1
|
Gao J, Huang X. Recent advances on glycosyltransferases involved in the biosynthesis of the proteoglycan linkage region. Adv Carbohydr Chem Biochem 2021; 80:95-119. [PMID: 34872657 DOI: 10.1016/bs.accb.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteoglycans (PGs) are an essential family of glycoproteins, which can play roles in many important biological events including cell proliferation, cancer development, and pathogen infections. Proteoglycans consist of a core protein with one or multiple glycosaminoglycan (GAG) chains, which are covalently attached to serine residues of serine-glycine dipeptide within the core protein through a common tetrasaccharide linkage. In the past three decades, four key glycosyl transferases involved in the biosynthesis of PG linkage have been discovered and investigated. This review aims to provide an overview on progress made on these four enzymes, with foci on enzyme expression/purification, substrate specificity, activity determination, product characterization, and structure-activity relationship analysis.
Collapse
Affiliation(s)
- Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
2
|
Antiviral strategies should focus on stimulating the biosynthesis of heparan sulfates, not their inhibition. Life Sci 2021; 277:119508. [PMID: 33865880 PMCID: PMC8046744 DOI: 10.1016/j.lfs.2021.119508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022]
Abstract
Antiviral strategies for viruses that utilize proteoglycan core proteins (syndecans and glypicans) as receptors should focus on heparan sulfate (HS) biosynthesis rather than on inhibition of these sugar chains. Here, we show that heparin and certain xylosides, which exhibit in vitro viral entry inhibitory properties against HSV-1, HSV-2, HPV-16, HPV-31, HVB, HVC, HIV-1, HTLV-1, SARS-CoV-2, HCMV, DENV-1, and DENV-2, stimulated HS biosynthesis at the cell surface 2- to 3-fold for heparin and up to 10-fold for such xylosides. This is consistent with the hypothesis from a previous study that for core protein attachment, viruses are glycosylated at HS attachment sites (i.e., serine residues intended to receive the D-xylose molecule for initiating HS chains). Heparanase overexpression, endocytic entry, and syndecan shedding enhancement, all of which are observed during viral infection, lead to glycocalyx deregulation and appear to be direct consequences of this hypothesis. In addition to the appearance of type 2 diabetes and the degradation of HS observed during viral infection, we linked this hypothesis to that proposed in a previous publication.
Collapse
|
3
|
Ravikumar M, Smith RAA, Nurcombe V, Cool SM. Heparan Sulfate Proteoglycans: Key Mediators of Stem Cell Function. Front Cell Dev Biol 2020; 8:581213. [PMID: 33330458 PMCID: PMC7710810 DOI: 10.3389/fcell.2020.581213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an evolutionarily ancient subclass of glycoproteins with exquisite structural complexity. They are ubiquitously expressed across tissues and have been found to exert a multitude of effects on cell behavior and the surrounding microenvironment. Evidence has shown that heterogeneity in HSPG composition is crucial to its functions as an essential scaffolding component in the extracellular matrix as well as a vital cell surface signaling co-receptor. Here, we provide an overview of the significance of HSPGs as essential regulators of stem cell function. We discuss the various roles of HSPGs in distinct stem cell types during key physiological events, from development through to tissue homeostasis and regeneration. The contribution of aberrant HSPG production to altered stem cell properties and dysregulated cellular homeostasis characteristic of cancer is also reviewed. Finally, we consider approaches to better understand and exploit the multifaceted functions of HSPGs in influencing stem cell characteristics for cell therapy and associated culture expansion strategies.
Collapse
Affiliation(s)
- Maanasa Ravikumar
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raymond Alexander Alfred Smith
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Victor Nurcombe
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore, Singapore
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Mizumoto S, Janecke AR, Sadeghpour A, Povysil G, McDonald MT, Unger S, Greber‐Platzer S, Deak KL, Katsanis N, Superti‐Furga A, Sugahara K, Davis EE, Yamada S, Vodopiutz J. CSGALNACT1-congenital disorder of glycosylation: A mild skeletal dysplasia with advanced bone age. Hum Mutat 2020; 41:655-667. [PMID: 31705726 PMCID: PMC7027858 DOI: 10.1002/humu.23952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023]
Abstract
Congenital disorders of glycosylation (CDGs) comprise a large number of inherited metabolic defects that affect the biosynthesis and attachment of glycans. CDGs manifest as a broad spectrum of disease, most often including neurodevelopmental and skeletal abnormalities and skin laxity. Two patients with biallelic CSGALNACT1 variants and a mild skeletal dysplasia have been described previously. We investigated two unrelated patients presenting with short stature with advanced bone age, facial dysmorphism, and mild language delay, in whom trio-exome sequencing identified novel biallelic CSGALNACT1 variants: compound heterozygosity for c.1294G>T (p.Asp432Tyr) and the deletion of exon 4 that includes the start codon in one patient, and homozygosity for c.791A>G (p.Asn264Ser) in the other patient. CSGALNACT1 encodes CSGalNAcT-1, a key enzyme in the biosynthesis of sulfated glycosaminoglycans chondroitin and dermatan sulfate. Biochemical studies demonstrated significantly reduced CSGalNAcT-1 activity of the novel missense variants, as reported previously for the p.Pro384Arg variant. Altered levels of chondroitin, dermatan, and heparan sulfate moieties were observed in patients' fibroblasts compared to controls. Our data indicate that biallelic loss-of-function mutations in CSGALNACT1 disturb glycosaminoglycan synthesis and cause a mild skeletal dysplasia with advanced bone age, CSGALNACT1-CDG.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
- Department of Women's and Children's Health, Clinical Genetics Group, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Andreas R. Janecke
- Department of Pediatrics IMedical University of InnsbruckInnsbruckAustria
- Division of Human GeneticsMedical University of InnsbruckInnsbruckAustria
| | - Azita Sadeghpour
- Center for Human Disease ModelingDuke University Medical CenterDurhamNorth Carolina
| | - Gundula Povysil
- Institute of BioinformaticsJohannes Kepler UniversityLinzAustria
| | - Marie T. McDonald
- Department of Pediatrics, Division of Medical GeneticsDuke University Medical CenterDurhamNorth Carolina
| | - Sheila Unger
- Department of Medical Genetics, Centre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Susanne Greber‐Platzer
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Kristen L. Deak
- Department of PathologyDuke University Medical CenterDurhamNorth Carolina
| | - Nicholas Katsanis
- Center for Human Disease ModelingDuke University Medical CenterDurhamNorth Carolina
- Advanced Center for Translational and Genetic Medicine (ACT‐GeM), Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinois
- Department of Pediatrics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Andrea Superti‐Furga
- Department of Pediatrics, Centre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Kazuyuki Sugahara
- Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
| | - Erica E. Davis
- Center for Human Disease ModelingDuke University Medical CenterDurhamNorth Carolina
- Advanced Center for Translational and Genetic Medicine (ACT‐GeM), Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinois
- Department of Pediatrics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for PediatricsMedical University of ViennaViennaAustria
| |
Collapse
|
5
|
Heparanase – Discovery and Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:61-69. [DOI: 10.1007/978-3-030-34521-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Persson A, Nilsson J, Vorontsov E, Noborn F, Larson G. Identification of a non-canonical chondroitin sulfate linkage region trisaccharide. Glycobiology 2019; 29:366-371. [PMID: 30824935 DOI: 10.1093/glycob/cwz014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
It is generally accepted that the biosynthesis of chondroitin sulfate and heparan sulfate is proceeding from a common linkage region tetrasaccharide comprising GlcA-Gal-Gal-Xyl-O-. The linkage region can undergo various modifications such as sulfation, phosphorylation and sialylation, and as the methods for studying glycosaminoglycan structure have been developed and refined, the number of discovered modifications has increased. Previous studies on the linkage region and the glycosyltransferases involved in the biosynthesis suggest that variants of the linkage region tetrasaccharide may also be possible. Here, using LC-MS/MS, we describe a non-canonical linkage region trisaccharide comprising GlcA-Gal-Xyl-O-. The trisaccharide was identified as a minor constituent in the proteoglycan bikunin from urine of human healthy donors present as a disulfated pentasaccharide, ΔHexA-GalNAc(S)-GlcA-Gal(S)-Xyl-O-, after chondroitinase ABC degradation. Furthermore, it was present as the corresponding disulfated pentasaccharide after chondroitinase ABC degradation in chondroitin sulfate primed on xylosides isolated from human cell lines. This linkage region trisaccharide may serve as an alternative point of entry for glycosaminoglycan biosynthesis.
Collapse
Affiliation(s)
- Andrea Persson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Noborn
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Qualitative and quantitative analysis of 2, 5-anhydro-d-mannitol in low molecular weight heparins with high performance anion exchange chromatography hyphenated quadrupole time of flight mass spectrometry. J Chromatogr A 2018; 1569:160-167. [DOI: 10.1016/j.chroma.2018.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/12/2018] [Accepted: 07/22/2018] [Indexed: 02/05/2023]
|
8
|
Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate. Biochem J 2017; 474:3831-3848. [PMID: 28963345 DOI: 10.1042/bcj20170591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/28/2022]
Abstract
Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications.
Collapse
|
9
|
Vodopiutz J, Mizumoto S, Lausch E, Rossi A, Unger S, Janocha N, Costantini R, Seidl R, Greber-Platzer S, Yamada S, Müller T, Jilma B, Ganger R, Superti-Furga A, Ikegawa S, Sugahara K, Janecke AR. Chondroitin SulfateN-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) Deficiency Results in a Mild Skeletal Dysplasia and Joint Laxity. Hum Mutat 2016; 38:34-38. [DOI: 10.1002/humu.23070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/29/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
| | - Shuji Mizumoto
- Department of Pathobiochemistry; Faculty of Pharmacy; Meijo University; Tempaku ku; Nagoya Aichi Japan
| | - Ekkehart Lausch
- Department of Pediatrics; Medical Center, Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Antonio Rossi
- Department of Molecular Medicine; Unit of Biochemistry; University of Pavia; Pavia Italy
| | - Sheila Unger
- Department of Medical Genetics; Centre Hospitalier Universitaire Vaudois; University of Lausanne; Lausanne Switzerland
| | - Nikolaus Janocha
- Department of Pediatrics; Medical Center, Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Rossella Costantini
- Department of Molecular Medicine; Unit of Biochemistry; University of Pavia; Pavia Italy
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
| | - Susanne Greber-Platzer
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
| | - Shuhei Yamada
- Department of Pathobiochemistry; Faculty of Pharmacy; Meijo University; Tempaku ku; Nagoya Aichi Japan
| | - Thomas Müller
- Department of Pediatrics I; Medical University of Innsbruck; Innsbruck Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Rudolf Ganger
- Paediatric Department; Orthopaedic Hospital of Speising; Vienna Austria
| | - Andrea Superti-Furga
- Department of Pediatrics; Centre Hospitalier Universitaire Vaudois; University of Lausanne; Lausanne Switzerland
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases; Center for Integrative Medical Sciences; RIKEN; Tokyo Japan
| | - Kazuyuki Sugahara
- Department of Pathobiochemistry; Faculty of Pharmacy; Meijo University; Tempaku ku; Nagoya Aichi Japan
| | - Andreas R. Janecke
- Department of Pediatrics I; Medical University of Innsbruck; Innsbruck Austria
- Division of Human Genetics; Medical University of Innsbruck; Innsbruck Austria
| |
Collapse
|
10
|
Wang S, Sugahara K, Li F. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria. Glycoconj J 2016; 33:841-851. [PMID: 27526113 DOI: 10.1007/s10719-016-9720-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/23/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022]
Abstract
Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.
Collapse
Affiliation(s)
- Shumin Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and Shenzhen Research Institute, Shandong University, Jinan, 250100, Peoples, Republic of China
| | - Kazuyuki Sugahara
- Proteoglycan Signaling and Therapeutics Research Group, Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo, 001-0021, Japan.
- Department of Pathobiochemistry, Faculty of Pharmacy, Nagoya, Aichi, 468-8503, Japan.
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and Shenzhen Research Institute, Shandong University, Jinan, 250100, Peoples, Republic of China.
| |
Collapse
|
11
|
The Basement Membrane Proteoglycans Perlecan and Agrin: Something Old, Something New. CURRENT TOPICS IN MEMBRANES 2015; 76:255-303. [PMID: 26610917 DOI: 10.1016/bs.ctm.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several members of the proteoglycan family are integral components of basement membranes; other proteoglycan family members interact with or bind to molecular residents of the basement membrane. Proteoglycans are polyfunctional molecules, for they derive their inherent bioactivity from the amino acid motifs embedded in the core protein structure as well as the glycosaminoglycan (GAG) chains that are covalently attached to the core protein. The presence of the covalently attached GAG chains significantly expands the "partnering" potential of proteoglycans, permitting them to interact with a broad spectrum of targets, including growth factors, cytokines, chemokines, and morphogens. Thus proteoglycans in the basement membrane are poised to exert diverse effects on the cells intimately associated with basement membranes.
Collapse
|
12
|
Kuhn J, Götting C, Beahm BJ, Bertozzi CR, Faust I, Kuzaj P, Knabbe C, Hendig D. Xylosyltransferase II is the predominant isoenzyme which is responsible for the steady-state level of xylosyltransferase activity in human serum. Biochem Biophys Res Commun 2015; 459:469-74. [PMID: 25748573 PMCID: PMC6598695 DOI: 10.1016/j.bbrc.2015.02.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/22/2015] [Indexed: 01/13/2023]
Abstract
In mammals, two active xylosyltransferase isoenzymes (EC 2.4.2.16) exist. Both xylosyltransferases I and II (XT-I and XT-II) catalyze the transfer of xylose from UDP-xylose to select serine residues in the proteoglycan core protein. Altered XT activity in human serum was found to correlate directly with various diseases such as osteoarthritis, systemic sclerosis, liver fibrosis, and pseudoxanthoma elasticum. To interpret the significance of the enzyme activity alteration observed in disease states it is important to know which isoenzyme is responsible for the XT activity in serum. Until now it was impossible for a specific measurement of XT-I or XT-II activity, respectively, because of the absence of a suitable enzyme substrate. This issue has now been solved and the following experimental study demonstrates for the first time, via the enzyme activity that XT-II is the predominant isoenzyme responsible for XT activity in human serum. The proof was performed using natural UDP-xylose as the xylose donor, as well as the artificial compound UDP-4-azido-4-deoxyxylose, which is a selective xylose donor for XT-I.
Collapse
Affiliation(s)
- Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany.
| | - Christian Götting
- MVZ Labor Limbach Nürnberg, Lina-Ammon-Strasse 28, 90471 Nürnberg, Germany
| | - Brendan J Beahm
- Department of Chemistry and Molecular and Cell Biology Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Molecular and Cell Biology Howard Hughes Medical Institute University of California, Berkeley, CA 94720, USA
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Patricia Kuzaj
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
13
|
Li G, Steppich J, Wang Z, Sun Y, Xue C, Linhardt RJ, Li L. Bottom-up low molecular weight heparin analysis using liquid chromatography-Fourier transform mass spectrometry for extensive characterization. Anal Chem 2014; 86:6626-32. [PMID: 24905078 PMCID: PMC4082394 DOI: 10.1021/ac501301v] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/06/2014] [Indexed: 01/30/2023]
Abstract
Low molecular weight heparins (LMWHs) are heterogeneous, polydisperse, and highly negatively charged mixtures of glycosaminoglycan chains prescribed as anticoagulants. The detailed characterization of LMWH is important for the drug quality assurance and for new drug research and development. In this study, online hydrophilic interaction chromatography (HILIC) Fourier transform mass spectrometry (FTMS) was applied to analyze the oligosaccharide fragments of LMWHs generated by heparin lyase II digestion. More than 40 oligosaccharide fragments of LMWH were quantified and used to compare LMWHs prepared by three different manufacturers. The quantified fragment structures included unsaturated disaccharides/oligosaccharides arising from the prominent repeating units of these LMWHs, 3-O-sulfo containing tetrasaccharides arising from their antithrombin III binding sites, 1,6-anhydro ring-containing oligosaccharides formed during their manufacture, saturated uronic acid oligosaccharides coming from some chain nonreducing ends, and oxidized linkage region oligosaccharides coming from some chain reducing ends. This bottom-up approach provides rich detailed structural analysis and quantitative information with high accuracy and reproducibility. When combined with the top-down approach, HILIC LC-FTMS based analysis should be suitable for the advanced quality control and quality assurance in LMWH production.
Collapse
Affiliation(s)
- Guoyun Li
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China
- Department of Chemistry and Chemical Biology,
Department of Biology, Department of Chemical and Biological Engineering,
Department of Biomedical Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United
States
| | - Julia Steppich
- Department of Chemistry and Chemical Biology,
Department of Biology, Department of Chemical and Biological Engineering,
Department of Biomedical Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United
States
| | - Zhenyu Wang
- Celsus Laboratories, Inc., Cincinnati, Ohio 45241-1569 United States
| | - Yi Sun
- Department of Chemistry and Chemical Biology,
Department of Biology, Department of Chemical and Biological Engineering,
Department of Biomedical Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United
States
| | - Changhu Xue
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong 266003, China
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology,
Department of Biology, Department of Chemical and Biological Engineering,
Department of Biomedical Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United
States
| | - Lingyun Li
- Department of Chemistry and Chemical Biology,
Department of Biology, Department of Chemical and Biological Engineering,
Department of Biomedical Engineering, Center for Biotechnology and
Interdisciplinary Studies, Rensselaer Polytechnic
Institute, Troy, New York 12180, United
States
| |
Collapse
|
14
|
Tran VM, Victor XV, Yockman JW, Kuberan B. RGD-xyloside conjugates prime glycosaminoglycans. Glycoconj J 2010; 27:625-33. [PMID: 20717719 DOI: 10.1007/s10719-010-9306-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/28/2010] [Accepted: 08/05/2010] [Indexed: 01/16/2023]
Abstract
Glycosaminoglycans (GAG) play decisive roles in various cardio-vascular & cancer-associated processes. Changes in the expression of GAG fine structures, attributed to deregulation of their biosynthetic and catabolic enzymes, are hallmarks of vascular dysfunction and tumor progression. The wide spread role of GAG chains in blood clotting, wound healing and tumor biology has led to the development of modified GAG chains, GAG binding peptides and GAG based enzyme inhibitors as therapeutic agents. Xylosides, carrying hydrophobic aglycone, are known to induce GAG biosynthesis in various systems. Given the important roles of GAG chains in vascular and tumor biology, we envision that RGD-conjugated xylosides could be targeted to activated endothelial and cancer cells, which are known to express α(v)β(3) integrin, and thereby modulate the pathological processes. To accomplish this vision, xylose residue was conjugated to linear and cyclic RGD containing peptides using click chemistry. Our results demonstrate that RGD-conjugated xylosides are able to prime GAG chains in various cell types, and future studies are aimed toward evaluating potential utility of such xylosides in treating myocardial infarction as well as cancer-associated thrombotic complications.
Collapse
Affiliation(s)
- Vy M Tran
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
15
|
Victor XV, Nguyen TKN, Ethirajan M, Tran VM, Nguyen KV, Kuberan B. Investigating the elusive mechanism of glycosaminoglycan biosynthesis. J Biol Chem 2009; 284:25842-53. [PMID: 19628873 DOI: 10.1074/jbc.m109.043208] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosaminoglycan (GAG) biosynthesis requires numerous biosynthetic enzymes and activated sulfate and sugar donors. Although the sequence of biosynthetic events is resolved using reconstituted systems, little is known about the emergence of cell-specific GAG chains (heparan sulfate, chondroitin sulfate, and dermatan sulfate) with distinct sulfation patterns. We have utilized a library of click-xylosides that have various aglycones to decipher the mechanism of GAG biosynthesis in a cellular system. Earlier studies have shown that both the concentration of the primers and the structure of the aglycone moieties can affect the composition of the newly synthesized GAG chains. However, it is largely unknown whether structural features of aglycone affect the extent of sulfation, sulfation pattern, disaccharide composition, and chain length of GAG chains. In this study, we show that aglycones can switch not only the type of GAG chains, but also their fine structures. Our findings provide suggestive evidence for the presence of GAGOSOMES that have different combinations of enzymes and their isoforms regulating the synthesis of cell-specific combinatorial structures. We surmise that click-xylosides are differentially recognized by the GAGOSOMES to generate distinct GAG structures as observed in this study. These novel click-xylosides offer new avenues to profile the cell-specific GAG chains, elucidate the mechanism of GAG biosynthesis, and to decipher the biological actions of GAG chains in model organisms.
Collapse
Affiliation(s)
- Xylophone V Victor
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
The functions of heparan sulfate (HS) depend on the expression of structural domains that interact with protein partners. Glycosaminoglycans (GAGs) exhibit a high degree of polydispersity in their composition, chain length, sulfation, acetylation, and epimerization patterns. It is essential for the understanding of GAG biochemistry to produce detailed structural information as a function of spatial and temporal factors in biological systems. Toward this end, we developed a set of procedures to extract GAGs from various rat organ tissues and examined and compared HS expression levels using liquid chromatography/mass spectrometry. Here we demonstrate detailed variations in HS GAG chains as a function of organ location. These studies shed new light on the structural variation of GAG chains with respect to average length, disaccharide composition, and expression of low abundance structural epitopes, including unsubstituted amino groups and lyase-resistant oligosaccharides. The data show the presence of a disaccharide with an unsubstituted amino group that is endogenous and widely expressed in mammalian organ tissues.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
17
|
Naimy H, Leymarie N, Bowman MJ, Costello CE, Zaia J. Characterization of heparin oligosaccharides binding specifically to antithrombin III using mass spectrometry. Biochemistry 2008; 47:3155-61. [PMID: 18260648 PMCID: PMC2716047 DOI: 10.1021/bi702043e] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Heparan sulfate (HS) is a sulfated glycosaminoglycan attached to a core protein on the cell surface. Protein binding to cell surface HS is a key regulatory event for many cellular processes such as blood coagulation, cell proliferation, and migration. The concept whereby protein binding to HS is not random but requires a limited number of sulfation patterns is becoming clear. Here we describe a hydrophobic trapping assay for screening a library of heparin hexasaccharides for binders to antithrombin III (ATIII). The hexasaccharide compositions are defined with their building block content in the following format: (DeltaHexA:HexA:GlcN:SO 3:Ac). Of five initial compositions present in the library, (1:2:3:6:1), (1:2:3:7:1), (1:2:3:7:0), (1:2:3:8:0), and (1:2:3:9:0), only two are shown to bind ATIII, namely, (1:2:3:8:0) and (1:2:3:9:0). The use of amide hydrophilic interaction (HILIC) liquid chromatography-mass spectrometry permitted reproducible quantitative analysis of the composition of the initial library as well as that of the binding fraction. The specificity of the hexasaccharides binding ATIII was confirmed by assaying their ability to enhance ATIII-mediated inhibition of Factor Xa in vitro.
Collapse
Affiliation(s)
- Hicham Naimy
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Nancy Leymarie
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Michael J. Bowman
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| |
Collapse
|
18
|
Osmond RIW, Kett WC, Skett SE, Coombe DR. Protein-heparin interactions measured by BIAcore 2000 are affected by the method of heparin immobilization. Anal Biochem 2002; 310:199-207. [PMID: 12423639 DOI: 10.1016/s0003-2697(02)00396-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface plasmon resonance (SPR) biosensors such as the BIAcore 2000 are a useful tool for the analysis of protein-heparin interactions. Generally, biotinylated heparin is captured on a streptavidin-coated surface to create heparinized surfaces for subsequent binding analyses. In this study we investigated three commonly used techniques for the biotinylation of heparin, namely coupling through either carboxylate groups or unsubstituted amines along the heparin chain, or through the reducing terminus of the heparin chain. Biotinylated heparin derivatives were immobilized on streptavidin sensor chips and several heparin-binding proteins were examined. Of the surfaces investigated, heparin attached through the reducing terminus had the highest binding capacity, and in some cases had a higher affinity for the proteins tested. Heparin immobilized via intrachain bare amines had intermediate binding capacity and affinity, and heparin immobilized through the carboxylate groups of uronic acids had the lowest capacity for the proteins tested. These results suggest that immobilizing heparin to a surface via intrachain modifications of the heparin molecule can affect the binding of particular heparin-binding proteins.
Collapse
Affiliation(s)
- Ronald I W Osmond
- Molecular Immunology Laboratory, School of Biomedical Sciences, Curtin University of Technology, Level 5 MRF Building, Rear 50 Murray Street, Perth, WA 6000, Australia
| | | | | | | |
Collapse
|
19
|
Iacomini M, Casu B, Guerrini M, Naggi A, Pirola A, Torri G. "Linkage region" sequences of heparins and heparan sulfates: detection and quantification by nuclear magnetic resonance spectroscopy. Anal Biochem 1999; 274:50-8. [PMID: 10527496 DOI: 10.1006/abio.1999.4230] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The (13)C NMR spectra of most heparin and heparan sulfate preparations display minor signals not attributable to the glycosaminoglycan chains of these polysaccharides. These signals have been "concentrated" in oligosaccharides isolated from an acid hydrolyzate of heparin and shown to arise from the sequence GlcA-Gal-Gal-Xyl of the "linkage region" (LR) connecting the carbohydrate chains to the peptide chains in the original proteoglycans. Mono- and two-dimensional (1)H and (13)C NMR analysis of the major oligosaccharide (LR-OLIGO) indicated the prevalent structure GlcA-GlcNAc-GlcA-Gal-Gal-Xyl, where GlcNAc is partially 6-O-sulfated. (13)C NMR signals at 84.6 and 85.0 ppm, arising from C-3 of the two Gal residues, lend themselves to easy detection and quantification of the linkage region in heparins and heparan sulfates and can be used to assess the importance of the LR in the modulation of various biological activities of these glycosaminoglycans.
Collapse
Affiliation(s)
- M Iacomini
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni,", via G. Colombo, Milan, 81-20133, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Tsuda H, Yamada S, Yamane Y, Yoshida K, Hopwood JJ, Sugahara K. Structures of five sulfated hexasaccharides prepared from porcine intestinal heparin using bacterial heparinase. Structural variants with apparent biosynthetic precursor-product relationships for the antithrombin III-binding site. J Biol Chem 1996; 271:10495-502. [PMID: 8631846 DOI: 10.1074/jbc.271.18.10495] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Porcine intestinal heparin was extensively digested with Flavobacterium heparinase and size-fractionated by gel chromatography. Subfractionation of the hexasaccharide fraction by anion exchange high pressure liquid chromatography yielded 10 fractions. Six contained oligosaccharides derived from the repeating disaccharide region, whereas four contained glycoserines from the glycosaminoglycan-protein linkage region. The latter structures were reported recently (Sugahara, K., Tsuda, H., Yoshida, K., Yamada, S., de Beer, T., and Vliegenthart, J.F.G. (1995) J. Biol. Chem. 270, 22914-22923). In this study, the structures of one tetra- and five hexasaccharides from the repeat region were determined by chemical and enzymatic analyses as well as 500-MHz 1H NMR spectroscopy. The tetrasaccharide has the hexasulfated structure typical of heparin. The five hexa- or heptasulfated hexasaccharides share the common core pentasulfated structure delta HexA(2S) alpha 1-4GlcN-(NS, 6S) alpha 1-4IdoA alpha/GlcA beta 1-4GlcN(6S) alpha 1-4GlcA beta 1-4GlcN (NS) with one or two additional sulfate groups (delta HexA, GlcN, IdoA, and GlcA represent 4-deoxy-alpha-L-threo-hex-4-enepyranosyluronic acid, D-glucosamine, L-iduronic acid, and D-glucuronic acid, whereas 2S, 6S and NS stand for 2-O-, 6-O-, and 2-N-sulfate, respectively). Three components have the following hitherto unreported structures: delta HexA(2S) alpha 1-4GlcN(NS, 6S) alpha 1-4GlcA beta 1-4GlcN(NS, 6S) alpha 1-4GlcA beta 1-4GlcN(NS,6S), delta HexA(2S) alpha 1-4GlcN(NS, 6S) alpha 1-4IdoA alpha 1-4GlcNAc(6S)-alpha 1-4GlcA beta 1-4GlcN(NS, 3S), and delta HexA(2S) alpha 1-4GlcN-(NS,6S) alpha 1-4IdoA (2S) alpha 1-4GlcNAc(6S) alpha 1-4GlcA beta 1-4GlcN(NS, 6S). Two of the five hexasaccharides are structural variants derived from the antithrombin III-binding sites containing 3-O-sulfated GlcN at the reducing termini with or without a 6-O-sulfate group on the reducing N,3-disulfated GlcN residue. Another contains the structure identical to that of the above heptasulfated antithrombin III-binding site fragment but lacks the 3-O-sulfate group and therefore is a pro-form for the binding site. Another has an extra sulfate group on the internal IdoA residue of this pro-form and therefore can be considered to have diverged from the binding site in the biosynthetic pathway. Thus, the isolated hexasacharides in this study include the three overlapping pairs of structural variants with an apparent biosynthetic precursor-product relationship, which may reflect biosynthetic regulatory mechanisms of the binding site.
Collapse
Affiliation(s)
- H Tsuda
- Department of Biochemistry, Kobe Pharmaceutical University, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Yamada S, Murakami T, Tsuda H, Yoshida K, Sugahara K. Isolation of the porcine heparin tetrasaccharides with glucuronate 2-O-sulfate. J Biol Chem 1995. [DOI: 10.1016/s0021-9258(17)49632-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Higuchi T, Tamura S, Takagaki K, Nakamura T, Morikawa A, Tanaka K, Tanaka A, Saito Y, Endo M. A method for determination of galactosyltransferase I activity synthesizing the proteoglycan linkage region. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1994; 29:135-42. [PMID: 7836658 DOI: 10.1016/0165-022x(94)90049-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An assay method was devised for measuring the activity of galactosyltransferase I (UDP-D-galactose:D-xylose galactosyltransferase), which is one of the enzymes synthesizing the linkage region between the core protein and glycosaminoglycan chains of proteoglycan. For this method, the reaction mixture contained a fluorescent substrate, 4-methylumbelliferyl-beta-D-xyloside as an acceptor, UDP-galactose as a donor and D-galactal as a competitive inhibitor of endogenous beta-galactosidase in the enzyme solution. The reaction mixture was incubated at 37 degrees C with enzyme solution prepared from an extract of cultured cells, and galactosyl-xylosyl-4-methylumbelliferone was produced as a reaction product. Measurement of galactosyltransferase I activity was performed by separation and quantitative analysis of this reaction product using high-performance liquid chromatography. Utilizing this method, easier and more sensitive detection of galactosyltransferase I activity in a cell-free system became possible. Application of the method revealed that cultured human skin fibroblasts contained galactosyltransferase I activity.
Collapse
Affiliation(s)
- T Higuchi
- Department of Biochemistry, Hirosaki University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sugahara K, Mizuno N, Okumura Y, Kawasaki T. The phosphorylated and/or sulfated structure of the carbohydrate-protein-linkage region isolated from chondroitin sulfate in the hybrid proteoglycans of Engelbreth-Holm-Swarm mouse tumor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:401-6. [PMID: 1740153 DOI: 10.1111/j.1432-1033.1992.tb16649.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structure of the linkage region of chondroitin sulfate chains attached to the hybrid proteoglycans of the Engelbreth-Holm-Swarm mouse tumor was investigated. The peptidoglycan fraction which contains oversulfated chondroitin sulfate rich in the GlcA beta 1-3GalNAc-4,6-diO-sulfate unit and undersulfated heparan sulfate rich in GlcA beta 1-4GlcNAc and GlcA beta 1-4GlcN-2N-sulfate units was isolated after exhaustive protease digestion of the acetone powder of the tumor tissue, (GlcA, glucuronic acid; GalNAc, 2-deoxy-2-N-acetylamino-D-galactose). Glycosaminoglycans were released by beta-elimination using NaB3H4 and digested with chondroitinase ABC. The linkage region fraction was separated from heparan sulfate by gel filtration and fractionated by HPLC on an amine-bound silica column. Six radiolabeled compounds (L1-L6) were obtained and structurally analyzed by cochromatography with authentic hexasaccharide alditols recently isolated by us from the linkage region, and by digestion using chondroitinase ACII, alkaline phosphatase and beta-galactosidase in conjugation with HPLC. These compounds shared the conventional hexasaccharide backbone structure: delta GlcA beta 1-3GalNAc beta 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl-ol, (delta GlcA, delta 4.5-GlcA or D-gluco-4-enepyranosyluronic acid). L1 was not sulfated or phosphorylated. L2 and L4 were monosulfated at C-6 and C-4 of the GalNAc residue, respectively. Upon alkaline phosphatase digestion, L3, L5 and L6 were converted to L1, L2 and L4, respectively. Analysis of the periodate oxidation products indicated that the phosphate group in L3, L5 and L6 is located at C-2 of Xyl-ol. These results suggest that Xyl-2-O-phosphate is associated with both 4-O-sulfated and 6-O-sulfated GalNAc units and does not directly determine the sulfation pattern of chondroitin sulfate.
Collapse
Affiliation(s)
- K Sugahara
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | |
Collapse
|
24
|
Rodén L, Ananth S, Campbell P, Curenton T, Ekborg G, Manzella S, Pillion D, Meezan E. Heparin--an introduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 313:1-20. [PMID: 1442253 DOI: 10.1007/978-1-4899-2444-5_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- L Rodén
- Metabolic Diseases Research Laboratory, University of Alabama, Birmingham 35294
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sugahara K, Yamada S, Yoshida K, de Waard P, Vliegenthart JF. A novel sulfated structure in the carbohydrate-protein linkage region isolated from porcine intestinal heparin. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45978-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Oscarsson LG, Pejler G, Lindahl U. Location of the antithrombin-binding sequence in the heparin chain. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(17)31257-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
Paulsen H, Brenken M. Synthese vonL-Alanyl-3-O-(β-D-xylopyranosyl)-L-seryl-glycyl-L-isoleucin. Direkte Glycosidierung von Peptiden. ACTA ACUST UNITED AC 1988. [DOI: 10.1002/jlac.198819880706] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Location of specific oligosaccharides in heparin in terms of their distance from the protein linkage region in the native proteoglycan. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57387-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
|
30
|
Lee CE, Edwards HE, Navaratnam S, Phillips GO. Quantitative analysis of a polysulfated xylan (SP54) in urine using gas-liquid chromatography. Anal Biochem 1986; 152:52-8. [PMID: 2420230 DOI: 10.1016/0003-2697(86)90118-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A sensitive analytical method for the quantitation of a polysulfated xylan (SP54) in urine has been developed. SP54 and urinary glycosaminoglycans have been isolated from urine using cetylpyridinium chloride. This method removes all glycosaminoglycans with molecular weights less than 3000 Da. Following isolation, SP54 and urinary glycosaminoglycans have been selectively hydrolyzed under conditions (0.5 M HCl/105 degrees C/30 min) which produce an efficient yield of xylose from SP54 but not from the glycosaminoglycans. Xylose derived from SP54 has subsequently been determined using gas-liquid chromatography. Levels of SP54 down to 10 micrograms/ml have been determined using this technique.
Collapse
|
31
|
Tanaka Y, Takazono I. Isolation and characterization of peptidoglycans in urine from patients with mucopolysaccharidoses. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1984; 16:435-46. [PMID: 6233194 DOI: 10.1016/0020-711x(84)90159-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Urinary dermatan sulfate (DS) and heparan sulfate (HS) were purified from mucopolysaccharidosis patients. DS shows average mol. wt 8600-12,000 (approx. one half of tissue DS), iduronic acid content 99.1-99.6% (81.8% in tissue DS), core peptide mostly di- or tri-peptide (--Ser--Gly--or--Ser--Gly--Glu--). Molecular weight of HS ranged from 2500 to 20,000, averaging about 5000. Highly sulfated HS was found in the low molecular weight fraction, and no bound core peptide. By contrast, HS in the high molecular weight fraction bound one sulfate per repeating unit, which include core peptide.
Collapse
|
32
|
Abstract
Simple assays have been developed for the two uronosyl 5-epimerases which participate in the biosynthesis of heparin and dermatan sulfate (heparosan N-sulfate D-glucuronosyl 5-epimerase and chondroitin D-glucuronosyl 5-epimerase, respectively). Following previously published procedures, substrates labeled with tritium in the C-5 positions of the D-glucuronosyl and L-iduronosyl residues were prepared enzymatically by incubation of O-desulfated heparin and dermatan with 3H2O and crude epimerase preparations from bovine liver and human skin fibroblasts, respectively. In the new assays, 3H2O generated from these substrates during the epimerase reactions was quantitated by the method of Pollard et al. (Anal. Biochem. (1981) 110, 424-430). In this procedure, 3H2O in the aqueous reaction mixture is extracted into a toluene-based organic phase containing 25% isoamyl alcohol, while the polysaccharide substrate remains in the aqueous phase and does not generate scintillations. This procedure is much simpler than that used previously which involves distillation of each reaction mixture and quantitation of the radioactivity in the distillate. The new assays have been validated by the demonstration that conditions of linearity with time and enzyme concentration can be established for both epimerase reactions. Assays of this type should be useful in the study of any enzymatic reaction where 3H2O is formed from a 3H-labeled substrate and the unreacted substrate is not appreciably soluble in the organic phase.
Collapse
|
33
|
Hatton MW, Berry LR, Machovich R, Regoeczi E. Tritiation of commercial heparins by reaction with NaB3H4: chemical analysis and biological properties of the product. Anal Biochem 1980; 106:417-26. [PMID: 7447009 DOI: 10.1016/0003-2697(80)90542-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
34
|
|
35
|
Kinoshita S, Saiga H. The role of proteoglycan in the development of sea urchins. I. Abnormal development of sea urchin embryos caused by the disturbance of proteoglycan synthesis. Exp Cell Res 1979; 123:229-36. [PMID: 499355 DOI: 10.1016/0014-4827(79)90463-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Robinson H, Horner A, Höök M, Ogren S, Lindahl U. A proteoglycan form of heparin and its degradation to single-chain molecules. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)37973-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
Schiller S. The effect of hormones on synthesis of the region linking chondroitin sulfate to protein. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 451:457-64. [PMID: 999865 DOI: 10.1016/0304-4165(76)90140-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. Particulate fractions of costal cartilage from young rats are capable of catalyzing the formation of the first two monosaccharide units of the chondroitin sulfate-protein linkage region. 2. Hormonal imbalance has been shown to influence the activity of the glycosyltransferases responsible for the sequential transfer of xylose and galactose from UDPxylose and UDPgalactose, respectively, in the formation of the linkage region. 3. The activity of xylosyltransferase was found to be decreased in costal cartilage of diabetic, thyroidectomized and hypophysectomized rats, but not in rats injected with either testosterone or hydrocortisone. In the latter two treatment groups, galactosyltransferase activity was decreased only in the group receiving hydrocortisone. 4. The combined results of this and previous studies suggest that decreased levels of chondroitin sulfate in diabetic, thyroidectomized and hypophysectomized animals are due to interference in the synthesis of the linkage region of the proteoglycan at the xylosyltransferase level whereas hydrocortisone acts primarily at the level of the galactosyltransferase.
Collapse
|
38
|
Kennedy JF. Chemical and biochemical aspects of the glycosaminoglycans and proteoglycans in health and disease. Adv Clin Chem 1976; 18:1-101. [PMID: 130790 DOI: 10.1016/s0065-2423(08)60296-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Galligani L, Hopwood J, Schwartz NB, Dorfman A. Stimulation of synthesis of free chondroitin sulfate chains by beta-D-xylosides in cultured cells. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)41195-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Chandrasekaran EV, Spolter L, Marx W. Proteoglycans of soluble fraction of mouse mastocytoma. PREPARATIVE BIOCHEMISTRY 1975; 5:281-303. [PMID: 127169 DOI: 10.1080/00327487508061578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteoglycans have been isolated from a high speed supernatant fraction of a mouse mastocytoma by procedures which should minimize alteration of the native protein-polysaccharide molecule. The methods used include in vivo labeling proteoglycans with 35S-sulfate, 3H-leucine and 3H-lysine, centrifugation of the tumor homogenate at 105,000 g, cetylpyridinium fractionation of the supernatant, and further purification of some of the fractions obtained by DEAE-cellulose column chromatography, gel filtration on Sepharose 4B and cellulose acetate electrophoresis. Two major sulfated proteoglycans were obtained, one containing keratan sulfate-like material (KSP-S), the other a heparin-like polymer (HP-S). The presence in HP-S of a compound similar to heparin was confirmed by its digestibility with flavobacterium heparinase. HP-S contained about 4 per cent protein. Glycine was the predominant amino acid, and serine did not appear to be involved in the peptide-carbohydrate linkage. The proteoglycan present in HP-S appeared to be homogeneous when examined using cellulose acetate electrophoresis. KSP-S was found to contain sialic acid and its protein content was significantly higher than that of HP-S. Glutamic and aspartic acids were the most abundant amino acids in KSP-S.
Collapse
|
41
|
Berenson GS, Radhakrishnamurthy B, Srinivasan SR, Dalferes ER. Macromolecules in the arterial wall in relation to injury and repair--a survey. Angiology 1974; 25:649-81. [PMID: 4281644 DOI: 10.1177/000331977402501006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
|
43
|
Kinoshita S. Some observations on a protein-mucopolysaccharide complex found in sea urchin embryos. Exp Cell Res 1974; 85:31-40. [PMID: 4275068 DOI: 10.1016/0014-4827(74)90209-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Serafini-Fracassini A, White CJ, Hunter JC. The characterisation of heparin in bovine liver capsule. FEBS Lett 1973; 32:116-8. [PMID: 4715672 DOI: 10.1016/0014-5793(73)80751-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
|
46
|
|
47
|
Rodén L, Baker JR, Helting T, Schwartz NB, Stoolmiller AC, Yamagata S, Yamagata T. [85] Biosynthesis of chondroitin sulfate. Methods Enzymol 1972. [DOI: 10.1016/0076-6879(72)28088-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
48
|
Rodén L, Baker JR, Anthony Cifonelli J, Mathews MB. [7] Isolation and characterization of connective tissue polysaccharides. Methods Enzymol 1972. [DOI: 10.1016/0076-6879(72)28009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
|
50
|
|