1
|
Huber RJ, Kim WD. Trafficking of adhesion and aggregation-modulating proteins during the early stages of Dictyostelium development. Cell Signal 2024; 121:111292. [PMID: 38986731 DOI: 10.1016/j.cellsig.2024.111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The social amoeba Dictyostelium discoideum has been studied for close to a century to better understand conserved cellular and developmental processes. The life cycle of this model eukaryote is composed of a unicellular growth phase and a multicellular developmental phase that is induced by starvation. When starved, individual cells undergo chemotactic aggregation to form multicellular mounds that develop into slugs. Terminal differentiation of cells within slugs forms fruiting bodies, each composed of a stalk that supports a mass of viable spores that germinate and restart the life cycle when nutrients become available. Calcium-dependent cell adhesion protein A (CadA) and countin (CtnA) are two proteins that regulate adhesion and aggregation, respectively, during the early stages of D. discoideum development. While the functions of these proteins have been well-studied, the mechanisms regulating their trafficking are not fully understood. In this study, we reveal pathways and cellular components that regulate the intracellular and extracellular amounts of CadA and CtnA during aggregation. During growth and starvation, CtnA localizes to cytoplasmic vesicles and punctae. We show that CtnA is glycosylated and this post-translational modification is required for its secretion. Upon autophagy induction, a signal peptide for secretion facilitates the release of CtnA from cells via a pathway involving the μ subunit of the AP3 complex (Apm3) and the WASP and SCAR homolog, WshA. Additionally, CtnA secretion is negatively regulated by the D. discoideum orthologs of the human non-selective cation channel mucolipin-1 (Mcln) and sorting receptor sortilin (Sort1). As for CadA, it localizes to the cell periphery in growth-phase and starved cells. The intracellular and extracellular amounts of CadA are modulated by autophagy genes (atg1, atg9), Apm3, WshA, and Mcln. We integrate these data with previously published findings to generate a comprehensive model summarizing the trafficking of CadA and CtnA in D. discoideum. Overall, this study enhances our understanding of protein trafficking during D. discoideum aggregation, and more broadly, provides insight into the multiple pathways that regulate protein trafficking and secretion in all eukaryotes.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
2
|
Huber RJ, Kim WD, Wilson-Smillie MLDM. Mechanisms regulating the intracellular trafficking and release of CLN5 and CTSD. Traffic 2024; 25:e12925. [PMID: 38272448 DOI: 10.1111/tra.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/27/2024]
Abstract
Ceroid lipofuscinosis neuronal 5 (CLN5) and cathepsin D (CTSD) are soluble lysosomal enzymes that also localize extracellularly. In humans, homozygous mutations in CLN5 and CTSD cause CLN5 disease and CLN10 disease, respectively, which are two subtypes of neuronal ceroid lipofuscinosis (commonly known as Batten disease). The mechanisms regulating the intracellular trafficking of CLN5 and CTSD and their release from cells are not well understood. Here, we used the social amoeba Dictyostelium discoideum as a model system to examine the pathways and cellular components that regulate the intracellular trafficking and release of the D. discoideum homologs of human CLN5 (Cln5) and CTSD (CtsD). We show that both Cln5 and CtsD contain signal peptides for secretion that facilitate their release from cells. Like Cln5, extracellular CtsD is glycosylated. In addition, Cln5 release is regulated by the amount of extracellular CtsD. Autophagy induction promotes the release of Cln5, and to a lesser extent CtsD. Release of Cln5 requires the autophagy proteins Atg1, Atg5, and Atg9, as well as autophagosomal-lysosomal fusion. Atg1 and Atg5 are required for the release of CtsD. Together, these data support a model where Cln5 and CtsD are actively released from cells via their signal peptides for secretion and pathways linked to autophagy. The release of Cln5 and CtsD from cells also requires microfilaments and the D. discoideum homologs of human AP-3 complex mu subunit, the lysosomal-trafficking regulator LYST, mucopilin-1, and the Wiskott-Aldrich syndrome-associated protein WASH, which all regulate lysosomal exocytosis in this model organism. These findings suggest that lysosomal exocytosis also facilitates the release of Cln5 and CtsD from cells. In addition, we report the roles of ABC transporters, microtubules, osmotic stress, and the putative D. discoideum homologs of human sortilin and cation-independent mannose-6-phosphate receptor in regulating the intracellular/extracellular distribution of Cln5 and CtsD. In total, this study identifies the cellular mechanisms regulating the release of Cln5 and CtsD from D. discoideum cells and provides insight into how altered trafficking of CLN5 and CTSD causes disease in humans.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | | |
Collapse
|
3
|
Tsopela V, Korakidis E, Lagou D, Kalliampakou KI, Milona RS, Kyriakopoulou E, Mpekoulis G, Gemenetzi I, Stylianaki EA, Sideris CD, Sioli A, Kefallinos D, Sideris DC, Aidinis V, Eliopoulos AG, Kambas K, Vassilacopoulou D, Vassilaki N. L-Dopa decarboxylase modulates autophagy in hepatocytes and is implicated in dengue virus-caused inhibition of autophagy completion. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119602. [PMID: 37778471 DOI: 10.1016/j.bbamcr.2023.119602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The enzyme L-Dopa Decarboxylase (DDC) synthesizes the catecholamine dopamine and the indolamine serotonin. Apart from its role in the brain as a neurotransmitter biosynthetic enzyme, DDC has been detected also in the liver and other peripheral organs, where it is implicated in cell proliferation, apoptosis, and host-virus interactions. Dengue virus (DENV) suppresses DDC expression at the later stages of infection, during which DENV also inhibits autophagosome-lysosome fusion. As dopamine affects autophagy in neuronal cells, we investigated the possible association of DDC with autophagy in human hepatocytes and examined whether DDC mediates the relationship between DENV infection and autophagy. We performed DDC silencing/overexpression and evaluated autophagic markers upon induction of autophagy, or suppression of autophagosome-lysosome fusion. Our results showed that DDC favored the autophagic process, at least in part, through its biosynthetic function, while knockdown of DDC or inhibition of DDC enzymatic activity prevented autophagy completion. In turn, autophagy induction upregulated DDC, while autophagy reduction by chemical or genetic (ATG14L knockout) ways caused the opposite effect. This study also implicated DDC with the cellular energetic status, as DDC silencing reduced the oxidative phosphorylation activity of the cell. We also report that upon DDC silencing, the repressive effect of DENV on the completion of autophagy was enhanced, and the inhibition of autolysosome formation did not exert an additive effect on viral proliferation. These data unravel a novel role of DDC in the autophagic process and suggest that DENV downregulates DDC expression to inhibit the completion of autophagy, reinforcing the importance of this protein in viral infections.
Collapse
Affiliation(s)
- Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Evangelos Korakidis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Despoina Lagou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | | | - Raphaela S Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Eirini Kyriakopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Ioanna Gemenetzi
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Elli-Anna Stylianaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | | | - Aggelina Sioli
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dionysis Kefallinos
- School of Electrical Engineering and Computer Science, National Technical University of Athens, 157 73 Athens, Greece
| | - Diamantis C Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Aristides G Eliopoulos
- Department of Biology, School of Medicine, NKUA, 115 27 Athens, Greece; Center of Basic Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece.
| |
Collapse
|
4
|
Synowiec A, Dąbrowska A, Pachota M, Baouche M, Owczarek K, Niżański W, Pyrc K. Feline herpesvirus 1 (FHV-1) enters the cell by receptor-mediated endocytosis. J Virol 2023; 97:e0068123. [PMID: 37493545 PMCID: PMC10506464 DOI: 10.1128/jvi.00681-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
Feline herpesvirus type 1 (FHV-1) is an enveloped dsDNA virus belonging to the Herpesviridae family and is considered one of the two primary viral etiological factors of feline upper respiratory tract disease. In this study, we investigated the entry of FHV-1 into host cells using two models: the AK-D cell line and primary feline skin fibroblasts (FSFs). We employed confocal microscopy, siRNA silencing, and selective inhibitors of various entry pathways. Our observations revealed that the virus enters cells via pH and dynamin-dependent endocytosis, as the infection was significantly inhibited by NH4Cl, bafilomycin A1, dynasore, and mitmab. Additionally, genistein, nystatin, and filipin treatments, siRNA knock-down of caveolin-1, as well as FHV-1 and caveolin-1 colocalization suggest the involvement of caveolin-mediated endocytosis during the entry process. siRNA knock-down of clathrin heavy chain and analysis of virus particle colocalization with clathrin indicated that clathrin-mediated endocytosis also takes part in the primary cells. This is the first study to systematically examine FHV-1 entry into host cells, and for the first time, we describe FHV-1 replication in AK-D and FSFs. IMPORTANCE Feline herpesvirus 1 (FHV-1) is one of the most prevalent viruses in cats, causing feline viral rhinotracheitis, which is responsible for over half of viral upper respiratory diseases in cats and can lead to ocular lesions resulting in loss of sight. Although the available vaccine reduces the severity of the disease, it does not prevent infection or limit virus shedding. Despite the clinical relevance, the entry mechanisms of FHV-1 have not been thoroughly studied. Considering the limitations of commonly used models based on immortalized cells, we sought to verify our findings using primary feline skin fibroblasts, the natural target for infection in cats.
Collapse
Affiliation(s)
- Aleksandra Synowiec
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Dąbrowska
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Pachota
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, University of Environmental Science, Wrocław, Poland
| | - Katarzyna Owczarek
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, University of Environmental Science, Wrocław, Poland
| | - Krzysztof Pyrc
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
5
|
Bestion E, Raymond E, Mezouar S, Halfon P. Update on Autophagy Inhibitors in Cancer: Opening up to a Therapeutic Combination with Immune Checkpoint Inhibitors. Cells 2023; 12:1702. [PMID: 37443736 PMCID: PMC10341243 DOI: 10.3390/cells12131702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy is a highly conserved and natural degradation process that helps maintain cell homeostasis through the elimination of old, worn, and defective cellular components, ensuring proper cell energy intake. The degradative pathway constitutes a protective barrier against diverse human diseases including cancer. Autophagy basal level has been reported to be completely dysregulated during the entire oncogenic process. Autophagy influences not only cancer initiation, development, and maintenance but also regulates cancer response to therapy. Currently, autophagy inhibitor candidates mainly target the early autophagy process without any successful preclinical/clinical development. Lessons learned from autophagy pharmaceutical manipulation as a curative option progressively help to improve drug design and to encounter new targets of interest. Combinatorial strategies with autophagy modulators are supported by abundant evidence, especially dealing with immune checkpoint inhibitors, for which encouraging preclinical results have been recently published. GNS561, a PPT1 inhibitor, is a promising autophagy modulator as it has started a phase 2 clinical trial in liver cancer indication, combined with atezolizumab and bevacizumab, an assessment without precedent in the field. This approach paves a new road, leading to the resurgence of anticancer autophagy inhibitors as an attractive therapeutic target in cancer.
Collapse
Affiliation(s)
- Eloïne Bestion
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
| | - Eric Raymond
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
- Department of Medical Oncology, Paris Saint-Joseph Hospital Group, 75014 Paris, France
| | - Soraya Mezouar
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
- Établissement Français du Sang, Provence Alpes Côte d’Azur et Corse, Marseille, France; «Biologie des Groupes Sanguins», Aix Marseille Univ-CNRS-EFS-ADÉS, 13005 Marseille, France
| | - Philippe Halfon
- Genoscience Pharma, 13006 Marseille, France; (E.R.); (S.M.); (P.H.)
| |
Collapse
|
6
|
Zhang X, Misra SK, Moitra P, Zhang X, Jeong SJ, Stitham J, Rodriguez-Velez A, Park A, Yeh YS, Gillanders WE, Fan D, Diwan A, Cho J, Epelman S, Lodhi IJ, Pan D, Razani B. Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis. Autophagy 2023; 19:886-903. [PMID: 35982578 PMCID: PMC9980706 DOI: 10.1080/15548627.2022.2108252] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Dysfunction in the macrophage lysosomal system including reduced acidity and diminished degradative capacity is a hallmark of atherosclerosis, leading to blunted clearance of excess cellular debris and lipids in plaques and contributing to lesion progression. Devising strategies to rescue this macrophage lysosomal dysfunction is a novel therapeutic measure. Nanoparticles have emerged as an effective platform to both target specific tissues and serve as drug delivery vehicles. In most cases, administered nanoparticles are taken up non-selectively by the mononuclear phagocyte system including monocytes/macrophages leading to the undesirable degradation of cargo in lysosomes. We took advantage of this default route to target macrophage lysosomes to rectify their acidity in disease states such as atherosclerosis. Herein, we develop and test two commonly used acidic nanoparticles, poly-lactide-co-glycolic acid (PLGA) and polylactic acid (PLA), both in vitro and in vivo. Our results in cultured macrophages indicate that the PLGA-based nanoparticles are the most effective at trafficking to and enhancing acidification of lysosomes. PLGA nanoparticles also provide functional benefits including enhanced lysosomal degradation, promotion of macroautophagy/autophagy and protein aggregate removal, and reduced apoptosis and inflammasome activation. We demonstrate the utility of this system in vivo, showing nanoparticle accumulation in, and lysosomal acidification of, macrophages in atherosclerotic plaques. Long-term administration of PLGA nanoparticles results in significant reductions in surrogates of plaque complexity with reduced apoptosis, necrotic core formation, and cytotoxic protein aggregates and increased fibrous cap formation. Taken together, our data support the use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in the treatment of atherosclerosis.Abbreviations: BCA: brachiocephalic arteries; FACS: fluorescence activated cell sorting; FITC: fluorescein-5-isothiocyanatel; IL1B: interleukin 1 beta; LAMP: lysosomal associated membrane protein; LIPA/LAL: lipase A, lysosomal acid type; LSDs: lysosomal storage disorders; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFI: mean fluorescence intensity; MPS: mononuclear phagocyte system; PEGHDE: polyethylene glycol hexadecyl ether; PLA: polylactic acid; PLGA: poly-lactide-co-glycolic acid; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | - Santosh Kumar Misra
- Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
| | - Parikshit Moitra
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Baltimore, Maryland, USA
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, USA
| | - Xiuli Zhang
- Department of Surgery, Washington University, St. Louis, MO, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | - Jeremiah Stitham
- Cardiovascular Division, Washington University, St. Louis, MO, USA
- Division of Endocrinology, Metabolism, and Lipid Research, St. Louis, MO, USA
| | | | - Arick Park
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | - Yu-Sheng Yeh
- Cardiovascular Division, Washington University, St. Louis, MO, USA
| | | | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Abhinav Diwan
- Cardiovascular Division, Washington University, St. Louis, MO, USA
- John Cochran Division, VA Medical Center, St. Louis, MO, USA
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Slava Epelman
- Peter Munk Cardiac Center, Toronto General Hospital Research Institute, University Health Network, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism, and Lipid Research, St. Louis, MO, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Baltimore, Maryland, USA
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, USA
| | - Babak Razani
- Cardiovascular Division, Washington University, St. Louis, MO, USA
- John Cochran Division, VA Medical Center, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Schilling WHK, White NJ. Does hydroxychloroquine still have any role in the COVID-19 pandemic? Expert Opin Pharmacother 2021; 22:1257-1266. [PMID: 33724123 PMCID: PMC7989952 DOI: 10.1080/14656566.2021.1898589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
Introduction: The 4-aminoquinolines, chloroquine, and hydroxychloroquine have been used for over 70 years for malaria and rheumatological conditions, respectively. Their broad-spectrum antiviral activity, excellent safety profile, tolerability, low cost, and ready availability made them prime repurposing therapeutic candidates at the beginning of the COVID-19 pandemic.Areas covered: Here, the authors discuss the history of hydroxychloroquine and chloroquine, the in vitro data which led to their widespread repurposing and adoption in COVID-19 and their complex pharmacokinetics. The evidence for the use of these drugs is assessed through in vivo animal experiments and the wealth of conflicting data and interpretations published during COVID-19, including the more informative results from randomized controlled trials (RCTs). The safety aspects of these drugs, in particular cardiotoxicity, are then reviewed.Expert opinion: The evidence from clinical trials in COVID-19 supports the well-established safety record of the 4-aminoquinolines at currently recommended dosage. In hospitalized patients with severe COVID-19 RCTs show clearly that the 4-aminoquinolines are not beneficial. The only treatments with proven benefit at this stage of infection are immunomodulators (dexamethasone, IL-6 receptor antagonists). No antiviral drugs have proven life-saving in late-stage COVID-19.
Collapse
Affiliation(s)
- William HK Schilling
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Grzybowski M, Taki M, Kajiwara K, Yamaguchi S. Effects of Amino Group Substitution on the Photophysical Properties and Stability of Near-Infrared Fluorescent P-Rhodamines. Chemistry 2020; 26:7912-7917. [PMID: 32274865 DOI: 10.1002/chem.202000957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/26/2020] [Indexed: 12/20/2022]
Abstract
A series of phosphine oxide-bridged rhodamines (P-rhodamines) bearing various acyclic and cyclic amine moieties, including dimethyl- and diethylamine, azetidine, pyrrolidine and 7-azabicyclo[2,2,1]heptane (7ABH), have been synthesized. The photophysical properties as well as chemical and photostability of these dyes have been studied in detail. Among these dyes, the 7ABH-substituted dye shows stronger fluorescence in the near-infrared (NIR) region, relative to the other P-rhodamines. This dye could be applied to live-cell imaging, wherein lysosomes were selectively stained in a pH-independent manner. It was also found that the ring fusion of the amine moieties gives rise to remarkably redshifted spectra, with absorption and emission maxima at 770 and 820 nm, respectively, spectrally close to that of indocyanine green (ICG). Importantly, the ring-fused P-rhodamines showed much higher photostability than ICG, indicative of their promising utility as the NIR-emissive dyes.
Collapse
Affiliation(s)
- Marek Grzybowski
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Keiji Kajiwara
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
9
|
Park SH, Hyun JY, Shin I. A lysosomal chloride ion-selective fluorescent probe for biological applications. Chem Sci 2018; 10:56-66. [PMID: 30746073 PMCID: PMC6334773 DOI: 10.1039/c8sc04084b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023] Open
Abstract
Lysosomal pHs are maintained at low values by the cooperative action of a proton pump and a chloride channel to maintain electroneutrality. Owing to the biological significance of lysosomal chloride ions, measurements of their levels are of great importance to understand lysosome-associated biological events. However, appropriate probes to selectively detect Cl- ions within acidic lysosomes have not been developed to date. In this study, we prepared MQAE-MP, a lysosomal Cl--selective fluorescent probe, and applied it to gain information about biological processes associated with lysosomes. The fluorescence of MQAE-MP is pH-insensitive over physiological pH ranges and is quenched by Cl- with a Stern-Volmer constant of 204 M-1. Because MQAE-MP detects lysosomal Cl- selectively, it was employed to assess the effects of eleven substances on lysosomal Cl- concentrations. The results show that lysosomal Cl- concentrations decrease in cells treated with substances that inhibit proteins responsible for lysosomal membrane stabilization, induce lysosomal membrane permeabilization, and transport lysosomal Cl- to the cytosol. In addition, we investigated the effect of lysosomal chloride ions on the fusion of autophagosomes with lysosomes to generate autolysosomes during autophagy inhibition promoted by substances. It was found that changes in lysosomal Cl- concentrations did not affect the fusion of autophagosomes with lysosomes but an increase in the cytosolic Ca2+ concentration blocked the fusion process. We demonstrate from the current study that MQAE-MP has great potential as a lysosomal Cl--selective fluorescent probe for studies of biological events associated with lysosomes.
Collapse
Affiliation(s)
- Sang-Hyun Park
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea .
| | - Ji Young Hyun
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea .
| | - Injae Shin
- Center for Biofunctional Molecules , Department of Chemistry , Yonsei University , Seoul 03722 , Republic of Korea .
| |
Collapse
|
10
|
Pawlak EN, Dirk BS, Jacob RA, Johnson AL, Dikeakos JD. The HIV-1 accessory proteins Nef and Vpu downregulate total and cell surface CD28 in CD4 + T cells. Retrovirology 2018; 15:6. [PMID: 29329537 PMCID: PMC5767034 DOI: 10.1186/s12977-018-0388-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background The HIV-1 accessory proteins Nef and Vpu alter cell surface levels of multiple host proteins to modify the immune response and increase viral persistence. Nef and Vpu can downregulate cell surface levels of the co-stimulatory molecule CD28, however the mechanism of this function has not been completely elucidated. Results Here, we provide evidence that Nef and Vpu decrease cell surface and total cellular levels of CD28. Moreover, using inhibitors we implicate the cellular degradation machinery in the downregulation of CD28. We shed light on the mechanisms of CD28 downregulation by implicating the Nef LL165 and DD175 motifs in decreasing cell surface CD28 and Nef DD175 in decreasing total cellular CD28. Moreover, the Vpu LV64 and S52/56 motifs were required for cell surface CD28 downregulation, while, unlike for CD4 downregulation, Vpu W22 was dispensable. The Vpu S52/56 motif was also critical for Vpu-mediated decreases in total CD28 protein level. Finally, the ability of Vpu to downregulate CD28 is conserved between multiple group M Vpu proteins and infection with viruses encoding or lacking Nef and Vpu have differential effects on activation upon stimulation. Conclusions We report that Nef and Vpu downregulate cell surface and total cellular CD28 levels. We identified inhibitors and mutations within Nef and Vpu that disrupt downregulation, shedding light on the mechanisms utilized to downregulate CD28. The conservation and redundancy between the abilities of two HIV-1 proteins to downregulate CD28 highlight the importance of this function, which may contribute to the development of latently infected cells. Electronic supplementary material The online version of this article (10.1186/s12977-018-0388-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Aaron L Johnson
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada.
| |
Collapse
|
11
|
Verma K, Datta S. Heavy subunit of cell surface Gal/GalNAc lectin (Hgl) undergoes degradation via endo-lysosomal compartments in Entamoeba histolytica. Small GTPases 2017; 10:456-465. [PMID: 28613117 DOI: 10.1080/21541248.2017.1340106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human gut parasite Entamoeba histolytica uses a multifunctional virulence factor, Hgl, a cell surface transmembrane receptor subunit of Gal/GalNAc lectin that contributes to adhesion, invasion, cytotoxicity and immune response in the host. At present, the physiologic importance of Hgl receptor is mostly known for pathogenicity of E. histolytica. However, the molecular mechanisms of Hgl trafficking events and their association with the intracellular membrane transport machinery are largely unknown. We used biochemical and microscopy-based assays to understand the Hgl trafficking in the amoebic trophozoites. Our results suggest that the Hgl is constitutively degraded through delivery into amoebic lysosome-like compartments. Further, we also observed that the Hgl was significantly colocalized with amoebic Rab GTPases such as EhRab5, EhRab7A, and EhRab11B. While, we detected association of Hgl with all these Rab GTPases in early vacuolar compartments, only EhRab7A remains associated with Hgl till its transport to amoebic lysosome-like compartments.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri , India
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri , India
| |
Collapse
|
12
|
Verma K, Datta S. The Monomeric GTPase Rab35 Regulates Phagocytic Cup Formation and Phagosomal Maturation in Entamoeba histolytica. J Biol Chem 2017; 292:4960-4975. [PMID: 28126902 DOI: 10.1074/jbc.m117.775007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
One of the hallmarks of amoebic colitis is the detection of Entamoeba histolytica (Eh) trophozoites with ingested erythrocytes. Therefore, erythrophagocytosis is traditionally considered as one of the most important criteria to identify the pathogenic behavior of the amoebic trophozoites. Phagocytosis is an essential process for the proliferation and virulence of this parasite. Phagocytic cargo, upon internalization, follows a defined trafficking route to amoebic lysosomal degradation machinery. Here, we demonstrated the role of EhRab35 in the early and late phases of erythrophagocytosis by the amoeba. EhRab35 showed large vacuolar as well as punctate vesicular localization. The spatiotemporal dynamics of vacuolar EhRab35 and its exchange with soluble cytosolic pool were monitored by fluorescence recovery after photobleaching experiments. Using extensive microscopy and biochemical methods, we demonstrated that upon incubation with RBCs EhRab35 is recruited to the site of phagocytic cups as well as to the nascent phagosomes that harbor Gal/GalNAc lectin and actin. Overexpression of a dominant negative mutant of EhRab35 reduced phagocytic cup formation and thereby reduced RBC internalization, suggesting a potential role of the Rab GTPase in the cup formation. Furthermore, we also performed a phagosomal maturation assay and observed that the activated form of EhRab35 significantly increased the rate of RBC degradation. Interestingly, this mutant also significantly enhanced the number of acidic compartments in the trophozoites. Taken together, our results suggest that EhRab35 is involved in the initial stage of phagocytosis as well as in the phagolysosomal biogenesis in E. histolytica and thus contributes to the pathogenicity of the parasite.
Collapse
Affiliation(s)
- Kuldeep Verma
- From the Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462030, India
| | - Sunando Datta
- From the Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462030, India
| |
Collapse
|
13
|
HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling. Sci Rep 2016; 6:37021. [PMID: 27841315 PMCID: PMC5107982 DOI: 10.1038/srep37021] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022] Open
Abstract
A defining characteristic of HIV-1 infection is the ability of the virus to persist within the host. Specifically, MHC-I downregulation by the HIV-1 accessory protein Nef is of critical importance in preventing infected cells from cytotoxic T-cell mediated killing. Nef downregulates MHC-I by modulating the host membrane trafficking machinery, resulting in the endocytosis and eventual sequestration of MHC-I within the cell. In the current report, we utilized the intracellular protein-protein interaction reporter system, bimolecular fluorescence complementation (BiFC), in combination with super-resolution microscopy, to track the Nef/MHC-I interaction and determine its subcellular localization in cells. We demonstrate that this interaction occurs upon Nef binding the MHC-I cytoplasmic tail early during endocytosis in a Rab5-positive endosome. Disruption of early endosome regulation inhibited Nef-dependent MHC-I downregulation, demonstrating that Nef hijacks the early endosome to sequester MHC-I within the cell. Furthermore, super-resolution imaging identified that the Nef:MHC-I BiFC complex transits through both early and late endosomes before ultimately residing at the trans-Golgi network. Together we demonstrate the importance of the early stages of the endocytic network in the removal of MHC-I from the cell surface and its re-localization within the cell, which allows HIV-1 to optimally evade host immune responses.
Collapse
|
14
|
Batista AR, Sena-Esteves M, Saraiva MJ. Hepatic production of transthyretin L12P leads to intracellular lysosomal aggregates in a new somatic transgenic mouse model. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1183-93. [DOI: 10.1016/j.bbadis.2013.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 11/29/2022]
|
15
|
Meng H, Xue M, Xia T, Zhao YL, Tamanoi F, Stoddart JF, Zink JI, Nel AE. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J Am Chem Soc 2010; 132:12690-7. [PMID: 20718462 PMCID: PMC3116646 DOI: 10.1021/ja104501a] [Citation(s) in RCA: 424] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesoporous silica nanoparticles (MSNP) have proven to be an extremely effective solid support for controlled drug delivery on account of the fact that their surfaces can be easily functionalized in order to control the nanopore openings. We have described recently a series of mechanized silica nanoparticles, which, under abiotic conditions, are capable of delivering cargo molecules employing a series of nanovalves. The key question for these systems has now become whether they can be adapted for biological use through controlled nanovalve opening in cells. Herein, we report a novel MSNP delivery system capable of drug delivery based on the function of beta-cyclodextrin (beta-CD) nanovalves that are responsive to the endosomal acidification conditions in human differentiated myeloid (THP-1) and squamous carcinoma (KB-31) cell lines. Furthermore, we demonstrate how to optimize the surface functionalization of the MSNP so as to provide a platform for the effective and rapid doxorubicin release to the nuclei of KB-31 cells.
Collapse
Affiliation(s)
- Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095
| | - Min Xue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095
| | - Yan-Li Zhao
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095
- California NanoSystems Institute, University of California, Los Angeles, California 90095
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Jeffrey I. Zink
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- California NanoSystems Institute, University of California, Los Angeles, California 90095
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095
- California NanoSystems Institute, University of California, Los Angeles, California 90095
- The Southern California Particle Center, University of California, Los Angeles, California 90095
| |
Collapse
|
16
|
Kirsten JH, Xiong Y, Davis CT, Singleton CK. Subcellular localization of ammonium transporters in Dictyostelium discoideum. BMC Cell Biol 2008; 9:71. [PMID: 19108721 PMCID: PMC2653498 DOI: 10.1186/1471-2121-9-71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 12/24/2008] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND With the exception of vertebrates, most organisms have plasma membrane associated ammonium transporters which primarily serve to import a source of nitrogen for nutritional purposes. Dictyostelium discoideum has three ammonium transporters, Amts A, B and C. Our present work used fluorescent fusion proteins to determine the cellular localization of the Amts and tested the hypothesis that the transporters mediate removal of ammonia generated endogenously from the elevated protein catabolism common to many protists. RESULTS Using RFP and YFP fusion constructs driven by the actin 15 promoter, we found that the three ammonium transporters were localized on the plasma membrane and on the membranes of subcellular organelles. AmtA and AmtB were localized on the membranes of endolysosomes and phagosomes, with AmtB further localized on the membranes of contractile vacuoles. AmtC also was localized on subcellular organelles when it was stabilized by coexpression with either the AmtA or AmtB fusion transporter. The three ammonium transporters exported ammonia linearly with regard to time during the first 18 hours of the developmental program as revealed by reduced export in the null strains. The fluorescently tagged transporters rescued export when expressed in the null strains, and thus they were functional transporters. CONCLUSION Unlike ammonium transporters in most organisms, which import NH3/NH4+ as a nitrogen source, those of Dictyostelium export ammonia/ammonium as a waste product from extensive catabolism of exogenously derived and endogenous proteins. Localization on proteolytic organelles and on the neutral contractile vacuole suggests that Dictyostelium ammonium transporters may have unique subcellular functions and play a role in the maintenance of intracellular ammonium distribution. A lack of correlation between the null strain phenotypes and ammonia excretion properties of the ammonium transporters suggests that it is not the excretion function that is important for coupling ammonia levels to the slug versus culmination choice, but rather a sensor and/or signaling function of these proteins that is important.
Collapse
Affiliation(s)
- Janet H Kirsten
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Yanhua Xiong
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Carter T Davis
- LSU School of Medicine – New Orleans, 2020 Gravier Street, New Orleans, LA 70112, USA
| | - Charles K Singleton
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| |
Collapse
|
17
|
Hotta C, Fujimaki H, Yoshinari M, Nakazawa M, Minami M. The delivery of an antigen from the endocytic compartment into the cytosol for cross-presentation is restricted to early immature dendritic cells. Immunology 2006; 117:97-107. [PMID: 16423045 PMCID: PMC1782205 DOI: 10.1111/j.1365-2567.2005.02270.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dendritic cells (DCs) are the only antigen-presenting cell population having a cross-presentation capacity. For cross-presentation, however, the intracellular antigen-processing pathway and its regulatory mechanism have not been defined. Here we report the differences in cross-presentation ability among murine bone marrow-derived immature DC, early immature day8-DC and late immature day10-DC, and fully mature day10 + lipopolysaccharide DC. Day8-DCs and day10-DCs show an immature phenotypic profile but are different in morphology. Day8-DCs can internalize an abundant volume of exogenous soluble ovalbumin (OVA) and result in cross-presentation. In contrast, day10-DCs are not able to cross-present, although they maintain efficient macropinocytosis. Exogenously internalized OVA antigens are stored in the endocytic compartments. The endocytic compartments are temporarily maintained at mildly acidic pH in day8-DCs and are rapidly acidified in day10-DCs after uptake of antigens. We show that OVA antigens accumulated in the endocytic compartments move into the cytosol in day8-DCs but do not in day10-DCs. NH(4)Cl-treatment, which neutralizes the acidic endocytic compartments and/or delays endosomal maturation, restores day10-DCs for transport the stored OVA antigens from the endocytic compartments into the cytosol. Diphenyleneiodonium chloride-treatment, which acidifies the endocytic compartments, decreases an amount of transported OVA antigen into the cytosol in day8-DCs. These data indicate that only the early immature stage of DC interferes with endosomal maturation, even after uptake of exogenous antigens, and then transports the antigens into the cytosol.
Collapse
Affiliation(s)
- Chie Hotta
- Department of Immunology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | |
Collapse
|
18
|
Oerlemans R, van der Heijden J, Vink J, Dijkmans BAC, Kaspers GJL, Lems WF, Scheffer GL, Ifergan I, Scheper RJ, Cloos J, Assaraf YG, Jansen G. Acquired resistance to chloroquine in human CEM T cells is mediated by multidrug resistance–associated protein 1 and provokes high levels of cross-resistance to glucocorticoids. ACTA ACUST UNITED AC 2006; 54:557-68. [PMID: 16447232 DOI: 10.1002/art.21569] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To explore the onset and molecular mechanism of resistance to the antimalarial disease-modifying antirheumatic drug (DMARD) chloroquine (CQ) in human CEM T cells. METHODS Human CEM cells were used as an in vitro model system to study the development of CQ resistance by growing cells in stepwise increasing concentrations of CQ. RESULTS Over a period of 6 months, CEM cell lines developed 4-5-fold resistance to CQ. CQ resistance was associated with the specific overexpression of multidrug resistance-associated protein 1 (MRP-1), an ATP-driven drug efflux pump. This was illustrated by 1) overexpression of MRP-1 by Western blotting and 2) the complete reversal of CQ resistance by the MRP-1 transport inhibitors MK571 and probenecid. Importantly, CQ-resistant CEM cells retained full sensitivity to other DMARDs, including methotrexate, leflunomide, cyclosporin A, and sulfasalazine, but exhibited a high level of cross-resistance (>1,000-fold) to the glucocorticoid dexamethasone. The mechanistic basis for the latter was associated with aberrant signaling via the cAMP-protein kinase A pathway, since the cAMP-inducing agent forskolin reversed dexamethasone resistance. Finally, CQ-resistant CEM cells displayed a markedly reduced capacity to release proinflammatory cytokines (tumor necrosis factor alpha) and chemokines (interleukin-8). CONCLUSION Induction of overexpression of the multidrug resistance efflux transporter MRP-1 can emerge after long-term exposure to CQ and results in CQ resistance and collateral resistance to dexamethasone. These findings warrant further detailed investigations into the possible role of MRP-1 and other members of the superfamily of drug efflux pumps in diminishing the efficacy of DMARDs in rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- Ruud Oerlemans
- VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Macropinocytosis of newly formed resides and exocytosis of post-lysosomes have been visualized using a green fluorescent protein probe that binds specifically to F-actin filaments. F-actin association with macropinocytosis begins as a V-shaped infolding of the membrane. Vesicle enlargement occurs through an inward movement of the proximal point of the V as well as an outward protrusion at the tip of the V to form an elongated invagination. The protrusion eventually closes at its distal margin to become a vesicle and is moved centripetally while recovering its circular shape. The vesicle loses its actin coat within 1 min after internalization. One hour later, post-lysosomal vesicles became weakly surrounded by actin while still cytoplasmic. Some of these vesicles moved to the plasma membrane, docked, and then expelled their contents. Slightly before the vesicle content began to disappear, an increase in F-actin association with the vesicle was observed. This was followed by rapid contraction of the vesicle and then disappearance of the actin signal once the internal content was released. These results show that dynamic changes in actin filament association with the vesicle membrane accompany both endocytosis and exocytosis.
Collapse
Affiliation(s)
- Eunkyung Lee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
20
|
Rupper AC, Rodriguez-Paris JM, Grove BD, Cardelli JA. p110-related PI 3-kinases regulate phagosome-phagosome fusion and phagosomal pH through a PKB/Akt dependent pathway in Dictyostelium. J Cell Sci 2001; 114:1283-95. [PMID: 11256995 DOI: 10.1242/jcs.114.7.1283] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Dictyostelium p110-related PI 3-kinases, PIK1 and PIK2, regulate the endosomal pathway and the actin cytoskeleton, but do not significantly regulate internalization of particles in D. discoideum. Bacteria internalized into (Δ)ddpik1/ddpik2 cells or cells treated with PI 3-kinase inhibitors remained intact as single particles in phagosomes with closely associated membranes after 2 hours of internalization, while in control cells, bacteria appeared degraded in multi-particle spacious phagosomes. Addition of LY294002 to control cells, after 60 minutes of chase, blocked formation of spacious phagosomes, suggesting PI 3-kinases acted late to regulate spacious phagosome formation. Phagosomes purified from control and drug treated cells contained equivalent levels of lysosomal proteins, including the proton pump complex, and were acidic, but in drug treated cells and (Δ)ddpik1/ddpik2 cells phagosomal pH was significantly more acidic during maturation than the pH of control phagosomes. Inhibition of phagosomal maturation by LY294002 was overcome by increasing phagosomal pH with NH(4)Cl, suggesting that an increase in pH might trigger homotypic phagosome fusion. A pkbA null cell line (PKB/Akt) reproduced the phenotype described for cells treated with PI 3-kinase inhibitors and (Δ)ddpik1/ddpik2 cells. We propose that PI 3-kinases, through a PKB/Akt dependent pathway, directly regulate homotypic fusion of single particle containing phagosomes to form multi-particle, spacious phagosomes, possibly through the regulation of phagosomal pH.
Collapse
Affiliation(s)
- A C Rupper
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
21
|
Rupper A, Cardelli J. Regulation of phagocytosis and endo-phagosomal trafficking pathways in Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:205-16. [PMID: 11257434 DOI: 10.1016/s0304-4165(01)00106-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phagocytosis, a critically important process employed by leukocytes against invading pathogens, is an actin-dependent clathrin-independent process that results in the internalization of particles >0.5 microm in diameter. Phagocytosis consists of a number of stages, including the binding of particles to the cell surface via interaction with a receptor, engulfment of the particle by pseudopod extension, and fission and fusion reactions to form phago-lysosomes. Much remains to be learned concerning the molecular mechanisms that regulate particle internalization and phagosome maturation. Dictyostelium is a genetically tractable professional phagocyte that has proven useful in determining the molecular steps involved in these processes. We will summarize, in this chapter, what we currently understand concerning the molecular mechanisms that regulate the process of phagocytosis in Dictyostelium, and we will compare and contrast this body of information with that available describing phagocytosis in higher organisms. We will also present current information that suggests that macropinocytosis, a process morphologically similar to phagocytosis, utilizes a different signaling pathway than phagocytosis. Finally, we will discuss the process of maturation of phagosomes, which requires membrane trafficking events, and we will summarize data that support the use of Dictyostelium as a model to determine how intracellular pathogens survive.
Collapse
Affiliation(s)
- A Rupper
- Department of Microbiology and Immunology, Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
22
|
Temesvari L, Zhang L, Fodera B, Janssen KP, Schleicher M, Cardelli JA. Inactivation of lmpA, encoding a LIMPII-related endosomal protein, suppresses the internalization and endosomal trafficking defects in profilin-null mutants. Mol Biol Cell 2000; 11:2019-31. [PMID: 10848626 PMCID: PMC14900 DOI: 10.1091/mbc.11.6.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Profilin is a key phosphoinositide and actin-binding protein connecting and coordinating changes in signal transduction pathways with alterations in the actin cytoskeleton. Using biochemical assays and microscopic approaches, we demonstrate that profilin-null cells are defective in macropinocytosis, fluid phase efflux, and secretion of lysosomal enzymes but are unexpectedly more efficient in phagocytosis than wild-type cells. Disruption of the lmpA gene encoding a protein (DdLIMP) belonging to the CD36/LIMPII family suppressed, to different degrees, most of the profilin-minus defects, including the increase in F-actin, but did not rescue the secretion defect. Immunofluorescence microscopy indicated that DdLIMP, which is also capable of binding phosphoinositides, was associated with macropinosomes but was not detected in the plasma membrane. Also, inactivation of the lmpA gene in wild-type strains resulted in defects in macropinocytosis and fluid phase efflux but not in phagocytosis. These results suggest an important role for profilin in regulating the internalization of fluid and particles and the movement of material along the endosomal pathway; they also demonstrate a functional interaction between profilin and DdLIMP that may connect phosphoinositide-based signaling through the actin cytoskeleton with endolysosomal membrane trafficking events.
Collapse
Affiliation(s)
- L Temesvari
- Feist-Weiller Cancer Center, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | |
Collapse
|
23
|
Gabriel D, Hacker U, Köhler J, Müller-Taubenberger A, Schwartz JM, Westphal M, Gerisch G. The contractile vacuole network of Dictyostelium as a distinct organelle: its dynamics visualized by a GFP marker protein. J Cell Sci 1999; 112 ( Pt 22):3995-4005. [PMID: 10547360 DOI: 10.1242/jcs.112.22.3995] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contractile vacuole system is an osmoregulatory organelle composed of cisternae and interconnecting ducts. Large cisternae act as bladders that periodically fuse with the plasma membrane, forming pores to expel water. To visualize the entire network in vivo and to identify constituents of the vacuolar complex in cell fractions, we introduced a specific marker into Dictyostelium cells, GFP-tagged dajumin. The C-terminal, GFP-tagged region of this transmembrane protein is responsible for sorting to the contractile vacuole complex. Dajumin-GFP negligibly associates with the plasma membrane, indicating its retention during discharge of the bladder. Fluorescent labeled cell-surface constituents are efficiently internalized by endocytosis, while no significant cycling through the contractile vacuole is observed. Endosomes loaded with yeast particles or a fluid-phase marker indicate sharp separation of the endocytic pathway from the contractile vacuole compartment. Even after dispersion of the contractile vacuole system during mitosis, dajumin-GFP distinguishes the vesicles from endosomes, and visualizes post-mitotic re-organization of the network around the nucleus. Highly discriminative sorting and membrane fusion mechanisms are proposed to account for the sharp separation of the contractile vacuole and endosomal compartments. Evidence for a similar compartment in other eukaryotic cells is discussed.
Collapse
Affiliation(s)
- D Gabriel
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Cavallo D, Cervi D, Sands TW, Cotter DA. Differential in vitro activation and deactivation of cysteine proteinases isolated during spore germination and vegetative growth of Dictyostelium discoideum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:132-42. [PMID: 10542058 DOI: 10.1046/j.1432-1327.1999.00833.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acid-activatable cysteine proteinases of Dictyostelium discoideum were first identified in spore extracts of strain SG1 using gelatin/SDS/PAGE, followed by acid treatments. Here we utilized the technique of acid activation to identify cryptic cysteine proteinases throughout auto-induced and heat-induced spore germination of D. discoideum strain SG2 and SG1. The major acid-activatable cysteine proteinase identified in SG2 and SG1 spore extracts was ddCP38 (D. discoideum cysteine proteinase with a molecular mass of 38 kDa) and ddCP48, respectively. Further investigation of these enzymes revealed that they were also base deactivatable with a treatment of ammonium chloride directly following acid activation. However, the most intriguing observation was the reversibility of the effects of base deactivation on the enzymes following a second treatment with acetic acid. Thus, we hypothesize that, unlike most mammalian cysteine proteinases which generally require the cleavage of a pro-peptide region for activation, these cysteine proteinases of D. discoideum likely undergo reversible conformational changes between latent and active forms. Moreover, we were able to detect these cryptic cysteine proteinases in the vegetative cells and early aggregates of both strains SG1 and SG2. Studies using 4-[(2S, 3S)-3-carboxyoxiran-2-ylcarbonyl-L-leucylamido]buty lguanidine, a cysteine proteinase inhibitor, revealed that acid activation of a portion of these proteinases was still achievable even after incubation with the inhibitor, further supporting the concept of two stable and reversible conformational arrangements of the enzymes. Thus, we speculate that the pH shuffles that modulate proteinase conformation and activity in vitro may be a reflection of the in vivo regulation of these enzymes via H+-ATPases and ammonia.
Collapse
Affiliation(s)
- D Cavallo
- Department of Biological Sciences, University of Windsor, Ontario, Canada
| | | | | | | |
Collapse
|
25
|
Gimelbrant AA, Stoss TD, Landers TM, McClintock TS. Truncation releases olfactory receptors from the endoplasmic reticulum of heterologous cells. J Neurochem 1999; 72:2301-11. [PMID: 10349839 DOI: 10.1046/j.1471-4159.1999.0722301.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Olfactory receptors are difficult to express functionally in heterologous cells. We found that olfactory receptors traffic poorly to the plasma membrane even in cells with neuronal phenotypes, including cell lines derived from the olfactory epithelium. Other than mature olfactory receptor neurons, few cells appear able to traffic olfactory receptors to the plasma membrane. In human embryonic kidney 293 cells and Xenopus fibroblasts, olfactory receptor immunoreactivity overlapped with a marker for the endoplasmic reticulum (ER) but not with markers for the Golgi apparatus or endosomes. Except for the ER, olfactory receptors were therefore absent from organelles normally involved in the plasma membrane trafficking of receptors. Olfactory receptors truncated prior to transmembrane domain VI were expressed in the plasma membrane, however. Co-expression of the missing C-terminal fragment with these truncated receptors prevented their expression in the plasma membrane. Intramolecular interactions between N- and C-terminal domains joined by the third cytoplasmic loop appear to be responsible for retention of olfactory receptors in the ER of heterologous cells. Our results are consistent with misfolding of the receptors but could also be explained by altered trafficking of the receptors.
Collapse
Affiliation(s)
- A A Gimelbrant
- Department of Physiology, University of Kentucky, Lexington 40536-0084, USA
| | | | | | | |
Collapse
|
26
|
LeBlanc AC, Goodyer CG. Role of endoplasmic reticulum, endosomal-lysosomal compartments, and microtubules in amyloid precursor protein metabolism of human neurons. J Neurochem 1999; 72:1832-42. [PMID: 10217259 DOI: 10.1046/j.1471-4159.1999.0721832.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A wide interest in amyloid precursor protein (APP) metabolism stems from the fact that increased amounts of amyloid beta peptide (Abeta), arising through proteolytic processing of APP, likely play a significant role in Alzheimer's disease. As Alzheimer's disease pathology is limited almost exclusively to the human species, we established human primary neuron cultures to address the possibility of distinctive APP processing in human CNS neurons. In the present study, we investigate the role of organelles and protein trafficking in APP metabolism. Using brefeldin A, we failed to detect APP processing into Abeta in the endoplasmic reticulum. Monensin and the lysomotropic agents, NH4Cl and chloroquine, revealed a bypass pH-dependent secretory pathway in a compartment between the endoplasmic reticulum and the medial Golgi, resulting in the secretion of full-length APP. Colchicine treatment resulting in the loss of neurites inhibited processing of APP through the secretory, but not the endosomal-lysosomal, pathway of APP metabolism. The serine protease inhibitor, leupeptin, indicates a role for lysosomes in APP, Abeta, and APP C-terminal fragment turnover. These results demonstrate that the regulation of APP metabolism in human neurons differs considerably from those reported in rodent CNS primary neuron cultures or continuously dividing cell types.
Collapse
Affiliation(s)
- A C LeBlanc
- Department of Neurology and Neurosurgery, McGill University, and Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Mortimer B. Davis Jewish General Hospital, Montréal, Québec, Canada
| | | |
Collapse
|
27
|
Karakesisoglou I, Janssen KP, Eichinger L, Noegel AA, Schleicher M. Identification of a suppressor of the Dictyostelium profilin-minus phenotype as a CD36/LIMP-II homologue. J Biophys Biochem Cytol 1999; 145:167-81. [PMID: 10189376 PMCID: PMC2148220 DOI: 10.1083/jcb.145.1.167] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Profilin is an ubiquitous G-actin binding protein in eukaryotic cells. Lack of both profilin isoforms in Dictyostelium discoideum resulted in impaired cytokinesis and an arrest in development. A restriction enzyme-mediated integration approach was applied to profilin-minus cells to identify suppressor mutants for the developmental phenotype. A mutant with wild-type-like development and restored cytokinesis was isolated. The gene affected was found to code for an integral membrane glycoprotein of a predicted size of 88 kD containing two transmembrane domains, one at the NH2 terminus and the other at the COOH terminus. It is homologous to mammalian CD36/LIMP-II and represents the first member of this family in D. discoideum, therefore the name DdLIMP is proposed. Targeted disruption of the lmpA gene in the profilin-minus background also rescued the mutant phenotype. Immunofluorescence revealed a localization in vesicles and ringlike structures on the cell surface. Partially purified DdLIMP bound specifically to PIP2 in sedimentation and gel filtration assays. A direct interaction between DdLIMP and profilin could not be detected, and it is unclear how far upstream in a regulatory cascade DdLIMP might be positioned. However, the PIP2 binding of DdLIMP points towards a function via the phosphatidylinositol pathway, a major regulator of profilin.
Collapse
Affiliation(s)
- I Karakesisoglou
- A.-Butenandt-Institut für Zellbiologie, Ludwig-Maximilians-Universität, 80336 München, Germany
| | | | | | | | | |
Collapse
|
28
|
Isaac J, Kerby JD, Russell WJ, Dempsey SC, Sanders PW, Herrera GA. In vitro modulation of AL-amyloid formation by human mesangial cells exposed to amyloidogenic light chains. Amyloid 1998; 5:238-46. [PMID: 10036581 DOI: 10.3109/13506129809007296] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have shown in vitro AL-amyloid formation by human mesangial cells (HMCs). AL-amyloid formation may require lysosomal processing of the light chains (LCs) by HMCs for amyloidogenesis to occur. Chloroquine inhibits lysosomal activity. TGF-beta mediates extracellular matrix formation in many glomerulopathies. Thrombospondin (TSP) has been proposed as a mediator of cell proliferation and a marker of early fibrosis. We investigated amyloid formation by HMCs exposed to AL-LCs in the absence of amyloid enhancing factor (AEF). The effects of TGF-beta, TSP and chloroquine on in vitro amyloid formation were studied. HMCs were incubated with two AL-LCs, a light chain deposition disease (LCDD)-LC, or one of two tubulopathic LCs (T-LCs). Additional cells were treated with an AL-LC and chloroquine, TGF-beta, or TSP. Amyloid formation was evaluated microscopically using hematoxylin and eosin, Congo red and Thioflavin-T stains, as well as ultrastructurally. Amyloid was formed only when HMCs were incubated with AL-LCs. Addition of TSP significantly enhanced amyloid formation. In contrast, exogenous TGF-beta and chloroquine significantly attenuated amyloid formation. These findings show that some AL-LCs do not require AEF for amyloidogenesis to occur, and that chloroquine, TGF-beta and sTSP modulate in vitro AL-amyloidosis.
Collapse
Affiliation(s)
- J Isaac
- Department of Pathology, Louisiana State University Medical Center, Shreveport, LA 71130, USA
| | | | | | | | | | | |
Collapse
|
29
|
Seastone DJ, Lee E, Bush J, Knecht D, Cardelli J. Overexpression of a novel rho family GTPase, RacC, induces unusual actin-based structures and positively affects phagocytosis in Dictyostelium discoideum. Mol Biol Cell 1998; 9:2891-904. [PMID: 9763450 PMCID: PMC25563 DOI: 10.1091/mbc.9.10.2891] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/1998] [Accepted: 07/29/1998] [Indexed: 11/11/2022] Open
Abstract
Rho family proteins have been implicated in regulating various cellular processes, including actin cytoskeleton organization, endocytosis, cell cycle, and gene expression. In this study, we analyzed the function of a novel Dictyostelium discoideum Rho family protein (RacC). A cell line was generated that conditionally overexpressed wild-type RacC three- to fourfold relative to endogenous RacC. Light and scanning electron microscopy indicated that the morphology of the RacC-overexpressing cells [RacC WT(+) cells] was significantly altered compared with control cells. In contrast to the cortical F-actin distribution normally observed, RacC WT(+) cells displayed unusual dorsal and peripheral F-actin-rich surface blebs (petalopodia, for flower-like). Furthermore, phagocytosis in the RacC WT(+) cells was induced threefold relative to control Ax2 cells, whereas fluid-phase pinocytosis was reduced threefold, primarily as the result of an inhibition of macropinocytosis. Efflux of fluid-phase markers was also reduced in the RacC WT(+) cells, suggesting that RacC may regulate postinternalization steps along the endolysosomal pathway. Treatment of cells with Wortmannin and LY294002 (phosphatidylinositol 3-kinase inhibitors) prevented the RacC-induced morphological changes but did not affect phagocytosis, suggesting that petalopodia are probably not required for RacC-induced phagocytosis. In contrast, inactivating diacylglycerol-binding motif-containing proteins by treating cells with the drug calphostin C completely inhibited phagocytosis in control and RacC WT(+) cells. These results suggest that RacC plays a role in actin cytoskeleton organization and phagocytosis in Dictyostelium.
Collapse
Affiliation(s)
- D J Seastone
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | |
Collapse
|
30
|
Waterman H, Sabanai I, Geiger B, Yarden Y. Alternative intracellular routing of ErbB receptors may determine signaling potency. J Biol Chem 1998; 273:13819-27. [PMID: 9593726 DOI: 10.1074/jbc.273.22.13819] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ErbB signaling module consists of four receptor tyrosine kinases and several dozen ligands that activate specific homo- and heterodimeric complexes of ErbB proteins. Combinatorial ligand/receptor/effector interactions allow large potential for signal diversification. Here we addressed the possibility that turn-off mechanisms enhance the diversification potential. Concentrating on ErbB-1 and two of its ligands, epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha), and the Neu differentiation factor (NDF/neuregulin) and one of its receptors, ErbB-3, we show that ligand binding variably accelerates endocytosis of the respective ligand-receptor complex. However, unlike the EGF-activated ErbB-1, which is destined primarily to degradation in lysosomes, NDF and TGF-alpha direct their receptors to recycling, probably because these ligands dissociate from their receptors earlier along the endocytic pathway. In the case of NDF, structural, as well as biochemical, analyses imply that ligand degradation occurs at a relatively late endosomal stage. Attenuation of receptor down-regulation by this mechanism apparently confers to both NDF and TGF-alpha more potent and prolonged signaling activity. In conclusion, alternative endocytic trafficking of ligand-ErbB complexes may tune and diversify signal transduction by EGF family ligands.
Collapse
Affiliation(s)
- H Waterman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
31
|
Buczynski G, Grove B, Nomura A, Kleve M, Bush J, Firtel RA, Cardelli J. Inactivation of two Dictyostelium discoideum genes, DdPIK1 and DdPIK2, encoding proteins related to mammalian phosphatidylinositide 3-kinases, results in defects in endocytosis, lysosome to postlysosome transport, and actin cytoskeleton organization. J Cell Biol 1997; 136:1271-86. [PMID: 9087443 PMCID: PMC2132510 DOI: 10.1083/jcb.136.6.1271] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1996] [Revised: 11/19/1996] [Indexed: 02/04/2023] Open
Abstract
Phosphatidylinositide 3-kinases (PI3-kinases) have been implicated in controlling cell proliferation, actin cytoskeleton organization, and the regulation of vesicle trafficking between intracellular organelles. There are at least three genes in Dictyostelium discoideum. DdPIK1, DdPIK2, and DdPIK3, encoding proteins most closely related to the mammalian 110-kD PI-3 kinase in amino acid sequence within the kinase domain. A mutant disrupted in DdPIK1 and DdPIK2 (delta ddpik1/ddpik2) grows slowly in liquid medium. Using FITC-dextran (FD) as a fluid phase marker, we determined that the mutant strain was impaired in pinocytosis but normal in phagocytosis of beads or bacteria. Microscopic and biochemical approaches indicated that the transport rate of fluid-phase from acidic lysosomes to non-acidic postlysosomal vacuoles was reduced in mutant cells resulting in a reduction in efflux of fluid phase. Mutant cells were also almost completely devoid of large postlysosomal vacuoles as determined by transmission EM. However, delta ddpik1/ddpik2 cells functioned normally in the regulation of other membrane traffic. For instance, radiolabel pulse-chase experiments indicated that the transport rates along the secretory pathway and the sorting efficiency of the lysosomal enzyme alpha-mannosidase were normal in the mutant strain. Furthermore, the contractile vacuole network of membranes (probably connected to the endosomal pathway by membrane traffic) was functionally and morphologically normal in mutant cells. Light microscopy revealed that delta ddpik1/ddpik2 cells appeared smaller and more irregularly shaped than wild-type cells; 1-3% of the mutant cells were also connected by a thin cytoplasmic bridge. Scanning EM indicated that the mutant cells contained numerous filopodia projecting laterally and vertically from the cell surface, and fluorescent microscopy indicated that these filopodia were enriched in F-actin which accumulated in a cortical pattern in control cells. Finally, delta ddpik1/ddpik2 cells responded and moved more rapidly towards cAMP. Together, these results suggest that Dictyostelium DdPIK1 and DdPIK2 gene products regulate multiple steps in the endosomal pathway, and function in the regulation of cell shape and movement perhaps through changes in actin organization.
Collapse
Affiliation(s)
- G Buczynski
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Transforming growth factor alpha (TGF alpha) and epidermal growth factor (EGF) bind to the same receptor, but have different potencies and actions. A possible mechanism is that differences in processing may be responsible for their divergent properties. We have examined TGF alpha and EGF processing in isolated rat hepatocytes with and without various protease inhibitors and inhibitors of endosomal processing. Our results show that EGF undergoes limited degradation in endosomes and is primarily degraded in lysosomes. In contrast, TGF alpha is rapidly degraded in endosomes by insulin-degrading enzyme (EC 3.4.24.56), possibly allowing rapid return of the receptor to the cell surface. Incubation of isolated endosomes preloaded with labeled TGF alpha reveals that degradation can occur whether the vesicles are acidified or not, as is also the case for insulin. We conclude that TGF alpha is degraded immediately after internalization, at least partly before acidification has occurred, while EGF requires prolonged intracellular residence and lysosomal degradation. The different degradation pathways may play a role in the different activities of the two hormones.
Collapse
Affiliation(s)
- F G Hamel
- Research Service, Department of Veterans Affairs Medical Center-R151, Omaha, NE 68105, USA
| | | | | | | |
Collapse
|
33
|
Dictyostelium discoideum glycoproteins: using a model system for organismic glycobiology. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0167-7306(08)60618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
North MJ, Nicol K, Sands TW, Cotter DA. Acid-activatable cysteine proteinases in the cellular slime mold Dictyostelium discoideum. J Biol Chem 1996; 271:14462-7. [PMID: 8662904 DOI: 10.1074/jbc.271.24.14462] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Studies of the cysteine proteinases of the cellular slime mold Dictyostelium discoideum have been aided by a simple acid treatment step that was incorporated into the standard one-dimensional gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay procedure. The step involved immersing the separating gel in 10% (v/v) glacial acetic acid for 30-60 s immediately after electrophoresis. This modified approach revealed the presence of acid-activatable forms of some enzymes with noticeable increases in their ability to hydrolyze gelatin, a substrate present in the sodium dodecyl sulfate-polyacrylamide gels, and peptidyl amidomethylcoumarins. The activation has been analyzed using extracts of dormant spores from which cysteine proteinase activity had previously appeared low or virtually absent. The major acid-activatable proteinase had an apparent molecular mass of 48 kDa. Its activation was not due to autocatalysis as it was not prevented by mercuric chloride, an inhibitor of the enzyme, and was not accompanied by a significant change in electrophoretic mobility. It was most likely due to a conformational change and/or the removal of a low molecular weight inhibitor. The acid treatment has also revealed the presence of acid-activatable cysteine proteinases in vegetative cells, in which cysteine proteinase activity is present at high levels, as well as among enzymes from the developmental cells which have much lower cysteine proteinase activity. Indeed novel developmental forms were detected at some stages. These results provide additional insight concerning cysteine proteinase expression at various stages during development in the slime molds. A developmental model is presented which suggests that the crypticity of the cysteine proteinases in dormant spores may be governed by proton pumps and endogenous lysosomotropic agents.
Collapse
Affiliation(s)
- M J North
- Department of Biological and Molecular Sciences, the University of Stirling, Stirling FK9 4LA, Scotland
| | | | | | | |
Collapse
|
35
|
Temesvari LA, Rodriguez-Paris JM, Bush JM, Zhang L, Cardelli JA. Involvement of the vacuolar proton-translocating ATPase in multiple steps of the endo-lysosomal system and in the contractile vacuole system of Dictyostelium discoideum. J Cell Sci 1996; 109 ( Pt 6):1479-95. [PMID: 8799835 DOI: 10.1242/jcs.109.6.1479] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the effects of Concanamycin A (CMA), a specific inhibitor of vacuolar type H(+)-ATPases, on acidification and function of the endo-lysosomal and contractile vacuole (CV) systems of D. discoideum. This drug inhibited acidification and increased the pH of endo-lysosomal vesicles both in vivo and in vitro in a dose dependent manner. Treatment also inhibited endocytosis and exocytosis of fluid phase, and phagocytosis of latex beads. This report also confirms our previous conclusions (Cardelli et al. (1989) J. Biol. Chem. 264, 3454–3463) that maintenance of acidic pH in lumenal compartments is required for efficient processing and targeting of a lysosomal enzyme, alpha-mannosidase. CMA treatment compromised the function of the contractile vacuole complex as amoebae exposed to a hypo-osmotic environment in the presence of CMA, swelled rapidly and ruptured. Fluorescence microscopy revealed that CMA treatment induced gross morphological changes in D. discoideum cells, characterized by the formation of large intracellular vacuoles containing fluid phase. The reticular membranes of the CV system were also no longer as apparent in drug treated cells. Finally, this is the first report describing cells that can adapt in the presence of CMA; in nutrient medium, D. discoideum overcame the effects of CMA after one hour of drug treatment even in the absence of protein synthesis. Upon adaptation to CMA, normal sized endo-lysosomal vesicles reappeared, endo-lysosomal pH decreased, and the rate of endocytosis, exocytosis and phagocytosis returned to normal. This study demonstrates that the V-H(+)-ATPase plays an important role in maintaining the integrity and function of the endo-lysosomal and CV systems and that D. discoideum can compensate for the loss of a functional V-H(+)-ATPase.
Collapse
Affiliation(s)
- L A Temesvari
- Department of Microbiology and Immunology, Louisiana State University, Medical Center, Shreveport 71130, USA
| | | | | | | | | |
Collapse
|
36
|
Temesvari LA, Bush JM, Peterson MD, Novak KD, Titus MA, Cardelli JA. Examination of the endosomal and lysosomal pathways in Dictyostelium discoideum myosin I mutants. J Cell Sci 1996; 109 ( Pt 3):663-73. [PMID: 8907711 DOI: 10.1242/jcs.109.3.663] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of myosin Is in endosomal trafficking and the lysosomal system was investigated in a Dictyostelium discoideum myosin I double mutant myoB-/C-, that has been previously shown to exhibit defects in fluid-phase endocytosis during growth in suspension culture (Novak et al., 1995). Various properties of the endosomal pathway in the myoB-/C- double mutant as well as in the myoB- and myoC- single mutants, including intravesicular pH, and intracellular retention time and exocytosis of a fluid phase marker, were found to be indistinguishable from wild-type parental cells. The intimate connection between the contractile vacuole complex and the endocytic pathway in Dictyostelium, and the localization of a myosin I to the contractile vacuole in Acanthamoeba, led us to also examine the structure and function of this organelle in the three myosin I mutants. No alteration in contractile vacuole structure or function was observed in the myoB-, myoC- or myoB-/C- cell lines. The transport, processing, and localization of a lysosomal enzyme, alpha-mannosidase, were also unaltered in all three mutants. However, the myoB- and myoB-/C- cell lines, but not the myoC- cell line, were found to oversecrete the lysosomal enzymes alpha-mannosidase and acid phosphatase, during growth and starvation. None of the mutants oversecreted proteins following the constitutive secretory pathway. Two additional myosin I mutants, myoA- and myoA-/B-, were also found to oversecrete the lysosomally localized enzymes alpha-mannosidase and acid phosphatase. Taken together, these results suggest that these myosins do not play a role in the intracellular movement of vesicles, but that they may participate in controlling events that occur at the actin-rich cortical region of the cell. While no direct evidence has been found for the association of myosin Is with lysosomes, we predict that the integrity of the lysosomal system is tied to the fidelity of the actin cortex, and changes in cortical organization could influence lysosomal-related membrane events such as internalization or transit of vesicles to the cell surface.
Collapse
Affiliation(s)
- L A Temesvari
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130, USA
| | | | | | | | | | | |
Collapse
|
37
|
Reymond CD, Beghdadi-Rais C, Roggero M, Duarte EA, Desponds C, Bernard M, Groux D, Matile H, Bron C, Corradin G. Anchoring of an immunogenic Plasmodium falciparum circumsporozoite protein on the surface of Dictyostelium discoideum. J Biol Chem 1995; 270:12941-7. [PMID: 7759554 DOI: 10.1074/jbc.270.21.12941] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The circumsporozoite protein (CSP), a major antigen of Plasmodium falciparum, was expressed in the slime mold Dictyostelium discoideum. Fusion of the parasite protein to a leader peptide derived from Dictyostelium contact site A was essential for expression. The natural parasite surface antigen, however, was not detected at the slime mold cell surface as expected but retained intracellularly. Removal of the last 23 amino acids resulted in secretion of CSP, suggesting that the C-terminal segment of the CSP, rather than an ectoplasmic domain, was responsible for retention. Cell surface expression was obtained when the CSP C-terminal segment was replaced by the D. discoideum contact site A glycosyl phosphatidylinositol anchor signal sequence. Mice were immunized with Dictyostelium cells harboring CSP at their surface. The raised antibodies recognized two different regions of the CSP. Anti-sporozoite titers of these sera were equivalent to anti-peptide titers detected by enzyme-linked immunosorbent assay. Thus, cell surface targeting of antigens can be obtained in Dictyostelium, generating sporozoite-like cells having potentials for vaccination, diagnostic tests, or basic studies involving parasite cell surface proteins.
Collapse
Affiliation(s)
- C D Reymond
- Institute of Histology and Embryology, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Döring V, Veretout F, Albrecht R, Mühlbauer B, Schlatterer C, Schleicher M, Noegel AA. The in vivo role of annexin VII (synexin): characterization of an annexin VII-deficient Dictyostelium mutant indicates an involvement in Ca(2+)-regulated processes. J Cell Sci 1995; 108 ( Pt 5):2065-76. [PMID: 7657724 DOI: 10.1242/jcs.108.5.2065] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium discoideum cells harbor two annexin VII isoforms of 47 and 51 kDa which are present throughout development. In immunofluorescence and cell fractionation studies annexin VII was found in the cytoplasm and on the plasma membrane. In gene disruption mutants lacking both annexin VII isoforms growth, pinocytosis, phagocytosis, chemotaxis and motility were not significantly impaired under routine laboratory conditions, and the cells were able to complete the developmental cycle on bacterial plates. On non-nutrient agar plates development was delayed by three to four hours and a significant number of aggregates was no longer able to form fruiting bodies. Exocytosis as determined by measuring extracellular cAMP phosphodiesterase, alpha-fucosidase and alpha-mannosidase activity was unaltered, the total amounts of these enzymes were however lower in the mutant than in the wild type. The mutant cells were markedly impaired when they were exposed to low Ca2+ concentrations by adding EGTA to the nutrient medium. Under these conditions growth, motility and chemotaxis were severely affected. The Ca2+ concentrations were similar in mutant and wild-type cells both under normal and Ca2+ limiting conditions; however, the distribution was altered under low Ca2+ conditions in SYN-cells. The data suggest that annexin VII is not required for membrane fusion events but rather contributes to proper Ca2+ homeostasis in the cell.
Collapse
Affiliation(s)
- V Döring
- Max-Planck-Institut für Biochemie, Martinsried, FRG
| | | | | | | | | | | | | |
Collapse
|
39
|
Bush J, Nolta K, Rodriguez-Paris J, Kaufmann N, O'Halloran T, Ruscetti T, Temesvari L, Steck T, Cardelli J. A Rab4-like GTPase in Dictyostelium discoideum colocalizes with V-H(+)-ATPases in reticular membranes of the contractile vacuole complex and in lysosomes. J Cell Sci 1994; 107 ( Pt 10):2801-12. [PMID: 7876348 DOI: 10.1242/jcs.107.10.2801] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the course of screening a cDNA library for ras-related Dictyostelium discoideum genes, we cloned a 0.7 kb cDNA (rabD) encoding a putative protein that was 70% identical at the amino acid level to human Rab4. Rab4 is a small M(r) GTPase, which belongs to the Ras superfamily and functions to regulate endocytosis in mammalian cells. Southern blot analysis indicated that the rabD cDNA was encoded by a single copy gene while Northern blot analysis revealed that the rabD gene was expressed at relatively constant levels during growth and differentiation. Affinity-purified antibodies were prepared against a RabD fusion protein expressed in bacteria; the antibodies recognized a single 23 kDa polypeptide on western blots of cell extracts. Density gradient fractionation revealed that the RabD antigen co-distributed primarily with buoyant membranes rich in vacuolar protons pumps (V-H(+)-ATPases) and, to a lesser extent, with lysosomes. This result was confirmed by examining cell lines expressing an epitope-tagged version of RabD. Magnetically purified early endocytic vesicles and post-lysosomal vacuoles reacted more weakly with anti-RabD antibodies than did lysosomes. Other organelles were negative for RabD. Double-label indirect immunofluorescence microscopy revealed that RabD and the 100 kDa V-H(+)-ATPase subunit colocalized in a fine reticular network throughout the cytoplasm. This network was reminiscent of spongiomes, the tubular elements of the contractile vacuole system. Immunoelectron microscopy confirmed the presence of RabD in lysosome fractions and in the membranes rich in V-H(+)-ATPase. We conclude that a Rab4-like GTPase in D. discoideum is principally associated with the spongiomes of contractile vacuole complex.
Collapse
Affiliation(s)
- J Bush
- Department of Microbiology and Immunology, LSU Medical Center, Shreveport 71130
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Characterization of lysosomal membrane proteins of Dictyostelium discoideum. A complex population of acidic integral membrane glycoproteins, Rab GTP-binding proteins and vacuolar ATPase subunits. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47307-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Bush J, Richardson J, Cardelli J. Molecular cloning and characterization of the full-length cDNA encoding the developmentally regulated lysosomal enzyme beta-glucosidase in Dictyostelium discoideum. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42280-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Banno Y, Okano Y, Furukawa K, Tiedtke A, Kobata A, Nozawa Y. Processing and secretion of lysosomal acid alpha-glucosidase in Tetrahymena wild type and secretion-deficient mutant cells. J Eukaryot Microbiol 1993; 40:515-20. [PMID: 8330029 DOI: 10.1111/j.1550-7408.1993.tb04944.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The proteolytic processing and secretion of a lysosomal enzyme, acid alpha-glucosidase, was studied by pulse-chase labeling with [35S]methionine in Tetrahymena thermophila CU-399 cells treated with ammonium chloride. This cell secreted a large amount of acid alpha-glucosidase into the cultured medium during starvation. The secretion was found to be repressed by addition of ammonium chloride (NH4Cl). Acid alpha-glucosidase was produced as a precursor form (108 kDa) and then processed to a mature polypeptide (105 kDa) within 60 min. This mature enzyme was secreted into the media within 2-3 h after chase, whereas the precursor form was not secreted by either control cells or NH4Cl-treated cells. NH4Cl did not affect the processing of the precursor acid alpha-glucosidase. Processing profile of this enzyme was apparently indistinguishable from that of the mutant MS-1 defective in lysosomal enzyme secretion. Furthermore, the purified extracellular (CU-399) and intracellular (MS-1) acid alpha-glucosidases were the same in molecular mass (105 kDa) and enzymatic properties. They contained no mannose 6-phosphate residues in N-linked oligosaccharides. These results suggested that unlike mammalian cells, Tetrahymena acid alpha-glucosidase may be transferred to lysosomes by a mannose 6-phosphate receptor-independent mechanism, and also that low pH was not essential for the proteolytic processing of precursor polypeptide.
Collapse
Affiliation(s)
- Y Banno
- Department of Biochemistry, Gifu University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Aubry L, Klein G, Martiel JL, Satre M. Kinetics of endosomal pH evolution in Dictyostelium discoideum amoebae. Study by fluorescence spectroscopy. J Cell Sci 1993; 105 ( Pt 3):861-6. [PMID: 7691851 DOI: 10.1242/jcs.105.3.861] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolution of endo-lysosomal pH in Dictyostelium discoideum amoebae was examined during fluid-phase endocytosis. Pulse-chase experiments were conducted in nutritive medium or in non-nutritive medium using fluorescein labelled dextran (FITC-dextran) as fluid-phase marker and pH probe. In both conditions, efflux kinetics were characterized by an extended lag phase lasting for 45–60 min and corresponding to intracellular transit of FITC-dextran cohort. During the chase period, endosomal pH decreased during approximately 20 min from extracellular pH down to pH 4.6-5.0, then, it increased within the next 20–40 min to reach pH 6.0-6.2. It was only at this stage that FITC-dextran was released back into the medium with pseudo first-order kinetics. A vacuolar H(+)-ATPase is involved in endosomal acidification as the acidification process was markedly reduced in mutant strain HGR8, partially defective in vacuolar H(+)-ATPase and in parent type strain AX2 by bafilomycin A1, a selective inhibitor of this enzyme. Our data suggest that endocytic cargo is channeled from endosomes to secondary lysosomes that are actively linked to the plasma membrane via recycling vesicles.
Collapse
Affiliation(s)
- L Aubry
- Laboratoire de Biologie Cellulaire (URA 1130 CNRS), Département de Biologie Moléculaire et Structurale, Grenoble, France
| | | | | | | |
Collapse
|
44
|
Schatzle J, Bush J, Cardelli J. Molecular cloning and characterization of the structural gene coding for the developmentally regulated lysosomal enzyme, alpha-mannosidase, in Dictyostelium discoideum. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50624-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
|
46
|
Bush JM, Ebert DL, Cardelli JA. Alterations to N-linked oligosaccharides which affect intracellular transport rates and regulated secretion but not sorting of lysosomal acid phosphatase in Dictyostelium discoideum. Arch Biochem Biophys 1990; 283:158-66. [PMID: 2122807 DOI: 10.1016/0003-9861(90)90626-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The importance of N-linked oligosaccharides and their associated modifications in the transport, sorting, and secretion of lysosomal acid phosphatase was investigated using three mutant Dictyostelium cell lines. These mutants synthesize altered N-linked oligosaccharides with the following properties: (i) in strain HL244 carbohydrate side chains lack mannose 6-sulfate residues, (ii) in strain M31 the side chains retain the two alpha-1,3-linked glucose residues resulting in less sulfate and methylphosphate modifications, and (iii) in strain HL243 the nonglucosylated branches are missing three of the outer mannose sugars and the oligosaccharides contain fewer sulfate and phosphate modifications. Lysosomal enzymes in both HL243 and HL244 are also missing a shared epitope termed common antigen-1 (CA-1), which consists in part of mannose 6-sulfate moieties. No increases were observed in the secretion of radiolabeled acid phosphatase or acid phosphatase activity during growth in any of the mutant cell lines, suggesting that the enzyme was correctly sorted to lysosomes. In support of this, Percoll gradient fractionations and indirect immunofluorescence microscopy indicated that acid phosphatase was transported to lysosomes in all cell lines. However, radiolabel pulse chase protocols indicated that newly synthesized acid phosphatase was transported out of the endoplasmic reticulum (ER) and into lysosomes at a two- to threefold slower rate in HL243 and at a sixfold slower rate in M31. The rate of transport of acid phosphatase from the ER to the Golgi was reduced only twofold in M31 as determined by digestion of newly synthesized enzyme with endoglycosidose H. This suggests that certain alterations in carbohydrate structure may only slightly affect transport of the enzyme from the ER to the Golgi but these alterations may greatly delay transport from the Golgi or post-Golgi compartments to lysosomes. Finally all three mutants secreted acid phosphatase at significantly lower rates than the wild-type strain when growing cells were placed in a buffered salt solution (conditions which stimulate the secretion of mature lysosomally localized enzymes). In contrast, alpha-mannosidase was secreted with similar kinetics from the mutant and wild-type strains. Together, these results suggest that the mechanism(s) operating to sort acid phosphatase in Dictyostelium can tolerate a wide range of changes in N-linked oligosaccharides including a reduction in phosphate and the absence of CA-1 and sulfate, while in contrast, these same alterations can profoundly influence the rate of transport of acid phosphatase from the ER and post-ER compartments to lysosomes as well as the secr
Collapse
Affiliation(s)
- J M Bush
- Department of Microbiology and Immunology, LSU Medical Center, Shreveport 71130
| | | | | |
Collapse
|
47
|
Cardelli JA, Bush JM, Ebert D, Freeze HH. Sulfated N-linked oligosaccharides affect secretion but are not essential for the transport, proteolytic processing, and sorting of lysosomal enzymes in Dictyostelium discoideum. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38965-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Smith CE, Hermo L, Fazel A, Lalli MF, Bergeron JJ. Ultrastructural distribution of NADPase within the Golgi apparatus and lysosomes of mammalian cells. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1990; 21:1-120. [PMID: 2174176 DOI: 10.1016/s0079-6336(11)80025-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochemical studies with over 40 different mammalian cell types have indicated that NADPase activity is associated with the Golgi apparatus and/or lysosomes of all cells. In the majority of cases, NADPase is restricted to saccular elements comprising the medial region of the Golgi stack and an occasional lysosome. There is often weak NADPase activity in other Golgi compartments such as the trans Golgi saccules and/or elements of the trans Golgi network. In some cells, however, strong NADPase activity is found within these latter compartments, either exclusively in trans Golgi saccules or elements of the trans Golgi network, or in combination with medial Golgi saccules and each other including (1) medial Golgi saccules + trans Golgi saccules, (2) medial Golgi saccules + trans Golgi saccules + trans Golgi network, or (3) trans Golgi saccules + trans Golgi network. In some rare cases, no NADPase activity is detectable in either Golgi saccules or elements of the trans Golgi network, but it is observed in an occasional lysosome or throughout the lysosomal system of these cells. It is unclear at present if these variations in the distribution of NADPase across the Golgi apparatus, and between the Golgi apparatus and lysosomal system, are due to differences in targeting mechanisms or to the existence of "bottlenecks" in the natural flow of NADPase along the biosynthetic pathway toward lysosomes. While no clear pattern in the association of strong NADPase activity with lysosomes was apparent relative to the ultrastructural distribution of NADPase activity in Golgi saccules or elements of the trans Golgi network, the results of this investigation suggested that cells having NADPase localized predominantly toward the trans aspect of the Golgi apparatus (in trans Golgi saccules or elements of the trans Golgi network or both) have few NADPase-positive lysosomes. The only exception is hepatocytes which were classified as predominantly trans but had noticeable NADPase activity within medial Golgi saccules and elements of the trans Golgi network as well, and highly reactive lysosomes. Other cells showing highly reactive lysosomes including (1) Kupffer cells of liver and those forming the proximal convoluted tubules of the kidney, both of which also had strong NADPase activity within medial and trans Golgi saccules and elements of the trans Golgi network, (2) Leydig cells of the testis and interstitial cells of the ovary, which also showed strong NADPase activity within medial Golgi saccules, and (3) macrophages from lung, spleen and testis, and Sertoli cells from the testis all of which showed no Golgi associated NADPase activity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C E Smith
- Department of Anatomy, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
49
|
Cardelli JA, Schatzle J, Bush JM, Richardson J, Ebert D, Freeze H. Biochemical and genetic analysis of the biosynthesis, sorting, and secretion of Dictyostelium lysosomal enzymes. DEVELOPMENTAL GENETICS 1990; 11:454-62. [PMID: 2128926 DOI: 10.1002/dvg.1020110522] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dictyostelium discoideum is a useful system to study the biosynthesis of lysosomal enzymes because of the relative ease with which it can be manipulated genetically and biochemically. Previous studies have revealed that lysosomal enzymes are synthesized in vegetatively growing amoebae as glycosylated precursor polypeptides that are phosphorylated and sulfated on their N-linked oligosaccharide side-chains upon arrival in the Golgi complex. The precursor polypeptides are membrane associated until they are proteolytically processed and deposited as soluble mature enzymes in lysosomes. In this paper we review biochemical experiments designed to determine the roles of post-translational modification, acidic pH compartments, and proteolytic processing in the transport and sorting of lysosomal enzymes. We also describe molecular genetic approaches that are being employed to study the biosynthesis of these enzymes. Mutants altered in the sorting and secretion of lysosomal enzymes are being analyzed biochemically, and we describe recent efforts to clone the genes coding for three lysosomal enzymes in order to better understand the molecular mechanisms involved in the targeting of these enzymes.
Collapse
Affiliation(s)
- J A Cardelli
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | | | | | |
Collapse
|
50
|
Freeze HH, Bush JM, Cardelli J. Biochemical and genetic analysis of an antigenic determinant found on N-linked oligosaccharides in Dictyostelium. DEVELOPMENTAL GENETICS 1990; 11:463-72. [PMID: 1710552 DOI: 10.1002/dvg.1020110523] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dictyostelium discoideum synthesizes many highly immunogenic carbohydrates of unknown structure and function. We have used monoclonal antibodies prepared against one of these called CA1 to investigate its structure and the consequences of its loss. CA1 is preferentially expressed on lysosomal enzymes as a specific arrangement of mannose-6-SO4 residues on N-linked oligosaccharides. Mutant strains HL241 and HL243 do not express CA1, and synthesize a truncated lipid-linked oligosaccharide (LLO) precursor that lacks the critical mannose residues needed for expression. The lesion appears to result from the loss of mannosyl transferase activity involved in LLO biosynthesis. The truncated LLO is poorly transferred to an artificial peptide acceptor in a cell-free N-glycosylation assay, and this appears to result from improper topological localization of the LLO or to a lower affinity of the LLO for the oligosaccharyl transferase. Although both mutants share these lesions, they are biochemically and genetically distinct. Only HL243 is lower in N-glycosylation in intact cells, and this is not a result of an altered structure of the LLO. There are other differences between the strains. HL241 can form fruiting bodies at a slower rate than normal while HL243 cannot aggregate. Genetic analysis of defects shows that the CA1 lesion in HL241 is recessive, while the lesion in both CA1 and in development are dominant and co-segregate in HL243 and are, therefore, likely to be in the same gene. Lysosomal enzyme targeting is normal but enzyme processing proceeds at a 2-3 fold slower rate in HL241 and HL243 compared to wild-type. Strain HL244 does not express CA1 since it completely lacks protein sulfation, but lysosomal enzyme targeting and processing proceeds at a normal rate, showing that sulfate is not essential for these processes. Alterations in oligosaccharide structure can have individualized effects on the biosynthesis of lysosomal enzymes. The results presented here illustrate how this approach can be used to study both the structure and function of carbohydrate epitopes.
Collapse
Affiliation(s)
- H H Freeze
- La Jolla Cancer Research Foundation, Cancer Research Center, CA 92037
| | | | | |
Collapse
|