1
|
Precursors of Viral Proteases as Distinct Drug Targets. Viruses 2021; 13:v13101981. [PMID: 34696411 PMCID: PMC8537868 DOI: 10.3390/v13101981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
Collapse
|
2
|
Mondal A, Bhat IA, Karunakaran S, De M. Supramolecular Interaction of Molecular Cage and β-Galactosidase: Application in Enzymatic Inhibition, Drug Delivery and Antimicrobial Activity. Chembiochem 2021; 22:1955-1960. [PMID: 33817948 DOI: 10.1002/cbic.202100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Enzyme inhibitors play a crucial role in diagnosis of a wide spectrum of diseases related to bacterial infections. We report here the effect of a water-soluble self-assembled PdII 8 molecular cage towards β-galactosidase enzyme activity. The molecular cage is composed of a tetrapyridyl donor (L) and cis-[(en)Pd(NO3 )2 ] (en=ethane-1,2-diamine) acceptor and it has a hydrophobic internal cavity. We have observed that the acceptor moiety mainly possesses the ability to inactivate the β-galactosidase enzyme activity. Kinetic investigation revealed the mixed mode of inhibition. This inhibition strategy was extended to control the growth of methicillin-resistant Staphylococcus aureus. The internalization of the Pd(II) cage inside the bacteria was confirmed when bacterial solutions were incubated with curcumin loaded cage. The intrinsic green fluorescence of curcumin made the bacteria glow when put under an optical microscope. Furthermore, this curcumin loaded molecular cage shows an enhanced antibacterial activity. Thus, PdII 8 molecular cage is quite attractive due to its dual role as enzyme inhibitor and drug carrier.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Imtiyaz Ahmad Bhat
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Subbaraj Karunakaran
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
3
|
Yuan F, Gao ZQ, Majerciak V, Bai L, Hu ML, Lin XX, Zheng ZM, Dong YH, Lan K. The crystal structure of KSHV ORF57 reveals dimeric active sites important for protein stability and function. PLoS Pathog 2018; 14:e1007232. [PMID: 30096191 PMCID: PMC6105031 DOI: 10.1371/journal.ppat.1007232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/22/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus closely associated with Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman disease. Open reading frame 57 (ORF57), a viral early protein of KSHV promotes splicing, stability and translation of viral mRNA and is essential for viral lytic replication. Previous studies demonstrated that dimerization of ORF57 stabilizes the protein, which is critical for its function. However, the detailed structural basis of dimerization was not elucidated. In this study, we report the crystal structures of the C-terminal domain (CTD) of ORF57 (ORF57-CTD) in both dimer at 3.5 Å and monomer at 3.0 Å. Both structures reveal that ORF57-CTD binds a single zinc ion through the consensus zinc-binding motif at the bottom of each monomer. In addition, the N-terminal residues 167-222 of ORF57-CTD protrudes a long "arm" and holds the globular domains of the neighboring monomer, while the C-terminal residues 445-454 are locked into the globular domain in cis and the globular domains interact in trans. In vitro crosslinking and nuclear translocation assays showed that either deletion of the "arm" region or substitution of key residues at the globular interface led to severe dimer dissociation. Introduction of point mutation into the zinc-binding motif also led to sharp degradation of KSHV ORF57 and other herpesvirus homologues. These data indicate that the "arm" region, the residues at the globular interface and the zinc-binding motif are all equally important in ORF57 protein dimerization and stability. Consistently, KSHV recombinant virus with the disrupted zinc-binding motif by point mutation exhibited a significant reduction in the RNA level of ORF57 downstream genes ORF59 and K8.1 and infectious virus production. Taken together, this study illustrates the first structure of KSHV ORF57-CTD and provides new insights into the understanding of ORF57 protein dimerization and stability, which would shed light on the potential design of novel therapeutics against KSHV infection and related diseases.
Collapse
Affiliation(s)
- Fei Yuan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Zeng-Qiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Meng-Lu Hu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Xi Lin
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- * E-mail: (ZMZ); (YHD); (KL)
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (ZMZ); (YHD); (KL)
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P. R. China
- * E-mail: (ZMZ); (YHD); (KL)
| |
Collapse
|
4
|
Wapling J, Srivastava S, Shehu-Xhilaga M, Tachedjian G. Targeting Human Immunodeficiency Virus Type 1 Assembly, Maturation and Budding. Drug Target Insights 2017. [DOI: 10.1177/117739280700200020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Johanna Wapling
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | - Seema Srivastava
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
| | - Miranda Shehu-Xhilaga
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
- Infectious Diseases Unit, Alfred Hospital, Prahran, Victoria 3181, Australia
| | - Gilda Tachedjian
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
| |
Collapse
|
5
|
Shi S, Nguyen PK, Cabral HJ, Diez-Barroso R, Derry PJ, Kanahara SM, Kumar VA. Development of peptide inhibitors of HIV transmission. Bioact Mater 2016; 1:109-121. [PMID: 29744399 PMCID: PMC5883972 DOI: 10.1016/j.bioactmat.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment of HIV has long faced the challenge of high mutation rates leading to rapid development of resistance, with ongoing need to develop new methods to effectively fight the infection. Traditionally, early HIV medications were designed to inhibit RNA replication and protein production through small molecular drugs. Peptide based therapeutics are a versatile, promising field in HIV therapy, which continues to develop as we expand our understanding of key protein-protein interactions that occur in HIV replication and infection. This review begins with an introduction to HIV, followed by the biological basis of disease, current clinical management of the disease, therapeutics on the market, and finally potential avenues for improved drug development.
Collapse
Key Words
- AIDS, acquired immunodeficiency syndrome
- ART, antiretroviral therapy
- CDC, Centers for Disease Control and Prevention
- Drug development
- FDA, US Food and Drug Administration
- FY, fiscal year
- HAART, highly active antiretroviral therapy
- HCV, hepatitis C Virus
- HIV
- HIV treatment
- HIV, human immunodeficiency virus
- INSTI, Integrase strand transfer inhibitors
- LEDGF, lens epithelium-derived growth factor
- NNRTI, Non-nucleoside reverse transcriptase inhibitors
- NRTI, Nucleoside/Nucleotide Reverse Transcriptase Inhibitors
- Peptide inhibitor
- Peptide therapeutic
- R&D, research and development
- RT, reverse transcriptase
Collapse
Affiliation(s)
- Siyu Shi
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Peter K. Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Henry J. Cabral
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | | | - Paul J. Derry
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | | | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
6
|
Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. J Med Chem 2016; 59:6595-628. [PMID: 26878082 PMCID: PMC7075650 DOI: 10.1021/acs.jmedchem.5b01461] [Citation(s) in RCA: 524] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Indexed: 01/17/2023]
Abstract
Severe acute respiratory syndrome (SARS) is caused by a newly emerged coronavirus that infected more than 8000 individuals and resulted in more than 800 (10-15%) fatalities in 2003. The causative agent of SARS has been identified as a novel human coronavirus (SARS-CoV), and its viral protease, SARS-CoV 3CL(pro), has been shown to be essential for replication and has hence been recognized as a potent drug target for SARS infection. Currently, there is no effective treatment for this epidemic despite the intensive research that has been undertaken since 2003 (over 3500 publications). This perspective focuses on the status of various efficacious anti-SARS-CoV 3CL(pro) chemotherapies discovered during the last 12 years (2003-2015) from all sources, including laboratory synthetic methods, natural products, and virtual screening. We describe here mainly peptidomimetic and small molecule inhibitors of SARS-CoV 3CL(pro). Attempts have been made to provide a complete description of the structural features and binding modes of these inhibitors under many conditions.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University
of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Manoj Manickam
- College
of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Vigneshwaran Namasivayam
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University
of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Yoshio Hayashi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Sang-Hun Jung
- College
of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
7
|
Konvalinka J, Kräusslich HG, Müller B. Retroviral proteases and their roles in virion maturation. Virology 2015; 479-480:403-17. [PMID: 25816761 DOI: 10.1016/j.virol.2015.03.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Proteolytic processing of viral polyproteins is essential for retrovirus infectivity. Retroviral proteases (PR) become activated during or after assembly of the immature, non-infectious virion. They cleave viral polyproteins at specific sites, inducing major structural rearrangements termed maturation. Maturation converts retroviral enzymes into their functional form, transforms the immature shell into a metastable state primed for early replication events, and enhances viral entry competence. Not only cleavage at all PR recognition sites, but also an ordered sequence of cleavages is crucial. Proteolysis is tightly regulated, but the triggering mechanisms and kinetics and pathway of morphological transitions remain enigmatic. Here, we outline PR structures and substrate specificities focusing on HIV PR as a therapeutic target. We discuss design and clinical success of HIV PR inhibitors, as well as resistance development towards these drugs. Finally, we summarize data elucidating the role of proteolysis in maturation and highlight unsolved questions regarding retroviral maturation.
Collapse
Affiliation(s)
- Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany.
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| |
Collapse
|
8
|
Inhibitor and substrate binding induced stability of HIV-1 protease against sequential dissociation and unfolding revealed by high pressure spectroscopy and kinetics. PLoS One 2015; 10:e0119099. [PMID: 25781460 PMCID: PMC4362767 DOI: 10.1371/journal.pone.0119099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/28/2015] [Indexed: 01/10/2023] Open
Abstract
High-pressure methods have become an interesting tool of investigation of structural stability of proteins. They are used to study protein unfolding, but dissociation of oligomeric proteins can be addressed this way, too. HIV-1 protease, although an interesting object of biophysical experiments, has not been studied at high pressure yet. In this study HIV-1 protease is investigated by high pressure (up to 600 MPa) fluorescence spectroscopy of either the inherent tryptophan residues or external 8-anilino-1-naphtalenesulfonic acid at 25°C. A fast concentration-dependent structural transition is detected that corresponds to the dimer-monomer equilibrium. This transition is followed by a slow concentration independent transition that can be assigned to the monomer unfolding. In the presence of a tight-binding inhibitor none of these transitions are observed, which confirms the stabilizing effect of inhibitor. High-pressure enzyme kinetics (up to 350 MPa) also reveals the stabilizing effect of substrate. Unfolding of the protease can thus proceed only from the monomeric state after dimer dissociation and is unfavourable at atmospheric pressure. Dimer-destabilizing effect of high pressure is caused by negative volume change of dimer dissociation of -32.5 mL/mol. It helps us to determine the atmospheric pressure dimerization constant of 0.92 μM. High-pressure methods thus enable the investigation of structural phenomena that are difficult or impossible to measure at atmospheric pressure.
Collapse
|
9
|
High-affinity RNA Aptamers Against the HIV-1 Protease Inhibit Both In Vitro Protease Activity and Late Events of Viral Replication. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e228. [PMID: 25689224 PMCID: PMC4345311 DOI: 10.1038/mtna.2015.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 12/19/2022]
Abstract
HIV-1 aspartyl protease (PR) plays a key role in virion morphogenesis, underscoring the effectiveness of protease inhibitors (PI). Despite their utility, side effects and drug-resistance remains a problem. We report the development of RNA aptamers as inhibitors of HIV-1 PR for potential use in anti-HIV gene therapy. Employing Systematic Evolution of Ligands by Exponential Enrichment (SELEX), we isolated four unique families of anti-HIV-1 PR RNA aptamers displaying moderate binding affinities (Kd = 92–140 nmol/l) and anti-PR inhibitory activity (Kis = 138–647 nmol/l). Second-generation RNA aptamers selected from partially randomized pools based on two of the aptamer sequences displayed striking enhancements in binding (Kds = 2–22 nmol/l) and inhibition (Kis = 31–49 nmol/l). The aptamers were specific in that they did not bind either the related HIV-2 protease, or the cellular aspartyl protease, Cathepsin D. Site-directed mutagenesis of a second-generation aptamer to probe the predicted secondary structure indicated that the stem-loops SL2 and SL3 and the stem P1 were essential for binding and that only the 3'-most 17 nucleotides were dispensable. Anti-PR aptamers inhibited HIV replication in vitro and the degree of inhibition was higher for second-generation aptamers with greater affinity and the inhibition was abrogated for a nonbinding aptamer variant.
Collapse
|
10
|
Ung PMU, Dunbar JB, Gestwicki JE, Carlson HA. An allosteric modulator of HIV-1 protease shows equipotent inhibition of wild-type and drug-resistant proteases. J Med Chem 2014; 57:6468-78. [PMID: 25062388 PMCID: PMC4136727 DOI: 10.1021/jm5008352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
NMR
and MD simulations have demonstrated that the flaps of HIV-1 protease
(HIV-1p) adopt a range of conformations that are coupled with its
enzymatic activity. Previously, a model was created for an allosteric
site located between the flap and the core of HIV-1p, called the Eye
site (2008, 89, 643−65218381626). Here, results from our first study were
combined with a ligand-based, lead-hopping method to identify a novel
compound (NIT). NIT inhibits HIV-1p, independent of the presence of
an active-site inhibitor such as pepstatin A. Assays showed that NIT
acts on an allosteric site other than the dimerization interface.
MD simulations of the ligand–protein complex show that NIT
stably binds in the Eye site and restricts the flaps. That bound state
of NIT is consistent with a crystal structure of similar fragments
bound in the Eye site (2010, 75, 257−26820659109). Most importantly,
NIT is equally potent against wild-type and a multidrug-resistant
mutant of HIV-1p, which highlights the promise of allosteric inhibitors
circumventing existing clinical resistance.
Collapse
Affiliation(s)
- Peter M-U Ung
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan , 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | | | | | | |
Collapse
|
11
|
Gable JE, Lee GM, Jaishankar P, Hearn BR, Waddling CA, Renslo AR, Craik CS. Broad-spectrum allosteric inhibition of herpesvirus proteases. Biochemistry 2014; 53:4648-60. [PMID: 24977643 PMCID: PMC4108181 DOI: 10.1021/bi5003234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Herpesviruses
rely on a homodimeric protease for viral capsid maturation.
A small molecule, DD2, previously shown to disrupt dimerization of
Kaposi’s sarcoma-associated herpesvirus protease (KSHV Pr)
by trapping an inactive monomeric conformation and two analogues generated
through carboxylate bioisosteric replacement (compounds 2 and 3) were shown to inhibit the associated proteases
of all three human herpesvirus (HHV) subfamilies (α, β,
and γ). Inhibition data reveal that compound 2 has
potency comparable to or better than that of DD2 against the tested
proteases. Nuclear magnetic resonance spectroscopy and a new application
of the kinetic analysis developed by Zhang and Poorman [Zhang, Z.
Y., Poorman, R. A., et al. (1991) J. Biol. Chem. 266, 15591–15594] show DD2, compound 2, and compound 3 inhibit HHV proteases by dimer disruption. All three compounds
bind the dimer interface of other HHV proteases in a manner analogous
to binding of DD2 to KSHV protease. The determination and analysis
of cocrystal structures of both analogues with the KSHV Pr monomer
verify and elaborate on the mode of binding for this chemical scaffold,
explaining a newly observed critical structure–activity relationship.
These results reveal a prototypical chemical scaffold for broad-spectrum
allosteric inhibition of human herpesvirus proteases and an approach
for the identification of small molecules that allosterically regulate
protein activity by targeting protein–protein interactions.
Collapse
Affiliation(s)
- Jonathan E Gable
- Department of Pharmaceutical Chemistry, University of California , San Francisco, California 94158-2280, United States
| | | | | | | | | | | | | |
Collapse
|
12
|
Fanelli R, Ressurreição AS, Dufau L, Soulier JL, Vidu A, Tonali N, Bernadat G, Reboud-Ravaux M, Ongeri S. Introduction of polar groups on the naphthalene scaffold of molecular tongs inhibiting wild-type and mutated HIV-1 protease dimerization. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00032c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of naphthalene-based molecular tongs containing polar groups at the 3-position of the naphthalene scaffold was synthesized and its anti-dimerization activity was evaluated against HIV-1 protease.
Collapse
Affiliation(s)
- R. Fanelli
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - A. S. Ressurreição
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - L. Dufau
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8256
- B2A
- Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology
| | - J.-L. Soulier
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - A. Vidu
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - N. Tonali
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - G. Bernadat
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - M. Reboud-Ravaux
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8256
- B2A
- Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology
| | - S. Ongeri
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| |
Collapse
|
13
|
Ko E, Raghuraman A, Perez LM, Ioerger TR, Burgess K. Exploring key orientations at protein-protein interfaces with small molecule probes. J Am Chem Soc 2013; 135:167-73. [PMID: 23270593 PMCID: PMC3551583 DOI: 10.1021/ja3067258] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small molecule probes that selectively perturb protein-protein interactions (PPIs) are pivotal to biomedical science, but their discovery is challenging. We hypothesized that conformational resemblance of semirigid scaffolds expressing amino acid side-chains to PPI-interface regions could guide this process. Consequently, a data mining algorithm was developed to sample huge numbers of PPIs to find ones that match preferred conformers of a selected semirigid scaffold. Conformations of one such chemotype (1aaa; all methyl side-chains) matched several biomedically significant PPIs, including the dimerization interface of HIV-1 protease. On the basis of these observations, four molecules 1 with side-chains corresponding to the matching HIV-1 dimerization interface regions were prepared; all four inhibited HIV-1 protease via perturbation of dimerization. These data indicate this approach may inspire design of small molecule interface probes to perturb PPIs.
Collapse
Affiliation(s)
- Eunhwa Ko
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842
| | - Arjun Raghuraman
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842
| | - Lisa M. Perez
- Laboratory for Molecular Simulation, Texas A & M University, Box 30012, College Station, TX 77842
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A & M University, College Station, TX 77843-3112
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842
| |
Collapse
|
14
|
Ponterini G. Fluorescence Observables and Enzyme Kinetics in the Investigation of PPI Modulation by Small Molecules: Detection, Mechanistic Insight, and Functional Consequences. DISRUPTION OF PROTEIN-PROTEIN INTERFACES 2013. [PMCID: PMC7123529 DOI: 10.1007/978-3-642-37999-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potential of fluorescence-based methods and kinetic analysis in the screening and molecular-scale mechanistic investigation of PPI modulation by small molecules is discussed through several representative examples collected and commented. These experimental approaches take advantage of a variety of observables. Changes in the protein aggregation pattern have been monitored through fluorescence properties such as spectra, intensities (related to quantum yields), time-decays, and anisotropies of intrinsic protein fluorophores, of extrinsic fluorescent tags and, even, of the same small molecules added to modulate PPIs, as well as through bimolecular excited-state processes such as static and collisional quenching, including electron and excitation-energy transfer, or exciton interaction, whose efficiencies are crucially structure dependent. Besides allowing for qualitative and quantitative information on the small-molecule induced PPI modulation, these approaches can take advantage from the sensitivity of fluorescence observables on fine structural details to shed light on the molecular-scale mechanisms of action and their functional consequences. Direct investigation of the latter by kinetic inhibition analysis represents a useful change in perspective whenever PPI are relevant for enzyme activity. Dissociative inhibition, that is, the ability of some small molecules to inhibit enzymes by disrupting their active oligomeric assembly is shortly reviewed.
Collapse
|
15
|
Sayer JM, Aniana A, Louis JM. Mechanism of dissociative inhibition of HIV protease and its autoprocessing from a precursor. J Mol Biol 2012; 422:230-44. [PMID: 22659320 PMCID: PMC3418415 DOI: 10.1016/j.jmb.2012.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 11/17/2022]
Abstract
Dimerization is indispensible for release of the human immunodeficiency virus protease (PR) from its precursor (Gag-Pol) and ensuing mature-like catalytic activity that is crucial for virus maturation. We show that a single-chain Fv fragment (scFv) of a previously reported monoclonal antibody (mAb1696), which recognizes the N-terminus of PR, dissociates a dimeric mature D25N PR mutant with an enhanced dimer dissociation constant (K(d)) in the sub-micromolar range to form predominantly a monomer-scFv complex at a 1:1 ratio, along with small (5-10%) amounts of a dimer-scFv complex. Enzyme kinetics indicate a mixed mechanism of inhibition of the wild-type PR, which exhibits a K(d)<10nM, with effects both on K(m) and k(cat) at an scFv-to-PR ratio of 10:1. ScFv binds to the N-terminal peptide P(1)QITLW(6) of PR and to PR monomers with dissociation constants of ≤30 nM and ~100 nM, respectively. Consistent with an ~400-fold increase in the dissociation of the antibody (K(Ab)) on even addition of an acetyl group to P(1) of the peptide, the antibody fails to inhibit N-terminal autoprocessing of the PR from a model precursor (at ~5 μM). However, subsequent to this cleavage, it sequesters the PR, thus blocking autoprocessing at its C-terminus. A second monoclonal antibody [PRM1 (human monoclonal antibody to PR)], which recognizes part of the flap region (residues 41-47) of the mature PR and its precursor, does not inhibit autoprocessing and ensuing catalytic activity. However, its failure to recognize drug-resistant clinical mutants of PR may be beneficial to monitor the selection of mutations in this region under drug pressure.
Collapse
Affiliation(s)
| | | | - John M. Louis
- Corresponding author: John M. Louis, Building 5, Room B2-29, LCP, NIDDK, NIH, Bethesda, MD 20892-0520, Tel. 301 594-3122; Fax. 301 480-4001;
| |
Collapse
|
16
|
Dufau L, Marques Ressurreição AS, Fanelli R, Kihal N, Vidu A, Milcent T, Soulier JL, Rodrigo J, Desvergne A, Leblanc K, Bernadat G, Crousse B, Reboud-Ravaux M, Ongeri S. Carbonylhydrazide-based molecular tongs inhibit wild-type and mutated HIV-1 protease dimerization. J Med Chem 2012; 55:6762-75. [PMID: 22800535 DOI: 10.1021/jm300181j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have designed and synthesized new molecular tongs based on a rigid naphthalene scaffold and evaluated their antidimer activity on HIV-1 protease (PR). We inserted carbonylhydrazide and oligohydrazide (azatide) fragments into their peptidomimetic arms to reduce hydrophobicity and increase metabolic stability. These fragments are designed to disrupt the protein-protein interactions by reproducing the hydrogen bond pattern found in the antiparallel β-sheet formed between the N- and C-ends of the two monomers in the native PR. Kinetic analyses and fluorescent probe binding studies showed that several molecular tongs can inhibit PR dimerization. The best nonpeptidic molecular tongs to date were obtained with an inhibition constant K(id) of 50 nM for PR and 80 nM for the multimutated protease ANAM-11. The PR inhibition was selective, the aspartic proteases renin and pepsin were not inhibited.
Collapse
Affiliation(s)
- Laure Dufau
- UMR-CNRS 8076, Molécules Fluorées et Chimie Médicinale, LabEx LERMIT, Faculté de Pharmacie, Université Paris-Sud 11, 5 rue J. B. Clément, 92296 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 2012; 14:e16. [PMID: 22831787 DOI: 10.1017/erm.2012.10] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein-protein interactions (PPIs) control the assembly of multi-protein complexes and, thus, these contacts have enormous potential as drug targets. However, the field has produced a mix of both exciting success stories and frustrating challenges. Here, we review known examples and explore how the physical features of a PPI, such as its affinity, hotspots, off-rates, buried surface area and topology, might influence the chances of success in finding inhibitors. This analysis suggests that concise, tight binding PPIs are most amenable to inhibition. However, it is also clear that emerging technical methods are expanding the repertoire of 'druggable' protein contacts and increasing the odds against difficult targets. In particular, natural product-like compound libraries, high throughput screens specifically designed for PPIs and approaches that favour discovery of allosteric inhibitors appear to be attractive routes. The first group of PPI inhibitors has entered clinical trials, further motivating the need to understand the challenges and opportunities in pursuing these types of targets.
Collapse
|
18
|
Grimme D, González-ruiz D, Gohlke* H. Computational Strategies and Challenges for Targeting Protein–Protein Interactions with Small Molecules. PHYSICO-CHEMICAL AND COMPUTATIONAL APPROACHES TO DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735377-00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Pinyol E, Frutos S, Grillo-Bosch D, Giralt E, Clotet B, Esté JA, Diez A. Applications of 3-aminolactams: design, synthesis, and biological evaluation of a library of potential dimerisation inhibitors of HIV1-protease. Org Biomol Chem 2012; 10:4348-54. [PMID: 22546925 DOI: 10.1039/c2ob25291k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of our studies on the applications of 3-aminolactams as conformationally restricted pseudodipeptides, we report here the synthesis of a library of potential dimerisation inhibitors of HIV1-protease. Two of the pseudopeptides were active on the wild type virus (HIV1) at micromolar levels (EC(50)). Although the peptides showed lower anti-viral activity than previously reported dimerisation inhibitors, our results demonstrate that the piperidone moiety does not prevent cell penetration, and hence that such derivatization is compatible with potential anti-HIV treatment.
Collapse
Affiliation(s)
- Eulàlia Pinyol
- Institute for Research in Biomedicine, Barcelona Science Park, 08028-Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Tang J, Lin Y, Co E, Hartsuck JA, Lin X. Understanding HIV protease: Can it be translated into effective therapy against AIDS? Scandinavian Journal of Clinical and Laboratory Investigation 2011. [DOI: 10.1080/00365519209104661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Vidu A, Dufau L, Bannwarth L, Soulier JL, Sicsic S, Piarulli U, Reboud-Ravaux M, Ongeri S. Toward the First Nonpeptidic Molecular Tong Inhibitor of Wild-Type and Mutated HIV-1 Protease Dimerization. ChemMedChem 2010; 5:1899-906. [DOI: 10.1002/cmdc.201000308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Lee SG, Chmielewski J. Cross-linked peptoid-based dimerization inhibitors of HIV-1 protease. Chembiochem 2010; 11:1513-6. [PMID: 20575134 PMCID: PMC4441096 DOI: 10.1002/cbic.201000248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Indexed: 11/07/2022]
Affiliation(s)
- Song-Gil Lee
- Department of Chemistry Purdue University 560 Oval Drive, West Lafayette, Indiana 47907 (USA)
| | - Jean Chmielewski
- Department of Chemistry Purdue University 560 Oval Drive, West Lafayette, Indiana 47907 (USA)
| |
Collapse
|
23
|
Current and Novel Inhibitors of HIV Protease. Viruses 2009; 1:1209-39. [PMID: 21994591 PMCID: PMC3185513 DOI: 10.3390/v1031209] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 12/25/2022] Open
Abstract
The design, development and clinical success of HIV protease inhibitors represent one of the most remarkable achievements of molecular medicine. This review describes all nine currently available FDA-approved protease inhibitors, discusses their pharmacokinetic properties, off-target activities, side-effects, and resistance profiles. The compounds in the various stages of clinical development are also introduced, as well as alternative approaches, aiming at other functional domains of HIV PR. The potential of these novel compounds to open new way to the rational drug design of human viruses is critically assessed.
Collapse
|
24
|
El Dine RS, El Halawany AM, Ma CM, Hattori M. Inhibition of the dimerization and active site of HIV-1 protease by secondary metabolites from the Vietnamese mushroom Ganoderma colossum. JOURNAL OF NATURAL PRODUCTS 2009; 72:2019-2023. [PMID: 19813754 DOI: 10.1021/np900279u] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new farnesyl hydroquinone, ganomycin I (1), was isolated along with ganomycin B (2) from the chloroform extract of the fruiting bodies of the Vietnamese mushroom Ganoderma colossum. These compounds inhibited HIV-1 protease with IC50 values of 7.5 and 1.0 microg/mL, respectively. Kinetic studies using Zhang-Poorman and Lineweaver plots revealed that compound 2 competitively inhibited the active site of the enzyme, whereas the tetracyclic triterpene schisanlactone A, previously isolated from the same fungus, was a dimerization inhibitor, with an IC50 value of 5.0 microg/mL. The previous findings were also confirmed by the virtual docking of both compounds with HIV-1 protease crystal structure.
Collapse
Affiliation(s)
- Riham Salah El Dine
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
25
|
Tsiang M, Jones GS, Hung M, Mukund S, Han B, Liu X, Babaoglu K, Lansdon E, Chen X, Todd J, Cai T, Pagratis N, Sakowicz R, Geleziunas R. Affinities between the binding partners of the HIV-1 integrase dimer-lens epithelium-derived growth factor (IN dimer-LEDGF) complex. J Biol Chem 2009; 284:33580-99. [PMID: 19801648 DOI: 10.1074/jbc.m109.040121] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction between lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF) and human immunodeficiency virus type 1 (HIV-1) integrase (IN) is essential for HIV-1 replication. Homogeneous time-resolved fluorescence resonance energy transfer assays were developed to characterize HIV-1 integrase dimerization and the interaction between LEDGF and IN dimers. Using these assays in an equilibrium end point dose-response format with mathematical modeling, we determined the dissociation constants of IN dimers (K(dimer) = 67.8 pm) and of LEDGF from IN dimers (K(d) = 10.9 nm). When used in a kinetic format, the assays allowed the determination of the on- and off-rate constants for these same interactions. Integrase dimerization had a k(on) of 0.1247 nm(-1) x min(-1) and a k(off) of 0.0080 min(-1) resulting in a K(dimer) of 64.5 pm. LEDGF binding to IN dimers had a k(on) of 0.0285 nm(-1).min(-1) and a k(off) of 0.2340 min(-1) resulting in a K(d) of 8.2 nm. These binding assays can also be used in an equilibrium end point competition format. In this format, the IN catalytic core domain produced a K(i) of 15.2 nm while competing for integrase dimerization, confirming the very tight interaction of IN with itself. In the same format, LEDGF produced a K(i) value of 35 nm when competing for LEDGF binding to IN dimers. In summary, this study describes a methodology combining homogeneous time-resolved fluorescence resonance energy transfer and mathematical modeling to derive the affinities between IN monomers and between LEDGF and IN dimers. This study revealed the significantly tighter nature of the IN-IN dimer compared with the IN-LEDGF interaction.
Collapse
Affiliation(s)
- Manuel Tsiang
- Gilead Sciences, Inc., Foster City, California 94404, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Analysis and characterization of dimerization inhibition of a multi-drug-resistant human immunodeficiency virus type 1 protease using a novel size-exclusion chromatographic approach. Biochem J 2009; 419:497-506. [PMID: 19149765 DOI: 10.1042/bj20082068] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Active-site inhibitors of HIV-1 PR (protease) block viral replication by preventing viral maturation. However, HIV-1 often develops resistance to active-site inhibitors through multiple mutations in PR and therefore recent efforts have focused on inhibiting PR dimerization as an alternative approach. Dimerization inhibitors have been identified using kinetic analysis, but additional characterization of the effect of these inhibitors on PR by physical methods has been difficult. In the present study, we identified a PR(MDR) (multi-drug-resistant HIV-1 PR) that was highly resistant to autoproteolysis. Using this PR and a novel size-exclusion chromatographic approach that incorporated fluorescence and MS detection, we were able to demonstrate inhibition of dimerization using P27 (peptide 27), a peptide dimerization inhibitor of PR previously identified on the basis of kinetic analysis. Incubation of PR(MDR) with P27, or other dimerization inhibitors, led to a dose- and time-dependent formation of PR monomers based on the change in elution time by size exclusion and its similar elution time to engineered forms of monomeric PR, namely PR(T26A) and glutathionylated PR. In contrast, incubation of PR(MDR) with a potent active-site inhibitor did not change the elution time for the PR(MDR) dimer. The monomeric PR induced by P27 had fluorescent characteristics which were consistent with unfolded PR. Structure-activity studies identified the active regions of P27 and experiments were performed to examine the effect of other dimerization inhibitors on PR. The present study is the first characterization of dimerization inhibition of PR(MDR), a prime target for these inhibitors, using a novel size-exclusion chromatographic approach.
Collapse
|
27
|
Noel AF, Bilsel O, Kundu A, Wu Y, Zitzewitz JA, Matthews CR. The folding free-energy surface of HIV-1 protease: insights into the thermodynamic basis for resistance to inhibitors. J Mol Biol 2009; 387:1002-16. [PMID: 19150359 DOI: 10.1016/j.jmb.2008.12.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/20/2008] [Accepted: 12/22/2008] [Indexed: 11/28/2022]
Abstract
Spontaneous mutations at numerous sites distant from the active site of human immunodeficiency virus type 1 protease enable resistance to inhibitors while retaining enzymatic activity. As a benchmark for probing the effects of these mutations on the conformational adaptability of this dimeric beta-barrel protein, the folding free-energy surface of a pseudo-wild-type variant, HIV-PR(*), was determined by a combination of equilibrium and kinetic experiments on the urea-induced unfolding/refolding reactions. The equilibrium unfolding reaction was well described by a two-state model involving only the native dimeric form and the unfolded monomer. The global analysis of the kinetic folding mechanism reveals the presence of a fully folded monomeric intermediate that associates to form the native dimeric structure. Independent analysis of a stable monomeric version of the protease demonstrated that a small-amplitude fluorescence phase in refolding and unfolding, not included in the global analysis of the dimeric protein, reflects the presence of a transient intermediate in the monomer folding reaction. The partially folded and fully folded monomers are only marginally stable with respect to the unfolded state, and the dimerization reaction provides a modest driving force at micromolar concentrations of protein. The thermodynamic properties of this system are such that mutations can readily shift the equilibrium from the dimeric native state towards weakly folded states that have a lower affinity for inhibitors but that could be induced to bind to their target proteolytic sites. Presumably, subsequent secondary mutations increase the stability of the native dimeric state in these variants and, thereby, optimize the catalytic properties of the resistant human immunodeficiency virus type 1 protease.
Collapse
Affiliation(s)
- Amanda F Noel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
28
|
Bannwarth L, Rose T, Dufau L, Vanderesse R, Dumond J, Jamart-Grégoire B, Pannecouque C, De Clercq E, Reboud-Ravaux M. Dimer Disruption and Monomer Sequestration by Alkyl Tripeptides Are Successful Strategies for Inhibiting Wild-Type and Multidrug-Resistant Mutated HIV-1 Proteases. Biochemistry 2008; 48:379-87. [DOI: 10.1021/bi801422u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ludovic Bannwarth
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Thierry Rose
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Laure Dufau
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Régis Vanderesse
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Julien Dumond
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Brigitte Jamart-Grégoire
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Christophe Pannecouque
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Erik De Clercq
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Michèle Reboud-Ravaux
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
29
|
Damm KL, Ung PMU, Quintero JJ, Gestwicki JE, Carlson HA. A poke in the eye: inhibiting HIV-1 protease through its flap-recognition pocket. Biopolymers 2008; 89:643-52. [PMID: 18381626 DOI: 10.1002/bip.20993] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel mechanism of inhibiting HIV-1 protease (HIVp) is presented. Using computational solvent mapping to identify complementary interactions and the Multiple Protein Structure method to incorporate protein flexibility, we generated a receptor-based pharmacophore model of the flexible flap region of the semiopen, apo state of HIVp. Complementary interactions were consistently observed at the base of the flap, only within a cleft with a specific structural role. In the closed, bound state of HIVp, each flap tip docks against the opposite monomer, occupying this cleft. This flap-recognition site is filled by the protein and cannot be identified using traditional approaches based on bound, closed structures. Virtual screening and dynamics simulations show how small molecules can be identified to complement this cleft. Subsequent experimental testing confirms inhibitory activity of this new class of inhibitor. This may be the first new inhibitor class for HIVp since dimerization inhibitors were introduced 17 years ago.
Collapse
Affiliation(s)
- Kelly L Damm
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | | | | | | | | |
Collapse
|
30
|
Kaushik-Basu N, Basu A, Harris D. Peptide inhibition of HIV-1: current status and future potential. BioDrugs 2008; 22:161-75. [PMID: 18481899 DOI: 10.2165/00063030-200822030-00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
More than 2 decades of intensive research has focused on defining replication mechanisms of HIV type 1 (HIV-1), the etiologic agent of AIDS. The delineation of strategies for combating this viral infection has yielded many innovative approaches toward this end. HIV-1 is a lentivirus in the family retroviridae that is relatively small with regard to both structure and genome size, having a diploid RNA genome of approximately 9 kb, with only three major genes and several gene products resulting from alternate splicing and translational frameshifting. Most marketed drugs for treating AIDS are inhibitors of HIV-1 reverse transcriptase or protease enzymes, but new targets include the integrase enzyme, cell surface interactions that facilitate viral entry, and also virus particle maturation and assembly. The emergence of drug-resistant variants of HIV-1 has been the main impediment to successful treatment of AIDS. Thus, there is a pressing need to develop novel treatment strategies targeting multiple stages of the virus life-cycle. Research efforts aimed at developing successful means for combating HIV-1 infection have included development of peptide inhibitors of HIV-1. This article summarizes past and current endeavors in the development of peptides that inhibit replication of HIV-1 and the role of peptide inhibitors in the search for new anti-HIV drugs.
Collapse
Affiliation(s)
- Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
31
|
Sidechain-linked inhibitors of HIV-1 protease dimerization. Bioorg Med Chem 2008; 17:967-76. [PMID: 18337105 DOI: 10.1016/j.bmc.2008.02.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/15/2008] [Accepted: 02/16/2008] [Indexed: 11/20/2022]
Abstract
There is a great need for alternative modes of inhibition for the design of anti-HIV therapies, due to the increased resistance of HIV to currently approved drugs. A novel strategy for generating potent dimerization inhibitors of HIV-1 protease is described based on sidechain-linked interfacial peptides. In a number of cases the activity of these agents against HIV-1 protease was found to be among the most potent reported, with inhibitory constants in the low nM range.
Collapse
|
32
|
Yan MC, Sha Y, Wang J, Xiong XQ, Ren JH, Cheng MS. Molecular dynamics simulations of HIV‐1 protease monomer: Assembly of N‐terminus and C‐terminus into β‐sheet in water solution. Proteins 2008; 70:731-8. [PMID: 17729281 DOI: 10.1002/prot.21539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
HIV-1 protease (HIV-PR) consists of two identical subunits that are united together through a four-stranded antiparallel beta-sheet formed of the peptide termini of each monomer. Since the active site exists only in the dimer, a strategy that is attracting more and more attention in inhibitor design and which may overcome the serious drug resistance caused by competitive inhibitors is to block the peptide termini of the monomer, thereby interfering with formation of the active dimer. In the present work, we performed several extensive molecular dynamics (MD) simulations of the HIV-PR monomer in water to illustrate its solvated conformation and dynamics behavior. We found that the peptide termini usually assembled into beta-sheet after several nanoseconds' simulation, and became much less flexible. This beta-sheet is stabilized by intramolecular interactions and is not easily disaggregated under the present MD simulation conditions. This transformation may be an important transition during the relaxing and equilibrating of the HIV-PR monomer in aqueous solution, and the terminal beta-sheet may be one of the major conformations of the solvated HIV-PR monomer termini in water. This work may provide new insights into the dynamics behavior and dimerization mechanism of HIV-PR, and more significantly, offer a more rational receptor model for the design and discovery of novel dimerization inhibitors than crystalline structures.
Collapse
Affiliation(s)
- Mao-Cai Yan
- Key Laboratory of New Drugs Design and Discovery of Liaoning Province, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Sun JP, Luo Y, Yu X, Wang WQ, Zhou B, Liang F, Zhang ZY. Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration. J Biol Chem 2007; 282:29043-29051. [PMID: 17656357 DOI: 10.1074/jbc.m703537200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphatase of regenerating liver (PRL) phosphatases are implicated in a number of tumorigenesis and metastasis processes. The PRLs are unique among protein-tyrosine phosphatases in that they have extremely low phosphatase activity, a high propensity for trimer formation, and a polybasic region that precedes the C-terminal prenylation motif. To investigate the functional significance of these distinctive biochemical and structural features, we established a cell-based system in which ectopic PRL1 expression increased cell proliferation and migration, whereas knockdown of endogenous PRL1 abrogated these cellular activities. We showed that the intrinsic PRL1 phosphatase activity is obligatory for its biological function. We provided evidence that trimerization may be a general property for all PRL enzymes, and that PRL1 trimer formation is essential for the PRL1-mediated cell growth and migration. This finding indicates a novel mechanism for phosphatase regulation. We further demonstrated that the conserved C-terminal polybasic region is important for specific phosphoinositide recognition by PRL1. Both the polybasic residues and the adjacent prenylation motif are required for proper PRL1 subcellular localization and full biological activity.
Collapse
Affiliation(s)
- Jin-Peng Sun
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yong Luo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Xiao Yu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Wei-Qing Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Bo Zhou
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Fubo Liang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
34
|
Ishima R, Torchia DA, Louis JM. Mutational and Structural Studies Aimed at Characterizing the Monomer of HIV-1 Protease and Its Precursor. J Biol Chem 2007; 282:17190-9. [PMID: 17412697 DOI: 10.1074/jbc.m701304200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An experimental protocol for folding the mature human immunodeficiency virus-1 (HIV-1) protease is presented that facilitates NMR studies at a low protein concentration of approximately 20 micoM. Under these conditions, NMR spectra show that the mature protease lacking its terminal beta-sheet residues 1-4 and 96-99 (PR(5-95)) exhibits a stable monomer fold spanning the region 10-90 that is similar to that of the single subunit of the wild-type dimer and the dimer bearing a D25N mutation (PR(D25N)). Urea-induced unfolding monitored both by changes in (1)H-(15)N heteronuclear single quantum correlation spectra and by protein fluorescence indicates that although PR(5-95) monomer displays a transition profile similar to that of the PR(D25N) dimer (50% unfolded (U(50)) = approximately 1.9 M), extending the protease with 4 residues (SFNF) of its N-terminally flanking sequence in the Gag-Pol precursor ((SFNF)PR(D25N)) decreases the stability of the fold (U(50) = approximately 1.5 M). Assigned backbone chemical shifts were used to elucidate differences in the stability of the PR(T26A) (U(50) = 2.5 M) and (SFNF)PR(D25N) monomers and compared with PR(D25N/T26A) monomer. Discernible differences in the backbone chemical shifts were observed for N-terminal protease residues 3-6 of (SFNF)PR(D25N) that may relate to the increase in the equilibrium dissociation constant (K(d)) and the very low catalytic activity of the protease prior to its autoprocessing at its N terminus from the Gag-Pol precursor.
Collapse
Affiliation(s)
- Rieko Ishima
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
35
|
Pakkala M, Hekim C, Soininen P, Leinonen J, Koistinen H, Weisell J, Stenman UH, Vepsäläinen J, Närvänen A. Activity and stability of human kallikrein-2-specific linear and cyclic peptide inhibitors. J Pept Sci 2007; 13:348-53. [PMID: 17436344 DOI: 10.1002/psc.849] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human glandular kallikrein (KLK2) is a highly prostate-specific serine protease, which is mainly excreted into the seminal fluid, but part of which is also secreted into circulation from prostatic tumors. Since the expression level of KLK2 is elevated in aggressive tumors and it has been suggested to mediate the metastasis of prostate cancer, inhibition of the proteolytic activity of KLK2 is of potential therapeutic value. We have previously identified several KLK2-specific linear peptides by phage display technology. Two of its synthetic analogs, A R R P A P A P G (KLK2a) and G A A R F K V W W A A G (KLK2b), show specific inhibition of KLK2 but their sensitivity to proteolysis in vivo may restrict their potential use as therapeutic agents. In order to improve the stability of the linear peptides for in vivo use, we have prepared cyclic analogs and compared their biological activity and their structural stability. A series of cyclic variants with cysteine bridges were synthesized. Cyclization inactivated one peptide (KLK2a) and its derivatives, while the other peptide (KLK2b) and its derivatives remained active. Furthermore, backbone cyclization of KLK2b improved significantly the resistance against proteolysis by trypsin and human plasma. Nuclear magnetic resonance studies showed that cyclization of the KLK2b peptides does not make the structures more rigid. In conclusion, we have shown that backbone cyclization of KLK2 inhibitory peptides can be used to increase stability without losing biological activity. This should render the peptides more useful for in vivo applications, such as tumor imaging and prostate cancer targeting.
Collapse
Affiliation(s)
- Miikka Pakkala
- Department of Chemistry, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, and Department of Clinical Chemistry, Helsinki University Central Hospital, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Frutos S, Rodriguez-Mias RA, Madurga S, Collinet B, Reboud-Ravaux M, Ludevid D, Giralt E. Disruption of the HIV-1 protease dimer with interface peptides: Structural studies using NMR spectroscopy combined with [2-13C]-Trp selective labeling. Biopolymers 2007; 88:164-73. [PMID: 17236209 DOI: 10.1002/bip.20685] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
HIV-1 protease (HIV-1 PR), which is encoded by retroviruses, is required for the processing of gag and pol polyprotein precursors, hence it is essential for the production of infectious viral particles. In vitro inhibition of the enzyme results in the production of progeny virions that are immature and noninfectious, suggesting its potential as a therapeutic target for AIDS. Although a number of potent protease inhibitor drugs are now available, the onset of resistance to these agents due to mutations in HIV-1 PR has created an urgent need for new means of HIV-1 PR inhibition. Whereas enzymes are usually inactivated by blocking of the active site, the structure of dimeric HIV-1 PR allows an alternative inhibitory mechanism. Since the active site is formed by two half-enzymes, which are connected by a four-stranded antiparallel beta-sheet involving the N- and C- termini of both monomers, enzyme activity can be abolished by reagents targeting the dimer interface in a region relatively free of mutations would interfere with formation or stability of the functional HIV-1 PR dimer. This strategy has been explored by several groups who targeted the four-stranded antiparallel beta-sheet that contributes close to 75% of the dimerization energy. Interface peptides corresponding to native monomer N- or C-termini of several of their mimetics demonstrated, mainly on the basis of kinetic analyses, to act as dimerization inhibitors. However, to the best of our knowledge, neither X-ray crystallography nor NMR structural studies of the enzyme-inhibitor complex have been performed to date. In this article we report a structural study of the dimerization inhibition of HIV-1 PR by NMR using selective Trp side chain labeling.
Collapse
Affiliation(s)
- Silvia Frutos
- Institut de Recerca Biomèdica, Parc Científic de Barcelona, Josep Samitier 1-5, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Louis JM, Ishima R, Torchia DA, Weber IT. HIV-1 protease: structure, dynamics, and inhibition. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:261-98. [PMID: 17586318 DOI: 10.1016/s1054-3589(07)55008-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
38
|
Camarasa MJ, Velázquez S, San-Félix A, Pérez-Pérez MJ, Gago F. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: A single mode of inhibition for the three HIV enzymes? Antiviral Res 2006; 71:260-7. [PMID: 16872687 DOI: 10.1016/j.antiviral.2006.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/25/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
The genome of human immunodeficiency virus type 1 (HIV-1) encodes 15 distinct proteins, three of which provide essential enzymatic functions: a reverse transcriptase (RT), an integrase (IN), and a protease (PR). Since these enzymes are all homodimers, pseudohomodimers or multimers, disruption of protein-protein interactions in these retroviral enzymes may constitute an alternative way to achieve HIV-1 inhibition. A growing number of dimerization inhibitors for these enzymes is being reported. This mini review summarizes some approaches that have been followed for the development of compounds that inhibit those three enzymes by interfering with the dimerization interfaces between the enzyme subunits.
Collapse
Affiliation(s)
- María-José Camarasa
- Instituto de Química Médica (C.S.I.C.), Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Rochelle R. Arvizo
- a Department of Chemistry , University of Massachusetts , Amherst, MA, 01003, USA
| | - Ayush Verma
- a Department of Chemistry , University of Massachusetts , Amherst, MA, 01003, USA
| | - Vincent M. Rotello
- a Department of Chemistry , University of Massachusetts , Amherst, MA, 01003, USA
| |
Collapse
|
40
|
Badtke MP, Cao F, Tavis JE. Combining genetic and biochemical approaches to identify functional molecular contact points. Biol Proced Online 2006; 8:77-86. [PMID: 17033698 PMCID: PMC1592461 DOI: 10.1251/bpo121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/19/2006] [Accepted: 07/19/2006] [Indexed: 12/03/2022] Open
Abstract
Protein-protein interactions are required for many viral and cellular functions and are potential targets for novel therapies. Here we detail a series of genetic and biochemical techniques used in combination to find an essential molecular contact point on the duck hepatitis B virus polymerase. These techniques include differential immunoprecipitation, mutagenesis and peptide competition. The strength of these techniques is their ability to identify contact points on intact proteins or protein complexes employing functional assays. This approach can be used to aid identification of putative binding sites on proteins and protein complexes which are resistant to characterization by other methods.
Collapse
Affiliation(s)
- Matthew P. Badtke
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine. St. Louis, MO 63104. USA
| | - Feng Cao
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine. St. Louis, MO 63104. USA
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology and Saint Louis University Liver Center, Saint Louis University School of Medicine. St. Louis, MO 63104. USA
| |
Collapse
|
41
|
Fletcher S, Hamilton AD. Targeting protein-protein interactions by rational design: mimicry of protein surfaces. J R Soc Interface 2006; 3:215-33. [PMID: 16849232 PMCID: PMC1578744 DOI: 10.1098/rsif.2006.0115] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/27/2006] [Indexed: 11/12/2022] Open
Abstract
Protein-protein interactions play key roles in a range of biological processes, and are therefore important targets for the design of novel therapeutics. Unlike in the design of enzyme active site inhibitors, the disruption of protein-protein interactions is far more challenging, due to such factors as the large interfacial areas involved and the relatively flat and featureless topologies of these surfaces. Nevertheless, in spite of such challenges, there has been considerable progress in recent years. In this review, we discuss this progress in the context of mimicry of protein surfaces: targeting protein-protein interactions by rational design.
Collapse
Affiliation(s)
| | - Andrew D Hamilton
- Department of Chemistry, Yale UniversityPO Box 208107, New Haven, CT 06520-8107, USA
| |
Collapse
|
42
|
Lee SG, Chmielewski J. Rapid Synthesis and In Situ Screening of Potent HIV-1 Protease Dimerization Inhibitors. ACTA ACUST UNITED AC 2006; 13:421-6. [PMID: 16632254 DOI: 10.1016/j.chembiol.2006.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/19/2006] [Accepted: 02/06/2006] [Indexed: 11/21/2022]
Abstract
A library of dimerization inhibitors of HIV-1 protease is described based on crosslinked interfacial peptides. The 54 component library was designed to contain two modifications to the starting structure, one each in the Northern and Southern fragments. A rapid synthesis and in situ screening method in microtiter plates was developed to facilitate the generation and evaluation of the library members. More than 90% of the doubly modified agents were more potent than their respective singly mutated parent compounds, and five of the most potent dimerization inhibitors of HIV-1 protease described to date were identified. The free energy of binding for the combined two modifications was generally found to be additive, demonstrating the predictive value of earlier libraries.
Collapse
Affiliation(s)
- Song-Gil Lee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
43
|
Wei P, Fan K, Chen H, Ma L, Huang C, Tan L, Xi D, Li C, Liu Y, Cao A, Lai L. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochem Biophys Res Commun 2005; 339:865-72. [PMID: 16329994 PMCID: PMC7092940 DOI: 10.1016/j.bbrc.2005.11.102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 11/16/2005] [Indexed: 11/21/2022]
Abstract
The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. Accurate determination of the dimer dissociation constant and the role of the N-finger (residues 1–7) will provide more insights into the enzyme catalytic mechanism of SARS 3CL proteinase. The dimer dissociation constant of the wild-type protein was determined to be 14.0 μM by analytical ultracentrifugation method. The N-finger fragment of the enzyme plays an important role in enzyme dimerization as shown in the crystal structure. Key residues in the N-finger have been studied by site-directed mutagenesis, enzyme assay, and analytical ultracentrifugation. A single mutation of M6A was found to be critical to maintain the dimer structure of the enzyme. The N-terminal octapeptide N8 and its mutants were also synthesized and tested for their potency as dimerization inhibitors. Peptide cleavage assay confirms that peptide N8 is a dimerization inhibitor with a Ki of 2.20 mM. The comparison of the inhibitory activities of N8 and its mutants indicates that the hydrophobic interaction of Met-6 and the electrostatic interaction of Arg-4 contribute most for inhibitor binding. This study describes the first example of inhibitors targeting the dimeric interface of SARS 3CL proteinase, providing a novel strategy for drug design against SARS and other coronaviruses.
Collapse
Affiliation(s)
- Ping Wei
- State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Keqiang Fan
- State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Hao Chen
- State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871, China
- Center for Theoretical Biology, Peking University, Beijing 100871, China
| | - Liang Ma
- State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Changkang Huang
- State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Lei Tan
- State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Dong Xi
- State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Chunmei Li
- State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Ying Liu
- State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Aoneng Cao
- State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Luhua Lai
- State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871, China
- Center for Theoretical Biology, Peking University, Beijing 100871, China
- Corresponding author. Fax: +86 10 62751725.
| |
Collapse
|
44
|
Loregian A, Palù G. Disruption of protein-protein interactions: towards new targets for chemotherapy. J Cell Physiol 2005; 204:750-62. [PMID: 15880642 DOI: 10.1002/jcp.20356] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein-protein interactions play a key role in various mechanisms of cellular growth and differentiation, and in the replication of pathogen organisms in host cells. Thus, inhibition of these interactions is a promising novel approach for rational drug design against a wide number of cellular and microbial targets. In the past few years, attempts to inhibit protein-protein interactions using antibodies, peptides, and synthetic or natural small molecules have met with varying degrees of success, and these will be the focus of this review.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Italy.
| | | |
Collapse
|
45
|
Bowman MJ, Byrne S, Chmielewski J. Switching between allosteric and dimerization inhibition of HIV-1 protease. ACTA ACUST UNITED AC 2005; 12:439-44. [PMID: 15850980 DOI: 10.1016/j.chembiol.2005.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/28/2005] [Accepted: 02/01/2005] [Indexed: 11/17/2022]
Abstract
Refining the functional groups on a phenethylamine moiety within an inhibitor of HIV-1 protease led to a switch in the mechanism of inhibition from competitive and allosteric to dimerization inhibition. Phenylether extensions to the phenethylamine group led to agents that target the dimerization interface of HIV-1 protease with high potency.
Collapse
Affiliation(s)
- Michael J Bowman
- Department of Chemistry, Purdue University, West Lafayett, Indiana 47907, USA
| | | | | |
Collapse
|
46
|
Capps KJ, Humiston J, Dominique R, Hwang I, Boger DL. Discovery of AICAR Tfase inhibitors that disrupt requisite enzyme dimerization. Bioorg Med Chem Lett 2005; 15:2840-4. [PMID: 15911265 DOI: 10.1016/j.bmcl.2005.03.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
The discovery of a new class of aminoimidazole carboxamide ribonucleotide transformylase (AICAR Tfase) inhibitors through screening peptidomimetic libraries (>40,000 compounds) that act by inhibiting requisite enzyme dimerization is disclosed. In addition to defining key structural features of the lead compounds responsible for the activity, kinetic analysis of the remarkably small inhibitors established that they act as noncompetitive, dissociative inhibitors of AICAR Tfase with the prototypical lead (A1B3, Cappsin 1) exhibiting a K(i) of 3.1 +/- 0.3 microM. Thus, the studies define a unique approach to selectively targeting AICAR Tfase over all other folate-dependent enzymes, and it represents only one of a few enzymes for which inhibition achieved by disrupting requisite enzyme dimerization has emerged from screening unbiased combinatorial libraries.
Collapse
Affiliation(s)
- Kevin J Capps
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
47
|
Eyckerman S, Lemmens I, Catteeuw D, Verhee A, Vandekerckhove J, Lievens S, Tavernier J. Reverse MAPPIT: screening for protein-protein interaction modifiers in mammalian cells. Nat Methods 2005; 2:427-33. [PMID: 15908921 DOI: 10.1038/nmeth760] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 04/07/2005] [Indexed: 11/09/2022]
Abstract
Interactions between proteins are at the heart of the cellular machinery. It is therefore not surprising that altered interaction profiles caused by aberrant protein expression patterns or by the presence of mutations can trigger cellular dysfunction, eventually leading to disease. Moreover, many viral and bacterial pathogens rely on protein-protein interactions to exert their damaging effects. Interfering with such interactions is an obvious pharmaceutical goal, but detailed insights into the protein binding properties as well as efficient screening platforms are needed. In this report, we describe a cytokine receptor-based assay with a positive readout to screen for disrupters of designated protein-protein interactions in intact mammalian cells and evaluate this concept using polypeptides as well as small organic molecules. These reverse mammalian protein-protein interaction trap (MAPPIT) screens were developed to monitor interactions between the erythropoietin receptor (EpoR) and suppressors of cytokine signaling (SOCS) proteins, between FKBP12 and ALK4, and between MDM2 and p53.
Collapse
Affiliation(s)
- Sven Eyckerman
- Flanders Interuniversity Institute for Biotechnology, VIB09, Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
48
|
Garzón MT, Lidón-Moya MC, Barrera FN, Prieto A, Gómez J, Mateu MG, Neira JL. The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: a biophysical characterization. Protein Sci 2005; 13:1512-23. [PMID: 15152086 PMCID: PMC2279969 DOI: 10.1110/ps.03555304] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The type 1 HIV presents a conical capsid formed by approximately 1500 units of the capsid protein, CA. Homodimerization of CA via its C-terminal domain, CA-C, constitutes a key step in virion assembly. CA-C dimerization is largely mediated by reciprocal interactions between residues of its second alpha-helix. Here, we show that an N-terminal-acetylated and C-terminal-amidated peptide, CAC1, comprising the sequence of the CA-C dimerization helix plus three flanking residues at each side, is able to form a complex with the entire CA-C domain. Thermal denaturation measurements followed by circular dichroism (CD), NMR, and size-exclusion chromatography provided evidence of the interaction between CAC1 and CA-C. The apparent dissociation constant of the heterocomplex formed by CA-C and CAC1 was determined by several biophysical techniques, namely, fluorescence (using an anthraniloyl-labeled peptide), affinity chromatography, and isothermal titration calorimetry. The three techniques yielded similar values for the apparent dissociation constant, in the order of 50 microM. This apparent dissociation constant was only five times higher than was the dissociation constant of both CA-C and the intact capsid protein homodimers (10 microM).
Collapse
Affiliation(s)
- María T Garzón
- Instituto de Biología Molecular y Celular, Edificio Torregaitán, Universidad Miguel Hernández, Avda. del Ferrocarril s/n, 03202 Elche (Alicante), Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Hwang YS, Chmielewski J. A unidirectional crosslinking strategy for HIV-1 protease dimerization inhibitors. Bioorg Med Chem Lett 2004; 14:4297-300. [PMID: 15261290 DOI: 10.1016/j.bmcl.2004.05.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/28/2004] [Accepted: 05/28/2004] [Indexed: 11/19/2022]
Abstract
A novel strategy to identify potent HIV-1 protease dimerization inhibitors was developed using 12-aminododecanoic acid as a tether to crosslink interfacial peptides. The directionality of the southern peptide was changed from N-->C to C-->N as compared to previously reported inhibitors. The terminal amine of the southern peptide and side chains were further diversified to find essential functional groups for dimerization inhibition of HIV-1 protease.
Collapse
Affiliation(s)
- You Seok Hwang
- Department of Chemistry, Purdue University, West Lafayette, IN 47906, USA
| | | |
Collapse
|
50
|
Ingr M, Uhlíková T, Strísovský K, Majerová E, Konvalinka J. Kinetics of the dimerization of retroviral proteases: the "fireman's grip" and dimerization. Protein Sci 2004; 12:2173-82. [PMID: 14500875 PMCID: PMC2366921 DOI: 10.1110/ps.03171903] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
All retroviral proteases belong to the family of aspartic proteases. They are active as homodimers, each unit contributing one catalytic aspartate to the active site dyad. An important feature of all aspartic proteases is a conserved complex scaffold of hydrogen bonds supporting the active site, called the "fireman's grip," which involves the hydroxyl groups of two threonine (serine) residues in the active site Asp-Thr(Ser)-Gly triplets. It was shown previously that the fireman's grip is indispensable for the dimer stability of HIV protease. The retroviral proteases harboring Ser in their active site triplet are less active and, under natural conditions, are expressed in higher enzyme/substrate ratio than those having Asp-Thr-Gly triplet. To analyze whether this observation can be attributed to the different influence of Thr or Ser on dimerization, we prepared two pairs of the wild-type and mutant proteases from HIV and myeloblastosis-associated virus harboring either Ser or Thr in their Asp-Thr(Ser)-Gly triplet. The equilibrium dimerization constants differed by an order of magnitude within the relevant pairs. The proteases with Thr in their active site triplets were found to be approximately 10 times more thermodynamically stable. The dimer association contributes to this difference more than does the dissociation. We propose that the fireman's grip might be important in the initial phases of dimer formation to help properly orientate the two subunits of a retroviral protease. The methyl group of threonine might contribute significantly to fixing such an intermediate conformation.
Collapse
Affiliation(s)
- Marek Ingr
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, 166 10 Praha 6, Czech Republic
| | | | | | | | | |
Collapse
|