1
|
Xu B, Anderson BM, Mountford SJ, Thompson PE, Mintern JD, Edgington-Mitchell LE. Cathepsin X deficiency alters the processing and localisation of cathepsin L and impairs cleavage of a nuclear cathepsin L substrate. Biol Chem 2024; 405:351-365. [PMID: 38410910 DOI: 10.1515/hsz-2023-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Proteases function within sophisticated networks. Altering the activity of one protease can have sweeping effects on other proteases, leading to changes in their activity, structure, specificity, localisation, stability, and expression. Using a suite of chemical tools, we investigated the impact of cathepsin X, a lysosomal cysteine protease, on the activity and expression of other cysteine proteases and their inhibitors in dendritic cells. Among all proteases examined, cathepsin X gene deletion specifically altered cathepsin L levels; pro-cathepsin L and its single chain accumulated while the two-chain form was unchanged. This effect was recapitulated by chemical inhibition of cathepsin X, suggesting a dependence on its catalytic activity. We demonstrated that accumulation of pro- and single chain cathepsin L was not due to a lack of direct cleavage by cathepsin X or altered glycosylation, secretion, or mRNA expression but may result from changes in lysosomal oxidative stress or pH. In the absence of active cathepsin X, nuclear cathepsin L and cleavage of the known nuclear cathepsin L substrate, Lamin B1, were diminished. Thus, cathepsin X activity selectively regulates cathepsin L, which has the potential to impact the degree of cathepsin L proteolysis, the nature of substrates that it cleaves, and the location of cleavage.
Collapse
Affiliation(s)
- Bangyan Xu
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Bethany M Anderson
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Simon J Mountford
- Medicinal Chemistry, 2541 Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Philip E Thompson
- Medicinal Chemistry, 2541 Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| | - Justine D Mintern
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry & Pharmacology, 2281 Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Panikulam S, Hanke A, Kroener F, Karle A, Anderka O, Villiger TK, Lebesgue N. Host cell protein networks as a novel co-elution mechanism during protein A chromatography. Biotechnol Bioeng 2024; 121:1716-1728. [PMID: 38454640 DOI: 10.1002/bit.28678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Host cell proteins (HCPs) are process-related impurities of therapeutic proteins produced in for example, Chinese hamster ovary (CHO) cells. Protein A affinity chromatography is the initial capture step to purify monoclonal antibodies or Fc-based proteins and is most effective for HCP removal. Previously proposed mechanisms that contribute to co-purification of HCPs with the therapeutic protein are either HCP-drug association or leaching from chromatin heteroaggregates. In this study, we analyzed protein A eluates of 23 Fc-based proteins by LC-MS/MS to determine their HCP content. The analysis revealed a high degree of heterogeneity in the number of HCPs identified in the different protein A eluates. Among all identified HCPs, the majority co-eluted with less than three Fc-based proteins indicating a drug-specific co-purification for most HCPs. Only ten HCPs co-purified with over 50% of the 23 Fc-based proteins. A correlation analysis of HCPs identified across multiple protein A eluates revealed their co-elution as HCP groups. Functional annotation and protein interaction analysis confirmed that some HCP groups are associated with protein-protein interaction networks. Here, we propose an additional mechanism for HCP co-elution involving protein-protein interactions within functional networks. Our findings may help to guide cell line development and to refine downstream purification strategies.
Collapse
Affiliation(s)
- Sherin Panikulam
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alexander Hanke
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Frieder Kroener
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Anette Karle
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Oliver Anderka
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Thomas K Villiger
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Nicolas Lebesgue
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
3
|
Leal Y, Valenzuela-Muñoz V, Casuso A, Benavente BP, Gallardo-Escárate C. Comparative Transcriptomics in Atlantic Salmon Head Kidney and SHK-1 Cell Line Exposed to the Sea Louse Cr-Cathepsin. Genes (Basel) 2023; 14:genes14040905. [PMID: 37107663 PMCID: PMC10138087 DOI: 10.3390/genes14040905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The development of vaccines against sea lice in salmon farming is complex, expensive, and takes several years for commercial availability. Recently, transcriptome studies in sea louse have provided valuable information for identifying relevant molecules with potential use for fish vaccines. However, the bottleneck is the in vivo testing of recombinant protein candidates, the dosage, and the polyvalent formulation strategies. This study explored a cell-based approach to prospect antigens as candidate vaccines against sea lice by comparison with immunized fish. Herein, SHK-1 cells and Atlantic salmon head kidney tissue were exposed to the antigen cathepsin identified from the sea louse Caligus rogercresseyi. The cathepsin protein was cloned and recombinantly expressed in Escherichia coli, and then SHK-1 cell lines were stimulated with 100 ng/mL cathepsin recombinant for 24 h. In addition, Atlantic salmons were vaccinated with 30 ug/mL recombinant protein, and head kidney samples were then collected 30 days post-immunization. SHK-1 cells and salmon head kidney exposed to cathepsin were analyzed by Illumina RNA sequencing. The statistical comparisons showed differences in the transcriptomic profiles between SHK-1 cells and the salmon head kidney. However, 24.15% of the differentially expressed genes were shared. Moreover, putative gene regulation through lncRNAs revealed tissue-specific transcription patterns. The top 50 up and downregulated lncRNAs were highly correlated with genes involved in immune response, iron homeostasis, pro-inflammatory cytokines, and apoptosis. Also, highly enriched pathways related to the immune system and signal transduction were shared between both tissues. These findings highlight a novel approach to evaluating candidate antigens for sea lice vaccine development, improving the antigens screening in the SHK-1 cell line model.
Collapse
Affiliation(s)
- Yeny Leal
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| | - Antonio Casuso
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| | - Bárbara P Benavente
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción 4030000, Chile
| |
Collapse
|
4
|
Aufy M, Abdelaziz RF, Hussein AM, Topcagic N, Shamroukh H, Abdel-Maksoud MA, Salem TZ, Studenik CR. Impact of Enniatin B and Beauvericin on Lysosomal Cathepsin B Secretion and Apoptosis Induction. Int J Mol Sci 2023; 24:ijms24032030. [PMID: 36768354 PMCID: PMC9916760 DOI: 10.3390/ijms24032030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Enniatin B (ENN B) and Beauvericin (BEA) are cyclohexadepsipeptides that can be isolated from Fusarium and Beauveria bassiana, respectively. Both compounds are cytotoxic and ionophoric. In the present study, the mechanism of cell death induced by these compounds was investigated. Epidermal carcinoma-derived cell line KB-3-1 cells were treated with different concentrations of these compounds. The extracellular secretion of cathepsin B increased in a concentration-dependent manner, and the lysosomal staining by lysotracker red was reduced upon the treatment with any of the compounds. However, the extracellular secretion of cathepsin L and cathepsin D were not affected. Inhibition of cathepsin B with specific inhibitor CA074 significantly reduced the cytotoxic effect of both compounds, while inhibition of cathepsin D or cathepsin L did not influence the cytotoxic activities of both compounds. In vitro labelling of lysosomal cysteine cathepsins with Ethyl (2S, 3S)-epoxysuccinate-Leu-Tyr-Acp-Lys (Biotin)-NH2 (DCG04) was not affected in case of cathepsin L upon the treatment with both compounds, while it was significantly reduced in case of cathepsin B. In conclusion, ENN B and BEA increase lysosomal Ph, which inhibits delivery of cathepsin B from Golgi to lysosomes, thereby inducing cathepsin B release in cytosol, which activates caspases and hence the apoptotic pathway.
Collapse
Affiliation(s)
- Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Ramadan F. Abdelaziz
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria
| | - Ahmed M. Hussein
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria
- Programme for Proteomics, Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Nermina Topcagic
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria
| | - Hadil Shamroukh
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria
| | - Mostafa A. Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tamer Z. Salem
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12511, Egypt
| | - Christian R. Studenik
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Shi Q, Shen Q, Liu Y, Shi Y, Huang W, Wang X, Li Z, Chai Y, Wang H, Hu X, Li N, Zhang Q, Cao X. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell 2022; 40:1207-1222.e10. [PMID: 36084651 DOI: 10.1016/j.ccell.2022.08.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
How glucose metabolism remodels pro-tumor functions of tumor-associated macrophages (TAMs) needs further investigation. Here we show that M2-like TAMs bear the highest individual capacity to take up intratumoral glucose. Their increased glucose uptake fuels hexosamine biosynthetic pathway-dependent O-GlcNAcylation to promote cancer metastasis and chemoresistance. Glucose metabolism promotes O-GlcNAcylation of the lysosome-encapsulated protease Cathepsin B at serine 210, mediated by lysosome-localized O-GlcNAc transferase (OGT), elevating mature Cathepsin B in macrophages and its secretion in the tumor microenvironment (TME). Loss of OGT in macrophages reduces O-GlcNAcylation and mature Cathepsin B in the TME and disrupts cancer metastasis and chemoresistance. Human TAMs with high OGT are positively correlated with Cathepsin B expression, and both levels predict chemotherapy response and prognosis of individuals with cancer. Our study reports the biological and potential clinical significance of glucose metabolism in tumor-promoting TAMs and reveals insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Qingzhu Shi
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Qicong Shen
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Yanfang Liu
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yang Shi
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Wenwen Huang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xi Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhiqing Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Yangyang Chai
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hao Wang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiangjia Hu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Nan Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai 200433, China; Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Kotsaridis K, Tsakiri D, Sarris PF. Understanding enemy's weapons to an effective prevention: common virulence effects across microbial phytopathogens kingdoms. Crit Rev Microbiol 2022:1-15. [PMID: 35709325 DOI: 10.1080/1040841x.2022.2083939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plant-pathogens interaction is an ongoing confrontation leading to the emergence of new diseases. The majority of the invading microorganisms inject effector proteins into the host cell, to bypass the sophisticated defense system of the host. However, the effectors could also have other specialized functions, which can disrupt various biological pathways of the host cell. Pathogens can enrich their effectors arsenal to increase infection success or expand their host range. This usually is accomplished by the horizontal gene transfer. Nowadays, the development of specialized software that can predict proteins structure, has changed the experimental designing in effectors' function research. Different effectors of distinct plant pathogens tend to fold alike and have the same function and focussed structural studies on microbial effectors can help to uncover their catalytic/functional activities, while the structural similarity can enable cataloguing the great number of pathogens' effectors. In this review, we collectively present phytopathogens' effectors with known enzymatic functions and proteins structure, originated from all the kingdoms of microbial plant pathogens. Presentation of their common domains and motifs is also included. We believe that the in-depth understanding of the enemy's weapons will help the development of new strategies to prevent newly emerging or re-emerging plant pathogens.
Collapse
Affiliation(s)
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece.,Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
Study on activation mechanism and cleavage sites of recombinant butelase-1 zymogen derived from Clitoria ternatea. Biochimie 2022; 199:12-22. [DOI: 10.1016/j.biochi.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022]
|
8
|
Reinheckel T, Tholen M. Low level lysosomal membrane permeabilization for limited release and sub-lethal functions of cathepsin proteases in the cytosol and nucleus. FEBS Open Bio 2022; 12:694-707. [PMID: 35203107 PMCID: PMC8972055 DOI: 10.1002/2211-5463.13385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
For a long time, lysosomes were purely seen as organelles in charge of garbage disposal within the cell. They destroy any cargo delivered into their lumen with a plethora of highly potent hydrolytic enzymes, including various proteases. In case of damage to their limiting membranes, the lysosomes release their soluble content with detrimental outcomes for the cell. In recent years however, this view of the lysosome changed towards acknowledging it as a platform for integration of manifold intra- and extracellular signals. Even impaired lysosomal membrane integrity is no longer considered to be a one-way street to cell death. Increasing evidence suggests that lysosomal enzymes, mainly cathepsin proteases, can be released in a spatially and temporarily restricted manner that is compatible with cellular survival. This way, cathepsins can act in the cytosol and the nucleus, where they affect important cellular processes such as cell division. Here, we review this evidence and discuss the routes and molecular mechanisms by which the cathepsins may reach their unusual destination.
Collapse
Affiliation(s)
- Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany
| | - Martina Tholen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| |
Collapse
|
9
|
Sharma A, Swetha R, Bajad NG, Ganeshpurkar A, Singh R, Kumar A, Singh SK. Cathepsin B - A Neuronal Death Mediator in Alzheimer’s Disease Leads to Neurodegeneration. Mini Rev Med Chem 2022; 22:2012-2023. [DOI: 10.2174/1389557522666220214095859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
The lysosomal cysteine protease enzyme, named Cathepsin B, mainly degrades the protein and manages its average turnover in our body. The Cathepsin B active form is mostly present inside the lysosomal part at a cellular level, providing the slightly acidic medium for its activation. Multiple findings on Cathepsin B reveal its involvement in neurons' degeneration and a possible role as a neuronal death mediator in several neurodegenerative diseases. In this review article, we highlight the participation of Cathepsin B in the etiology/progress of AD, along with various other factors. The enzyme is involved in producing neurotoxic Aβ amyloid in the AD brain by acting as the β-secretase enzyme in the regulated secretory pathways responsible for APP processing. Aβ amyloid accumulation and amyloid plaque formation lead to neuronal degeneration, one of the prominent pathological hallmarks of AD. Cathepsin B is also involved in the production of PGlu-Aβ, which is a truncated and highly neurotoxic form of Aβ. Some of the findings also revealed that Cathepsin B specific gene deletion decreases the level of PGlu-Aβ inside the brain of experimental mice. Therefore, neurotoxicity might be considered a new pathological indication of AD due to the involvement of Cathepsin B. It also damages neurons present in the CNS region by producing inflammatory responses and generating mitochondrial ROS. However, Cathepsin B inhibitors, i.e., CA-074, can prevent neuronal death in AD patients. The other natural inhibitors are also equally effective against neuronal damage with higher selectivity. Its synthetic inhibitors are specific for their target; however, they lose their selectivity in the presence of quite a few reducing agents. Therefore, a humanized monoclonal antibody is used as a selective Cathepsin B inhibitor to overcome the problem experienced. The use of Cathepsin B for the treatment of AD and other neurodegenerative diseases could be considered a rational therapeutic target.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
10
|
Tang Q, Liu M, Liu Y, Hwang RD, Zhang T, Wang J. NDST3 deacetylates α-tubulin and suppresses V-ATPase assembly and lysosomal acidification. EMBO J 2021; 40:e107204. [PMID: 34435379 PMCID: PMC8488563 DOI: 10.15252/embj.2020107204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Lysosomes are key organelles maintaining cellular homeostasis in health and disease. Here, we report the identification of N‐deacetylase and N‐sulfotransferase 3 (NDST3) as a potent regulator of lysosomal functions through an unbiased genetic screen. NDST3 constitutes a new member of the histone deacetylase (HDAC) family and catalyzes the deacetylation of α‐tubulin. Loss of NDST3 promotes assembly of the V‐ATPase holoenzyme on the lysosomal membrane and thereby increases the acidification of the organelle. NDST3 is downregulated in tissues and cells from patients carrying the C9orf72 hexanucleotide repeat expansion linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Deficiency in C9orf72 decreases the level of NDST3, and downregulation of NDST3 exacerbates the proteotoxicity of poly‐dipeptides generated from the C9orf72 hexanucleotide repeats. These results demonstrate a previously unknown regulatory mechanism through which microtubule acetylation regulates lysosomal activities and suggest that NDST3 could be targeted to modulate microtubule and lysosomal functions in relevant diseases.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Mingming Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ran-Der Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Shyam R, Ogando DG, Choi M, Liton PB, Bonanno JA. Mitochondrial ROS Induced Lysosomal Dysfunction and Autophagy Impairment in an Animal Model of Congenital Hereditary Endothelial Dystrophy. Invest Ophthalmol Vis Sci 2021; 62:15. [PMID: 34533563 PMCID: PMC8458782 DOI: 10.1167/iovs.62.12.15] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose The Slc4a11 knock out (KO) mouse model recapitulates the human disease phenotype associated with congenital hereditary endothelial dystrophy (CHED). Increased mitochondrial reactive oxygen species (ROS) in the Slc4a11 KO mouse model is a major cause of edema and endothelial cell loss. Here, we asked if autophagy was activated by ROS in the KO mice. Methods Immortalized cell lines and mouse corneal endothelia were used to measure autophagy and lysosome associated protein expressions using Protein Simple Wes immunoassay. Autophagy and lysosome functions were examined in wild type (WT) and KO cells as well as animals treated with the mitochondrial ROS quencher MitoQ. Results Even though autophagy activation was evident, autophagy flux was aberrant in Slc4a11 KO cells and corneal endothelium. Expression of lysosomal proteins and lysosomal mass were decreased along with reduced nuclear translocation of lysosomal master regulator, transcription factor EB (TFEB). MitoQ reversed aberrant lysosomal functions and TFEB nuclear localization in KO cells. MitoQ injections in KO animals reduced corneal edema and decreased the rate of endothelial cell loss. Conclusions Mitochondrial ROS disrupts TFEB signaling causing lysosomal dysfunction with impairment of autophagy in Slc4a11 KO corneal endothelium. Our study is the first to identify the presence as well as cause of lysosomal dysfunction in an animal model of CHED, and to identify a potential therapeutic approach.
Collapse
MESH Headings
- Animals
- Anion Transport Proteins/genetics
- Autophagy/physiology
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Blotting, Western
- Cathepsin L/metabolism
- Cells, Cultured
- Corneal Dystrophies, Hereditary/genetics
- Corneal Dystrophies, Hereditary/metabolism
- Corneal Dystrophies, Hereditary/pathology
- Disease Models, Animal
- Endothelium, Corneal/drug effects
- Endothelium, Corneal/metabolism
- Gene Expression Regulation
- Immunohistochemistry
- Injections, Intraperitoneal
- Lysosomes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Organophosphorus Compounds/pharmacology
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Symporters/genetics
- Transfection
- Ubiquinone/analogs & derivatives
- Ubiquinone/pharmacology
Collapse
Affiliation(s)
- Rajalekshmy Shyam
- Vision Science Program, School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Diego G. Ogando
- Vision Science Program, School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Moonjung Choi
- Vision Science Program, School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Paloma B. Liton
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States
| | - Joseph A. Bonanno
- Vision Science Program, School of Optometry, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
12
|
Oberstein TJ, Utz J, Spitzer P, Klafki HW, Wiltfang J, Lewczuk P, Kornhuber J, Maler JM. The Role of Cathepsin B in the Degradation of Aβ and in the Production of Aβ Peptides Starting With Ala2 in Cultured Astrocytes. Front Mol Neurosci 2021; 13:615740. [PMID: 33510618 PMCID: PMC7836726 DOI: 10.3389/fnmol.2020.615740] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Astrocytes may not only be involved in the clearance of Amyloid beta peptides (Aβ) in Alzheimer's disease (AD), but appear to produce N-terminally truncated Aβ (Aβn−x) independently of BACE1, which generates the N-Terminus of Aβ starting with Asp1 (Aβ1−x). A candidate protease for the generation of Aβn−x is cathepsin B (CatB), especially since CatB has also been reported to degrade Aβ, which could explain the opposite roles of astrocytes in AD. In this study, we investigated the influence of CatB inhibitors and the deletion of the gene encoding CatB (CTSB) using CRISPR/Cas9 technology on Aβ2−x and Aβ1−x levels in cell culture supernatants by one- and two-dimensional Urea-SDS-PAGE followed by immunoblot. While the cell-permeant inhibitors E64d and CA-074 Me did not significantly affect the Aβ1−x levels in supernatants of cultured chicken and human astrocytes, they did reduce the Aβ2−x levels. In the glioma-derived cell line H4, the Aβ2−x levels were likewise decreased in supernatants by treatment with the more specific, but cell-impermeant CatB-inhibitor CA-074, by CA-074 Me treatment, and by CTSB gene deletion. Additionally, a more than 2-fold increase in secreted Aβ1−x was observed under the latter two conditions. The CA-074 Me-mediated increase of Aβ1−x, but not the decrease of Aβ2−x, was influenced by concomitant treatment with the vacuolar H+-ATPase inhibitor Bafilomycin A1. This indicated that non-lysosomal CatB mediated the production of Aβ2−x in astrocytes, while the degradation of Aβ1−x seemed to be dependent on lysosomal CatB in H4 cells, but not in primary astrocytes. These findings highlight the importance of considering organelle targeting in drug development to promote Aβ degradation.
Collapse
Affiliation(s)
- Timo Jan Oberstein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Janine Utz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Philipp Spitzer
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hans Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August-University, Göttingen, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany.,Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics and Department of Biochemical Diagnostics, University Hospital of Bialystok, Bialystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Juan Manuel Maler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
13
|
Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand? Neuroscience 2020; 457:259-282. [PMID: 33359477 DOI: 10.1016/j.neuroscience.2020.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Exercise is a promising, cost-effective intervention to augment successful aging and neurorehabilitation. Decline of gray and white matter accompanies physiological aging and contributes to motor deficits in older adults. Exercise is believed to reduce atrophy within the motor system and induce neuroplasticity which, in turn, helps preserve motor function during aging and promote re-learning of motor skills, for example after stroke. To fully exploit the benefits of exercise, it is crucial to gain a greater understanding of the neurophysiological and molecular mechanisms underlying exercise-induced brain changes that prime neuroplasticity and thus contribute to postponing, slowing, and ameliorating age- and disease-related impairments in motor function. This knowledge will allow us to develop more effective, personalized exercise protocols that meet individual needs, thereby increasing the utility of exercise strategies in clinical and non-clinical settings. Here, we review findings from studies that investigated neurophysiological and molecular changes associated with acute or long-term exercise in healthy, young adults and in healthy, postmenopausal women.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
14
|
Lim CL, Or YZ, Ong Z, Chung HH, Hayashi H, Shrestha S, Chiba S, Lin F, Lin VCL. Estrogen exacerbates mammary involution through neutrophil-dependent and -independent mechanism. eLife 2020; 9:57274. [PMID: 32706336 PMCID: PMC7417171 DOI: 10.7554/elife.57274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
There is strong evidence that the pro-inflammatory microenvironment during post-partum mammary involution promotes parity-associated breast cancer. Estrogen exposure during mammary involution drives tumor growth through neutrophils’ activity. However, how estrogen and neutrophils influence mammary involution are unknown. Combined analysis of transcriptomic, protein, and immunohistochemical data in BALB/c mice showed that estrogen promotes involution by exacerbating inflammation, cell death and adipocytes repopulation. Remarkably, 88% of estrogen-regulated genes in mammary tissue were mediated through neutrophils, which were recruited through estrogen-induced CXCR2 signalling in an autocrine fashion. While neutrophils mediate estrogen-induced inflammation and adipocytes repopulation, estrogen-induced mammary cell death was via lysosome-mediated programmed cell death through upregulation of cathepsin B, Tnf and Bid in a neutrophil-independent manner. Notably, these multifaceted effects of estrogen are mostly mediated by ERα and unique to the phase of mammary involution. These findings are important for the development of intervention strategies for parity-associated breast cancer.
Collapse
Affiliation(s)
- Chew Leng Lim
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yu Zuan Or
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zoe Ong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hwa Hwa Chung
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hirohito Hayashi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Smeeta Shrestha
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Feng Lin
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Valerie Chun Ling Lin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
15
|
Nicolini C, Toepp S, Harasym D, Michalski B, Fahnestock M, Gibala MJ, Nelson AJ. No changes in corticospinal excitability, biochemical markers, and working memory after six weeks of high-intensity interval training in sedentary males. Physiol Rep 2020; 7:e14140. [PMID: 31175708 PMCID: PMC6555846 DOI: 10.14814/phy2.14140] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
A single bout of aerobic exercise modulates corticospinal excitability, intracortical circuits, and serum biochemical markers such as brain‐derived neurotrophic factor (BDNF) and insulin‐like growth factor 1 (IGF‐1). These effects have important implications for the use of exercise in neurorehabilitation. Here, we aimed to determine whether increases in cardiorespiratory fitness (CRF) induced by 18 sessions of high‐intensity interval training (HIIT) over 6 weeks were accompanied by changes in corticospinal excitability, intracortical excitatory and inhibitory circuits, serum biochemical markers and working memory (WM) capacity in sedentary, healthy, young males. We assessed motor evoked potential (MEP) recruitment curves for the first dorsal interosseous (FDI) both at rest and during tonic contraction, intracortical facilitation (ICF), and short‐interval intracortical inhibition (SICI) using transcranial magnetic stimulation (TMS). We also examined serum levels of BDNF, IGF‐1, total and precursor (pro) cathepsin B (CTSB), as well as WM capacity. Compared to pretraining, CRF was increased and ICF reduced after the HIIT intervention, but there were no changes in corticospinal excitability, SICI, BDNF, IGF‐1, total and pro‐CTSB, and WM capacity. Further, greater CRF gains were associated with larger decreases in total and pro‐CTSB and, only in Val/Val carriers, with larger increases in SICI. Our findings confirm that HIIT is efficacious in promoting CRF and show that corticospinal excitability, biochemical markers, and WM are unchanged after 18 HIIT bouts in sedentary males. Understanding how aerobic exercise modulates M1 excitability is important in order to be able to use exercise protocols as an intervention, especially in rehabilitation following brain injuries.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stephen Toepp
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Diana Harasym
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Bernadeta Michalski
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Brown R, Nath S, Lora A, Samaha G, Elgamal Z, Kaiser R, Taggart C, Weldon S, Geraghty P. Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respir Res 2020; 21:111. [PMID: 32398133 PMCID: PMC7216426 DOI: 10.1186/s12931-020-01381-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Dysregulated expression and activity of cathepsin S (CTSS), a lysosomal protease and a member of the cysteine cathepsin protease family, is linked to the pathogenesis of multiple diseases, including a number of conditions affecting the lungs. Extracellular CTSS has potent elastase activity and by processing cytokines and host defense proteins, it also plays a role in the regulation of inflammation. CTSS has also been linked to G-coupled protein receptor activation and possesses an important intracellular role in major histocompatibility complex class II antigen presentation. Modulated CTSS activity is also associated with pulmonary disease comorbidities, such as cancer, cardiovascular disease, and diabetes. CTSS is expressed in a wide variety of immune cells and is biologically active at neutral pH. Herein, we review the significance of CTSS signaling in pulmonary diseases and associated comorbidities. We also discuss CTSS as a plausible therapeutic target and describe recent and current clinical trials examining CTSS inhibition as a means for treatment.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sridesh Nath
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Alnardo Lora
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ghassan Samaha
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ziyad Elgamal
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ryan Kaiser
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Clifford Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
| |
Collapse
|
17
|
Hook V, Yoon M, Mosier C, Ito G, Podvin S, Head BP, Rissman R, O'Donoghue AJ, Hook G. Cathepsin B in neurodegeneration of Alzheimer's disease, traumatic brain injury, and related brain disorders. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140428. [PMID: 32305689 DOI: 10.1016/j.bbapap.2020.140428] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
Investigations of Alzheimer's disease (AD), traumatic brain injury (TBI), and related brain disorders have provided extensive evidence for involvement of cathepsin B, a lysosomal cysteine protease, in mediating the behavioral deficits and neuropathology of these neurodegenerative diseases. This review integrates findings of cathepsin B regulation in clinical biomarker studies, animal model genetic and inhibitor evaluations, structural studies, and lysosomal cell biological mechanisms in AD, TBI, and related brain disorders. The results together indicate the role of cathepsin B in the behavioral deficits and neuropathology of these disorders. Lysosomal leakage occurs in AD and TBI, and related neurodegeneration, which leads to the hypothesis that cathepsin B is redistributed from the lysosome to the cytosol where it initiates cell death and inflammation processes associated with neurodegeneration. These results together implicate cathepsin B as a major contributor to these neuropathological changes and behavioral deficits. These findings support the investigation of cathepsin B as a potential drug target for therapeutic discovery and treatment of AD, TBI, and TBI-related brain disorders.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, United States of America; Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, United States of America.
| | - Michael Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, United States of America
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Gen Ito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Brian P Head
- VA San Diego Healthcare System, La Jolla, CA, United States of America; Department of Anesthesia, University of California San Diego, La Jolla, CA, United States of America
| | - Robert Rissman
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, United States of America; VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Gregory Hook
- American Life Sciences Pharmaceuticals, Inc., La Jolla, CA, United States of America
| |
Collapse
|
18
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Paterson C, Lee VMY, Brasch HD, van Schaijik B, Marsh R, Tan ST, Itinteang T. Expression of Cathepsins B, D, and G by the Embryonic Stem Cell-Like Population within Human Keloid Tissues and Keloid-Derived Primary Cell Lines. Plast Reconstr Surg 2019; 144:1338-1349. [PMID: 31764649 DOI: 10.1097/prs.0000000000006275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The authors have previously shown that an embryonic stem cell-like population within keloid-associated lymphoid tissues in keloid lesions expresses components of the renin-angiotensin system that may be dysregulated. The authors hypothesized that cathepsins B, D, and G are present within the embryonic stem cell-like population in keloid lesions and contribute to bypass loops of the renin-angiotensin system. METHODS 3,3'-Diaminobenzidine immunohistochemical staining for cathepsins B, D, and G was performed on formalin-fixed paraffin-embedded sections in keloid tissue samples of 11 patients. Immunofluorescence immunohistochemical staining was performed on three of these keloid tissue samples, by co-staining with CD34, tryptase, and OCT4. Western blotting, reverse transcription quantitative polymerase chain reaction, and enzyme activity assays were performed on five keloid tissue samples and four keloid-derived primary cell lines to investigate protein and mRNA expression, and functional activity, respectively. RESULTS 3,3'-Diaminobenzidine immunohistochemical staining demonstrated expression of cathepsins B, D, and G in all 15 keloid tissue samples. Immunofluorescence immunohistochemical staining showed localization of cathepsins B and D to the endothelium of microvessels within the keloid-associated lymphoid tissues and localization of cathepsin G to the tryptase-positive perivascular cells. Western blotting confirmed semiquantitative levels of cathepsins B and D in keloid tissue samples and keloid-derived primary cell lines. Reverse transcription quantitative polymerase chain reaction showed quantitative transcriptional activation of cathepsins B and D in keloid tissue samples and keloid-derived primary cell lines and cathepsin G in keloid tissue samples. Enzyme activity assays demonstrated functional activity of cathepsins B and D. CONCLUSION Cathepsins B, D, and G are expressed by the embryonic stem cell-like population within the keloid-associated lymphoid tissues of keloid lesions and may act to bypass the renin-angiotensin system, suggesting a potential therapeutic target using renin-angiotensin system modulators and cathepsin inhibitors.
Collapse
Affiliation(s)
- Claudia Paterson
- From the Gillies McIndoe Research Institute; the Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital; and the University of Auckland
| | - Valerie M Y Lee
- From the Gillies McIndoe Research Institute; the Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital; and the University of Auckland
| | - Helen D Brasch
- From the Gillies McIndoe Research Institute; the Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital; and the University of Auckland
| | - Bede van Schaijik
- From the Gillies McIndoe Research Institute; the Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital; and the University of Auckland
| | - Reginald Marsh
- From the Gillies McIndoe Research Institute; the Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital; and the University of Auckland
| | - Swee T Tan
- From the Gillies McIndoe Research Institute; the Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital; and the University of Auckland
| | - Tinte Itinteang
- From the Gillies McIndoe Research Institute; the Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital; and the University of Auckland
| |
Collapse
|
20
|
Llorente P, Kristen H, Sastre I, Toledano-Zaragoza A, Aldudo J, Recuero M, Bullido MJ. A Free Radical-Generating System Regulates Amyloid Oligomers: Involvement of Cathepsin B. J Alzheimers Dis 2019; 66:1397-1408. [PMID: 30400084 DOI: 10.3233/jad-170159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amyloid-β (Aβ), a major component of senile plaques, is generated via the proteolysis of amyloid-β protein precursor (AβPP). This cleavage also produces AβPP fragment-derived oligomers which can be highly neurotoxic. AβPP metabolism/processing is affected by many factors, one of which is oxidative stress (OS). Associated with aging, OS is an important risk factor for Alzheimer's disease. In addition, the protein degradation systems, especially those involving cathepsins, are impaired in aging brains. Moreover, cathepsin B (CTSB) is a cysteine protease with potentially specific roles in AβPP proteolysis (β-secretase activity) and Aβ clearance (Aβ degradative activity). The present work examines the effect of OS and the involvement of CTSB in amyloid oligomer formation. The xanthine/xanthine oxidase (X-XOD) free radical generating system induced the partial inhibition of CTSB activity, which was accompanied by an increase in large amyloid oligomers. These were located throughout the cytosol and in endo-lysosomal vesicles. Cells treated with the CTSB inhibitor CA-074Me also showed increased amyloid oligomer levels, whereas those subjected to OS in the presence of the inhibitor showed no such increase. However, CTSB inhibition clearly modulated the AβPP metabolism/processing induced by X-XOD, as revealed by the increase in intracellular AβPP and secreted α-secretase-cleaved soluble AβPP. The present results suggest that CTSB participates in the changes of amyloid oligomer induced by mild OS.
Collapse
Affiliation(s)
- Patricia Llorente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Henrike Kristen
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Isabel Sastre
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigacion Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| | - Ana Toledano-Zaragoza
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Aldudo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigacion Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| | - María Recuero
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigacion Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| | - María J Bullido
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto de Investigacion Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| |
Collapse
|
21
|
Soond SM, Kozhevnikova MV, Frolova AS, Savvateeva LV, Plotnikov EY, Townsend PA, Han YP, Zamyatnin AA. Lost or Forgotten: The nuclear cathepsin protein isoforms in cancer. Cancer Lett 2019; 462:43-50. [PMID: 31381961 DOI: 10.1016/j.canlet.2019.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
While research into the role of cathepsins has been progressing at an exponential pace over the years, research into their respective isoform proteins has been less frenetic. In view of the functional and biological potential of such protein isoforms in model systems for cancer during their initial discovery, much later they have offered a new direction in the field of cathepsin basic and applied research. Consequently, the analysis of such isoforms has laid strong foundations in revealing other important regulatory aspects of the cathepsin proteins in general. In this review article, we address these key aspects of cathepsin isoform proteins, with particular emphasis on how they have shaped what is now known in the context of nuclear cathepsin localization and what potential these hold as nuclear-based therapeutic targets in cancer.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation.
| | - Maria V Kozhevnikova
- Hospital Therapy Department № 1, Sechenov First Moscow State Medical University , 6-1 Bolshaya Pirogovskaya str, Moscow, 119991, Russian Federation.
| | - Anastasia S Frolova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation.
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| | - Paul A Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre; and the NIHR Manchester Biomedical Research Centre, Manchester, UK.
| | - Yuan-Ping Han
- College of Life Sciences Sichuan University, Chengdu, Sichuan, PO 6100064, People's Republic of China.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| |
Collapse
|
22
|
Koeller CM, Bangs JD. Processing and targeting of cathepsin L (TbCatL) to the lysosome in
Trypanosoma brucei. Cell Microbiol 2019; 21:e12980. [DOI: 10.1111/cmi.12980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Carolina M. Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences University at Buffalo (SUNY) Buffalo New York USA
| | - James D. Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences University at Buffalo (SUNY) Buffalo New York USA
| |
Collapse
|
23
|
Liu J, Ma'ayeh S, Peirasmaki D, Lundström-Stadelmann B, Hellman L, Svärd SG. Secreted Giardia intestinalis cysteine proteases disrupt intestinal epithelial cell junctional complexes and degrade chemokines. Virulence 2018; 9:879-894. [PMID: 29726306 PMCID: PMC5955458 DOI: 10.1080/21505594.2018.1451284] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Giardiasis is a common diarrheal disease caused by the protozoan parasite Giardia intestinalis. Cysteine proteases (CPs) are acknowledged as virulence factors in Giardia but their specific role in the molecular pathogenesis of disease is not known. Herein, we aimed to characterize the three main secreted CPs (CP14019, CP16160 and CP16779), which were identified by mass spectrometry in the medium during interaction with intestinal epithelial cells (IECs) in vitro. First, the CPs were epitope-tagged and localized to the endoplasmic reticulum and cytoplasmic vesicle-like structures. Second, we showed that recombinant CPs, expressed in Pichia pastoris, are more active in acidic environment (pH 5.5-6) and we determined the kinetic parameters using fluorogenic substrates. Third, excretory-secretory proteins (ESPs) from Giardia trophozoites affect the localization of apical junctional complex (AJC) proteins and recombinant CPs cleave or re-localize the AJC proteins (claudin-1 and -4, occludin, JAM-1, β-catenin and E-cadherin) of IECs. Finally, we showed that the ESPs and recombinant CPs can degrade several chemokines, including CXCL1, CXCL2, CXCL3, IL-8, CCL2, and CCL20, which are up-regulated in IECs during Giardia-host cell interactions. This is the first study that characterizes the role of specific CPs secreted from Giardia and our results collectively indicate their roles in the disruption of the intestinal epithelial barrier and modulating immune responses during Giardia infections.
Collapse
Affiliation(s)
- Jingyi Liu
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Showgy Ma'ayeh
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Dimitra Peirasmaki
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | | | - Lars Hellman
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Staffan G Svärd
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| |
Collapse
|
24
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Abstract
Cathepsin H is a member of the papain superfamily of lysosomal cysteine proteases. It is the only known aminopeptidase in the family and is reported to be involved in cancer and other major diseases. Like many other proteases, it is synthesized as an inactive proenzyme. Although the crystal structure of mature porcine cathepsin H revealed the binding of the mini-chain and provided structural basis for the aminopeptidase activity, detailed structural and functional information on the inhibition and activation of procathepsin H has been elusive. Here we present the crystal structures of human procathepsin H at 2.00 Å and 1.66 Å resolution. These structures allow us to explore in detail the molecular basis for the inhibition of the mature domain by the prodomain. Comparison with cathepsin H structure reveals how mini-chain reorients upon activation. We further demonstrate that procathepsin H is not auto-activated but can be trans-activated by cathepsin L.
Collapse
|
26
|
Abstract
Cathepsins are lysosomal peptidases belonging to the papain family, and based on their catalytic sites, these enzymes can be divided into serine, cysteine and aspartic proteases. The studies conducted to date have identified, 15 types of cathepsins that are widely distributed in intracellular and extracellular spaces. These proteases participate in various pathological activities, including the occurrence and development of human cancers. Several recent studies suggest that cathepsins, particularly cathepsins B, D, E and L, contribute to digestive tumorigenesis. Cathepsins were found to promote the development of most digestive cancers except liver cancer, in which they might have the opposite effects. Due to their important roles in digestive tumors, cathepsins might be therapeutic targets for the treatment of digestive cancers.
Collapse
|
27
|
Tan K, Brasch HD, van Schaijik B, Armstrong JR, Marsh RW, Davis PF, Tan ST, Itinteang T. Expression and Localization of Cathepsins B, D, and G in Dupuytren's Disease. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1686. [PMID: 29616179 PMCID: PMC5865920 DOI: 10.1097/gox.0000000000001686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/05/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND The pathogenesis of Dupuytren's disease (DD) remains unclear. An embryonic stem cell (ESC)-like population in the endothelium of the microvessels around tissues that expresses components of the renin-angiotensin system (RAS) has been reported. This study investigated if this primitive population expresses cathepsins B, D, and G, that contribute to RAS bypass loops. METHODS 3,3-Diaminobenzidine immunohistochemical (IHC) staining for cathepsins B, D, and G was performed on sections of formalin-fixed paraffin-embedded DD cords (n = 10) and nodules (n = 10). Immunofluorescence IHC staining was utilized to demonstrate co-expression of these cathepsins with ESC markers. Protein and gene expression of these cathepsins was investigated in snap-frozen DD cords (n = 3) and nodules (n = 3) by Western blotting and NanoString analysis, respectively. Enzymatic activity of these cathepsins was investigated by enzymatic activity assays. RESULTS 3,3-Diaminobenzidine IHC staining demonstrated expression of cathepsins B, D, and G in DD cords and nodules. Gene expression of cathepsins B, D, and G was confirmed by NanoString analysis. Western blotting confirmed expression of cathepsins B and D, but not cathepsin G. Immunofluorescent IHC staining demonstrated high abundance of cathepsins B and D on the OCT4+/angiotensin converting enzyme+ endothelium and the smooth muscle layer of the microvessels. Cathepsin G was localized to trypase+ cells within the stroma in DD cords and nodules with limited expression on the microvessels. Enzyme activity assays demonstrated functional activity of cathepsins B and D. CONCLUSIONS Cathepsins B, D, and G were expressed in the DD tissues, with cathepsins B and D localized to the primitive population in the endothelium of the microvessels, whereas cathepsin G was localized to phenotypic mast cells, suggesting the presence of bypass loops for the RAS.
Collapse
Affiliation(s)
- Kirin Tan
- From the Gillies McIndoe Research Institute, Wellington, New Zealand; Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand; and University of Auckland, Auckland, New Zealand
| | - Helen D. Brasch
- From the Gillies McIndoe Research Institute, Wellington, New Zealand; Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand; and University of Auckland, Auckland, New Zealand
| | - Bede van Schaijik
- From the Gillies McIndoe Research Institute, Wellington, New Zealand; Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand; and University of Auckland, Auckland, New Zealand
| | - James R. Armstrong
- From the Gillies McIndoe Research Institute, Wellington, New Zealand; Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand; and University of Auckland, Auckland, New Zealand
| | - Reginald W. Marsh
- From the Gillies McIndoe Research Institute, Wellington, New Zealand; Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand; and University of Auckland, Auckland, New Zealand
| | - Paul F. Davis
- From the Gillies McIndoe Research Institute, Wellington, New Zealand; Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand; and University of Auckland, Auckland, New Zealand
| | - Swee T. Tan
- From the Gillies McIndoe Research Institute, Wellington, New Zealand; Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand; and University of Auckland, Auckland, New Zealand
| | - Tinte Itinteang
- From the Gillies McIndoe Research Institute, Wellington, New Zealand; Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand; and University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Featherston T, Marsh RW, van Schaijik B, Brasch HD, Tan ST, Itinteang T. Expression and Localization of Cathepsins B, D, and G in Two Cancer Stem Cell Subpopulations in Moderately Differentiated Oral Tongue Squamous Cell Carcinoma. Front Med (Lausanne) 2017; 4:100. [PMID: 28775982 PMCID: PMC5517773 DOI: 10.3389/fmed.2017.00100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
Aim We have previously demonstrated the putative presence of two cancer stem cell (CSC) subpopulations within moderately differentiated oral tongue squamous cell carcinoma (MDOTSCC), which express components of the renin–angiotensin system (RAS). In this study, we investigated the expression and localization of cathepsins B, D, and G in relation to these CSC subpopulations within MDOTSCC. Methods 3,3-Diaminobenzidine (DAB) and immunofluorescent (IF) immunohistochemical (IHC) staining was performed on MDOTSCC samples to determine the expression and localization of cathepsins B, D, and G in relation to the CSC subpopulations. NanoString mRNA analysis and colorimetric in situ hybridization (CISH) were used to study their transcripts expression. Enzyme activity assays were performed to determine the activity of these cathepsins in MDOTSCC. Results IHC staining demonstrated expression of cathepsins B, D, and G in MDOTSCC. Cathepsins B and D were localized to CSCs within the tumor nests, while cathepsin B was localized to the CSCs within the peri-tumoral stroma, and cathepsin G was localized to the tryptase+ phenotypic mast cells within the peri-tumoral stroma. NanoString and CISH mRNA analyses confirmed transcription activation of cathepsins B, D, and G. Enzyme activity assays confirmed active cathepsins B and D, but not cathepsin G. Conclusion The presence of cathepsins B and D on the CSCs and cathspsin G on the phenotypic mast cells suggest the presence of bypass loops for the RAS which may be a potential novel therapeutic target for MDOTSCC.
Collapse
Affiliation(s)
| | - Reginald Walter Marsh
- Gillies McIndoe Research Institute, Wellington, New Zealand.,University of Auckland, Auckland, New Zealand
| | | | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|
29
|
Messenger SW, Jones EK, Holthaus CL, Thomas DDH, Cooley MM, Byrne JA, Mareninova OA, Gukovskaya AS, Groblewski GE. Acute acinar pancreatitis blocks vesicle-associated membrane protein 8 (VAMP8)-dependent secretion, resulting in intracellular trypsin accumulation. J Biol Chem 2017; 292:7828-7839. [PMID: 28242757 DOI: 10.1074/jbc.m117.781815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 11/06/2022] Open
Abstract
Zymogen secretory granules in pancreatic acinar cells express two vesicle-associated membrane proteins (VAMP), VAMP2 and -8, each controlling 50% of stimulated secretion. Analysis of secretion kinetics identified a first phase (0-2 min) mediated by VAMP2 and second (2-10 min) and third phases (10-30 min) mediated by VAMP8. Induction of acinar pancreatitis by supramaximal cholecystokinin (CCK-8) stimulation inhibits VAMP8-mediated mid- and late-phase but not VAMP2-mediated early-phase secretion. Elevation of cAMP during supramaximal CCK-8 mitigates third-phase secretory inhibition and acinar damage caused by the accumulation of prematurely activated trypsin. VAMP8-/- acini are resistant to secretory inhibition by supramaximal CCK-8, and despite a 4.5-fold increase in total cellular trypsinogen levels, are fully protected from intracellular trypsin accumulation and acinar damage. VAMP8-mediated secretion is dependent on expression of the early endosomal proteins Rab5, D52, and EEA1. Supramaximal CCK-8 (60 min) caused a 60% reduction in the expression of D52 followed by Rab5 and EEA1 in isolated acini and in in vivo The loss of D52 occurred as a consequence of its entry into autophagic vacuoles and was blocked by lysosomal cathepsin B and L inhibition. Accordingly, adenoviral overexpression of Rab5 or D52 enhanced secretion in response to supramaximal CCK-8 and prevented accumulation of activated trypsin. These data support that acute inhibition of VAMP8-mediated secretion during pancreatitis triggers intracellular trypsin accumulation and loss of the early endosomal compartment. Maintaining anterograde endosomal trafficking during pancreatitis maintains VAMP8-dependent secretion, thereby preventing accumulation of activated trypsin.
Collapse
Affiliation(s)
- Scott W Messenger
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Elaina K Jones
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Conner L Holthaus
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana D H Thomas
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Michelle M Cooley
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Jennifer A Byrne
- Molecular Oncology Laboratory, Children's Cancer Research Unit, The Children's Hospital at Westmead, New South Wales 2145, Australia, and
| | - Olga A Mareninova
- Department of Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, California 90073
| | - Anna S Gukovskaya
- Department of Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, California 90073
| | - Guy E Groblewski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706,
| |
Collapse
|
30
|
Luziga C, Nga BTT, Mbassa G, Yamamoto Y. Cathepsin L coexists with Cytotoxic T-lymphocyte Antigen-2 alpha in distinct regions of the mouse brain. Acta Histochem 2016; 118:704-710. [PMID: 27586811 DOI: 10.1016/j.acthis.2016.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 11/30/2022]
Abstract
Cathepsins B and L are two prominent members of cystein proteases with broad substrate specificity and are known to be involved in the process of intra- and extra-cellular protein degradation and turnover. The propeptide region of cathepsin L is identical to Cytotoxic T-lymphocyte antigen-2α (CTLA-2α) discovered in mouse activated T-cells and mast cells. CTLA-2α exhibits selective inhibitory activities against papain and cathepsin L. We previously demonstrated the distribution pattern of the CTLA-2α protein in mouse brain by immunohistochemistry, describing that it is preferentially localized within nerve fibre bundles than neuronal cell bodies. In the present study we report colocalization of cathepsin L and CTLA-2α by double labeling immunofluorescence analysis in the mouse brain. In the telencephalon, immunoreactivity was identified in cerebral cortex and subcortical structures, hippocampus and amygdala. Within the diencephalon intense colocalization was detected in stria medullaris of thalamus, mammillothalamic tract, medial habenular nucleus and choroid plexus. Colocalization signals in the mesencephalon were strong in the hypothalamus within supramammillary nucleus and lateroanterior hypothalamic nucleus while in the cerebellum was in the deep white matter, granule cell layer and Purkinje neurons but moderately in stellate, and basket cells of cerebellar cortex. The distribution pattern indicates that the fine equilibrium between synthesis and secretion of cathespin L and CTLA-2α is part of the brain processes to maintain normal growth and development. The functional implication of cathespin L coexistence with CTLA-2α in relation to learning, memory and disease mechanisms is discussed.
Collapse
Affiliation(s)
- Claudius Luziga
- Department of Veterinary Anatomy, Sokoine University of Agriculture, Morogoro, Tanzania.
| | - Bui Thi To Nga
- Department of Veterinary Pathology, Vietnam National University of Agriculture, Viet Nam
| | - Gabriel Mbassa
- Department of Veterinary Anatomy, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Yoshimi Yamamoto
- Laboratory of Biochemistry and Radiation Biology, Department of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
31
|
Sendler M, Maertin S, John D, Persike M, Weiss FU, Krüger B, Wartmann T, Wagh P, Halangk W, Schaschke N, Mayerle J, Lerch MM. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis. J Biol Chem 2016; 291:14717-31. [PMID: 27226576 DOI: 10.1074/jbc.m116.718999] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific.
Collapse
Affiliation(s)
- Matthias Sendler
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Sandrina Maertin
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Daniel John
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Maria Persike
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - F Ulrich Weiss
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Burkhard Krüger
- the Division of Medical Biology, University of Rostock, 18057 Rostock, Germany
| | - Thomas Wartmann
- the Division of Experimental Surgery, Department of Surgery, Otto von Guericke University, 39120 Magdeburg, Germany, and
| | - Preshit Wagh
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Walter Halangk
- the Division of Experimental Surgery, Department of Surgery, Otto von Guericke University, 39120 Magdeburg, Germany, and
| | | | - Julia Mayerle
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Markus M Lerch
- From the Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany,
| |
Collapse
|
32
|
Verma S, Dixit R, Pandey KC. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets. Front Pharmacol 2016; 7:107. [PMID: 27199750 PMCID: PMC4842899 DOI: 10.3389/fphar.2016.00107] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/08/2016] [Indexed: 02/05/2023] Open
Abstract
Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.
Collapse
Affiliation(s)
- Sonia Verma
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research New Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, National Institute of Malaria Research, Indian Council of Medical Research New Delhi, India
| | - Kailash C Pandey
- Department of Biochemistry, National Institute for Research in Environmental Health, Indian Council of Medical Research Bhopal, India
| |
Collapse
|
33
|
Niemer M, Mehofer U, Verdianz M, Porodko A, Schähs P, Kracher D, Lenarcic B, Novinec M, Mach L. Nicotiana benthamiana cathepsin B displays distinct enzymatic features which differ from its human relative and aleurain-like protease. Biochimie 2016; 122:119-25. [PMID: 26166069 DOI: 10.1016/j.biochi.2015.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 11/23/2022]
Abstract
The tobacco-related plant species Nicotiana benthamiana has recently emerged as a versatile expression platform for the rapid generation of recombinant biopharmaceuticals, but product yield and quality frequently suffer from unintended proteolysis. Previous studies have highlighted that recombinant protein fragmentation in plants involves papain-like cysteine proteinases (PLCPs). For this reason, we have now characterized two major N. benthamiana PLCPs in detail: aleurain-like protease (NbALP) and cathepsin B (NbCathB). As typical for PLCPs, the precursor of NbCathB readily undergoes autocatalytic activation when incubated at low pH. On the contrary, maturation of NbALP requires the presence of a cathepsin L-like PLCP as processing enzyme. While the catalytic features of NbALP closely resemble those of its mammalian homologue cathepsin H, NbCathB displays remarkable differences to human cathepsin B. In particular, NbCathB appears to be a far less efficient peptidyldipeptidase (removing C-terminal dipeptides) than its human counterpart, suggesting that it functions primarily as an endopeptidase. Importantly, NbCathB was far more efficient than NbALP in processing the human anti-HIV-1 antibody 2F5 into fragments observed during its production in N. benthamiana. This suggests that targeted down-regulation of NbCathB could improve the performance of this plant-based expression platform.
Collapse
Affiliation(s)
- Melanie Niemer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ulrich Mehofer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Maria Verdianz
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Porodko
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Philipp Schähs
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Kracher
- Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Brigita Lenarcic
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Marko Novinec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
34
|
Hamon Y, Legowska M, Hervé V, Dallet-Choisy S, Marchand-Adam S, Vanderlynden L, Demonte M, Williams R, Scott CJ, Si-Tahar M, Heuzé-Vourc'h N, Lalmanach G, Jenne DE, Lesner A, Gauthier F, Korkmaz B. Neutrophilic Cathepsin C Is Maturated by a Multistep Proteolytic Process and Secreted by Activated Cells during Inflammatory Lung Diseases. J Biol Chem 2016; 291:8486-99. [PMID: 26884336 DOI: 10.1074/jbc.m115.707109] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/06/2022] Open
Abstract
The cysteine protease cathepsin C (CatC) activates granule-associated proinflammatory serine proteases in hematopoietic precursor cells. Its early inhibition in the bone marrow is regarded as a new therapeutic strategy for treating proteolysis-driven chronic inflammatory diseases, but its complete inhibition is elusive in vivo Controlling the activity of CatC may be achieved by directly inhibiting its activity with a specific inhibitor or/and by preventing its maturation. We have investigated immunochemically and kinetically the occurrence of CatC and its proform in human hematopoietic precursor cells and in differentiated mature immune cells in lung secretions. The maturation of proCatC obeys a multistep mechanism that can be entirely managed by CatS in neutrophilic precursor cells. CatS inhibition by a cell-permeable inhibitor abrogated the release of the heavy and light chains from proCatC and blocked ∼80% of CatC activity. Under these conditions the activity of neutrophil serine proteases, however, was not abolished in precursor cell cultures. In patients with neutrophilic lung inflammation, mature CatC is found in large amounts in sputa. It is secreted by activated neutrophils as confirmed through lipopolysaccharide administration in a nonhuman primate model. CatS inhibitors currently in clinical trials are expected to decrease the activity of neutrophilic CatC without affecting those of elastase-like serine proteases.
Collapse
Affiliation(s)
- Yveline Hamon
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France, Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich and Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Monika Legowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Virginie Hervé
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Sandrine Dallet-Choisy
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Sylvain Marchand-Adam
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Lise Vanderlynden
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Michèle Demonte
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Rich Williams
- Queen's University Belfast, Lisburn Road, Belfast, BT9 7BL, United Kingdom, and
| | - Christopher J Scott
- Queen's University Belfast, Lisburn Road, Belfast, BT9 7BL, United Kingdom, and
| | - Mustapha Si-Tahar
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Nathalie Heuzé-Vourc'h
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Gilles Lalmanach
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich and Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Francis Gauthier
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France
| | - Brice Korkmaz
- From the INSERM U-1100, "Centre d'Etude des Pathologies Respiratoires" and Université François Rabelais, 37032, Tours, France,
| |
Collapse
|
35
|
Circu ML, Dykes SS, Carroll J, Kelly K, Galiano F, Greer A, Cardelli J, El-Osta H. A Novel High Content Imaging-Based Screen Identifies the Anti-Helminthic Niclosamide as an Inhibitor of Lysosome Anterograde Trafficking and Prostate Cancer Cell Invasion. PLoS One 2016; 11:e0146931. [PMID: 26784896 PMCID: PMC4718621 DOI: 10.1371/journal.pone.0146931] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/23/2015] [Indexed: 01/22/2023] Open
Abstract
Lysosome trafficking plays a significant role in tumor invasion, a key event for the development of metastasis. Previous studies from our laboratory have demonstrated that the anterograde (outward) movement of lysosomes to the cell surface in response to certain tumor microenvironment stimulus, such as hepatocyte growth factor (HGF) or acidic extracellular pH (pHe), increases cathepsin B secretion and tumor cell invasion. Anterograde lysosome trafficking depends on sodium-proton exchanger activity and can be reversed by blocking these ion pumps with Troglitazone or EIPA. Since these drugs cannot be advanced into the clinic due to toxicity, we have designed a high-content assay to discover drugs that block peripheral lysosome trafficking with the goal of identifying novel drugs that inhibit tumor cell invasion. An automated high-content imaging system (Cellomics) was used to measure the position of lysosomes relative to the nucleus. Among a total of 2210 repurposed and natural product drugs screened, 18 "hits" were identified. One of the compounds identified as an anterograde lysosome trafficking inhibitor was niclosamide, a marketed human anti-helminthic drug. Further studies revealed that niclosamide blocked acidic pHe, HGF, and epidermal growth factor (EGF)-induced anterograde lysosome redistribution, protease secretion, motility, and invasion of DU145 castrate resistant prostate cancer cells at clinically relevant concentrations. In an effort to identify the mechanism by which niclosamide prevented anterograde lysosome movement, we found that this drug exhibited no significant effect on the level of ATP, microtubules or actin filaments, and had minimal effect on the PI3K and MAPK pathways. Niclosamide collapsed intralysosomal pH without disruption of the lysosome membrane, while bafilomycin, an agent that impairs lysosome acidification, was also found to induce JLA in our model. Taken together, these data suggest that niclosamide promotes juxtanuclear lysosome aggregation (JLA) via modulation of pathways involved in lysosome acidification. In conclusion, we have designed a validated reproducible high-content assay to screen for drugs that inhibit lysosome trafficking and reduce tumor invasion and we summarize the action of one of these drugs.
Collapse
Affiliation(s)
- Magdalena L. Circu
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Samantha S. Dykes
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Jennifer Carroll
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Kinsey Kelly
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Floyd Galiano
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Adam Greer
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - James Cardelli
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Hazem El-Osta
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
36
|
Messenger SW, Thomas DD, Cooley MM, Jones EK, Falkowski MA, August BK, Fernandez LA, Gorelick FS, Groblewski GE. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells. Cell Mol Gastroenterol Hepatol 2015; 1:695-709. [PMID: 26618189 PMCID: PMC4657148 DOI: 10.1016/j.jcmgh.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. METHODS Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. RESULTS PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. CONCLUSIONS These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.
Collapse
Affiliation(s)
- Scott W. Messenger
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Diana D.H. Thomas
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Michelle M. Cooley
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Elaina K. Jones
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | | | - Benjamin K. August
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | | | - Fred S. Gorelick
- Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut,Department of Cell Biology, School of Medicine, Yale University, New Haven, Connecticut,Veterans Administration Connecticut Healthcare, West Haven, Connecticut
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin,Correspondence Address correspondence to: Guy E. Groblewski, PhD, University of Wisconsin–Madison, Department of Nutritional Sciences, 1415 Linden Drive, Madison, Wisconsin 53706. fax: (608) 262-5860.University of Wisconsin–MadisonDepartment of Nutritional Sciences1415 Linden DriveMadisonWisconsin 53706
| |
Collapse
|
37
|
Hook G, Jacobsen JS, Grabstein K, Kindy M, Hook V. Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate. Front Neurol 2015; 6:178. [PMID: 26388830 PMCID: PMC4557097 DOI: 10.3389/fneur.2015.00178] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022] Open
Abstract
There is currently no therapeutic drug treatment for traumatic brain injury (TBI) despite decades of experimental clinical trials. This may be because the mechanistic pathways for improving TBI outcomes have yet to be identified and exploited. As such, there remains a need to seek out new molecular targets and their drug candidates to find new treatments for TBI. This review presents supporting evidence for cathepsin B, a cysteine protease, as a potentially important drug target for TBI. Cathepsin B expression is greatly up-regulated in TBI animal models, as well as in trauma patients. Importantly, knockout of the cathepsin B gene in TBI mice results in substantial improvements of TBI-caused deficits in behavior, pathology, and biomarkers, as well as improvements in related injury models. During the process of TBI-induced injury, cathepsin B likely escapes the lysosome, its normal subcellular location, into the cytoplasm or extracellular matrix (ECM) where the unleashed proteolytic power causes destruction via necrotic, apoptotic, autophagic, and activated glia-induced cell death, together with ECM breakdown and inflammation. Significantly, chemical inhibitors of cathepsin B are effective for improving deficits in TBI and related injuries including ischemia, cerebral bleeding, cerebral aneurysm, edema, pain, infection, rheumatoid arthritis, epilepsy, Huntington's disease, multiple sclerosis, and Alzheimer's disease. The inhibitor E64d is unique among cathepsin B inhibitors in being the only compound to have demonstrated oral efficacy in a TBI model and prior safe use in man and as such it is an excellent tool compound for preclinical testing and clinical compound development. These data support the conclusion that drug development of cathepsin B inhibitors for TBI treatment should be accelerated.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, Inc. , San Diego, CA , USA
| | | | - Kenneth Grabstein
- Department of Chemical Engineering, University of Washington , Seattle, WA , USA
| | - Mark Kindy
- Department of Neurosciences, Medical University of South Carolina , Charleston, SC , USA ; Ralph H. Johnson Veterans Administration Medical Center , Charleston, SC , USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, CA , USA ; Department of Neurosciences, Department of Pharmacology, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
38
|
Tamura A, Yui N. β-Cyclodextrin-threaded biocleavable polyrotaxanes ameliorate impaired autophagic flux in Niemann-Pick type C disease. J Biol Chem 2015; 290:9442-54. [PMID: 25713067 DOI: 10.1074/jbc.m115.636803] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 12/19/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is characterized by the lysosomal accumulation of cholesterols and impaired autophagic flux due to the inhibited fusion of autophagosomes to lysosomes. We have recently developed β-cyclodextrin (β-CD)-threaded biocleavable polyrotaxanes (PRXs), which can release threaded β-CDs in response to intracellular environments as a therapeutic for NPC disease. The biocleavable PRXs exhibited effective cholesterol reduction ability and negligible toxic effect compared with hydroxypropyl-β-CD (HP-β-CD). In this study, we investigated the effect of biocleavable PRX and HP-β-CD on the impaired autophagy in NPC disease. The NPC patient-derived fibroblasts (NPC1 fibroblasts) showed an increase in the number of LC3-positive puncta compared with normal fibroblasts, even in the basal conditions; the HP-β-CD treatment markedly increased the number of LC3-positive puncta and the levels of p62 in NPC1 fibroblasts, indicating that autophagic flux was further perturbed. In sharp contrast, the biocleavable PRX reduced the number of LC3-positive puncta and the levels of p62 in NPC1 fibroblasts through an mTOR-independent mechanism. The mRFP-GFP-LC3 reporter gene expression experiments revealed that the biocleavable PRX facilitated the formation of autolysosomes to allow for autophagic protein degradation. Therefore, the β-CD-threaded biocleavable PRXs may be promising therapeutics for ameliorating not only cholesterol accumulation but also autophagy impairment in NPC disease.
Collapse
Affiliation(s)
- Atsushi Tamura
- From the Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- From the Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| |
Collapse
|
39
|
Jílková A, Horn M, Řezáčová P, Marešová L, Fajtová P, Brynda J, Vondrášek J, McKerrow JH, Caffrey CR, Mareš M. Activation route of the Schistosoma mansoni cathepsin B1 drug target: structural map with a glycosaminoglycan switch. Structure 2014; 22:1786-1798. [PMID: 25456815 DOI: 10.1016/j.str.2014.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 01/11/2023]
Abstract
Cathepsin B1 (SmCB1) is a digestive protease of the parasitic blood fluke Schistosoma mansoni and a drug target for the treatment of schistosomiasis, a disease that afflicts over 200 million people. SmCB1 is synthesized as an inactive zymogen in which the N-terminal propeptide blocks the active site. We investigated the activation of the zymogen by which the propeptide is proteolytically removed and its regulation by sulfated polysaccharides (SPs). We determined crystal structures of three molecular forms of SmCB1 along the activation pathway: the zymogen, an activation intermediate with a partially cleaved propeptide, and the mature enzyme. We demonstrate that SPs are essential for the autocatalytic activation of SmCB1, as they interact with a specific heparin-binding domain in the propeptide. An alternative activation route is mediated by an S. mansoni asparaginyl endopeptidase (legumain) which is downregulated by SPs, indicating that SPs act as a molecular switch between both activation mechanisms.
Collapse
Affiliation(s)
- Adéla Jílková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic; Department of Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Lucie Marešová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Pavla Fajtová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic; Department of Structural Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic
| | - James H McKerrow
- Department of Pathology, Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Conor R Caffrey
- Department of Pathology, Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, Czech Republic.
| |
Collapse
|
40
|
Xiao H, Bryksa BC, Bhaumik P, Gustchina A, Kiso Y, Yao SQ, Wlodawer A, Yada RY. The zymogen of plasmepsin V from Plasmodium falciparum is enzymatically active. Mol Biochem Parasitol 2014; 197:56-63. [PMID: 25447707 PMCID: PMC6310130 DOI: 10.1016/j.molbiopara.2014.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
Plasmepsin V, a membrane-bound aspartic protease present in Plasmodium falciparum, is involved in the export of malaria parasite effector proteins into host erythrocytes and therefore is a potential target for antimalarial drug development. The present study reports the bacterial recombinant expression and initial characterization of zymogenic and mature plasmepsin V. A 484-residue truncated form of proplasmepsin (Glu37-Asn521) was fused to a fragment of thioredoxin and expressed as inclusion bodies. Refolding conditions were optimized and zymogen was processed into a mature form via cleavage at the Asn80-Ala81 peptide bond. Mature plasmepsin V exhibited a pH optimum of 5.5-7.0 with Km and kcat of 4.6 μM and 0.24s(-1), respectively, at pH 6.0 using the substrate DABCYL-LNKRLLHETQ-E(EDANS). Furthermore, the prosegment of proplasmepsin V was shown to be nonessential for refolding and inhibition. Unexpectedly, unprocessed proplasmepsin V was enzymatically active with slightly reduced substrate affinity (∼ 2-fold), and similar pH optimum as well as turnover compared to the mature form. Both zymogenic and mature plasmepsin V were partially inhibited by pepstatin A as well as several KNI aspartic protease inhibitors while certain metals strongly inhibited activity. Overall, the present study provides the first report on the nonessentiality of the prosegment for plasmepsin V folding and activity, and therefore, subsequent characterization of its structure-function relationships of both zymogen and mature forms in the development of novel inhibitors with potential antimalarial activities is warranted.
Collapse
Affiliation(s)
- Huogen Xiao
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G2W1
| | - Brian C Bryksa
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G2W1
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yoshiaki Kiso
- Laboratory of Peptide Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore 117543, Singapore
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Rickey Y Yada
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G2W1; Faculty of Land and Food Systems, University of British Columbia 248-2357 Main Mall Vancouver, BC V6T 1Z4.
| |
Collapse
|
41
|
Kowalewski-Nimmerfall E, Schähs P, Maresch D, Rendic D, Krämer H, Mach L. Drosophila melanogaster cellular repressor of E1A-stimulated genes is a lysosomal protein essential for fly development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2900-12. [PMID: 25173815 PMCID: PMC4331662 DOI: 10.1016/j.bbamcr.2014.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023]
Abstract
Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be substantially reduced by RNAi-mediated silencing of cathepsin L. In contrast to mammalian cells, lysosomal delivery of dCREG does not depend on its carbohydrate moiety. Furthermore, depletion of the putative D. melanogaster lysosomal sorting receptor lysosomal enzyme receptor protein did not compromise cellular retention of dCREG. We also investigated the developmental consequences of dCREG ablation in whole D. melanogaster flies. Ubiquitous depletion of dCREG proved lethal at the late pupal stage once a knock-down efficiency of > 95% was achieved. These results demonstrate that dCREG is essential for proper completion of fly development. The lysosomal localization of CREG is evolutionarily conserved. Lysosomal delivery of CREG is mediated by different mechanisms in mammals and flies. Cathepsin L is the main protease responsible for CREG processing and turnover. CREG deficiency causes developmental lethality in D. melanogaster.
Collapse
Affiliation(s)
- Elisabeth Kowalewski-Nimmerfall
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Philipp Schähs
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Dubravko Rendic
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Helmut Krämer
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9111, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
42
|
Niemer M, Mehofer U, Torres Acosta JA, Verdianz M, Henkel T, Loos A, Strasser R, Maresch D, Rademacher T, Steinkellner H, Mach L. The human anti-HIV antibodies 2F5, 2G12, and PG9 differ in their susceptibility to proteolytic degradation: down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms. Biotechnol J 2014; 9:493-500. [PMID: 24478053 PMCID: PMC4162989 DOI: 10.1002/biot.201300207] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/20/2013] [Accepted: 01/27/2014] [Indexed: 12/20/2022]
Abstract
The tobacco-related species Nicotiana benthamiana has recently emerged as a promising host for the manufacturing of protein therapeutics. However, the production of recombinant proteins in N. benthamiana is frequently hampered by undesired proteolysis. Here, we show that the expression of the human anti-HIV antibodies 2F5, 2G12, and PG9 in N. benthamiana leaves leads to the accumulation of discrete heavy chain-derived degradation products of 30-40 kDa. Incubation of purified 2F5 with N. benthamiana intercellular fluid resulted in rapid conversion into the 40-kDa fragment, whereas 2G12 proved largely resistant to degradation. Such a differential susceptibility to proteolytic attack was also observed when these two antibodies were exposed to various types of proteinases in vitro. While serine and cysteine proteinases are both capable of generating the 40-kDa 2F5 fragment, the 30-kDa polypeptide is most readily obtained by treatment with the latter class of enzymes. The principal cleavage sites reside within the antigen-binding domain, the VH -CH 1 linker segment and the hinge region of the antibodies. Collectively, these results indicate that down-regulation of endogenous serine and cysteine proteinase activities could be used to improve the performance of plant-based expression platforms destined for the production of biopharmaceuticals.
Collapse
Affiliation(s)
- Melanie Niemer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Ulrich Mehofer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Juan Antonio Torres Acosta
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Maria Verdianz
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Theresa Henkel
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Andreas Loos
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life SciencesVienna, Austria
| | - Thomas Rademacher
- Institute of Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| |
Collapse
|
43
|
Rosenkilde AL, Dionisio G, Holm PB, Brinch-Pedersen H. Production of barley endoprotease B2 in Pichia pastoris and its proteolytic activity against native and recombinant hordeins. PHYTOCHEMISTRY 2014; 97:11-19. [PMID: 24268446 DOI: 10.1016/j.phytochem.2013.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/20/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Barley (Hordeum vulgare L.) cysteine proteases are of fundamental biological importance during germination but may also have a large potential as commercial enzyme. Barley cysteine endoprotease B2 (HvEPB2) was expressed in Pichia pastoris from a pPICZαA based construct encoding a HvEPB2 C-terminal truncated version (HvEPB2ΔC) and a proteolytic resistant His6 tag. Maximum yield was obtained after 4 days of induction. Recombinant HvEPB2ΔC (r-HvEPB2ΔC) was purified using a single step of Ni(2+)-affinity chromatography. Purified protein was evaluated by SDS-PAGE, Western blotting and activity assays. A purification yield of 4.26 mg r-HvEPB2ΔC per L supernatant was obtained. r-HvEPB2ΔC follows first order kinetics (Km=12.37 μM) for the substrate Z-Phe-Arg-pNA and the activity was significantly inhibited by the cysteine protease specific inhibitors E64 and leupeptin. The temperature optimum for r-HvEPB2ΔC was 60°C, thermal stability T50 value was 44°C and the pH optimum was 4.5. r-HvEPB2ΔC was incubated with native purified barley seed storage proteins for up to 48 h. After 12h, r-HvEPB2ΔC efficiently reduced the C and D hordeins almost completely, as evaluated by SDS-PAGE. The intensities of the B and γ hordein bands decreased continuously over the 48 h. No degradation occurred in the presence of E64. Recombinant hordeins (B1, B3 and γ1) were expressed in Escherichia coli. After 2h of incubation with r-HvEPB2ΔC, an almost complete degradation of γ1 and partial digests of hordein B1 and B3 were observed.
Collapse
Affiliation(s)
- Anne Lind Rosenkilde
- Aarhus University, Faculty of Science and Technology, Dept. of Molecular Biology and Genetics, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark
| | - Giuseppe Dionisio
- Aarhus University, Faculty of Science and Technology, Dept. of Molecular Biology and Genetics, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark
| | - Preben B Holm
- Aarhus University, Faculty of Science and Technology, Dept. of Molecular Biology and Genetics, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark
| | - Henrik Brinch-Pedersen
- Aarhus University, Faculty of Science and Technology, Dept. of Molecular Biology and Genetics, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark.
| |
Collapse
|
44
|
Mei ML, Ito L, Cao Y, Li QL, Chu CH, Lo ECM. The inhibitory effects of silver diamine fluorides on cysteine cathepsins. J Dent 2013; 42:329-35. [PMID: 24316241 DOI: 10.1016/j.jdent.2013.11.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022] Open
Abstract
AIM The expression of cysteine cathepsins in human carious dentine suggests that this enzyme contributes to the collagen degradation in caries progress. This study investigated whether silver diamine fluoride (SDF) inhibited the activity of cysteine cathepsins. METHODS Three commercial SDF solutions with concentrations at 38%, 30% and 12% were studied. Two fluoride solutions with the same fluoride ion (F(-)) concentrations as the 38% and 12% SDF solutions, and 2 silver solutions with the same silver ion (Ag(+)) concentrations as the 38% and 12% SDF solutions were prepared. Five samples of each experimental solution were used to study their inhibitory effect on two cathepsins (B and K) using cathepsin assay kits. Positive control contained assay buffer and cathepsins dilution was used to calculate the percentage inhibition (difference between the mean readings of the test solution and control solution divided by that of the control group). RESULTS The percentage inhibition of 38%, 30% and 12% SDF on cathepsin B were 92.0%, 91.5% and 90.3%, respectively (p<0.001); on cathepsin K were 80.6%, 78.5% and 77.9%, respectively (p<0.001). Ag(+) exhibited the inhibitory effect against both cathepsin B and K with or without the presence of F(-) (p<0.01). The solutions containing Ag(+) have significantly higher inhibitory effect than the solutions containing F(-) only (p<0.01). CONCLUSION According to this study, SDF solution at all 3 tested concentrations significantly inhibited the activity of cathepsin B and K.
Collapse
Affiliation(s)
- May L Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - L Ito
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Y Cao
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region; College of Stomatology, Anhui Medical University, Hefei, PR China
| | - Q L Li
- College of Stomatology, Anhui Medical University, Hefei, PR China
| | - C H Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Edward C M Lo
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
45
|
Pazopanib and sunitinib trigger autophagic and non-autophagic death of bladder tumour cells. Br J Cancer 2013; 109:1040-50. [PMID: 23887605 PMCID: PMC3749583 DOI: 10.1038/bjc.2013.420] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/18/2013] [Accepted: 07/03/2013] [Indexed: 12/21/2022] Open
Abstract
Background: Tyrosine kinase inhibitors (TKI) such as sunitinib and pazopanib display their efficacy in a variety of solid tumours. However, their use in therapy is limited by the lack of evidence about the ability to induce cell death in cancer cells. Our aim was to evaluate cytotoxic effects induced by sunitinib and pazopanib in 5637 and J82 bladder cancer cell lines. Methods: Cell viability was tested by MTT assay. Autophagy was evaluated by western blot using anti-LC3 and anti-p62 antibodies, acridine orange staining and FACS analysis. Oxygen radical generation and necrosis were determined by FACS analysis using DCFDA and PI staining. Cathepsin B activation was evaluated by western blot and fluorogenic Z-Arg-Arg-AMC peptide. Finally, gene expression was performed using RT–PCR Profiler array. Results: We found that sunitinib treatment for 24 h triggers incomplete autophagy, impairs cathepsin B activation and stimulates a lysosomal-dependent necrosis. By contrast, treatment for 48 h with pazopanib induces cathepsin B activation and autophagic cell death, markedly reversed by CA074-Me and 3-MA, cathepsin B and autophagic inhibitors, respectively. Finally, pazopanib upregulates the α-glucosidase and downregulates the TP73 mRNA expression. Conclusion: Our results showing distinct cell death mechanisms activated by different TKIs, provide the biological basis for novel molecularly targeted approaches.
Collapse
|
46
|
Porter K, Lin Y, Liton PB. Cathepsin B is up-regulated and mediates extracellular matrix degradation in trabecular meshwork cells following phagocytic challenge. PLoS One 2013; 8:e68668. [PMID: 23844232 PMCID: PMC3700899 DOI: 10.1371/journal.pone.0068668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/01/2013] [Indexed: 12/24/2022] Open
Abstract
Cells in the trabecular meshwork (TM), a tissue responsible for draining aqueous humor out of the eye, are known to be highly phagocytic. Phagocytic activity in TM cells is thought to play an important role in outflow pathway physiology. However, the molecular mechanisms triggered by phagocytosis in TM cells are unknown. Here we investigated the effects of chronic phagocytic stress on lysosomal function using different phagocytic ligands (E. coli, carboxylated beads, collagen I-coated beads, and pigment). Lysotracker red co-localization and electron micrographs showed the maturation of E. coli- and collagen I-coated beads-containing phagosomes into phagolysosomes. Maturation of phagosomes into phagolysosomes was not observed with carboxylated beads or pigment particles. In addition, phagocytosis of E. coli and collagen I-coated beads led to increased lysosomal mass, and the specific up-regulation and activity of cathepsin B (CTSB). Higher levels of membrane-bound and secreted CTSB were also detected. Moreover, in vivo zymography showed the intralysosomal degradation of ECM components associated with active CTSB, as well as an overall increased gelatinolytic activity in phagocytically challenged TM cells. This increased gelatinolytic activity with phagocytosis was partially blocked with an intracellular CTSB inhibitor. Altogether, these results suggest a potential role of phagocytosis in outflow pathway tissue homeostasis through the up-regulation and/or proteolytic activation of extracellular matrix remodeling genes.
Collapse
Affiliation(s)
- Kristine Porter
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Yizhi Lin
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
| | - Paloma B. Liton
- Department of Ophthalmology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
47
|
Autoactivation of prolegumain is accelerated by glycosaminoglycans. Biochimie 2013; 95:772-81. [DOI: 10.1016/j.biochi.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/07/2012] [Indexed: 02/02/2023]
|
48
|
Retrovirus entry by endocytosis and cathepsin proteases. Adv Virol 2012; 2012:640894. [PMID: 23304142 PMCID: PMC3523128 DOI: 10.1155/2012/640894] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/14/2012] [Accepted: 11/06/2012] [Indexed: 12/04/2022] Open
Abstract
Retroviruses include infectious agents inducing severe diseases in humans and animals. In addition, retroviruses are widely used as tools to transfer genes of interest to target cells. Understanding the entry mechanism of retroviruses contributes to developments of novel therapeutic approaches against retrovirus-induced diseases and efficient exploitation of retroviral vectors. Entry of enveloped viruses into host cell cytoplasm is achieved by fusion between the viral envelope and host cell membranes at either the cell surface or intracellular vesicles. Many animal retroviruses enter host cells through endosomes and require endosome acidification. Ecotropic murine leukemia virus entry requires cathepsin proteases activated by the endosome acidification. CD4-dependent human immunodeficiency virus (HIV) infection is thought to occur via endosomes, but endosome acidification is not necessary for the entry whereas entry of CD4-independent HIVs, which are thought to be prototypes of CD4-dependent viruses, is low pH dependent. There are several controversial results on the retroviral entry pathways. Because endocytosis and endosome acidification are complicatedly controlled by cellular mechanisms, the retrovirus entry pathways may be different in different cell lines.
Collapse
|
49
|
Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent Mater 2012; 29:116-35. [PMID: 22901826 DOI: 10.1016/j.dental.2012.08.004] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/04/2012] [Accepted: 08/05/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. METHODS Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. RESULTS The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. SIGNIFICANCE Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future.
Collapse
|
50
|
Marconi G, Albertini E, Mari A, Palazzo P, Porceddu A, Raggi L, Bolis L, Lancioni H, Palomba A, Lucentini L, Lanfaloni L, Marcucci F, Falcinelli M, Panara F. In planta expression of a mature Der p 1 allergen isolated from an Italian strain of Dermatophagoides pteronyssinus. Transgenic Res 2012; 21:523-35. [PMID: 21904913 DOI: 10.1007/s11248-011-9551-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/25/2011] [Indexed: 10/17/2022]
Abstract
European (Dermatophagoides pteronyssinus) and American (Dermatophagoides farinae) house dust mite species are considered the most common causes of asthma and allergic symptoms worldwide. Der p 1 protein, one of the main allergens of D. pteronyssinus, is found in high concentration in mites faecal pellets, which can became easily airborne and, when inhaled, can cause perennial rhinitis and bronchial asthma. Here we report the isolation of the Der p 1 gene from an Italian strain of D. pteronyssinus and the PVX-mediated expression of its mature form (I-rDer p 1) in Nicotiana benthamiana plants. Human sera from characterized allergic patients were used for IgE binding inhibition assays to test the immunological reactivity of I-rDer p 1 produced in N. benthamiana plants. The binding properties of in planta produced I-rDer p 1 versus the IgE of patients sera were comparable to those obtained on Der p 1 preparation immobilized on a microarray. In this paper we provide a proof of concept for the production of an immunologically active form of Der p 1 using a plant viral vector. These results pave the way for the development of diagnostic allergy tests based on in planta produced allergens.
Collapse
Affiliation(s)
- Gianpiero Marconi
- Dipartimento di Biologia Applicata, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|