1
|
Thabah D, Syiem D, Pakyntein CL, Banerjee S, Kharshiing CE, Bhattacharjee A. Potentilla fulgens upregulate GLUT4, AMPK, AKT and insulin in alloxan-induced diabetic mice: an in vivo and in silico study. Arch Physiol Biochem 2023; 129:1071-1083. [PMID: 33733926 DOI: 10.1080/13813455.2021.1897145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study was designed to investigate whether the glucose lowering effects of Potentilla fulgens acts by modulating GLUT4, AKT2 and AMPK expression in the skeletal muscle and liver tissues. METHODOLOGY Alloxan-induced diabetic mice treated with Potentilla fulgens was assessed for their blood glucose and insulin level, mRNA and protein expression using distinguished methods. Additionally, GLUT4, AKT2 and AMPK were docked with catechin, epicatechin, kaempferol, metformin, quercetin and ursolic acid reportedly present in Potentilla fulgens. RESULTS Potentilla fulgens ameliorates hyperglycaemia and insulin sensitivity via activation of AKT2 and AMPK, increases the expression of GLUT4, AKT2, AMPKα1 and AMPKα2 whose levels are reduced under diabetic condition. Molecular docking revealed interacting residues and their binding affinities (-4.56 to -8.95 Kcal/mol). CONCLUSIONS These findings provide more clarity vis-avis the mechanism of action of the phytoceuticals present in Potentilla fulgens extract which function through their action on GLUT4, PKB and AMPK.
Collapse
Affiliation(s)
- Daiahun Thabah
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, India
| | - Donkupar Syiem
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, India
| | - Careen Liza Pakyntein
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, India
| | - Sagnik Banerjee
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Cynthia Erica Kharshiing
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Atanu Bhattacharjee
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
2
|
Dual actions of gallic acid and andrographolide trigger AdipoR1 to stimulate insulin secretion in a streptozotocin-induced diabetes rat model. J Tradit Complement Med 2022; 13:11-19. [PMID: 36685073 PMCID: PMC9845651 DOI: 10.1016/j.jtcme.2022.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023] Open
Abstract
Common treatments for the management of diabetes have limitations due to side effects, hence the need for continuous research to discover new remedies with better therapeutic efficacy. Previously, we have reported that the combination treatment of gallic acid (20 mg/kg) and andrographolide (10 mg/kg) for 15 days demonstrated synergistic hypoglycemic activity in the streptozotocin (STZ)-induced insulin-deficient diabetes rat model. Here, we attempt to further elucidate the effect of this combination therapy at the biochemical, histological and molecular levels. Our biochemical analyses showed that the combination treatment significantly increased the serum insulin level and decreased the total cholesterol and triglyceride level of the diabetic animals. Histological examinations of H&E stained pancreas, liver, kidney and adipose tissues of combination-treated diabetic animals showed restoration to the normalcy of the tissues. Besides, the combination treatment significantly enhanced the level of glucose transporter-4 (GLUT4) protein expression in the skeletal muscle of treated diabetic animals compared to single compound treated and untreated diabetic animals. The molecular docking analysis on the interaction of gallic acid and/or andrographolide with the adiponectin receptor 1 (AdipoR1), a key component in the regulation of pancreatic insulin secretion, revealed a greater binding affinity of AdipoR1 to both compounds compared to individual compounds. Taken together, these findings suggest the combination of gallic acid and andrographolide as a potent therapy for the management of diabetes mellitus.
Collapse
|
3
|
Song SH, Kim JE, Koh EK, Sung JE, Lee HA, Yun WB, Hong JT, Hwang DY. Selenium-loaded cellulose film derived from Styela clava tunic accelerates the healing process of cutaneous wounds in streptozotocin-induced diabetic Sprague-Dawley rats. J DERMATOL TREAT 2018; 29:606-616. [PMID: 29409374 DOI: 10.1080/09546634.2018.1425357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Aims of this study is to evaluate the therapeutic effects and toxicity of Se-loaded cellulose film originated from Styela clava tunic (SeSCTF) on cutaneous wounds during diabetic conditions. MATERIALS AND METHODS Alterations in skin regeneration, angiogenesis and toxicity were examined using streptozotocine (STZ)-induced diabetic Sprague Dawley® (SD) rats with surgical skin wounds after application of SeSCTF for 12 days. RESULTS SCTF showed high tensile strength (1.64 MPa), low elongation (28.59%), low water vapor transmission rate (WVTR) and outstanding porous structure. Although SeSCTF application did not induce any significant alterations in glucose concentration or toxicity, wound morphology was rapidly recovered in the SeSCTF treated group relative to the gauze (GZ) and SCTF treated group. Moreover, recovery of re-epithelization, wound contraction and number of blood vessel was observed in SeSCTF treated groups when compared with all other groups. Furthermore, the SeSCTF treated group showed complete recovery of key protein expressions of the downstream signaling pathway of vascular endothelial growth factor (VEGF), angiopoietin-2/1 (Ang-2/1), the signaling pathway of insulin receptors and anti-oxidative status. CONCLUSIONS Overall, the results of this study suggest that SeSCTF accelerates the healing process of cutaneous wounds in STZ-induced diabetic SD rats through stimulation of angiogenesis and the glucose receptor signaling pathway.
Collapse
Affiliation(s)
- Sung Hwa Song
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute , Pusan National University , Miryang , Republic of Korea (South Korea)
| | - Ji Eun Kim
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute , Pusan National University , Miryang , Republic of Korea (South Korea)
| | - Eun Kyoung Koh
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute , Pusan National University , Miryang , Republic of Korea (South Korea)
| | - Ji Eun Sung
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute , Pusan National University , Miryang , Republic of Korea (South Korea)
| | - Hyun Ah Lee
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute , Pusan National University , Miryang , Republic of Korea (South Korea)
| | - Woo Bin Yun
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute , Pusan National University , Miryang , Republic of Korea (South Korea)
| | - Jin Tae Hong
- b College of Pharmacy , Chungbuk National University , Chungju , Republic of Korea (South Korea)
| | - Dae Youn Hwang
- a College of Natural Resources & Life Science/Life and Industry Convergence Research Institute , Pusan National University , Miryang , Republic of Korea (South Korea)
| |
Collapse
|
4
|
Kogure GS, Miranda-Furtado CL, Silva RC, Melo AS, Ferriani RA, De Sá MFS, Dos Reis RM. Resistance Exercise Impacts Lean Muscle Mass in Women with Polycystic Ovary Syndrome. Med Sci Sports Exerc 2016; 48:589-98. [PMID: 26587847 DOI: 10.1249/mss.0000000000000822] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE This study investigated the effects of progressive resistance training (PRT) on lean muscle mass (LMM) in women with or without polycystic ovary syndrome (PCOS) and its effects on metabolic factors and concentrations of related steroid hormones. DESIGN This was a nonrandomized, therapeutic, open, single-arm study. PARTICIPANTS All in all, 45 sedentary women with PCOS and 52 without (non-PCOS), 18-37 yr of age, with body mass indexes (BMI) of 18-39.9 kg·m(-2) of all races and social status, performed PRT three times a week for 4 months. Before and after PRT, the concentrations of hormones and metabolic factors and waist circumference were measured. LMM and total body fat percentage were determined using dual-energy x-ray absorptiometry. Clinical characteristics, LMM, and fasting glucose were adjusted for confounding covariables and compared using general linear mixed models. Each patient's menstrual history was taken before study enrollment and after PRT. RESULTS PRT resulted in reduced plasma testosterone and fasting glucose levels. After PRT, the androstenedione concentration increased and the sex hormone-binding globulin concentration decreased in women with PCOS. The waist circumference was reduced (P < 0.01) and the muscle mass index, lean mass (LM)/height2, increased in women with PCOS (P = 0.04). Women with PCOS showed increased muscle mass indexes of appendicular LM/height2 (P = 0.03) and LM/height2 (P < 0.01) compared with the baseline. Total LM and trunk LM were elevated in women with PCOS (P = 0.01) at the baseline and after PRT. CONCLUSION To our knowledge, this is the first report to show that resistance exercise alone can improve hyperandrogenism, reproductive function, and body composition by decreasing visceral fat and increasing LMM, but it has no metabolic impact on women with PCOS.
Collapse
Affiliation(s)
- Gislaine Satyko Kogure
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, BRAZIL
| | | | | | | | | | | | | |
Collapse
|
5
|
Soñanez-Organis JG, Godoy-Lugo JA, Hernández-Palomares MLE, Rodríguez-Martínez D, Rosas-Rodríguez JA, González-Ochoa G, Virgen-Ortiz A, Ortiz RM. HIF-1α and PPARγ during physiological cardiac hypertrophy induced by pregnancy: Transcriptional activities and effects on target genes. Gene 2016; 591:376-81. [PMID: 27312951 DOI: 10.1016/j.gene.2016.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 11/29/2022]
Abstract
Hypoxia inducible factor 1-α (HIF-1α) and peroxisome proliferator-activated receptor γ (PPARγ) are transcription factors that activate genes involved in cellular metabolism. Physiological cardiac hypertrophy induced by pregnancy initiates compensatory changes in metabolism. However, the contributions of HIF-1α and PPARγ to this physiological status and to its reversible, metabolic process (postpartum) in the heart are not well-defined. Therefore, the aim of the present study was to evaluate the transcriptional activities of HIF-1α and PPARγ in the left ventricle of rats before, during, and after pregnancy. Furthermore, the effects of pregnancy on target genes of glycolysis and glycerol-lipid biosynthesis, key regulatory enzymes, and metabolic intermediates were evaluated. The activities of HIF-1α and PPARγ increased 1.2- and 1.6-fold, respectively, during pregnancy, and decreased to basal levels during postpartum. Expressions of mRNA for glucose transport 1 (GLUT1), enzymes of glycolysis (HK2, PFKM, and GAPDH) and glycerol-lipid biosynthesis (GPAT and GPD1) increased 1.6- to 14-fold during pregnancy and returned to basal levels postpartum. The increase in GPD1 expression translated to an increase in its activity, but such was not the case for GAPDH suggesting that post-translational regulation of these proteins is differential during pregnancy. Glycolytic (glucose, lactate, and DHAP) and glycerol-lipid biosynthesis (G3P and FFA) intermediates increased with pregnancy and were maintained postpartum. The results demonstrate that pregnancy-induced, physiological cardiac hypertrophy activates the expression of genes involved in glycolytic and glycerol-lipid biosynthesis suggesting that the shift in cardiac metabolism is mediated by the activation of HIF-1α and PPARγ.
Collapse
Affiliation(s)
- José G Soñanez-Organis
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico.
| | - José A Godoy-Lugo
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - Magally L E Hernández-Palomares
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - Daniel Rodríguez-Martínez
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - Jesús A Rosas-Rodríguez
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - Guadalupe González-Ochoa
- Universidad de Sonora, Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - Adolfo Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, A.P. 199, Colima, C.P. 28045 Colima, Mexico
| | - Rudy M Ortiz
- School of Natural Sciences, University of California Merced, 5200 N Lake Road, Merced, CA 95343, USA
| |
Collapse
|
6
|
Stringer DM, Zahradka P, Taylor CG. Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes. Nutr Rev 2016; 73:140-54. [PMID: 26024537 DOI: 10.1093/nutrit/nuu012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abnormal expression and/or function of mammalian hexose transporters contribute to the hallmark hyperglycemia of diabetes. Due to different roles in glucose handling, various organ systems possess specific transporters that may be affected during the diabetic state. Diabetes has been associated with higher rates of intestinal glucose transport, paralleled by increased expression of both active and facilitative transporters and a shift in the location of transporters within the enterocyte, events that occur independent of intestinal hyperplasia and hyperglycemia. Peripheral tissues also exhibit deregulated glucose transport in the diabetic state, most notably defective translocation of transporters to the plasma membrane and reduced capacity to clear glucose from the bloodstream. Expression of renal active and facilitative glucose transporters increases as a result of diabetes, leading to elevated rates of glucose reabsorption. However, this may be a natural response designed to combat elevated blood glucose concentrations and not necessarily a direct effect of insulin deficiency. Functional foods and nutraceuticals, by modulation of glucose transporter activity, represent a potential dietary tool to aid in the management of hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Danielle M Stringer
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada.
| | - Peter Zahradka
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Castorena CM, Arias EB, Sharma N, Bogan JS, Cartee GD. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle. Am J Physiol Endocrinol Metab 2015; 308:E223-30. [PMID: 25491725 PMCID: PMC4312834 DOI: 10.1152/ajpendo.00466.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[(3)H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P < 0.05) 2-DG uptake for each of the isolated fiber types (MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb, and MHC-IIb). However, 2-DG uptake for E-Stim fibers was not significantly different among these five fiber types. GLUT4, tethering protein containing a UBX domain for GLUT4 (TUG), cytochrome c oxidase IV (COX IV), and filamin C protein levels were significantly greater (P < 0.05) in MHC-IIa vs. MHC-IIx, MHC-IIxb, or MHC-IIb fibers. TUG and COX IV in either MHC-IIax or MHC-IIx fibers exceeded values for MHC-IIxb or MHC-IIb fibers. GLUT4 levels for MHC-IIax fibers exceeded MHC-IIxb fibers. GLUT4, COX IV, filamin C, and TUG abundance in single fibers was significantly (P < 0.05) correlated with each other. Differences in GLUT4 abundance among the fiber types were not accompanied by significant differences in contraction-stimulated glucose uptake.
Collapse
Affiliation(s)
- Carlos M Castorena
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jonathan S Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
8
|
Wu C, Cheng W, Sun Y, Dang Y, Gong F, Zhu H, Li N, Li F, Zhu Z. Activating brown adipose tissue for weight loss and lowering of blood glucose levels: a microPET study using obese and diabetic model mice. PLoS One 2014; 9:e113742. [PMID: 25462854 PMCID: PMC4252055 DOI: 10.1371/journal.pone.0113742] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/29/2014] [Indexed: 11/19/2022] Open
Abstract
Purpose This study aims at using 18F-FDG microPET to monitor the brown adipose tissue (BAT) glucose metabolism in obese and diabetic mouse models under different interventions, and study the therapeutic potential of BAT activation for weight loss and lowering of blood glucose in these models. Methods Obese mice were established by a high-fat diet for eight weeks, and diabetes mellitus(DM) models were induced with Streptozocin in obese mice. 18F-FDG microPET was used to monitor BAT function during obese and DM modeling, and also after BRL37344 (a β3-adrenergic receptor agonist) or levothyroxine treatment. The BAT function was correlated with the body weight and blood glucose levels. Results Compared with the controls, the obese mice and DM mice showed successively lower 18F-FDG uptake in the interscapular BAT (P = 0.036 and <0.001, respectively). After two-week BRL37344 treatment, the BAT uptake was significantly elevated in both obese mice (P = 0.010) and DM mice (P = 0.004), accompanied with significantly decreased blood glucose levels (P = 0.023 and 0.036, respectively). The BAT uptake was negatively correlated with the blood glucose levels in both obese mice (r = −0.71, P = 0.003) and DM mice (r = −0.74, P = 0.010). BRL37344 treatment also caused significant weight loss in the obese mice (P = 0.001). Levothyroxine treatment increased the BAT uptake in the control mice (P = 0.025) and obese mice (P = 0.013), but not in the DM mice (P = 0.45). Conclusion The inhibited BAT function in obese and DM mice can be re-activated by β3-adrenergic receptor agonist or thyroid hormone, and effective BAT activation may lead to weight loss and blood glucose lowering. Activating BAT can provide a new treatment strategy for obesity and DM.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wuying Cheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yi Sun
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yonghong Dang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fengying Gong
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Naishi Li
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
9
|
Shi L, Ko ML, Huang CCY, Park SY, Hong MP, Wu C, Ko GYP. Chicken embryos as a potential new model for early onset type I diabetes. J Diabetes Res 2014; 2014:354094. [PMID: 25133191 PMCID: PMC4122024 DOI: 10.1155/2014/354094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness among the American working population. The purpose of this study is to establish a new diabetic animal model using a cone-dominant avian species to address the distorted color vision and altered cone pathway responses in prediabetic and early diabetic patients. Chicken embryos were injected with either streptozotocin (STZ), high concentration of glucose (high-glucose), or vehicle at embryonic day 11. Cataracts occurred in varying degrees in both STZ- and high glucose-induced diabetic chick embryos at E18. Streptozotocin-diabetic chicken embryos had decreased levels of blood insulin, glucose transporter 4 (Glut4), and phosphorylated protein kinase B (pAKT). In STZ-injected E20 embryos, the ERG amplitudes of both a- and b-waves were significantly decreased, the implicit time of the a-wave was delayed, while that of the b-wave was significantly increased. Photoreceptors cultured from STZ-injected E18 embryos had a significant decrease in L-type voltage-gated calcium channel (L-VGCC) currents, which was reflected in the decreased level of L-VGCCα1D subunit in the STZ-diabetic retinas. Through these independent lines of evidence, STZ-injection was able to induce pathological conditions in the chicken embryonic retina, and it is promising to use chickens as a potential new animal model for type I diabetes.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - So-Young Park
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Min-Pyo Hong
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843-4458, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
- Texas A&M Institute of Neuroscience, Texas A&M University, College Station, TX 77843-445, USA
- *Gladys Y.-P. Ko:
| |
Collapse
|
10
|
Atkinson BJ, Griesel BA, King CD, Josey MA, Olson AL. Moderate GLUT4 overexpression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed transgenic mice. Diabetes 2013; 62:2249-58. [PMID: 23474483 PMCID: PMC3712063 DOI: 10.2337/db12-1146] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The GLUT4 facilitative glucose transporter mediates insulin-dependent glucose uptake. We tested the hypothesis that moderate overexpression of human GLUT4 in mice, under the regulation of the human GLUT4 promoter, can prevent the hyperinsulinemia that results from obesity. Transgenic mice engineered to express the human GLUT4 gene and promoter (hGLUT4 TG) and their nontransgenic counterparts (NT) were fed either a control diet (CD) or a high-fat diet (HFD) for up to 10 weeks. Homeostasis model assessment of insulin resistance scores revealed that hGLUT4 TG mice fed an HFD remained highly insulin sensitive. The presence of the GLUT4 transgene did not completely prevent the metabolic adaptations to HFD. For example, HFD resulted in loss of dynamic regulation of the expression of several metabolic genes in the livers of fasted and refed NT and hGLUT4 TG mice. The hGLUT4 TG mice fed a CD showed no feeding-dependent regulation of SREBP-1c and fatty acid synthase (FAS) mRNA expression in the transition from the fasted to the fed state. Similarly, HFD altered the response of SREBP-1c and FAS mRNA expression to feeding in both strains. These changes in hepatic gene expression were accompanied by increased nuclear phospho-CREB in refed mice. Taken together, a moderate increase in expression of GLUT4 is a good target for treatment of insulin resistance.
Collapse
|
11
|
Olson AL. Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN MOLECULAR BIOLOGY 2012; 2012:856987. [PMID: 27335671 PMCID: PMC4890881 DOI: 10.5402/2012/856987] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022]
Abstract
GLUT4 has long been known to be an insulin responsive glucose transporter. Regulation of GLUT4 has been a major focus of research on the cause and prevention of type 2 diabetes. Understanding how insulin signaling alters the intracellular trafficking of GLUT4 as well as understanding the fate of glucose transported into the cell by GLUT4 will be critically important for seeking solutions to the current rise in diabetes and metabolic disease.
Collapse
Affiliation(s)
- Ann Louise Olson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, P.O. Box 26901, BMSB 964, Oklahoma City, OK 73190, USA
| |
Collapse
|
12
|
Inazuka F, Sugiyama N, Tomita M, Abe T, Shioi G, Esumi H. Muscle-specific knock-out of NUAK family SNF1-like kinase 1 (NUAK1) prevents high fat diet-induced glucose intolerance. J Biol Chem 2012; 287:16379-89. [PMID: 22418434 PMCID: PMC3351321 DOI: 10.1074/jbc.m111.302687] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
NUAK1 is a member of the AMP-activated protein kinase-related kinase family. Recent studies have shown that NUAK1 is involved in cellular senescence and motility in epithelial cells and fibroblasts. However, the physiological roles of NUAK1 are poorly understood because of embryonic lethality in NUAK1 null mice. The purpose of this study was to elucidate the roles of NUAK1 in adult tissues. We determined the tissue distribution of NUAK1 and generated muscle-specific NUAK1 knock-out (MNUAK1KO) mice. For phenotypic analysis, whole body glucose homeostasis and muscle glucose metabolism were examined. Quantitative phosphoproteome analysis of soleus muscle was performed to understand the molecular mechanisms underlying the knock-out phenotype. Nuak1 mRNA was preferentially expressed in highly oxidative tissues such as brain, heart, and soleus muscle. On a high fat diet, MNUAK1KO mice had a lower fasting blood glucose level, greater glucose tolerance, higher insulin sensitivity, and higher concentration of muscle glycogen than control mice. Phosphoproteome analysis revealed that phosphorylation of IRS1 Ser-1097 was markedly decreased in NUAK1-deficient muscle. Consistent with this, insulin signaling was enhanced in the soleus muscle of MNUAK1KO mice, as evidenced by increased phosphorylation of IRS1 Tyr-608, AKT Thr-308, and TBC1D4 Thr-649. These observations suggest that a physiological role of NUAK1 is to suppress glucose uptake through negative regulation of insulin signaling in oxidative muscle.
Collapse
Affiliation(s)
- Fumika Inazuka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Liang Y, Sheng S, Fang P, Ma Y, Li J, Shi Q, Sui Y, Shi M. Exercise-induced galanin release facilitated GLUT4 translocation in adipocytes of type 2 diabetic rats. Pharmacol Biochem Behav 2012; 100:554-9. [PMID: 22079346 DOI: 10.1016/j.pbb.2011.10.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 10/24/2011] [Accepted: 10/31/2011] [Indexed: 12/23/2022]
|
14
|
|
15
|
Duehlmeier R, Hacker A, Widdel-Bigdely A, Engelhardt WV, Sallmann HP. Insulin stimulates GLUT4 translocation in the semitendinosus muscle of Shetland ponies. Vet J 2010; 184:176-81. [DOI: 10.1016/j.tvjl.2009.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 01/23/2009] [Accepted: 01/31/2009] [Indexed: 02/07/2023]
|
16
|
Griesel BA, Weems J, Russell RA, Abel ED, Humphries K, Olson AL. Acute inhibition of fatty acid import inhibits GLUT4 transcription in adipose tissue, but not skeletal or cardiac muscle tissue, partly through liver X receptor (LXR) signaling. Diabetes 2010; 59:800-7. [PMID: 20103707 PMCID: PMC2844827 DOI: 10.2337/db09-1542] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Insulin-mediated glucose uptake is highly sensitive to the levels of the facilitative GLUT protein GLUT4. Transcription of the GLUT4 gene is repressed in states of insulin deficiency and insulin resistance and can be induced by states of enhanced energy output, such as exercise. The cellular signals that regulate GLUT4 transcription are not well understood. We hypothesized that changes in energy substrate flux regulate GLUT4 transcription. RESEARCH DESIGN AND METHODS To test this hypothesis, we used transgenic mice in which expression of the chloramphenicol acetyltransferase (CAT) gene is driven by a functional 895-bp fragment of the human GLUT4 promoter, thereby acting as a reporter for transcriptional activity. Mice were treated with a single dose of etomoxir, which inhibits the transport of long-chain fatty acids into mitochondria and increases basal, but not insulin-mediated, glucose flux. GLUT4 and transgenic CAT mRNA were measured. RESULTS Etomoxir treatment significantly reduced CAT and GLUT4 mRNA transcription in adipose tissue, but did not change transcription in heart and skeletal muscle. Downregulation of GLUT4 transcription was cell autonomous, since etomoxir treatment of 3T3-L1 adipocytes resulted in a similar downregulation of GLUT4 mRNA. GLUT4 transcriptional downregulation required the putative liver X receptor (LXR) binding site in the human GLUT4 gene promoter in adipose tissue and 3T3-L1 adipocytes. Treatment of 3T3-L1 adipocytes with the LXR agonist, TO901317, partially restored GLUT4 expression in etomoxir-treated cells. CONCLUSIONS Our data suggest that long-chain fatty acid import into mitochondria in adipose tissue may produce ligands that regulate expression of metabolic genes.
Collapse
Affiliation(s)
- Beth A. Griesel
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Juston Weems
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Robert A. Russell
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - E. Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kenneth Humphries
- Oklahoma Medical Research Foundation and the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ann Louise Olson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Corresponding author: Ann Louise Olson,
| |
Collapse
|
17
|
Chew YH, Shia YL, Lee CT, Majid FAA, Chua LS, Sarmidi MR, Aziz RA. Modeling of glucose regulation and insulin-signaling pathways. Mol Cell Endocrinol 2009; 303:13-24. [PMID: 19428987 DOI: 10.1016/j.mce.2009.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 12/22/2008] [Accepted: 01/26/2009] [Indexed: 01/31/2023]
Abstract
A model of glucose regulation system was combined with a model of insulin-signaling pathways in this study. A feedback loop was added to link the transportation of glucose into cells (by GLUT4 in the insulin-signaling pathways) and the insulin-dependent glucose uptake in the glucose regulation model using the Michaelis-Menten kinetic model. A value of K(m) for GLUT4 was estimated using Genetic Algorithm. The estimated value was found to be 25.3 mM, which was in the range of K(m) values found experimentally from in vivo and in vitro human studies. Based on the results of this study, the combined model enables us to understand the overall dynamics of glucose at the systemic level, monitor the time profile of components in the insulin-signaling pathways at the cellular level and gives a good estimate of the K(m) value of glucose transportation by GLUT4. In conclusion, metabolic modeling such as displayed in this study provides a good predictive method to study the step-by-step reactions in an organism at different levels and should be used in combination with experimental approach to increase our understanding of metabolic disorders such as type 2 diabetes.
Collapse
Affiliation(s)
- Yin Hoon Chew
- Department of Bioprocess Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
18
|
Barros RPDA, Morani A, Moriscot A, Machado UF. Insulin resistance of pregnancy involves estrogen-induced repression of muscle GLUT4. Mol Cell Endocrinol 2008; 295:24-31. [PMID: 18692545 DOI: 10.1016/j.mce.2008.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 04/23/2008] [Accepted: 07/03/2008] [Indexed: 11/28/2022]
Abstract
Pregnancy is accompanied by hyperestrogenism, however, the role of estrogens in the gestational-induced insulin resistance is unknown. Skeletal muscle plays a fundamental role in this resistance, where GLUT4 regulates glucose uptake. We investigated: (1) effects of oophorectomy and estradiol (E2) on insulin sensitivity and GLUT4 expression. E2 ( approximately 200nM) for 7 days decreased sensitivity, reducing approximately 30% GLUT4 mRNA and protein (P<0.05) and plasma membrane expression in muscle; (2) the expression of ERalpha and ERbeta in L6 myotubes, showing that both coexpress in the same nucleus; (3) effects of E2 on GLUT4 in L6, showing a time- and dose-dependent response. High concentration (100nM) for 6 days reduced approximately 25% GLUT4 mRNA and protein (P<0.05). Concluding, E2 regulates GLUT4 in muscle, and at high concentrations, such as in pregnancy, reduces GLUT4 expression and, in vivo, decreases insulin sensitivity. Thus, hyperestrogenism may be involved in the pregnancy-induced insulin resistance and/or gestational diabetes.
Collapse
Affiliation(s)
- Rodrigo Palazzo De Almeida Barros
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 São Paulo, SP 05508-900, Brazil.
| | | | | | | |
Collapse
|
19
|
Ekladous D, Mehdi MZ, Costa M, Srivastava AK, Chiasson JL, Coderre L. TISSUE- AND FIBRE-SPECIFIC MODIFICATIONS OF INSULIN-SIGNALLING MOLECULES IN CARDIAC AND SKELETAL MUSCLE OF DIABETIC RATS. Clin Exp Pharmacol Physiol 2008; 35:971-8. [DOI: 10.1111/j.1440-1681.2008.04944.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Seraphim PM, Nunes MT, Giannocco G, Machado UF. Age related obesity-induced shortening of GLUT4 mRNA poly(A) tail length in rat gastrocnemius skeletal muscle. Mol Cell Endocrinol 2007; 276:80-7. [PMID: 17709177 DOI: 10.1016/j.mce.2007.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/12/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Obese insulin resistant animals and humans have shown reduced GLUT4 gene expression. Yet, in skeletal muscle, discrepancy between mRNA and protein regulation has been frequently observed, suggesting a post-transcriptional modulation. We investigated the GLUT4 expression in adipose tissue and muscle of obese 12-month-old (12-mo) rats, comparing with lean 2-month-old (2-mo) animals. Obesity was accompanied by insulin resistance, and 65% reduction (P<0.01) in GLUT4 mRNA and protein in adipose tissue. However, in muscle, despite increased (P<0.05) mRNA content, GLUT4 protein was unchanged. RNase H and poly(A) test assays showed a reduction (P<0.01) of approximately 80 adenines in the GLUT4 mRNA poly(A) tail of muscle from 12-mo rats, recognizing that the poly(A) tail length correlates with translation efficiency. Concluding, age related obesity of 12-mo rats involves suppression of GLUT4 expression in adipose tissue; however, in muscle, GLUT4 mRNA content increases, but with a shorter poly(A) tail, thus unchanging the protein content.
Collapse
|
21
|
Sparling DP, Griesel BA, Olson AL. Hyperphosphorylation of MEF2A in primary adipocytes correlates with downregulation of human GLUT4 gene promoter activity. Am J Physiol Endocrinol Metab 2007; 292:E1149-56. [PMID: 17164432 DOI: 10.1152/ajpendo.00521.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GLUT4 promoter activity is regulated by hormonal, metabolic, and tissue-specific controls. This complicates the study of GLUT4 gene transcription, as no cell culture model adequately recapitulates these extracellular regulators. While investigating cultured primary adipocytes as a model system for GLUT4 transcription, we observed that GLUT4 mRNA was specifically and rapidly downregulated upon tissue dispersal. Downregulation of GLUT4 mRNA was mediated in part by loss of regulatory control by the trans-acting factors that control GLUT4 transcriptional activity [the myocyte enhancer factor 2 (MEF2) transcription factor family and the GLUT4 enhancer factor] and their cognate DNA binding sites in transgenic mice. The differences in GLUT4 transcription when whole adipose tissue and cell culture model systems are compared can be correlated to a posttranslational phosphorylation of the transcription factor MEF2A. The difference in the MEF2A phosphorylation state in whole tissue vs. isolated cells may provide a further basis for the development of an in vitro system that could recapitulate fully regulated GLUT4 promoter activity. Development of an in vitro system to reconstitute GLUT4 transcriptional regulation will further efforts to discern the molecular mechanisms that underlie GLUT4 expression.
Collapse
Affiliation(s)
- David P Sparling
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, PO Box 26901, Rm. 853-BMSB, Oklahoma City, OK 73190, USA
| | | | | |
Collapse
|
22
|
Duehlmeier R, Sammet K, Widdel A, von Engelhardt W, Wernery U, Kinne J, Sallmann HP. Distribution patterns of the glucose transporters GLUT4 and GLUT1 in skeletal muscles of rats (Rattus norvegicus), pigs (Sus scrofa), cows (Bos taurus), adult goats, goat kids (Capra hircus), and camels (Camelus dromedarius). Comp Biochem Physiol A Mol Integr Physiol 2007; 146:274-82. [PMID: 17158080 DOI: 10.1016/j.cbpa.2006.10.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 09/25/2006] [Accepted: 10/19/2006] [Indexed: 10/24/2022]
Abstract
Earlier studies demonstrated that forestomach herbivores are less insulin sensitive than monogastric omnivores. The present study was carried out to determine if different distribution patterns of the glucose transporters GLUT1 and GLUT4 may contribute to these different insulin sensitivities. Western blotting was used to measure GLUT1 and GLUT4 protein contents in oxidative (masseter, diaphragm) and glycolytic (longissimus lumborum, semitendinosus) skeletal muscle membranes of monogastric omnivores (rats and pigs), and of forestomach herbivores (cows, adult goats, goat kids, and camels). Muscles were characterized biochemically. Comparing red and white muscles, the isocitrate dehydrogenase (ICDH) activity was 1.5-15-times higher in oxidative muscles of all species, whereas lactate dehydrogenase (LDH) activity was 1.4-4.4-times higher in glycolytic muscles except in adult goats. GLUT4 levels were 1.5-6.3-times higher in oxidative muscles. GLUT1 levels were 2.2-8.3-times higher in glycolytic muscles in forestomach herbivores but not in monogastric animals. We conclude that GLUT1 may be the predominant glucose transporter in glycolytic muscles of ruminating animals. The GLUT1 distribution patterns were identical in adult and pre-ruminant goats, indicating that GLUT1 expression among these muscles is determined genetically. The high blood glucose levels of camels cited in literature may be due to an "NIDDM-like" impaired GLUT4 activity in skeletal muscle.
Collapse
Affiliation(s)
- R Duehlmeier
- Clinic for Pigs, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Gao X, Li B, Jiang H, Liu F, Xu D, Liu Z. Dioscorea opposita reverses dexamethasone induced insulin resistance. Fitoterapia 2006; 78:12-5. [PMID: 17084991 DOI: 10.1016/j.fitote.2006.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 09/06/2006] [Indexed: 11/17/2022]
Abstract
The effects of Dioscorea opposita (huai shan yao, HSY) on dexamethasone-induced insulin resistance were investigated in vitro and in vivo. D. opposita extract reduced significantly the blood insulin and glucose levels in dexamethasone-induced diabetic rats. In vitro, HSY significantly enhanced insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Moreover, HSY increase the mRNA expression of GLUT4 glucose transporter in 3T3-L1 adipocytes. These data suggest that D. opposita has insulin sensitivity that is associated with the regulation of GLUT4 expression.
Collapse
Affiliation(s)
- Xiaoping Gao
- Institute of Materia Medica, Di-Ao Pharmaceutical Group, Chengdu 610041, China.
| | | | | | | | | | | |
Collapse
|
24
|
Duhlmeier R, Hacker A, Widdel A, von Engelhardt W, Sallmann HP. Mechanisms of insulin-dependent glucose transport into porcine and bovine skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2005; 289:R187-97. [PMID: 15817843 DOI: 10.1152/ajpregu.00502.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Euglycemic, hyperinsulinemic clamp tests have shown that adult ruminants are less insulin-sensitive than monogastric omnivores. The present study was carried out to elucidate possible cellular mechanisms contributing to this impaired insulin sensitivity of ruminants. Western blotting was used to measure glucose transporters 1 and 4 (GLUT1, GLUT4) in oxidative (musculus masseter and diaphragm) and glycolytic (musculus longissimus dorsi and semitendinosus) skeletal muscle in the crude membranes of pigs and cows. Muscles were characterized biochemically. To determine insulin-stimulated 3-O-D-[(3)H]-methylglucose (3-O-MG) uptake and GLUT4 translocation, porcine and bovine musculus semitendinosus strips were removed by open muscle biopsy and incubated without and with 0.1 or 20 mIU insulin/ml. GLUT4 translocation was analyzed using subcellular fractionation techniques to isolate partially purified plasma membranes and cytoplasmic vesicles and using Western blotting. GLUT4 protein contents were significantly higher in oxidative than in glycolytic muscles in pigs and cows. GLUT1 protein contents were significantly higher in glycolytic than in oxidative muscles in bovines but not in porcines. The 3-O-MG uptake into musculus semitendinosus was similar in both species. Maximum insulin-induced GLUT4 translocation into musculus semitendinosus plasma membrane was significantly lower in bovines than in porcines. These results indicate that GLUT1 is the predominant glucose transporter in bovine glycolytic muscles and that a reinforced insulin-independent glucose uptake via GLUT1 may compensate for the impaired insulin-stimulated GLUT4 translocation, resulting in a similar 3-O-MG uptake in bovine and porcine musculus semitendinosus. These findings may explain at least in part the impaired in vivo insulin sensitivity of adult ruminants compared with that of omnivorous monogastric animals.
Collapse
Affiliation(s)
- Reinhard Duhlmeier
- Department of Physiological Chemistry, Foundation University of Veterinary Medicine Hannover, Germany
| | | | | | | | | |
Collapse
|
25
|
Knight JB, Eyster CA, Griesel BA, Olson AL. Regulation of the human GLUT4 gene promoter: interaction between a transcriptional activator and myocyte enhancer factor 2A. Proc Natl Acad Sci U S A 2003; 100:14725-30. [PMID: 14630949 PMCID: PMC299781 DOI: 10.1073/pnas.2432756100] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Indexed: 01/16/2023] Open
Abstract
The GLUT4 gene is subject to complex tissue-specific and metabolic regulation, with a profound impact on insulin-mediated glucose disposal. We have shown, by using transgenic mice, that the human GLUT4 promoter is regulated through the cooperative function of two distinct regulatory elements, domain 1 and the myocyte enhancer factor 2 (MEF2) domain. The MEF2 domain binds transcription factors MEF2A and MEF2D in vivo. Domain I binds a transcription factor, GLUT4 enhancer factor (GEF). In this report, we show a restricted pattern of GEF expression in human tissues, which overlaps with MEF2A only in tissues expressing high levels of GLUT4, suggesting the hypothesis that GEF and MEF2A function together to activate GLUT4 transcription. Data obtained from transiently transfected cells support this hypothesis. Neither GEF nor MEF2A alone significantly activated GLUT4 promoter activity, but increased promoter activity 4- to 5-fold when expressed together. Deletion of the GEF-binding domain (domain I) and the MEF2-binding domain prevented activation, strengthening the conclusion that promoter regulation occurs through these elements. GEF and MEF2A, isolated from nuclei of transfected cells, bound domain I and the MEF2 domain, respectively, which is consistent with activation through these regulatory elements. Finally, GEF and MEF2A coimmunoprecipitated in vivo, strongly supporting a mechanism of GLUT4 transcription activation that depends on this protein-protein interaction.
Collapse
Affiliation(s)
- John B Knight
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, P.O. Box 26901, Room 853-BMSB, Oklahoma City, OK 73190, USA
| | | | | | | |
Collapse
|
26
|
Moreno H, Serrano AL, Santalucía T, Gumá A, Cantó C, Brand NJ, Palacin M, Schiaffino S, Zorzano A. Differential regulation of the muscle-specific GLUT4 enhancer in regenerating and adult skeletal muscle. J Biol Chem 2003; 278:40557-64. [PMID: 12893821 DOI: 10.1074/jbc.m306609200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reported a novel functional co-operation among MyoD, myocyte enhancer factor-2 (MEF2), and the thyroid hormone receptor in a muscle-specific enhancer of the rat GLUT4 gene in muscle cells. Here, we demonstrate that the muscle-specific enhancer of the GLUT4 gene operates in skeletal muscle and is muscle fiber-dependent and innervation-independent. Under normal conditions, both in soleus and in extensor digitorum longus muscles, the activity of the enhancer required the integrity of the MEF2-binding site. Cancellation of the binding site of thyroid hormone receptor enhanced its activity, suggesting an inhibitory role. Muscle regeneration of the soleus and extensor digitorum longus muscles caused a marked induction of GLUT4 and stimulation of the enhancer activity, which was independent of innervation. During muscle regeneration, the enhancer activity was markedly inhibited by cancellation of the binding sites of MEF2, MyoD, or thyroid hormone receptors. Different MEF2 isoforms expressed in skeletal muscle (MEF2A, MEF2C, and MEF2D) and all members of the MyoD family had the capacity to participate in the activity of the GLUT4 enhancer as assessed by transient transfection in cultured cells. Our data indicate that the GLUT4 enhancer operates in muscle fibers and its activity contributes to the differences in GLUT4 gene expression between oxidative and glycolytic muscle fibers and to the GLUT4 up-regulation that occurs during muscle regeneration. The activity of the enhancer is maintained in adult muscle by MEF2, whereas during regeneration the operation of the enhancer depends on MEF2, myogenic transcription factors of the MyoD family, and thyroid hormone receptors.
Collapse
Affiliation(s)
- Horacio Moreno
- Parc Científic de Barcelona and Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Luiken JJFP, Arumugam Y, Bell RC, Calles-Escandon J, Tandon NN, Glatz JFC, Bonen A. Changes in fatty acid transport and transporters are related to the severity of insulin deficiency. Am J Physiol Endocrinol Metab 2002; 283:E612-21. [PMID: 12169456 DOI: 10.1152/ajpendo.00011.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the effects of streptozotocin (STZ)-induced diabetes (moderate and severe) on fatty acid transport and fatty acid transporter (FAT/CD36) and plasma membrane-bound fatty acid binding protein (FABPpm) expression, at the mRNA and protein level, as well as their plasmalemmal localization. These studies have shown that, with STZ-induced diabetes, 1) fatty acid transport across the plasma membrane is increased in heart, skeletal muscle, and adipose tissue and is reduced in liver; 2) changes in fatty acid transport are generally not associated with changes in fatty acid transporter mRNAs, except in the heart; 3) increases in fatty acid transport in heart and skeletal muscle occurred with concomitant increases in plasma membrane FAT/CD36, whereas in contrast, the increase and decrease in fatty acid transport in adipose tissue and liver, respectively, were accompanied by concomitant increments and reductions in plasma membrane FABPpm; and finally, 4) the increases in plasma membrane transporters (FAT/CD36 in heart and skeletal muscle; FABPpm in adipose tissue) were attributable to their increased expression, whereas in liver, the reduced plasma membrane FABPpm appeared to be due to its relocation within the cell in the face of slightly increased expression. Taken together, STZ-induced changes in fatty acid uptake demonstrate a complex and tissue-specific pattern, involving different fatty acid transporters in different tissues, in combination with different underlying mechanisms to alter their surface abundance.
Collapse
Affiliation(s)
- Joost J F P Luiken
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
We have developed a model of gestational diabetes in the rat to determine whether an altered metabolic intrauterine milieu is directly linked to the development of diabetes later in life. Uteroplacental insufficiency is induced in the pregnant rat on day 19 of gestation. Sham-operated animals serve as controls. Offspring are growth retarded at birth; however, they catch up by 5-7 weeks of age. At approximately 8 weeks of age, they are bred to normal males. During pregnancy, these animals develop progressive hyperglycemia and hyperinsulinemia accompanied by impaired glucose tolerance and insulin resistance. Offspring, designated as infants of a diabetic mother (IDMs), are heavier at birth and remain heavy throughout life. IDMs are insulin resistant very early in life, and glucose homeostasis is progressively impaired. Defects in insulin secretion are detectable as early as 5 weeks of age. By 26 weeks of age, IDMs are overtly diabetic. These data demonstrate that the altered metabolic milieu of the diabetic pregnancy causes permanent defects in glucose homeostasis in the offspring that lead to the development of diabetes later in life.
Collapse
Affiliation(s)
- Judd Boloker
- Division of Neonatology, Department of Pediatrics, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, Pennsylvani, USA
| | | | | |
Collapse
|
29
|
Campbell SE, Febbraio MA. Effect of the ovarian hormones on GLUT4 expression and contraction-stimulated glucose uptake. Am J Physiol Endocrinol Metab 2002; 282:E1139-46. [PMID: 11934680 DOI: 10.1152/ajpendo.00184.2001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the roles of the female sex steroids, 17beta-estradiol (E(2)) and progesterone (Prog), on glucose uptake and GLUT4 protein expression. Female Sprague-Dawley rats were either sham operated (C) or ovariectomized and treated with placebo (O), E(2) (E), Prog (P), or both hormones at physiological doses (P + E) or the same dose of Prog with a high dose of E(2) (P + HiE) via timed-release pellets inserted at the time of surgery, 15 days before metabolic testing. On the morning of day 15, animals received a 300-microCi injection (ip) of 2-deoxy-[(14)C]glucose and then either exercised on a motorized treadmill for 30 min at 0.35 m/s or remained sedentary in their cages for the same period. Basal glucose uptake was not different between the treatment groups in either the red or white quadriceps. However, glucose uptake was decreased (P < 0.05) in O, P, and P + E rats during exercise in the red quadriceps compared with C rats, whereas E and P + HiE treatment restored glucose uptake. Glycogen content in skeletal muscle followed similar trends, with no differences seen in resting animals. Postexercise red quadriceps glycogen levels were higher (P < 0.05) in the E and P + HiE rats compared with O and P. Treatment of ovariectomized rats with progesterone (P rats) decreased (P < 0.05) GLUT4 content in the red quadriceps by 21% compared with C rats. These data demonstrate that estrogen-deficient animals have a decreased ability for contraction-stimulated glucose uptake and increased glycogen use during aerobic exercise. However, changes in contraction-stimulated glucose uptake could not be explained by altered transporter protein content, since the absence of E(2) had no effect on GLUT4 protein.
Collapse
Affiliation(s)
- S E Campbell
- Department of Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
30
|
Hidaka S, Yoshimatsu H, Kondou S, Tsuruta Y, Oka K, Noguchi H, Okamoto K, Sakino H, Teshima Y, Okeda T, Sakata T. Chronic central leptin infusion restores hyperglycemia independent of food intake and insulin level in streptozotocin-induced diabetic rats. FASEB J 2002; 16:509-18. [PMID: 11919153 DOI: 10.1096/fj.01-0164com] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We examined the effects of chronic centrally administered leptin on the glucose metabolism of streptozotocin-induced diabetic (STZ-D) rats, a model for insulin-dependent diabetes mellitus. When 3 microg.rat(-1).day(-1) of leptin was infused into the third ventricle for 6 consecutive days (STZ-LEP), STZ-D rats became completely euglycemic. The effect was not seen when the same dosage was administered s.c. Centrally administered leptin did not affect peripheral insulin levels. The feeding volume of STZ-LEP rats was suppressed to the level of non-STZ-D control rats. No improvement of hyperglycemia was noted when STZ-D rats were pair-fed to match the feeding volume of STZ-LEP rats. Thus, the euglycemia of STZ-LEP rats cannot be due to the decreased feeding volume. In the STZ-D rat, glucokinase mRNA, a marker of glycolysis, is down-regulated whereas glucose-6-phosphatase mRNA, a marker of gluconeogenesis, and glucose transporter (GLUT) 2, which is implicated in the release of glucose from liver, are up-regulated. GLUT4, uncoupling protein (UCP) 1, and UCP3 were down-regulated in brown adipose tissue. These parameters returned to normal upon central infusion of leptin. GLUT4 was not down-regulated in the skeletal muscle of STZ-D rats; however, fatty acid binding protein and carnitine palmitoyltransferase I, markers for utilization and beta-oxidation of fatty acids, were up-regulated and restored when the rats were treated with leptin. The increase and subsequent decrease of fatty acid utilization suggests a decrease of glucose uptake in the skeletal muscle of STZ-D rats, which was restored upon central leptin administration. We conclude that centrally infused leptin does not control serum glucose by regulating feeding volume or elevating peripheral insulin, but by regulating hepatic glucose production, peripheral glucose uptake, and energy expenditure. The present study indicates the possibility of future development of a new class of anti-diabetic agents that act centrally and independent of insulin action.
Collapse
Affiliation(s)
- Shuji Hidaka
- Department of Internal Medicine I, School of Medicine, Oita Medical University, Oita, 879-5593 Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Daugaard JR, Richter EA. Relationship between muscle fibre composition, glucose transporter protein 4 and exercise training: possible consequences in non-insulin-dependent diabetes mellitus. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 171:267-76. [PMID: 11412139 DOI: 10.1046/j.1365-201x.2001.00829.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Skeletal muscle is composed of different fibre types, which differ in contractile as well as in metabolic properties. The myosin molecule, which exists in several different isoforms, is of major importance in determining the contractile properties of the muscle cell. The plasticity of skeletal muscle is reflected in this tissue's adaptability to changes in the functional demand. In both rats and humans, a decrease in activity level will in most cases change the muscle fibre composition towards faster myosin isoforms and an increase in activity level (such as seen with exercise training) will induce an increase in slower myosin isoforms. The glucose transporter protein 4 (GLUT4), which is the major insulin regulatable glucose transporter in mammalian skeletal muscle, is found in larger amounts in slow muscle fibres compared with fast muscle fibres. An increase in activity level will increase the GLUT4 protein expression and a decrease in activity level will in most cases decrease GLUT4. Thus, there seems to be some kind of relationship between the muscle fibre type and GLUT4. However, the main factor regulating both the GLUT4 protein expression and the muscle fibre composition seems to be the activity level of the muscle fibre. Patients suffering from non-insulin-dependent diabetes mellitus (NIDDM) are insulin resistant in their skeletal muscles but are generally normal when it comes to skeletal muscle fibre composition and the GLUT4 protein expression. There is good evidence that exercise training beneficially impacts on insulin sensitivity in healthy individuals and in patients with type II diabetes. An increase in the GLUT4 protein expression in skeletal muscle may at least partly explain this effect of training.
Collapse
Affiliation(s)
- J R Daugaard
- Copenhagen Muscle Research Centre, Department of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
32
|
Mora S, Pessin JE. The MEF2A isoform is required for striated muscle-specific expression of the insulin-responsive GLUT4 glucose transporter. J Biol Chem 2000; 275:16323-8. [PMID: 10748204 DOI: 10.1074/jbc.m910259199] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we have demonstrated that an MEF2 consensus sequence located between -473/-464 in the human GLUT4 gene was essential for both tissue-specific and hormonal/metabolic regulation of GLUT4 expression (Thai, M. V., Guruswamy, S., Cao, K. T., Pessin, J. E., and Olson, A. L. (1998) J. Biol. Chem. 273, 14285-14292). To identify the specific MEF2 isoform(s) responsible for GLUT4 expression, we studied the pattern of expression of the MEF2 isoforms in insulin-sensitive tissues. Both heart and skeletal muscle were found to express the MEF2A, MEF2C, and MEF2D isoforms but not MEF2B. However, only the MEF2A protein was selectively down-regulated in insulin-deficient diabetes. Co-immunoprecipitation with isoform-specific antibodies revealed that, in the basal state, essentially all of the MEF2A protein was presented as a MEF2A-MEF2D heterodimer without any detectable MEF2A-MEF2A homodimers or MEF2A-MEF2C and MEF2C-MEF2D heterodimers. Electrophoretic mobility shift assays revealed that nuclear extracts from diabetic animals had reduced binding to the MEF2 binding site compared with extracts from control or insulin-treated animals. Furthermore, immunodepletion of the MEF2A-MEF2D complex from control extracts abolished binding to the MEF2 element. However, addition of MEF2A to diabetic nuclear extracts fully restored binding activity to the MEF2 element. These data strongly suggest that the MEF2A-MEF2D heterodimer is selectively decreased in insulin-deficient diabetes and is responsible for hormonally regulated expression of the GLUT4 gene.
Collapse
Affiliation(s)
- S Mora
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
33
|
Affiliation(s)
- M J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
34
|
Zorzano A, Santalucia T, Palacín M, Gumà A, Camps M. Searching for ways to upregulate GLUT4 glucose transporter expression in muscle. GENERAL PHARMACOLOGY 1998; 31:705-13. [PMID: 9809466 DOI: 10.1016/s0306-3623(98)00095-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Skeletal muscle is a major glucose-utilizing tissue in the absorptive state and alterations in muscle insulin-stimulated glucose uptake lead to derangements in whole body glucose disposal. 2. Furthermore, muscle GLUT4 overexpression in transgenic animals ameliorates insulin resistance associated with obesity or diabetes, which suggests that increasing GLUT4 in muscle by pharmacological intervention may be an effective therapy in insulin-resistant states. 3. This highlights the importance of understanding the pathways that upregulate GLUT4 glucose transporter expression in muscle. 4. We review studies describing the regulation of GLUT4 and the information currently available on the mechanisms that control GLUT4 expression in muscle.
Collapse
Affiliation(s)
- A Zorzano
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain.
| | | | | | | | | |
Collapse
|
35
|
Moley KH, Chi MM, Mueckler MM. Maternal hyperglycemia alters glucose transport and utilization in mouse preimplantation embryos. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E38-47. [PMID: 9688872 DOI: 10.1152/ajpendo.1998.275.1.e38] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucose utilization was studied in preimplantation embryos from normal and diabetic mice. With use of ultramicrofluorometric enzyme assays, intraembryonic free glucose in single embryos recovered from control and streptozotocin-induced hyperglycemic mice was measured at 24, 48, 72, and 96 h after mating. Free glucose concentrations dropped significantly in diabetics at 48 and 96 h, corresponding to the two-cell and blastocyst stages (48 h: diabetic 0.23 +/- 0.09 vs. control 2.30 +/- 0.43 mmol/kg wet wt; P < 0.001; 96 h: diabetic 0.31 +/- 0.29 vs. control 5.12 +/- 0.17 mmol/kg wet wt; P < 0.001). Hexokinase activity was not significantly different in the same groups. Transport was then compared using nonradioactive 2-deoxyglucose uptake and microfluorometric enzyme assays. The 2-deoxyglucose uptake was significantly lower at both 48 and 96 h in embryos from diabetic vs. control mice (48 h diabetic, 0.037 +/- 0. 003; control, 0.091 +/- 0.021 mmol . kg wet wt-1 . 10 min-1, P < 0. 05; 96 h diabetic, 0.249 +/- 0.008; control, 0.389 +/- 0.007 mmol . kg wet wt-1 . 10 min-1, P < 0.02). When competitive quantitative reverse transcription-polymerase chain reaction was used, there was 44 and 68% reduction in the GLUT-1 mRNA at 48 h (P < 0.001) and 96 h (P < 0.05), respectively, in diabetic vs. control mice. GLUT-2 and GLUT-3 mRNA values were decreased 63 and 77%, respectively (P < 0.01, P < 0.01) at 96 h. Quantitative immunofluorescence microscopy demonstrated 49 +/- 6 and 66 +/- 4% less GLUT-1 protein at 48 and 96 h and 90 +/- 5 and 84 +/- 6% less GLUT-2 and -3 protein, respectively, at 96 h in diabetic embryos. These findings suggest that, in response to a maternal diabetic state, preimplantation mouse embryos experience a decrease in glucose utilization directly related to a decrease in glucose transport at both the mRNA and protein levels.
Collapse
Affiliation(s)
- K H Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
36
|
Balage M, Larbaud D, Debras E, Hocquette JF, Grizard J. Acute hyperinsulinemia fails to change GLUT-4 content in crude membranes from goat skeletal muscles and adipose tissue. Comp Biochem Physiol A Mol Integr Physiol 1998; 120:425-30. [PMID: 9787827 DOI: 10.1016/s1095-6433(98)10042-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effect of insulin on GLUT-4 protein level in samples of adipose tissue and skeletal muscles from goats was studied in vivo using an euglycemic hyperinsulinemic clamp. The clamp was maintained in conscious goats for 6 h in the presence of amino acids to prevent insulin-induced hypoaminoacidemia. GLUT-4 protein was assessed in crude membrane preparations from adipose tissue and four skeletal muscles (longissimus dorsi, tensor fasciae latae, anconeus and diaphragm) by Western blot analysis. No changes of GLUT-4 protein content were detected after 6 h of hyperinsulinemia in either adipose tissue or skeletal muscles from goats. These results suggest that insulin is not the prime factor involved in the short-term regulation of GLUT-4 protein transporter content in insulin-sensitive tissues from goats.
Collapse
Affiliation(s)
- M Balage
- Unité d'Etude du Métabolisme Azoté, INRA-Centre de Clermont Ferrand, Theix, Saint Genès Champanelle, France.
| | | | | | | | | |
Collapse
|
37
|
Viñals F, Ferré J, Fandos C, Santalucia T, Testar X, Palacín M, Zorzano A. Cyclic adenosine 3',5'-monophosphate regulates GLUT4 and GLUT1 glucose transporter expression and stimulates transcriptional activity of the GLUT1 promoter in muscle cells. Endocrinology 1997; 138:2521-9. [PMID: 9165044 DOI: 10.1210/endo.138.6.5217] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously reported that innervation-dependent basal contractile activity regulates in an inverse manner the expression of GLUT1 and GLUT4 glucose transporters in skeletal muscle. Based on the facts that muscle innervation decreases and muscle denervation increases cAMP levels, we investigated whether cAMP might mediate the effects of innervation/denervation on glucose transporter expression. Treatment of L6E9 myotubes with 8-bromo-cAMP, forskolin, or monobutyryl-8-bromo-cAMP led to a marked decrease in GLUT4 protein levels; 8-bromo-cAMP also diminished GLUT4 messenger RNA (mRNA), suggesting pretranslational repression. In contrast, L6E9 myoblasts and myotubes responded to 8-bromo-cAMP or forskolin by increasing the cell content of GLUT1 protein. Induction of GLUT1 protein was a consequence of the activation of different mechanisms in myoblast and myotube cells; whereas 8-bromo-cAMP treatment caused a substantial increase in GLUT1 mRNA in myoblasts, no change in GLUT1 mRNA was detected in myotubes. The increase in GLUT1 mRNA in L6E9 myoblasts induced by 8-bromo-cAMP was the result of transcriptional activation, as concluded from transfection analysis of 2.1 kilobases of the rat GLUT1 gene promoter fused to the bacterial chloramphenicol acetyltransferase gene. Furthermore, the stimulatory effect of 8-bromo-cAMP on the transcriptional activity of the GLUT1 promoter required a 33-bp sequence lying 5' upstream of the transcription start site. In all, cAMP inversely regulates GLUT4 and GLUT1 glucose transporter expression in muscle cells. Furthermore, our results suggest that down-regulation of GLUT4 expression and up-regulation of GLUT1 expression in muscle associated with denervation are partly attributable to cAMP.
Collapse
Affiliation(s)
- F Viñals
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Muñoz P, Chillarón J, Camps M, Castelló A, Furriols M, Testar X, Palacín M, Zorzano A. Evidence for posttranscriptional regulation of GLUT4 expression in muscle and adipose tissue from streptozotocin-induced diabetic and benfluorex-treated rats. Biochem Pharmacol 1996; 52:1665-73. [PMID: 8986128 DOI: 10.1016/s0006-2952(96)00506-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study we explored the expression of GLUT4 glucose carriers in muscle and adipose tissues from streptozotocin-induced diabetic and benfluorex-treated rats. In nondiabetic rats, benfluorex treatment decreased GLUT4 protein content in muscle and brown adipose tissue, with no change in GLUT4 mRNA. This effect occurred in the presence of normal circulating levels of insulin and glucose. Seventeen days after streptozotocin injection, diabetic rats showed a decreased GLUT4 protein content in adipose tissues and in both red and white skeletal muscle. Diabetic rats showed decreased GLUT4 mRNA levels in white and brown adipose tissue, whereas messenger concentrations remained unaltered in red and white fibers of skeletal muscle. The interaction of benfluorex and diabetes on GLUT4 protein expression showed a tissue-specific pattern. Benfluorex treatment to some extent prevented the decrease in GLUT4 protein in white and brown adipose tissue and in white muscle associated with diabetes. In contrast, diabetes and benfluorex caused an additive decrease in GLUT4 expression in red skeletal muscle. The effects of benfluorex on GLUT4 content in tissues from diabetic rats occurred in the absence of alterations in GLUT4 mRNA levels, suggesting a modification of translational or posttranslational steps. Benfluorex did not ameliorate the hyperglycemia of diabetic rats. Our results indicate that red and white skeletal muscle respond to diabetes and benfluorex in a heterogeneous manner, which suggests the existence of differences in the mechanisms that regulate GLUT4 expression. Furthermore, our data indicate that GLUT4 expression in muscle and adipose tissue can be regulated by modification of translational or posttranslational steps.
Collapse
Affiliation(s)
- P Muñoz
- Department de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jóhannsson E, McCullagh KJ, Han XX, Fernando PK, Jensen J, Dahl HA, Bonen A. Effect of overexpressing GLUT-1 and GLUT-4 on insulin- and contraction-stimulated glucose transport in muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:E547-55. [PMID: 8843750 DOI: 10.1152/ajpendo.1996.271.3.e547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To examine the effects of GLUT-1 on GLUT-4-dependent, insulin-stimulated, and contraction-stimulated 2-deoxy-D-glucose (2-DG) transport, we overexpressed GLUT-1 in metabolically heterogeneous skeletal muscles [red and white tibialis anterior (TA) and extensor digitorum longus (EDL)] via 7 days of chronic electrical stimulation. GLUT-1 was increased 1.6- to 16.4-fold (P < 0.05). Basal 2-DG transport was increased 1.7- to 3.0-fold (P < 0.05) and was equal to (red TA and EDL; P > 0.05) or exceeded insulin-stimulated 2-DG transport by 50% (white TA; P < 0.05) in the control muscles. GLUT-4 was concomitantly overexpressed (2.1- to 4.4-fold; P < 0.05). Insulin-stimulated 2-DG transport was increased 1.6- to 2.5-fold (P < 0.05). During muscle contractions, 2-DG transport increased 9- to 12-fold (P < 0.05) in control muscles, but this was reduced by approximately 25% (P < 0.05) in muscles overexpressing GLUT-1 and GLUT-4 (red TA and EDL). In contrast, in the experiment, white TA contraction-stimulated 2-DG transport was increased 1.7-fold (P < 0.05). Therefore, overexpression of GLUT-1, when GLUT-4 is also overexpressed, does not impair insulin-stimulated 2-DG transport, although contraction-stimulated transport may be reduced in some muscles.
Collapse
Affiliation(s)
- E Jóhannsson
- Norwegian University of Physical Education and Sport, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
40
|
Handberg A, Megeney LA, McCullagh KJ, Kayser L, Han XX, Bonen A. Reciprocal GLUT-1 and GLUT-4 expression and glucose transport in denervated muscles. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:E50-7. [PMID: 8760081 DOI: 10.1152/ajpendo.1996.271.1.e50] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated in 3-day-denervated muscles 1) the expression of GLUT-1 in perineurial sheaths (PNS) and muscle, 2) the muscle fiber-specific changes in GLUT-1 and GLUT-4, and 3) changes in basal and insulin-stimulated 3-O-methylglucose transport. GLUT-1 was increased in both the PNS (P < 0.05) and in the muscle membranes (P < 0.05). GLUT-1 and GLUT-4 concentrations were changed reciprocally, in a fiber-dependent fashion [GLUT-1: red gastrocnemius (RG), +31%; white gastrocnemius (WG), +10%; GLUT-4: RG, -53%; WG, -16%]. Basal glucose transport was increased (P < 0.05), and this increase was correlated with the oxidative nature of the muscles (r = 0.97). Insulin-stimulated glucose transport was decreased in denervated muscles (P < 0.05). This was also related to the oxidative nature of the muscles (r = -0.88). The increase in basal glucose transport was correlated with the loss of insulin-stimulated transport (r = 0.95). Thus the increase in GLUT-1 compensates for the loss of GLUT-4, resulting in a 56% regain of the reduced insulin-stimulated glucose transport.
Collapse
Affiliation(s)
- A Handberg
- Department of Medical Physiology and Anatomy, Panum Institute, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
41
|
Holloszy JO, Hansen PA. Regulation of glucose transport into skeletal muscle. Rev Physiol Biochem Pharmacol 1996; 128:99-193. [PMID: 8791721 DOI: 10.1007/3-540-61343-9_8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J O Holloszy
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
42
|
Dombrowski L, Marette A. Marked depletion of GLUT4 glucose transporters in transverse tubules of skeletal muscle from streptozotocin-induced diabetic rats. FEBS Lett 1995; 374:43-7. [PMID: 7589509 DOI: 10.1016/0014-5793(95)01071-l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The principal goal of the present study was to determine the subcellular content of GLUT4 in diabetic rat muscle, and to test the hypothesis that a reduced abundance of the transporter protein in transverse tubules is responsible for impaired glucose utilization in that tissue. GLUT4 protein levels were measured in hindlimb muscle homogenates as well as in subcellular membrane fractions enriched with either plasma membranes, transverse tubules, or GLUT4-containing intracellular membranes from control and diabetic (streptozotocin-induced) rats. GLUT4 protein contents in diabetic muscle homogenates was reduced by 30% as compared to control rats. Subcellular fractionation experiments revealed that GLUT4 contents in transverse tubules-enriched fractions was markedly decreased (by 55-60%) in skeletal muscle of diabetic animals whereas no significant reductions in GLUT4 abundance was observed in the plasma membrane fraction. Moreover, GLUT4 was markedly depleted (by 45%) in the GLUT4-enriched intracellular membrane fraction. These results indicate that GLUT4 is markedly depleted in both the intracellular pool and in the cell surface membranes in muscle of STZ-diabetic rats. Most strikingly, this study demonstrates that transverse tubules and not the plasma membrane are the main sites of cell surface GLUT4 depletion in diabetic muscle.
Collapse
Affiliation(s)
- L Dombrowski
- Department of Physiology, Laval University Hospital Research Center, Ste-Foy, Qubec, Canada
| | | |
Collapse
|
43
|
Olson AL, Pessin JE. Transcriptional regulation of the human GLUT4 gene promoter in diabetic transgenic mice. J Biol Chem 1995; 270:23491-5. [PMID: 7559512 DOI: 10.1074/jbc.270.40.23491] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We previously reported that 2400 base pairs (bp) of 5'-flanking DNA is sufficient for tissue-specific and hormonal/metabolic regulation of the human GLUT4 gene in transgenic mice (Liu, M.-L., Olson, A. L., Moye-Rowley, W. S., Buse, J. B., Bell, G. I., and Pessin, J. E. (1992) J. Biol. Chem. 267, 11673-11676). To further define the DNA sequences required for GLUT4 expression, we generated transgenic mice carrying 1975, 1639, 1154, 730, and 412 bp of the GLUT4 5'-flank (hG4) fused to the chloramphenicol acetyltransferase (CAT) reporter gene. The 1975-hG4-CAT, 1639-hG4-CAT, and 1154-hG4-CAT constructs were expressed in a tissue-specific manner identical to the endogenous murine GLUT4 mRNA. Regulation of these reporter gene constructs in insulin-deficient diabetes also paralleled the endogenous gene. In contrast, 730-hG4-CAT was expressed at high levels only in skeletal muscle and at low levels in all of the other tissues examined. Additionally, expression of 412-hG4-CAT was completely unrestricted. Neither the 730-hG4-CAT nor the 412-hG4-CAT reporter genes displayed any insulin-dependent regulation. These data demonstrate that a skeletal muscle-specific DNA element is located within 730 bp of the GLUT4 5'-flanking DNA but that 1154 bp is necessary to direct the full extent of tissue-specific and insulin-dependent regulation of the human GLUT4 gene in transgenic mice.
Collapse
Affiliation(s)
- A L Olson
- Department of Physiology and Biophysics, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
44
|
Sleeman MW, Zhou H, Rogers S, Ng KW, Best JD. Retinoic acid stimulates glucose transporter expression in L6 muscle cells. Mol Cell Endocrinol 1995; 108:161-7. [PMID: 7758830 DOI: 10.1016/0303-7207(95)03473-k] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Factors that regulate the tissue specific and developmental expression of the GLUT4 gene, whose transcribed protein is primarily responsible for mediating insulin stimulated glucose transport, are poorly defined. In this study we examined the effects of retinoic acid, a circulating factor that can promote cellular differentiation, on glucose uptake and glucose transporter expression in cultured L6 muscle cells. At the myoblast stage, treatment with 1 microM retinoic acid for 24 h increased both 1 h and 8 h insulin stimulated uptake of 2-deoxyglucose by more than twofold. A dose and time dependent effect of retinoic acid on 8 h insulin stimulated 2-deoxyglucose uptake was observed at both the myoblast and myocyte stage. Comparatively little effect from retinoic acid treatment was found on basal uptake at either stage. In myoblast cells, retinoic acid increased the content of GLUT4 mRNA in a dose and time dependent manner, an effect that was partially attenuated by insulin. In myocytes retinoic acid increased GLUT4 mRNA levels to 2.3 times basal. Nuclear run-on studies indicate that the increased GLUT4 mRNA represents enhanced transcriptional activity. The results suggest a role for retinoic acid in regulation of expression of the GLUT 4 gene in muscle cells.
Collapse
Affiliation(s)
- M W Sleeman
- University of Melbourne, Department of Medicine, St Vincent's Hospital, Australia
| | | | | | | | | |
Collapse
|
45
|
Didyk RB, Anton EE, Robinson KA, Menick DR, Buse MG. Effect of immobilization on glucose transporter expression in rat hindlimb muscles. Metabolism 1994; 43:1389-94. [PMID: 7968595 DOI: 10.1016/0026-0495(94)90033-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three days after denervation, the expression of GLUT4 mRNA and protein decreases by approximately 50% in rat hindlimb muscles, while GLUT1 mRNA increases transiently by approximately 500%. Although postreceptor insulin resistance of glucose transport develops before GLUT4 declines, the latter likely contributes to the time-dependent increased severity of the resistance. To determine whether muscle inactivity contributes to changes in glucose transporter expression, one rat hindlimb was immobilized in a plaster cast for 3 days; the unencumbered hindlimb served as control. Muscle GLUT4 mRNA decreased by 32% (P < .02) and GLUT4 protein by 40% (P < .05) after 3 days' immobilization. There was no significant change in GLUT1 mRNA or skeletal muscle alpha-actin mRNA expression or in the total RNA concentration. The data suggest that electromyogenic and/or contractile activity regulates GLUT4 expression in skeletal muscle at a pretranslational step.
Collapse
Affiliation(s)
- R B Didyk
- Department of Medicine, Medical University of South Carolina, Charleston 29425
| | | | | | | | | |
Collapse
|
46
|
Treadway JL, Hargrove DM, Nardone NA, McPherson RK, Russo JF, Milici AJ, Stukenbrok HA, Gibbs EM, Stevenson RW, Pessin JE. Enhanced peripheral glucose utilization in transgenic mice expressing the human GLUT4 gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43974-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Liu ML, Olson AL, Edgington NP, Moye-Rowley WS, Pessin JE. Myocyte enhancer factor 2 (MEF2) binding site is essential for C2C12 myotube-specific expression of the rat GLUT4/muscle-adipose facilitative glucose transporter gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46957-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Kainulainen H, Komulainen J, Joost HG, Vihko V. Dissociation of the effects of training on oxidative metabolism, glucose utilisation and GLUT4 levels in skeletal muscle of streptozotocin-diabetic rats. Pflugers Arch 1994; 427:444-9. [PMID: 7971142 DOI: 10.1007/bf00374259] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of long-term, moderate physical exercise on in vivo glucose uptake, levels of two glucose transporter proteins (GLUT1 and GLUT4) and activities of various key enzymes of energy metabolism were measured in skeletal muscle from streptozotocin-diabetic rats. Diabetes (12-16 weeks) reduced the in vivo glucose uptake (glucose metabolic index, GMI) in muscle containing mainly type I fibres by 55% but had no effect in muscles containing mainly type IIa and IIb fibres. GMI was increased in the diabetic white skeletal muscle (mainly type IIb fibres) by more than 120%. In contrast to the complex changes in GMI, GLUT4 levels were reduced in all types of skeletal muscle from diabetic rats with no change in GLUT1 levels. Exercise training had no effects on GMI or the glucose transporter levels. Streptozotocin induced diabetes significantly reduced the oxidative capacity of skeletal muscle assayed as the activities of citrate synthase, succinate dehydrogenase and cytochrome c oxidase. Training increased the activities of oxidative enzymes, with this increase being more prominent in the diabetic animals. The present data indicate that long-term streptozotocin-induced diabetes decreases oxidative metabolic capacity and GLUT4 protein levels in skeletal muscle, but that the changes of glucose transport largely depend on the fibre type composition. Moderate training fully reverses the effect of insulinopenia and hyperglycaemia on muscle oxidative metabolism. In contrast to the previous suggestions, the expression of GLUT4 is not correlated with the capacity of oxidative metabolism in skeletal muscle of streptozotocin-diabetic rats.
Collapse
Affiliation(s)
- H Kainulainen
- Department of Clinical Medicine, University of Tampere, Finland
| | | | | | | |
Collapse
|
49
|
Abstract
Facilitative glucose transport is mediated by members of the Glut protein family that belong to a much larger superfamily of 12 transmembrane segment transporters. Six members of the Glut family have been described thus far. These proteins are expressed in a tissue- and cell-specific manner and exhibit distinct kinetic and regulatory properties that reflect their specific functional roles. Glut1 is a widely expressed isoform that provides many cells with their basal glucose requirement. It also plays a special role in transporting glucose across epithelial and endothelial barrier tissues. Glut2 is a high-Km isoform expressed in hepatocytes, pancreatic beta cells, and the basolateral membranes of intestinal and renal epithelial cells. It acts as a high-capacity transport system to allow the uninhibited (non-rate-limiting) flux of glucose into or out of these cell types. Glut3 is a low-Km isoform responsible for glucose uptake into neurons. Glut4 is expressed exclusively in the insulin-sensitive tissues, fat and muscle. It is responsible for increased glucose disposal in these tissues in the postprandial state and is important in whole-body glucose homeostasis. Glut5 is a fructose transporter that is abundant in spermatozoa and the apical membrane of intestinal cells. Glut7 is the transporter present in the endoplasmic reticulum membrane that allows the flux of free glucose out of the lumen of this organelle after the action of glucose-6-phosphatase on glucose 6-phosphate. This review summarizes recent advances concerning the structure, function, and regulation of the Glut proteins.
Collapse
Affiliation(s)
- M Mueckler
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110
| |
Collapse
|
50
|
Hardin DS, Dominguez JH, Garvey WT. Muscle group-specific regulation of GLUT 4 glucose transporters in control, diabetic, and insulin-treated diabetic rats. Metabolism 1993; 42:1310-5. [PMID: 8412743 DOI: 10.1016/0026-0495(93)90130-g] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Insulin resistance in diabetic rats involves pretranslational suppression of the GLUT 4 glucose transporter in muscle. Because the capacity for insulin-mediated glucose transport varies as a function of muscle group, we hypothesized that GLUT 4 was differentially expressed and regulated by diabetes in a muscle-specific manner. We studied control (C), streptozocin (STZ)-induced diabetic (D), and insulin-treated diabetic (Tx) rats and examined the following muscles that vary in fiber composition: soleus (type I fibers), gastrocnemius (mixed type IIa > IIb), vastus lateralis and rectus abdominis (type IIb > IIa), and cardiac muscle. In C animals, these muscles exhibited significant differences in the baseline expression of GLUT 4. Relative GLUT 4 content was highest in cardiac muscle, intermediate in soleus, and significantly lower in gastrocnemius, rectus abdominis, and vastus lateralis (1.8:1.0:0.6). The impact of diabetes and insulin therapy on GLUT 4 expression also varied as a function of muscle group. After four weeks of diabetes, GLUT 4 levels were reduced by approximately 50% in cardiac muscle, soleus, and gastrocnemius. In contrast, GLUT 4 content in rectus abdominis and vastus lateralis was similar to that in control rats. Exogenous insulin treatment of diabetic rats increased GLUT 4 content in soleus, cardiac muscle, and gastrocnemius, but had no effect in either vastus lateralis or rectus abdominis. Temporal effects of diabetes and insulin treatment were also examined in different skeletal muscle. Soleus showed a significant decrease in GLUT 4 content as early as 2 days with a further decrease at 4 weeks; rectus abdominis showed little change at either time point.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D S Hardin
- Section of Endocrinology, Indianapolis Veterans Administration Medical Center, IN
| | | | | |
Collapse
|