A. The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 2005; 12:1191-7. [PMID: 16094395 DOI: 10.1038/sj.cdd.4401702] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Owing to the intensive research activity on protein synthesis, little attention was paid in the 1950s and 1960s to protein degradation. However, work by my group and others between 1970 and 1990 led to the identification of the ubiquitin-dependent degradation system. We found that this system contains three types of enzymes: E1 ubiquitin--activating enzyme, E2 ubiquitin--carrier enzyme and E3 ubiquitin--protein ligase. The sequential action of these enzymes leads to conjugation of ubiquitin to proteins and then in most cases to their degradation. This review briefly tells the story of how this pathway was discovered describing the main findings that during the years allowed us to draw the complex picture we have now.
Collapse
Affiliation(s)
- A Hershko
- The B. Rappaport Faculty of Medicine and the Rappaport Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
33
|
Hershko A. Das Ubiquitinsystem im Proteinabbau und einige seiner Aufgaben bei der Steuerung des Zellteilungszyklus (Nobel-Vortrag). Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Abstract
Critical cellular processes are regulated, in part, by maintaining the appropriate intracellular levels of proteins. Whereas de novo protein synthesis is a comparatively slow process, proteins are rapidly degraded at a rate compatible with the control of cell cycle transitions and cell death induction. A major pathway for protein degradation is initiated by the addition of multiple 76-amino acid ubiquitin monomers via a three-step process of ubiquitin activation and substrate recognition. Polyubiquitination targets proteins for recognition and processing by the 26S proteasome, a cylindrical organelle that recognizes ubiquitinated proteins, degrades the proteins, and recycles ubiquitin. The critical roles played by ubiquitin-mediated protein turnover in cell cycle regulation makes this process a target for oncogenic mutations. Oncogenes of several common malignancies, for example colon and renal cell cancer, code for ubiquitin ligase components. Cervical oncogenesis by human papillomavirus is also mediated by alteration of ubiquitin ligase pathways. Protein degradation pathways are also targets for cancer therapy, as shown by the successful introduction of bortezomib, an inhibitor of the 26S proteasome. Further work in this area holds great promise toward our understanding and treatment of a wide range of cancers.
Collapse
Affiliation(s)
- Aparna Mani
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Rd NW, Washington, DC 20007-2197, USA
| | | |
Collapse
|
35
|
Iwai K, Ishikawa H, Kirisako T. Identification, Expression, and Assay of an Oxidation‐Specific Ubiquitin Ligase, HOIL‐1. Methods Enzymol 2005; 398:256-71. [PMID: 16275334 DOI: 10.1016/s0076-6879(05)98021-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ubiquitin system plays important roles in the regulation of numerous cellular processes. It is well established that ubiquitin ligases (E3s) are key components in determining the specificity of the system and that the modification of substrates such as phosphorylation often plays a critical role in selective substrate recognition by E3s. Through studies analyzing iron-mediated degradation of iron regulatory protein 2 (IRP2), a central regulator of iron metabolism in mammalian cells, we have identified a RING finger protein, HOIL-1, as an ubiquitin ligase recognizing IRP2 through a signal created by heme-mediated oxidative modification of the protein. We have utilized several types of in vitro ubiquitination assays that detect IRP2 ubiquitination and a differential yeast two-hybrid screen in which yeast cells were cultured either in the presence or in the absence of oxygen to control the oxidation state of the bait in the cells in our studies. This chapter describes the detailed methods used for the identification and functional analysis of the HOIL-1 ligase.
Collapse
Affiliation(s)
- Kazuhiro Iwai
- Department of Molecular Cell Biology, Graduate School of Medicine, Osaka City University, and Japan Science and Technology Agency, Osaka 545-8585, Japan
| | | | | |
Collapse
|
36
|
Song BL, DeBose-Boyd RA. Ubiquitination of 3-hydroxy-3-methylglutaryl-CoA reductase in permeabilized cells mediated by cytosolic E1 and a putative membrane-bound ubiquitin ligase. J Biol Chem 2004; 279:28798-806. [PMID: 15090540 DOI: 10.1074/jbc.m402442200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) enzyme, 3-hydroxy-3-methylglutaryl-CoA reductase, catalyzes the production of mevalonate, a rate-controlling step in cholesterol biosynthesis. Excess sterols promote ubiquitination and subsequent degradation of reductase as part of a negative feedback regulatory mechanism. To characterize the process in more detail, we here report the development of a permeabilized cell system that supports reductase ubiquitination stimulated by the addition of sterols in vitro. Sterol-dependent ubiquitination of reductase in permeabilized cells is dependent upon exogenous cytosol, ATP, and either Insig-1 or Insig-2, two membrane-bound ER proteins shown previously to mediate sterol regulation of reductase degradation in intact cells. Oxysterols, but not cholesterol, promote reductase ubiquitination under our conditions. Finally, we show that ubiquitin-activating enzyme (E1) can efficiently replace cytosol to ubiquitinate reductase in response to sterol treatment, suggesting that other molecules required for ubiquitination of reductase, such as the ubiquitin-conjugating and -ligating enzymes (E2 and E3), are localized to ER membranes.
Collapse
Affiliation(s)
- Bao-Liang Song
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | | |
Collapse
|
37
|
Hermann J, Gulati R, Napoli C, Woodrum JE, Lerman LO, Rodriguez-Porcel M, Sica V, Simari RD, Ciechanover A, Lerman A. Oxidative stress-related increase in ubiquitination in early coronary atherogenesis. FASEB J 2003; 17:1730-2. [PMID: 12958191 DOI: 10.1096/fj.02-0841fje] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) is involved in the removal of damaged proteins and the activation of transcription factors, such as nuclear-factor-kappaB. Recent reports, however, questioned the functional activity of the UPS under conditions of increased oxidative stress, such as experimental hypercholesterolemia, which was the objective of our study. Pigs were placed on a normal chow diet (N) or on a hypercholesterolemic diet without (HC) or with vitamin C and E supplementation (HC+VIT) for 12 weeks. Compared with N, plasma concentration of total cholesterol increased in both HC and HC+VIT [76 +/- 21 vs. 400 +/- 148 (P<0.05) and 329 +/- 102 (P<0.05) mg/dL], whereas increase in lipid peroxidation, as assessed by LDL-malondialdehyde plasma concentration, was found in HC but not in HC+VIT [6.6 +/- 0.7 vs. 8.5 +/- 0.3 (P<0.05) and 6.8 +/- 0.7 nmol/mg protein]. In comparison with N, the level of ubiquitin conjugates in the coronary artery, as assessed by immunoblotting, increased by 42% in HC but not in HC+VIT and was localized predominantly to media vascular smooth muscle cells by immunostaining. There was no difference in proteasome proteolytic activity among the study groups. These results demonstrate that the UPS is functionally active in early atherogenesis despite increase in oxidative stress with important repercussions in the pathophysiology and therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Joerg Hermann
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Siepmann TJ, Bohnsack RN, Tokgöz Z, Baboshina OV, Haas AL. Protein interactions within the N-end rule ubiquitin ligation pathway. J Biol Chem 2003; 278:9448-57. [PMID: 12524449 DOI: 10.1074/jbc.m211240200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rate studies have been employed as a reporter function to probe protein-protein interactions within a biochemically defined reconstituted N-end rule ubiquitin ligation pathway. The concentration dependence for E1-catalyzed HsUbc2b/E2(14kb) transthiolation is hyperbolic and yields K(m) values of 102 +/- 13 nm and 123 +/- 19 nm for high affinity binding to rabbit and human E1/Uba1 orthologs. Competitive inhibition by the inactive substrate and product analogs HsUbc2bC88A (K(i) = 104 +/- 15 nm) and HsUbc2bC88S-ubiquitin oxyester (K(i) = 169 +/- 17 nm), respectively, indicates that the ubiquitin moiety contributes little to E1 binding. Under conditions of rate-limiting E3alpha-catalyzed conjugation to human alpha-lactalbumin, HsUbc2b-ubiquitin thiolester exhibits a K(i) of 54 +/- 18 nm and is competitively inhibited by the substrate analog HsUbc2bC88S-ubiquitin oxyester (K(i) = 66 +/- 29 nm). In contrast, the ligase product analog HsUbc2bC88A exhibits a K(i) of 440 +/- 55 nm with respect to the wild type HsUbc2b-ubiquitin thiolester, demonstrating that ubiquitin binding contributes to the ability of E3alpha to discriminate between substrate and product E2. A survey of E1 and E2 isoform distribution in selected cell lines demonstrates that Ubc2 isoforms are the predominant intracellular ubiquitin carrier protein. Intracellular levels of E1 and Ubc2 are micromolar and approximately equal based on in vitro quantitation by stoichiometric (125)I-ubiquitin thiolester formation. Comparison of intracellular E1 and Ubc2 pools with the corresponding ubiquitin pools reveals that most of the free ubiquitin in cells is present as thiolesters to the components of the conjugation pathways. The present data represent the first comprehensive analysis of protein interactions within a ubiquitin ligation pathway.
Collapse
Affiliation(s)
- Thomas J Siepmann
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
39
|
Shirahashi H, Sakaida I, Terai S, Hironaka K, Kusano N, Okita K. Ubiquitin is a possible new predictive marker for the recurrence of human hepatocellular carcinoma. LIVER 2002; 22:413-8. [PMID: 12458564 DOI: 10.1034/j.1600-0676.2002.01541.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND/AIM Ubiquitin (Ub)-dependent degradation of regulatory proteins controls many cellular processes such as cell cycle progression, morphogenesis and signal transduction. In this study, we evaluated the meaning of ubiquitination in chronic liver diseases, especially human hepatocellular carcinoma, with regard to recurrence. METHODS A total 74 of liver tissues (8 of chronic hepatitis [CH], 9 of liver cirrhosis [LC], 7 of dysplastic nodule low grade (DSL), or dysplastic nodule high grade (DSH)and 50 of hepatocellular carcinoma [HCC]) were analyzed for ubiquitination by immunohistochemistry. Cell proliferation was also analyzed using Ki-67 staining. As a comparative marker for progression of HCC, PIVKA-II (protein induced by vitamin K absence-II) was employed to examine the recurrence rate of HCC. RESULTS Ubiquitin (Ub) was positive in nuclei and cytoplasm of HCC in immunohistochemistry. The labeling index (L.I.) of ubiquitination was significantly higher with HCC than with other chronic liver diseases and tended to correlate with the lack of poorly-differentiated of HCC. The L.I. of Ki-67 staining was also correlated (P < 0.0001) with that of ubiquitination. The hepatocellular carcinoma (HCC) samples from potentially curatively operated patients having a ubiquitination L.I. of more than 20% suffered significantly higher recurrence of HCC than did patients with an L.I. of less than 20%. On the other hand, PIVA-II did not show such a difference. CONCLUSION Ubiquitin (Ub) may reflect the growth activity of neoplasms and will be a possible new predictive marker for the recurrence of human hepatocellular carcinoma after potentially curative operation.
Collapse
Affiliation(s)
- Hitoshi Shirahashi
- First Department of Internal Medicine, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Taylor A, Shang F, Nowell T, Galanty Y, Shiloh Y. Ubiquitination capabilities in response to neocarzinostatin and H(2)O(2) stress in cell lines from patients with ataxia-telangiectasia. Oncogene 2002; 21:4363-73. [PMID: 12080467 DOI: 10.1038/sj.onc.1205557] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2001] [Revised: 03/20/2002] [Accepted: 03/27/2002] [Indexed: 11/09/2022]
Abstract
The human genetic disorder ataxia-telangiectasia (A-T) is due to lack of functional ATM, a protein kinase which is involved in cellular responses to DNA double strand breaks (DSBs) and possibly other oxidative stresses, as well as in regulation of several fundamental cellular functions. Studies regarding responses in A-T cells to the induction of DSBs utilize ionizing radiation or radiomimetic chemicals, such as neocarzinostatin (NCS), which induce DNA DSBs. This critical DNA lesion activates many defense systems, such as the cell cycle checkpoints. The cell cycle is also regulated through a timed and coordinated degradation of regulatory proteins via the ubiquitin pathway. Our recent studies indicate that the ubiquitin pathway is influenced by the cellular redox status and that it is the major cellular pathway for removal of oxidized proteins. Accordingly, we hypothesized that the absence of a functional ATM protein might involve perturbations to the ubiquitin pathway as well. We show here that upon treatment with NCS, there was a transient 50-70% increase in endogenous ubiquitin conjugates in A-T and wt lymphoblastoid cells. Ubiquitin conjugation capabilities per se and levels of substrates for conjugation were also similarly enhanced in wt and A-T cells upon NCS treatment. We also compared the ubiquitination response in A-T and wt cells using H(2)O(2) as the stress, in view of preexisting evidence of the effects of H(2)O(2) on ubiquitination capabilities in other types of cells. As with NCS treatment, there was an approximately 45% increase in endogenous ubiquitin conjugates by 2-4 h after exposure to H(2)O(2). Both cell types showed a rapid 50-150% increase in de novo formed 125I-ubiquitin conjugates. As compared with wt cells, unexposed A-T cells had higher endogenous levels of conjugates and enhanced conjugation capability. However, A-T cells mounted a more muted ubiquitination response to the stress. The enhanced ubiquitin conjugation in unstressed A-T cells and attenuated ability of these cells to respond to stress are consistent with the A-T cells being under oxidative stress and with their having an 'aged' phenotype. The indication that ubiquitin conjugate levels and ubiquitin conjugation capabilities are enhanced upon oxidative stress without significant changes in GSSG/GSH ratios indicates that assays of ubiquitination provide a sensitive measure of cellular stress. The data also add support to the impression that potentiated ubiquitination response to mild oxidative stress is a generalizable phenomenon.
Collapse
Affiliation(s)
- Allen Taylor
- JM USDA Human Nutrition Research Center on Aging at Tufts University, Laboratory for Nutrition and Vision Research, 711 Washington Street, Boston, Massachusetts 02111, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
The availability of completed genome sequences of several eukaryotic and prokaryotic species has shifted the focus towards the identification and characterization of all gene products that are expressed in a given organism. In order to cope with the huge amounts of data that have been provided by large-scale sequencing projects, high-throughout methodologies also need to be applied in the emerging field of proteomics. In this review, we discuss methods that have been recently developed in order to characterize protein interactions and their functional relevance on a large scale. We then focus on those methodologies that are suitable for the identification and characterization of protein-protein interactions, namely the yeast two-hybrid system and related methods. Several recent studies have demonstrated the power of automated approaches involving the yeast two-hybrid system in building so-called "interaction networks", which hold the promise of identifying the entirety of all interactions that take place between proteins expressed in a certain cell type or organism. We compare the yeast two-hybrid system with several other screening methods that have been developed to investigate interactions between proteins that are not amenable to conventional yeast two-hybrid screenings, such as transcriptional activators and integral membrane proteins. The eventual adaptation of such methods to a high-throughput format and their use in combination with automated yeast two-hybrid screenings will help in elucidating protein-protein interactions on a scale that would have been unthinkable just a few years ago.
Collapse
|
42
|
Kim HJ, Yu BP, Chung HY. Molecular exploration of age-related NF-kappaB/IKK downregulation by calorie restriction in rat kidney. Free Radic Biol Med 2002; 32:991-1005. [PMID: 12008115 DOI: 10.1016/s0891-5849(02)00798-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Accumulating evidence strongly suggests that oxidative stress underlies aging processes, and that in a variety of organisms, calorie restriction (CR) retards these processes, thereby extending their lifespan. Recent studies revealed that the anti-aging action of CR depends on its anti-oxidative mechanism. In previous papers, we reported that aging activates the redox-sensitive transcription factor, NF-kappaB, and further reported that age-related NF-kappaB activation correlates with age-related oxidative stress. In the present paper, we present evidence that increased NF-kappaB binding activity during aging is elicited through the phosphorylation of IkappaB kinase (IKK), causing a degradation of IkappaBalpha and IkappaBbeta. We further show that CR inhibits IKK activation, down-regulating NF-kappaB activation as evidenced by increased bound IkappaBalpha and IkappaBbeta proteins in cytoplasm. These findings led to the conclusions that age-related oxidative stress may be a primary cause of up-regulated and altered NF-kappaB activity in aged kidney, and that the anti-oxidative action of CR is a major force responsible for the maintenance of a properly functioning NF-kappaB/IkappaB-IKK signaling pathway, which might be involved in CR's life-prolonging action.
Collapse
Affiliation(s)
- Hyon Jeen Kim
- College of Pharmacy, Pusan National University, San 30, Jang-jun-jong, Gumjung-gu, Pusan 609-735, Korea
| | | | | |
Collapse
|
43
|
Abstract
The conjugation of ubiquitin to other cellular proteins regulates a broad range of eukaryotic cell functions. The high efficiency and exquisite selectivity of ubiquitination reactions reflect the properties of enzymes known as ubiquitin-protein ligases or E3s. An E3 recognizes its substrates based on the presence of a specific ubiquitination signal, and catalyzes the formation of an isopeptide bond between a substrate (or ubiquitin) lysine residue and the C terminus of ubiquitin. Although a great deal is known about the molecular basis of E3 specificity, much less is known about molecular mechanisms of catalysis by E3s. Recent findings reveal that all known E3s utilize one of just two catalytic domains--a HECT domain or a RING finger--and crystal structures have provided the first detailed views of an active site of each type. The new findings shed light on many aspects of E3 structure, function, and mechanism, but also emphasize that key features of E3 catalysis remain to be elucidated.
Collapse
Affiliation(s)
- C M Pickart
- School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205, USA.
| |
Collapse
|
44
|
Yan Z, Zak R, Luxton GWG, Ritchie TC, Bantel-Schaal U, Engelhardt JF. Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 2002; 76:2043-53. [PMID: 11836382 PMCID: PMC135943 DOI: 10.1128/jvi.76.5.2043-2053.2002] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the presence of complementing adeno-associated virus type 2 (AAV-2) Rep proteins, AAV-2 genomes can be pseudotyped with the AAV-5 capsid to assemble infectious virions. Using this pseudotyping strategy, the involvement of the ubiquitin-proteasome system in AAV-5 and AAV-2 capsid-mediated infections was compared. A recombinant AAV-2 (rAAV-2) proviral luciferase construct was packaged into both AAV-2 and AAV-5 capsid particles, and transduction efficiencies in a number of cell lines were compared. Using luciferase expression as the end point, we demonstrated that coadministration of the viruses with proteasome inhibitors not only increased the transduction efficiency of rAAV-2, as previously reported, but also augmented rAAV-5-mediated gene transfer. Increased transgene expression was independent of viral genome stability, since there was no significant difference in the amounts of internalized viral DNA in the presence or absence of proteasome inhibitors. Western blot assays of immunoprecipitated viral capsid proteins from infected HeLa cell lysates and in vitro reconstitution experiments revealed evidence for ubiquitin conjugation of both AAV-2 and AAV-5 capsids. Interestingly, heat-denatured virus particles were preferential substrates for in vitro ubiquitination, suggesting that endosomal processing of the viral capsid proteins is a prelude to ubiquitination. Furthermore, ubiquitination may be a signal for processing of the capsid at the time of virion disassembly. These studies suggest that the previously reported influences of the ubiquitin-proteasome system on rAAV-2 transduction are also active for rAAV-5 and provide a clearer mechanistic framework for understanding the functional significance of ubiquitination.
Collapse
Affiliation(s)
- Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Oxidative stress in mammalian cells is an inevitable consequence of their aerobic metabolism. The production of reactive oxygen and nitric oxide species causes oxidative modifications of proteins often combined with a loss of their biological function. Like most partially denatured proteins, moderately oxidized proteins are more sensitive to proteolytic attack by proteases. The diverse cellular proteolytic systems are an important secondary defense against oxidative stress by degrading oxidized and damaged proteins, thereby preventing their intracellular accumulation. In mammalian cells, a range of proteases exists which are distributed throughout the cell. In this review we summarize the function of the cytosolic (proteasome and calpains), the lysosomal, the mitochondrial and the nuclear proteolytic pathways in response to oxidative stress. Particular emphasis is given to the proteasomal system, since this pathway appears to be the most important proteolytic system involved in the removal of oxidatively modified or damaged proteins.
Collapse
Affiliation(s)
- Jana Mehlhase
- Neuroscience Research Center, Medical Faculty (Charité) of the Humboldt University Berlin, Germany
| | | |
Collapse
|
46
|
Auerbach D, Galeuchet-Schenk B, Hottiger MO, Stagljar I. Genetic approaches to the identification of interactions between membrane proteins in yeast. J Recept Signal Transduct Res 2002; 22:471-81. [PMID: 12503635 DOI: 10.1081/rrs-120014615] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The recent sequencing of entire eukaryotic genomes has renewed the interest in identifying and characterizing all gene products that are expressed in a given organism. The characterization of unknown gene products is facilitated by the knowledge of its binding partners. Thus, a novel protein may be classified by identifying previously characterized proteins that interact with it. If such an approach is carried out on a large scale, it may allow the rapid characterization of the thousands of predicted open reading frames identified by recent sequencing projects. Currently, the yeast two-hybrid system is the most widely used genetic assay for the detection of protein-protein interactions. The yeast two-hybrid system has become popular because it requires little individual optimization and because, as compared to conventional biochemical methods, the identification and characterization of protein-protein interactions can be completed in a relatively short time span. In this review, we briefly discuss the yeast two-hybrid system and its application to large scale screening studies that aim at deciphering all protein-protein interactions taking place in a given cell type or organism. We then focus on a class of proteins that is unsuitable for conventional yeast two-hybrid systems, namely integral membrane proteins and membrane-associated proteins, and describe several novel genetic systems that combine the advantages of the yeast two-hybrid system with the potential to identify interaction partners of membrane-associated proteins in their natural setting.
Collapse
Affiliation(s)
- Daniel Auerbach
- DUALSYSTEMS BIOTECH Inc., Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
47
|
Baboshina OV, Crinelli R, Siepmann TJ, Haas AL. N-end rule specificity within the ubiquitin/proteasome pathway is not an affinity effect. J Biol Chem 2001; 276:39428-37. [PMID: 11493606 DOI: 10.1074/jbc.m106967200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-end rule relates the amino terminus to the rate of degradation through the ubiquitin/26 S proteasome pathway. Proteins bearing basic (type 1) or large hydrophobic (type 2) amino termini are assumed to be targeted through this pathway by their higher affinity for binding to the responsible E3 ligase compared with proteins bearing other residues (type 3). Paradoxically, a significant fraction of eukaryotic protein degradation occurs through the N-end rule pathway, although the majority of cellular proteins are type 3 substrates. We have exploited specific interactions between ubiquitin carrier proteins (E2/Ubc) and their cognate E3 ligases to purify for the first time the mammalian N-end rule ligase E3alpha/Ubr1 to near homogeneity. In vitro studies show that E3alpha forms lysine 48-linked polyubiquitin degradation signals on type 1-3 substrates and is absolutely dependent on Ubc2/Rad6 orthologs. Biochemically defined kinetic studies show that the basis of N-end rule specificity is a k(cat) rather than the K(m) effect originally proposed, since all three substrate classes show similar binding affinities (K(m) approximately 5 microm) but V(max) values that are 100- and 50-fold greater for type 1 and 2 versus type 3 model substrates, respectively. In addition, the N-end rule dipeptides lysylalanine and phenylalanylalanine are general noncompetitive inhibitors for E3alpha-catalyzed ubiquitination of type 1-3 substrates rather than type-specific competitive inhibitors as predicted. These observations are consistent with a model in which the N-end rule effect reflects substrate binding-induced transitions in E3alpha to a catalytically competent conformer, the equilibrium for which depends on the identity of the amino terminus or the presence of basic or hydrophobic surface features. The model reconciles conflicts between specific predictions and empirical observations relating N-end rule targeting in addition to explicating the efficacy of selected dipeptides as potent in vivo inhibitors of this pathway.
Collapse
Affiliation(s)
- O V Baboshina
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
48
|
Shang F, Nowell TR, Taylor A. Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome pathway. Exp Eye Res 2001; 73:229-38. [PMID: 11446773 DOI: 10.1006/exer.2001.1029] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding how oxidized proteins are removed is important since accumulation of such damaged proteins is causally related to cellular and organismic dysfunction, disease and aging. Previous work showed that activity of the ubiquitin-proteasome pathway (UPP) in lens cells increased during recovery from oxidative stress ( Shang et al., 1997b : J. Biol. Chem. 272, 23086-93). In this study we sought to determine if the up-regulation of the UPP during recovery from oxidative stress has a role in selective removal of oxidized proteins from the cells. In cells which were not exposed to peroxide, inhibition of the proteasome with MG132 or clasto-lactacystin beta-lactone had little effect on protein carbonyl levels. However, inhibition of the proteasome in the 20 microM peroxide-treated cells caused an approximate 60% increase in levels of protein carbonyl and an approximate 100% increase in levels of ubiquitin conjugates. The carbonyl-containing proteins that accumulated in the presence of the proteasome inhibitor co-localized with high molecular mass ubiquitin-protein conjugates. Furthermore, isolated carbonyl-containing proteins from H2O2-treated cells were ubiquitinated, and ubiquitin-conjugates were enriched with carbonyl-containing proteins. The diminished effect of proteasome inhibitors on protein carbonyl levels, together with the robust increase in ubiquitin-protein conjugates and accompanied increases in oxidized proteins, upon exposure to 60 microM H2O2 indicate that the proteasomal step of the UPP is more susceptible to oxidative inactivation than the ubiquitination step. In fact, oxidative stress is associated with a hyperactivation of the ubiquitin-activating enzyme. These data indicate that the UPP plays a role in removal of oxidatively damaged proteins from cells and that attenuation of the UPP activity may result in cytotoxic accumulation of damaged proteins, possibly including the ubiquitinated forms.
Collapse
Affiliation(s)
- F Shang
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | | | | |
Collapse
|
49
|
Deng L, Lin-Lee YC, Claret FX, Kuo MT. 2-acetylaminofluorene up-regulates rat mdr1b expression through generating reactive oxygen species that activate NF-kappa B pathway. J Biol Chem 2001; 276:413-20. [PMID: 11020383 DOI: 10.1074/jbc.m004551200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of multidrug resistance genes and their encoded P-glycoproteins is a major mechanism for the development of multidrug resistance in cancer cells. The hepatocarcinogen 2-acetylaminofluorene (2-AAF) efficiently activates rat mdr1b expression. However, the underlying mechanisms are largely unknown. In this study, we demonstrated that a NF-kappa B site on the mdr1b promoter was required for this induction. Overexpression of antisense p65 and I kappa B alpha partially abolished the induction. We then delineated the pathway through which 2-AAF activates NF-kappa B. 2-AAF treatment led to the increase of intracellular reactive oxygen species (ROS) which causes activation of IKK kinases, degradation of I kappa B beta (but not I kappa B alpha), and increase in NF-kappa B DNA binding activity. Consistent with the idea that ROS may participate in mdr1b regulation, antioxidant N-acetylcysteine inhibited the induction of mdr1b by 2-AAF. Overproduction of a physiological antioxidant glutathione (GSH) blocked the activation of IKK kinase complex and NF-kappa B DNA binding. Based on these results, we conclude that 2-AAF up-regulates mdr1b through the generation of ROS, activation of IKK kinase, degradation of I kappa B beta, and subsequent activation of NF-kappa B. This is the first report that reveals the specific cis-elements and signaling pathway responsible for the induction of mdr1b by the chemical carcinogen 2-AAF.
Collapse
Affiliation(s)
- L Deng
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
50
|
Hershko A, Ciechanover A, Varshavsky A. Basic Medical Research Award. The ubiquitin system. Nat Med 2000; 6:1073-81. [PMID: 11017125 DOI: 10.1038/80384] [Citation(s) in RCA: 524] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- A Hershko
- Unit of Biochemistry, Technion-Israel Institute of Technology, Faculty of Medicine, P.O. Box 9649, Haifa, 31096, Israel
| | | | | |
Collapse
|