1
|
Trinité B, Durr E, Pons-Grífols A, O'Donnell G, Aguilar-Gurrieri C, Rodriguez S, Urrea V, Tarrés F, Mane J, Ortiz R, Rovirosa C, Carrillo J, Clotet B, Zhang L, Blanco J. VLPs generated by the fusion of RSV-F or hMPV-F glycoprotein to HIV-Gag show improved immunogenicity and neutralizing response in mice. Vaccine 2024; 42:3474-3485. [PMID: 38641492 DOI: 10.1016/j.vaccine.2024.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) vaccines have been long overdue. Structure-based vaccine design created a new momentum in the last decade, and the first RSV vaccines have finally been approved in older adults and pregnant individuals. These vaccines are based on recombinant stabilized pre-fusion F glycoproteins administered as soluble proteins. Multimeric antigenic display could markedly improve immunogenicity and should be evaluated in the next generations of vaccines. Here we tested a new virus like particles-based vaccine platform which utilizes the direct fusion of an immunogen of interest to the structural human immunodeficient virus (HIV) protein Gag to increase its surface density and immunogenicity. We compared, in mice, the immunogenicity of RSV-F or hMPV-F based immunogens delivered either as soluble proteins or displayed on the surface of our VLPs. VLP associated F-proteins showed better immunogenicity and induced superior neutralizing responses. Moreover, when combining both VLP associated and soluble immunogens in a heterologous regimen, VLP-associated immunogens provided added benefits when administered as the prime immunization.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Mice
- Metapneumovirus/immunology
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Female
- Viral Fusion Proteins/immunology
- Viral Fusion Proteins/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Mice, Inbred BALB C
- gag Gene Products, Human Immunodeficiency Virus/immunology
- gag Gene Products, Human Immunodeficiency Virus/genetics
- Respiratory Syncytial Virus, Human/immunology
- Immunogenicity, Vaccine
- Humans
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/genetics
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Bonaventura Clotet
- IrsiCaixa, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | | | - Julià Blanco
- IrsiCaixa, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain; CIBERINFEC, Madrid, Spain.
| |
Collapse
|
2
|
Sugrue RJ, Tan BH. Defining the Assembleome of the Respiratory Syncytial Virus. Subcell Biochem 2023; 106:227-249. [PMID: 38159230 DOI: 10.1007/978-3-031-40086-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
During respiratory syncytial virus (RSV) particle assembly, the mature RSV particles form as filamentous projections on the surface of RSV-infected cells. The RSV assembly process occurs at the / on the cell surface that is modified by a virus infection, involving a combination of several different host cell factors and cellular processes. This induces changes in the lipid composition and properties of these lipid microdomains, and the virus-induced activation of associated Rho GTPase signaling networks drives the remodeling of the underlying filamentous actin (F-actin) cytoskeleton network. The modified sites that form on the surface of the infected cells form the nexus point for RSV assembly, and in this review chapter, they are referred to as the RSV assembleome. This is to distinguish these unique membrane microdomains that are formed during virus infection from the corresponding membrane microdomains that are present at the cell surface prior to infection. In this article, an overview of the current understanding of the processes that drive the formation of the assembleome during RSV particle assembly is given.
Collapse
Affiliation(s)
- Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Boon Huan Tan
- LKC School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
3
|
HIF-1α Modulates Core Metabolism and Virus Replication in Primary Airway Epithelial Cells Infected with Respiratory Syncytial Virus. Viruses 2020; 12:v12101088. [PMID: 32993138 PMCID: PMC7601280 DOI: 10.3390/v12101088] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic reprogramming of host cells is key to the foundation of a successful viral infection. Hypoxia inducible factors (HIFs) mediate oxygen utilization by regulating cellular metabolism and redox homeostasis. Under normoxic conditions, HIF proteins are synthesized and subsequently degraded following ubiquitination to allow for normal metabolic activities. Recent studies suggest that respiratory syncytial virus (RSV) has the ability to induce HIF-1α stabilization and accumulation through non-hypoxic mechanisms. This makes the HIF pathway a potential avenue of approach for RSV therapeutic development. Using a model of primary human small alveolar epithelial cells, we demonstrate RSV infections to greatly alter cellular metabolism in favor of the glycolytic and pentose phosphate pathways. Additionally, we show RSV infections to stabilize HIF-1α and HIF-2α expression in these cells. Inhibition of HIF-1α, but not HIF-2α, was found to significantly reduce RSV replication as well as the glycolytic pathway, as measured by the expression of hexokinase II. Our study contributes to the understanding of RSV-mediated changes to cellular metabolism and supports further investigation into anti-HIF-1α therapeutics for RSV infections.
Collapse
|
4
|
Martín-Vicente M, González-Riaño C, Barbas C, Jiménez-Sousa MÁ, Brochado-Kith O, Resino S, Martínez I. Metabolic changes during respiratory syncytial virus infection of epithelial cells. PLoS One 2020; 15:e0230844. [PMID: 32214395 PMCID: PMC7098640 DOI: 10.1371/journal.pone.0230844] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Viral infections induce substantial metabolic changes in infected cells to optimize viral production while cells develop countermeasures to restrict that infection. Human respiratory syncytial virus (HRSV) is an infectious pathogen that causes severe lower respiratory tract infections (LRTI) in infants, the elderly, and immunocompromised adults for which no effective treatment or vaccine is currently available. In this study, variations in metabolite levels at different time points post-HRSV infection of epithelial cells were studied by untargeted metabolomics using liquid chromatography/mass spectrometry analysis of methanol cell extracts. Numerous metabolites were significantly upregulated after 18 hours post-infection, including nucleotides, amino acids, amino and nucleotide sugars, and metabolites of the central carbon pathway. In contrast, most lipid classes were downregulated. Additionally, increased levels of oxidized glutathione and polyamines were associated with oxidative stress in infected cells. These results show how HRSV infection influences cell metabolism to produce the energy and building blocks necessary for virus reproduction, suggesting potential therapeutic interventions against this virus.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina González-Riaño
- Facultad de Farmacia, Centro de Metabolómica y Bioanálisis (CEMBIO), Universidad CEU San Pablo, Madrid, Spain
| | - Coral Barbas
- Facultad de Farmacia, Centro de Metabolómica y Bioanálisis (CEMBIO), Universidad CEU San Pablo, Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (IM); (SR)
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (IM); (SR)
| |
Collapse
|
5
|
Whelan JN, Reddy KD, Uversky VN, Teng MN. Functional correlations of respiratory syncytial virus proteins to intrinsic disorder. MOLECULAR BIOSYSTEMS 2017; 12:1507-26. [PMID: 27062995 DOI: 10.1039/c6mb00122j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein intrinsic disorder is an important characteristic demonstrated by the absence of higher order structure, and is commonly detected in multifunctional proteins encoded by RNA viruses. Intrinsically disordered regions (IDRs) of proteins exhibit high flexibility and solvent accessibility, which permit several distinct protein functions, including but not limited to binding of multiple partners and accessibility for post-translational modifications. IDR-containing viral proteins can therefore execute various functional roles to enable productive viral replication. Respiratory syncytial virus (RSV) is a globally circulating, non-segmented, negative sense (NNS) RNA virus that causes severe lower respiratory infections. In this study, we performed a comprehensive evaluation of predicted intrinsic disorder of the RSV proteome to better understand the functional role of RSV protein IDRs. We included 27 RSV strains to sample major RSV subtypes and genotypes, as well as geographic and temporal isolate differences. Several types of disorder predictions were applied to the RSV proteome, including per-residue (PONDR®-FIT and PONDR® VL-XT), binary (CH, CDF, CH-CDF), and disorder-based interactions (ANCHOR and MoRFpred). We classified RSV IDRs by size, frequency and function. Finally, we determined the functional implications of RSV IDRs by mapping predicted IDRs to known functional domains of each protein. Identification of RSV IDRs within functional domains improves our understanding of RSV pathogenesis in addition to providing potential therapeutic targets. Furthermore, this approach can be applied to other NNS viruses that encode essential multifunctional proteins for the elucidation of viral protein regions that can be manipulated for attenuation of viral replication.
Collapse
Affiliation(s)
- Jillian N Whelan
- Division of Allergy and Immunology, Department of Internal Medicine, and the Joy McCann Culverhouse Airway Diseases Research Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | - Krishna D Reddy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| | - Michael N Teng
- Division of Allergy and Immunology, Department of Internal Medicine, and the Joy McCann Culverhouse Airway Diseases Research Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
6
|
Ohol YM, Wang Z, Kemble G, Duke G. Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses. PLoS One 2015; 10:e0144648. [PMID: 26659560 PMCID: PMC4684246 DOI: 10.1371/journal.pone.0144648] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023] Open
Abstract
Fatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166) that reduces the production of respiratory syncytial virus (RSV) progeny in vitro from infected human lung epithelial cells (A549) and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long)-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3), and human rhinovirus 16 (HRV16) progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity.
Collapse
Affiliation(s)
- Yamini M. Ohol
- 3-V Biosciences, Menlo Park, California, United States of America
| | - Zhaoti Wang
- 3-V Biosciences, Menlo Park, California, United States of America
| | - George Kemble
- 3-V Biosciences, Menlo Park, California, United States of America
| | - Gregory Duke
- 3-V Biosciences, Menlo Park, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
The respiratory syncytial virus fusion protein targets to the perimeter of inclusion bodies and facilitates filament formation by a cytoplasmic tail-dependent mechanism. J Virol 2013; 87:10730-41. [PMID: 23903836 DOI: 10.1128/jvi.03086-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) fusion (F) protein cytoplasmic tail (CT) and matrix (M) protein are key mediators of viral assembly, but the underlying mechanisms are poorly understood. A complementation assay was developed to systematically examine the role of the F protein CT in infectious virus production. The ability of F mutants with alanine substitutions in the CT to complement an F-null virus in generating infectious progeny was quantitated by flow cytometry. Two CT regions with impact on infectious progeny production were identified: residues 557 to 566 (CT-R1) and 569 to 572 (CT-R2). Substitutions in CT-R1 decreased infectivity by 40 to 85% and increased the level of F-induced cell-cell fusion but had little impact on assembly of viral surface filaments, which are believed to be virions. Substitutions in CT-R2, as well as deletion of the entire CT, abrogated infectious progeny production and impaired viral filament formation. However, CT-R2 mutations did not block but rather delayed the formation of viral filaments, which continued to form at a low rate and contained the viral M protein and nucleoprotein (N). Microscopy analysis revealed that substitutions in CT-R2 but not CT-R1 led to accumulation of M and F proteins within and at the perimeter of viral inclusion bodies (IBs), respectively. The accumulation of M and F at IBs and coincident strong decrease in filament formation and infectivity upon CT-R2 mutations suggest that F interaction with IBs is an important step in the virion assembly process and that CT residues 569 to 572 act to facilitate release of M-ribonucleoprotein complexes from IBs.
Collapse
|
8
|
McLellan JS, Ray WC, Peeples ME. Structure and function of respiratory syncytial virus surface glycoproteins. Curr Top Microbiol Immunol 2013; 372:83-104. [PMID: 24362685 PMCID: PMC4211642 DOI: 10.1007/978-3-642-38919-1_4] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The two major glycoproteins on the surface of the respiratory syncytial virus (RSV) virion, the attachment glycoprotein (G) and the fusion glycoprotein (F), control the initial phases of infection. G targets the ciliated cells of the airways, and F causes the virion membrane to fuse with the target cell membrane. The F protein is the major target for antiviral drug development, and both G and F glycoproteins are the antigens targeted by neutralizing antibodies induced by infection. In this chapter, we review the structure and function of the RSV surface glycoproteins, including recent X-ray crystallographic data of the F glycoprotein in its pre- and postfusion conformations, and discuss how this information informs antigen selection and vaccine development.
Collapse
Affiliation(s)
- Jason S McLellan
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
9
|
Site-specific attachment of palmitate or stearate to cytoplasmic versus transmembrane cysteines is a common feature of viral spike proteins. Virology 2010; 398:49-56. [DOI: 10.1016/j.virol.2009.11.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 09/18/2009] [Accepted: 11/23/2009] [Indexed: 01/12/2023]
|
10
|
The fusion protein of respiratory syncytial virus triggers p53-dependent apoptosis. J Virol 2008; 82:3236-49. [PMID: 18216092 DOI: 10.1128/jvi.01887-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with respiratory syncytial virus (RSV) frequently causes inflammation and obstruction of the small airways, leading to severe pulmonary disease in infants. We show here that the RSV fusion (F) protein, an integral membrane protein of the viral envelope, is a strong elicitor of apoptosis. Inducible expression of F protein in polarized epithelial cells triggered caspase-dependent cell death, resulting in rigorous extrusion of apoptotic cells from the cell monolayer and transient loss of epithelial integrity. A monoclonal antibody directed against F protein inhibited apoptosis and was also effective if administered to A549 lung epithelial cells postinfection. F protein expression in epithelial cells caused phosphorylation of tumor suppressor p53 at serine 15, activation of p53 transcriptional activity, and conformational activation of proapoptotic Bax. Stable expression of dominant-negative p53 or p53 knockdown by RNA interference inhibited the apoptosis of RSV-infected A549 cells. HEp-2 tumor cells with low levels of p53 were not sensitive to RSV-triggered apoptosis. We propose a new model of RSV disease with the F protein as an initiator of epithelial cell shedding, airway obstruction, secondary necrosis, and consequent inflammation. This makes the RSV F protein a key target for the development of effective postinfection therapies.
Collapse
|
11
|
Tan BH, Brown G, Sugrue RJ. Secretion of the respiratory syncytial virus fusion protein from insect cells using the baculovirus expression system. Methods Mol Biol 2007; 379:149-61. [PMID: 17502677 DOI: 10.1007/978-1-59745-393-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sequences derived from the respiratory syncytial virus (RSV) fusion (F) protein were expressed in insect cells as recombinant glutathione-S-transferase (GST)-tagged proteins. The sequence covering the F2 subunit (GST-F2), and a truncated form of the F protein in which the transmembrane domain was removed (GST-F2/F1), were cloned into the baculovirus pAcSecG2T secretory vector. These virus sequences also had the endogenous virus signal sequence removed and replaced with a signal sequence derived from the baculovirus gp67 glycoprotein, which was present in pAcSecG2T. The recombinant RSV glycoproteins were successfully detected in expressing cells by immunofluorescence assay and in the tissue culture medium by western blot analysis. The secreted recombinant GST-F2/F1 protein was further analysed using glycosidases. Our results showed that the GST-F2/F1 protein were sensitive to peptide:N-glycosidase F (PNGase F) treatment, but not to Endoglycosidase H (EndoH) treatment. This indicates that the secreted recombinant proteins were modified by the addition of mature N-linked glycan chains.
Collapse
Affiliation(s)
- Boon-Huan Tan
- Virology Group Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore
| | | | | |
Collapse
|
12
|
Li P, McL Rixon HW, Brown G, Sugrue RJ. Functional analysis of the N-linked glycans within the fusion protein of respiratory syncytial virus. Methods Mol Biol 2007; 379:69-83. [PMID: 17502671 DOI: 10.1007/978-1-59745-393-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The respiratory syncytial virus fusion (F) protein is initially expressed as a single polypeptide chain (F0). The F0 subsequently undergoes posttranslational cleavage-by-cell protease activity to produce the F1 and F2 subunits. Each of the two subunits within the mature F protein is modified by the addition of N-linked glycans. The individual N-linked glycans on the F protein were selectively removed by using site-directed mutagenesis to mutate the individual glycan-acceptor sites. In this way the role of these individual glycans in targeting of the F protein to the cell surface, and on the ability of the F protein to induce membrane fusion, was examined.
Collapse
Affiliation(s)
- Ping Li
- MRC Virology Unit, Institute of Virology, Glasgow, UK
| | | | | | | |
Collapse
|
13
|
Fleming EH, Kolokoltsov AA, Davey RA, Nichols JE, Roberts NJ. Respiratory syncytial virus F envelope protein associates with lipid rafts without a requirement for other virus proteins. J Virol 2006; 80:12160-70. [PMID: 17005642 PMCID: PMC1676292 DOI: 10.1128/jvi.00643-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 09/15/2006] [Indexed: 01/16/2023] Open
Abstract
Like many enveloped viruses, human respiratory syncytial virus (RSV) assembles at and buds from lipid rafts. Translocation of the envelope proteins to these membrane subdomains is essential for production of infectious virus, but the targeting mechanism is poorly understood and it is not known if other virus proteins are required. Here we demonstrate that F protein of RSV intrinsically targets to lipid rafts without a requirement for any other virus protein, including the SH and G envelope proteins. Recombinant virus deficient in SH and G but retaining F protein expression was used to demonstrate that F protein still localized in rafts in both A549 and HEp-2 cells. Expression of a recombinant F gene by use of plasmid vectors demonstrated that F contains its own targeting domain and localized to rafts in the absence of other virus proteins. The domain responsible for translocation was then mapped. Unlike most other virus envelope proteins, F is unusual since the target signal is not contained within the cytoplasmic domain nor did it involve fatty acid modified residues. Furthermore, exchange of the transmembrane domain with that of the vesicular stomatitis virus G protein, a nonraft protein, did not alter F protein raft localization. Taken together, these data suggest that domains present in the extracellular portion of the protein are responsible for lipid raft targeting of the RSV F protein.
Collapse
Affiliation(s)
- Elisa H Fleming
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-0435, USA
| | | | | | | | | |
Collapse
|
14
|
Oomens AGP, Bevis KP, Wertz GW. The cytoplasmic tail of the human respiratory syncytial virus F protein plays critical roles in cellular localization of the F protein and infectious progeny production. J Virol 2006; 80:10465-77. [PMID: 16928754 PMCID: PMC1641763 DOI: 10.1128/jvi.01439-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The importance of the F protein cytoplasmic tail (CT) for replication of human respiratory syncytial virus (HRSV) was examined by monitoring the behavior of viruses expressing F proteins with a modified COOH terminus. The F protein mutant viruses were recovered and amplified under conditions where F protein function was complemented by expression of a heterologous viral envelope protein. The effect of the F protein modifications was then examined in the context of a viral infection in standard cell types (Vero and HEp-2). The F protein modifications consisted of a deletion of the predicted CT or a replacement of the CT with the CT of the vesicular stomatitis virus (VSV) G protein. In addition, engineered HRSVs that lacked all homologous glycoprotein genes (SH, G, and F) and expressed instead either the authentic VSV G protein or a VSV G containing the HRSV F protein CT were examined. We found that deletion or replacement of the F protein CT seriously impaired the production of infectious progeny. Cells infected with viruses bearing CT modifications displayed increased F protein surface expression and increased syncytium formation. The distribution of F protein in the plasma membrane of infected cells was altered, resulting in an F protein that was evenly distributed rather than localized predominantly to virus-induced surface filaments. CT deletion or exchange also abrogated interaction of F protein with Triton-insoluble lipid rafts. Addition of the F protein CT to the VSV G protein, expressed as the only viral glycoprotein in an HRSV genome, had the opposite effects: the number of infectious progeny was higher, the surface distribution was changed from relatively even to localized, and the proportion of VSV G protein associated with lipid rafts was higher. Together, these results show that the HRSV F protein CT plays a critical role in F protein cellular localization and production of infectious virus and suggest that the function provided by the CT is independent of the F protein ectodomain and transmembrane domain and is mediated by F protein-lipid raft interaction.
Collapse
Affiliation(s)
- Antonius G P Oomens
- Department of Pathology, University of Virginia, MR5 Building, P.O. Box 800904, Charlottesville, VA 22908-0904, USA
| | | | | |
Collapse
|
15
|
Day ND, Branigan PJ, Liu C, Gutshall LL, Luo J, Melero JA, Sarisky RT, Del Vecchio AM. Contribution of cysteine residues in the extracellular domain of the F protein of human respiratory syncytial virus to its function. Virol J 2006; 3:34. [PMID: 16723026 PMCID: PMC1540417 DOI: 10.1186/1743-422x-3-34] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 05/24/2006] [Indexed: 11/10/2022] Open
Abstract
The mature F protein of all known isolates of human respiratory syncytial virus (HRSV) contains fifteen absolutely conserved cysteine (C) residues that are highly conserved among the F proteins of other pneumoviruses as well as the paramyxoviruses. To explore the contribution of the cysteines in the extracellular domain to the fusion activity of HRSV F protein, each cysteine was changed to serine. Mutation of cysteines 37, 313, 322, 333, 343, 358, 367, 393, 416, and 439 abolished or greatly reduced cell surface expression suggesting these residues are critical for proper protein folding and transport to the cell surface. As expected, the fusion activity of these mutations was greatly reduced or abolished. Mutation of cysteine residues 212, 382, and 422 had little to no effect upon cell surface expression or fusion activity at 32 degrees C, 37 degrees C, or 39.5 degrees C. Mutation of C37 and C69 in the F2 subunit either abolished or reduced cell surface expression by 75% respectively. None of the mutations displayed a temperature sensitive phenotype.
Collapse
Affiliation(s)
- Nicole D Day
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Patrick J Branigan
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Changbao Liu
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Lester L Gutshall
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Jianquan Luo
- Department of Structural Biology, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda 28220, Madrid, Spain
| | - Robert T Sarisky
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| | - Alfred M Del Vecchio
- Department of Infectious Diseases Research, Centocor, Inc., 145 King of Prussia Road, Radnor, PA, 19087, USA
| |
Collapse
|
16
|
Branigan PJ, Day ND, Liu C, Gutshall LL, Melero JA, Sarisky RT, Vecchio AMD. The cytoplasmic domain of the F protein of Human respiratory syncytial virus is not required for cell fusion. J Gen Virol 2006; 87:395-398. [PMID: 16432027 DOI: 10.1099/vir.0.81481-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cytoplasmic domains of the fusion proteins encoded by several viruses play a role in cell fusion and contain sites for palmitoylation associated with viral protein trafficking and virus assembly. The fusion (F) protein ofHuman respiratory syncytial virus(HRSV) has a predicted cytoplasmic domain of 26 residues containing a single palmitoylated cysteine residue that is conserved in bovine RSV F protein, but not in the F proteins of other pneumoviruses such as pneumonia virus of mice, human metapneumovirus and avian pneumovirus. The cytoplasmic domains in other paramyxovirus fusion proteins such as Newcastle disease virus F protein play a role in fusion. In this study, it was shown that deletion of the entire cytoplasmic domain or mutation of the single cysteine residue (C550S) of the HRSV F protein had no effect on protein processing, cell-surface expression or fusion.
Collapse
Affiliation(s)
- Patrick J Branigan
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Nicole D Day
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Changbao Liu
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Lester L Gutshall
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - José A Melero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Robert T Sarisky
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| | - Alfred M Del Vecchio
- Department of Infectious Diseases Research, Centocor Inc., 145 King of Prussia Road, Radnor, PA 19087, USA
| |
Collapse
|
17
|
Melero JA. Molecular Biology of Human Respiratory Syncytial Virus. RESPIRATORY SYNCYTIAL VIRUS 2006. [DOI: 10.1016/s0168-7069(06)14001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Rixon HWM, Brown G, Murray JT, Sugrue RJ. The respiratory syncytial virus small hydrophobic protein is phosphorylated via a mitogen-activated protein kinase p38-dependent tyrosine kinase activity during virus infection. J Gen Virol 2005; 86:375-384. [PMID: 15659757 DOI: 10.1099/vir.0.80563-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phosphorylation status of the small hydrophobic (SH) protein of respiratory syncytial virus (RSV) was examined in virus-infected Vero cells. The SH protein was isolated from [35S]methionine- and [33P]orthophosphate-labelled RSV-infected cells and analysed by SDS-PAGE. In each case, a protein product of the expected size for the SH protein was observed. Phosphoamino acid analysis and reactivity with the phosphotyrosine specific antibody PY20 showed that the SH protein was modified by tyrosine phosphorylation. The role of tyrosine kinase activity in SH protein phosphorylation was confirmed by the use of genistein, a broad-spectrum tyrosine kinase inhibitor, to inhibit SH protein phosphorylation. Further analysis showed that the different glycosylated forms of the SH protein were phosphorylated, as was the oligomeric form of the protein. Phosphorylation of the SH protein was specifically inhibited by the mitogen-activated protein kinase (MAPK) p38 inhibitor SB203580, suggesting that SH protein phosphorylation occurs via a MAPK p38-dependent pathway. Analysis of virus-infected cells using fluorescence microscopy showed that, although the SH protein was distributed throughout the cytoplasm, it appeared to accumulate, at low levels, in the endoplasmic reticulum/Golgi complex, confirming recent observations. However, in the presence of SB203580, an increased accumulation of the SH protein in the Golgi complex was observed, although other virus structures, such as virus filaments and inclusion bodies, remained largely unaffected. These results showed that during RSV infection, the SH protein is modified by an MAPK p38-dependent tyrosine kinase activity and that this modification influences its cellular distribution.
Collapse
Affiliation(s)
- H W McL Rixon
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - G Brown
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - J T Murray
- MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, UK
| | - R J Sugrue
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
19
|
Zimmer G, Trotz I, Herrler G. N-glycans of F protein differentially affect fusion activity of human respiratory syncytial virus. J Virol 2001; 75:4744-51. [PMID: 11312346 PMCID: PMC114229 DOI: 10.1128/jvi.75.10.4744-4751.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human respiratory syncytial virus (Long strain) fusion protein contains six potential N-glycosylation sites: N27, N70, N116, N120, N126, and N500. Site-directed mutagenesis of these positions revealed that the mature fusion protein contains three N-linked oligosaccharides, attached to N27, N70, and N500. By introducing these mutations into the F gene in different combinations, four more mutants were generated. All mutants, including a triple mutant devoid of any N-linked oligosaccharide, were efficiently transported to the plasma membrane, as determined by flow cytometry and cell surface biotinylation. None of the glycosylation mutations interfered with proteolytic activation of the fusion protein. Despite similar levels of cell surface expression, the glycosylation mutants affected fusion activity in different ways. While the N27Q mutation did not have an effect on syncytium formation, loss of the N70-glycan caused a fusion activity increase of 40%. Elimination of both N-glycans (N27/70Q mutant) reduced the fusion activity by about 50%. A more pronounced reduction of the fusion activity of about 90% was observed with the mutants N500Q, N27/500Q, and N70/500Q. Almost no fusion activity was detected with the triple mutant N27/70/500Q. These data indicate that N-glycosylation of the F2 subunit at N27 and N70 is of minor importance for the fusion activity of the F protein. The single N-glycan of the F1 subunit attached to N500, however, is required for efficient syncytium formation.
Collapse
Affiliation(s)
- G Zimmer
- Institut für Virologie, Tierärztliche Hochschule Hannover, D-30559 Hannover, Germany
| | | | | |
Collapse
|
20
|
Tong S, Compans RW. Oligomerization, secretion, and biological function of an anchor-free parainfluenza virus type 2 (PI2) fusion protein. Virology 2000; 270:368-76. [PMID: 10792996 DOI: 10.1006/viro.2000.0286] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of studies indicate that the transmembrane domain, the cytoplasmic domain, or both regions of viral surface glycoproteins are involved in quaternary structure formation. In this report, the transmembrane domain and cytoplasmic tail coding sequence of the fusion (F) glycoprotein gene from parainfluenza type 2 virus was truncated by PCR and the resulting gene (PI2F') was expressed in HeLa-T4 cells by using the vaccinia virus-T7 transient expression system. Pulse-chase experiments indicated that the anchor-free PI2F' was expressed and processed into F(1) and F(2) subunits. Both the processed and the unprocessed anchor-free PI2F' proteins were found to be efficiently secreted into the culture medium. Examination of the oligomeric form of the anchor-free PI2F' by chemical cross-linking demonstrated that it assembles posttranslationally into dimers and trimers with a pattern similar to that of the wild-type PI2F protein. In an effort to better understand the biological properties of the truncated form of PI2F', we anchored PI2F' by a glycosyl-phosphatidylinositol (GPI) linkage. The GPI-anchored PI2F' protein, when coexpressed with PI2HN, did not induce cell fusion seen as syncytium formation, but was found to initiate lipid mixing (hemifusion) as observed by transfer of R-18 rhodamine from red blood cells to the GPI-PI2F'/PI2HN cotransfected cells. The results therefore indicate that the extracellular domain of the PI2 fusion protein contains not only the structural information sufficient to direct assembly into higher oligomers, but also is competent to initiate membrane fusion, suggesting that the anchor-free PI2F' may be useful for further structural studies.
Collapse
Affiliation(s)
- S Tong
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
21
|
Hausmann J, Ortmann D, Witt E, Veit M, Seidel W. Adenovirus death protein, a transmembrane protein encoded in the E3 region, is palmitoylated at the cytoplasmic tail. Virology 1998; 244:343-51. [PMID: 9601505 DOI: 10.1006/viro.1998.9135] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 11.6-K protein of human adenovirus 2 (Ad2), which was recently renamed as adenovirus death protein (ADP), is a type III membrane glycoprotein that ultimately localizes to the nuclear membrane. ADP is encoded in the E3 transcription unit of Ad2 and migrates as a set of multiple bands in SDS-PAGE with three major forms. The corresponding gene product of adenovirus 5 (Ad5) has a slightly lower molecular weight and shows the same pattern in SDS-PAGE. We report here the covalent attachment of fatty acids to cysteine residues of ADP. In the case of Ad5-ADP all three major forms of this protein can be labeled by [3H]palmitic acid, but not by [3H]myristic acid, whereas only two [3H]palmitic acid-labeled Ad2-ADP species could be detected. The label is sensitive to treatment with 1 M hydroxylamine at pH 7 and with 20% beta-mercaptoethanol indicating that the fatty acids are linked via a thioester bond. By thin layer chromatography, the vast majority of the incorporated label was identified as palmitic acid. Two cysteine residues at the boundary between transmembrane domain and cytoplasmic tail which could serve as acceptor sites were mutated to alanine residues by site-directed mutagenesis of the cloned Ad5-ADP gene. Expression of wild-type Ad5-ADP and the resulting mutants was performed in HeLa cells using the vaccinia virus T7 expression system. As demonstrated by labeling with [3H]palmitic acid, only the mutants with one remaining cysteine residue in the cytoplasmic tail were able to incorporate [3H]palmitic acid, indicating that either could serve as acceptor site. In contrast the double cysteine mutant could not be labeled by [3H]palmitic acid, clearly demonstrating that cysteines 53 and 54 are required for palmitoylation and probably represent the palmitoylation sites in Ad5-ADP.
Collapse
Affiliation(s)
- J Hausmann
- Institut für Medizinische Mikrobiologie der Ernst-Moritz-Arndt-Universität, Greifswald, Germany.
| | | | | | | | | |
Collapse
|
22
|
Abstract
P0 glycoprotein, the major protein of PNS myelin, contains approximately 1 mol of covalently bound long-chain fatty acids. To determine the chemical nature of the fatty acid-protein linkage, P0 was labeled in rat sciatic nerve slices with [3H]palmitic acid and subsequently treated with various reagents. The protein-bound palmitate was released by incubation with the reducing agents dithiothreitol and 2-mercaptoethanol, and with 1 M hydroxylamine at pH 7.5. In addition, P0 was deacylated by treatment with 10 mM NaBH4 with the concomitant production of [3H]hexadecanol, indicating that the fatty acid is bound in a thioester linkage. This conclusion was supported further by the fact that deacylation with hydroxylamine generated free thiol groups, which were titrated with [14C]-iodoacetamide. To identify the cysteine residue involved in the thioester linkage, [14C]carboxyamidomethylated P0 was digested with trypsin and the resulting peptides analyzed by reversed-phase HPLC. Identification of the radioactive protein fragments by amino acid analysis and amino-terminal peptide sequencing revealed that Cys153 in rat P0 glycoprotein is the acylation site. The acylated cysteine is located at the junction of the putative transmembrane and cytoplasmic domains. This residue is also present in the P0 glycoprotein of other species, including human, bovine, mice, and chicken.
Collapse
Affiliation(s)
- O A Bizzozero
- Department of Biochemistry, University of New Mexico School of Medicine, Albuquerque 87131-5221
| | | | | |
Collapse
|
23
|
Abstract
This chapter summarizes the present medical significance of rubella virus. Rubella virus infection is systemic in nature and the accompanying symptoms are generally benign, the most pronounced being a mild rash of short duration. The most common complication of rubella virus infection is transient joint involvement such as polyarthralgia and arthritis. The primary health impact of rubella virus is that it is a teratogenic agent. The vaccination strategy is aimed at elimination of rubella and includes both universal vaccination of infants at 15 months of age with the trivalent measles, mumps, rubella (MMR) vaccine and specific targeting with the rubella vaccine of seronegative women planning pregnancy and seronegative adults who could come in contact with women of childbearing age, although it is recommended that any individual over the age of 12 months without evidence of natural infection or vaccination be vaccinated. Medically, the current challenge posed by rubella virus is to achieve complete vaccination coverage to prevent resurgences.
Collapse
Affiliation(s)
- T K Frey
- Department of Biology, Georgia State University, Atlanta 30303
| |
Collapse
|
24
|
Paradiso PR, Hu BT, Arumugham R, Hildreth S. Mapping of a fusion related epitope of the respiratory syncytial virus fusion protein. Vaccine 1991; 9:231-7. [PMID: 1711741 DOI: 10.1016/0264-410x(91)90105-f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The region of the fusion glycoprotein of respiratory syncytial virus which reacts with a neutralizing and fusion inhibiting monoclonal antibody, was mapped using a deductive method derived from analysis of Western blot reactivity of proteolytic fragments. Reaction of the whole fusion protein was found to be so conformationally dependent, that complete digestion of the protein with a variety of proteases resulted in fragments which were not sufficiently reactive to permit mapping. For this reason, polyclonal antibodies to synthetic peptides which spanned the fusion protein sequence, were used to map the position of large peptides derived from partial digests, and these peptides were then analysed for their ability to react with the monoclonal antibody. Comparison of the peptides which were reactive with the monoclonal antibody to those which were not, identified a region of non-overlap between residues 283 and 327 in the F1 subunit of the fusion protein. Synthesis of a peptide within this region confirmed the placement of the epitope.
Collapse
Affiliation(s)
- P R Paradiso
- Department of Virology Research, Praxis Biologics, Rochester, NY 14623
| | | | | | | |
Collapse
|
25
|
Lerch RA, Anderson K, Amann VL, Wertz GW. Nucleotide sequence analysis of the bovine respiratory syncytial virus fusion protein mRNA and expression from a recombinant vaccinia virus. Virology 1991; 181:118-31. [PMID: 1994571 DOI: 10.1016/0042-6822(91)90476-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bovine respiratory syncytial (BRS) virus is an important cause of serious respiratory illness in calves. The disease caused in calves is similar to that caused by human respiratory syncytial (HRS) virus in children. The two viruses, however, have distinct host ranges and the attachment glycoproteins, G, have no antigenic cross-reactivity. The fusion glycoproteins, F, of the HRS and BRS viruses, however, have some antigenic cross-reactivity. To further compare the BRS virus and HRS virus fusion proteins, we determined the nucleotide sequence of cDNA clones to the BRS virus F protein mRNA, deduced the amino acid sequence, and compared these sequences with the HRS virus F protein sequences. The BRS virus F mRNA was 1899 nucleotides in length and had a single major open reading frame which could code for a polypeptide of 574 amino acids with an estimated molecular weight of 63.8 kDa. Structural features predicted from the amino acid sequence included an NH2-terminal signal sequence (residues 1-26), a site for proteolytic cleavage (residues 131-136) to generate the disulfide-linked F1 and F2 subunits, and a hydrophobic transmembrane anchor sequence (residues 522-549). The nucleic acid identity between the BRS virus and the HRS virus F mRNA sequences was 71.5%. The predicted BRS virus F protein shared 80.5% overall amino acid identity with the HRS virus F protein with 89% identity in the F1 polypeptide but only 68% identity in the F2 polypeptide. The position and number of the cysteine residues in the F1 and F2 polypeptides were conserved among all F proteins. However, BRS virus F protein had only three potential N-linked carbohydrate acceptor sites in comparison to four or five for the HRS viruses. A difference in the extent of glycosylation between the BRS and HRS virus F2 polypeptides was shown to be responsible for differences observed in the electrophoretic mobility of these proteins. A cDNA containing the complete open reading frame of the BRS virus F mRNA was inserted into the thymidine kinase gene of vaccinia virus and following homologous recombination, a recombinant virus containing the BRS virus F gene was isolated. The BRS virus F protein was expressed in recombinant virus infected cells as demonstrated by immunoprecipitation and was transported to and expressed on the surface of infected cells as shown by indirect immunofluorescence.
Collapse
Affiliation(s)
- R A Lerch
- Department of Microbiology, University of Alabama Medical School, Birmingham 35294
| | | | | | | |
Collapse
|
26
|
Veit M, Herrler G, Schmidt MF, Rott R, Klenk HD. The hemagglutinating glycoproteins of influenza B and C viruses are acylated with different fatty acids. Virology 1990; 177:807-11. [PMID: 2371783 DOI: 10.1016/0042-6822(90)90554-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present evidence that the hemagglutinin (HA) of influenza B virus and the glycoprotein of influenza C virus (HEF) are acylated. The fatty acid linkage is sensitive to treatment with hydroxylamine and mercaptoethanol, which points to a labile thioester-type linkage. The HA of influenza B virus contains mainly palmitic acid, whereas the HEF glycoprotein of influenza C virus is acylated with stearic acid which has not been observed before as the prevailing fatty acid in viral or cellular acyl proteins.
Collapse
Affiliation(s)
- M Veit
- Institut für Virologie, Philipps-Universität Marburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
27
|
Agrawal HC, Sprinkle TJ, Agrawal D. 2',3'-cyclic nucleotide-3'-phosphodiesterase in the central nervous system is fatty-acylated by thioester linkage. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38476-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
28
|
Gaedigk-Nitschko K, Ding MX, Levy MA, Schlesinger MJ. Site-directed mutations in the Sindbis virus 6K protein reveal sites for fatty acylation and the underacylated protein affects virus release and virion structure. Virology 1990; 175:282-91. [PMID: 2309447 DOI: 10.1016/0042-6822(90)90210-i] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A small hydrophobic polypeptide of 55 amino acids, noted as the 6K protein, is formed during processing of the polyprotein translated from the Sindbis virus subgenomic 26 S mRNA. In the accompanying paper we show that this 6K protein can be found in purified preparations of virions and that it is palmitoylated via thioester bonds with about four covalently bound fatty acids per molecule. To determine acylation sites on 6K and define a role for these fatty acids, we used site-directed mutagenesis to alter cysteine codons in the 6K gene of Sindbis virus cDNA. One of these mutants had a single cysteine replaced with a serine and the second had two adjacent cysteines replaced with an alanine-serine sequence. Transfection of the transcribed RNA from these two cDNAs produced infectious virus which contained 6K proteins that had decreased amounts of fatty acids. Intracellular formation and maturation of virus glycoproteins appeared to be unaffected by the mutations but the release of virus particles from mutant-infected cells was decreased about 70 to 90% from that observed with wild-type virus. Electron microscopy of virus-infected cells and of isolated virions showed that the 6K mutations led to large numbers of aberrant enveloped particles containing multiple nucleocapsids. These results indicate that the 6K protein and its state of acylation are important factors in Sindbis virus assembly and budding. Additional phenotypic changes are reported for virions released from cells infected with the mutationally altered viruses.
Collapse
Affiliation(s)
- K Gaedigk-Nitschko
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|