1
|
Hou X, Wei L, Liu J, Li S, Zhang J. Essential tremor is associated with reduced serum ceruloplasmin levels. Neurol Sci 2024; 45:3817-3822. [PMID: 38480645 DOI: 10.1007/s10072-024-07441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/19/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Essential tremor (ET), a prevalent movement disorder, has an elusive pathogenesis. A reduction in ceruloplasmin (Cp) levels can be found in some patients with ET. In addition, some studies have suggested an association between ET and neurodegeneration. As a ferroxidase, Cp is critical for iron metabolism, protecting against oxidative stress and neurodegeneration. Iron metabolism dysregulation, linked to ferroptosis, has implications in neurodegenerative diseases. Yet, research on Cp and ET remains limited. OBJECTIVES This study aims to elucidate the relationship between ET and serum Cp levels. METHODS We collected demographic and clinical data from 62 patients with ET satisfying the diagnostic criteria and compared these to data from 100 healthy controls. RESULTS The median Cp levels in ET patients were 21.5 (18.8, 23.9) mg/dL, significantly lower than those in controls (23.1 [(20.7, 25.7) mg/dL; P = 0.006]). A reduction in Cp levels emerged as a risk factor for ET incidence (odds ratio (OR) = 0.873, 95% confidence interval (CI), 0.795, 0.959; P = 0.005). The area under the receiver operating characteristic (ROC) curve for serum Cp levels to predict the onset of ET was 0.629 (95% CI, 0.537-0.720; P = 0.006), and the optimal cut-off value for Cp levels was 19.5 mg/dL with a sensitivity of 91% and a specificity of 33.9%. CONCLUSION Our analysis suggests that reduced Cp levels are associated with ET. We speculate that reduced Cp levels may be involved in the pathogenesis of ET, which requires further studies.
Collapse
Affiliation(s)
- Xiaotong Hou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liting Wei
- Department of Neurology, Luoyang Central Hospital: Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Jinshun Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shibo Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiwei Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 1 Longhu Central Ring Road, Zhengzhou, 450003, China.
| |
Collapse
|
2
|
Demonstration of N, N-Dimethyldithiocarbamate as a Copper-Dependent Antibiotic against Multiple Upper Respiratory Tract Pathogens. Microbiol Spectr 2021; 9:e0077821. [PMID: 34468162 PMCID: PMC8557878 DOI: 10.1128/spectrum.00778-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transition metals are necessary cofactors and structural elements in living systems. Exposure to high concentrations of biologically important transition metals, such as zinc and copper, results in cell toxicity. At the infection site, the immune system deploys metal sorbent proteins (e.g., lactoferrin and calprotectin) to starve pathogens of necessary metals (such as iron), while phagocytes expose engulfed pathogens to high levels of other metals, such as copper and zinc. The opportunistic pathogen Streptococcus pneumoniae (the pneumococcus) encounters macrophages during initial and protracted infections. The pneumococcus employs a copper export pathway, which improves colonization and persistent infection of the nasopharynx and the upper respiratory tract. Because copper is tightly regulated in the host, we instead sought to leverage the localized power of nutritional immunity by identifying small molecules with copper-dependent toxicity (CDT) through a targeted screen of compounds for antibiotic efficacy. We chose to include dithiocarbamates, based on the copper synergy observed in other organisms with 1-(diethylthiocarbamoyldisulfanyl)-N,N-diethyl-methanethioamide (tetraethylthiuram disulfide, disulfiram). We observed CDT of some dithiocarbamates in S. pneumoniae. Only N,N-dimethyldithiocarbamate (DMDC) was consistently toxic across a range of concentrations with copper both in vitro and in vivo against the pneumococcus. We also observed various degrees of CDT in vitro using DMDC in Staphylococcus aureus, Coccidioides posadasii, and Schistosoma mansoni. Collectively, we demonstrate that the compound DMDC is a potent bactericidal compound against S. pneumoniae with antimicrobial efficacy against bacterial and fungal pathogens. IMPORTANCE With the rise of antibiotic resistance, approaches that add new antimicrobials to the current repertoire are vital. Here, we investigate putative and known copper ionophores in an attempt to intoxicate bacteria and use ionophore/copper synergy, and we ultimately find success with N,N-dimethyldithiocarbamate (DMDC). We show that DMDC has in vitro efficacy in a copper-dependent manner and kills pathogens across three different kingdoms, Streptococcus pneumoniae, Coccidioides posadasii, and Schistosoma mansoni, and in vivo efficacy against S. pneumoniae. As such, dithiocarbamates represent a new potential class of antimicrobials and thus warrant further mechanistic investigation.
Collapse
|
3
|
Zanardi A, Barbariga M, Conti A, Vegliani F, Curnis F, Alessio M. Oxidized/deamidated-ceruloplasmin dysregulates choroid plexus epithelial cells functionality and barrier properties via RGD-recognizing integrin binding. Neurobiol Dis 2021; 158:105474. [PMID: 34384868 DOI: 10.1016/j.nbd.2021.105474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
Choroid plexus epithelial cells (CPEpiCs) determine the composition of cerebrospinal fluid (CSF) and constitute the blood-CSF barrier (BCSFB), functions that are altered in neurodegenerative diseases. In Parkinson's disease (PD) the pathological environment oxidizes and deamidates the ceruloplasmin, a CSF-resident ferroxidase, which undergoes a gain of RGD-recognizing integrin binding property, that may result in signal transduction. We investigated the effects that oxidized/deamidated ceruloplasmin (Cp-ox/de) may exert on CPEpiCs functions. Through RGD-recognizing integrins binding, Cp-ox/de mediates CPEpiCs adhesion and intracellular signaling, resulting in cell proliferation inhibition and alteration of the secretome profile in terms of proteins related to cell-extracellular matrix interaction. Oxidative conditions, comparable to those found in the CSF of PD patients, induced CPEpiCs barrier leakage, allowing Cp-ox/de to cross it, transducing integrins-mediated signal that further worsens BCSFB integrity. This mechanism might contribute to PD pathological processes altering CSF composition and aggravating the already compromised BCSFB function.
Collapse
Affiliation(s)
- Alan Zanardi
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Marco Barbariga
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy
| | - Antonio Conti
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Franco Vegliani
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Massimo Alessio
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
4
|
Bonaccorsi di Patti MC, Cutone A, Nemčovič M, Pakanová Z, Baráth P, Musci G. Production of Recombinant Human Ceruloplasmin: Improvements and Perspectives. Int J Mol Sci 2021; 22:ijms22158228. [PMID: 34360993 PMCID: PMC8347646 DOI: 10.3390/ijms22158228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023] Open
Abstract
The ferroxidase ceruloplasmin (CP) plays a crucial role in iron homeostasis in vertebrates together with the iron exporter ferroportin. Mutations in the CP gene give rise to aceruloplasminemia, a rare neurodegenerative disease for which no cure is available. Many aspects of the (patho)physiology of CP are still unclear and would benefit from the availability of recombinant protein for structural and functional studies. Furthermore, recombinant CP could be evaluated for enzyme replacement therapy for the treatment of aceruloplasminemia. We report the production and preliminary characterization of high-quality recombinant human CP in glycoengineered Pichia pastoris SuperMan5. A modified yeast strain lacking the endogenous ferroxidase has been generated and employed as host for heterologous expression of the secreted isoform of human CP. Highly pure biologically active protein has been obtained by an improved two-step purification procedure. Glycan analysis indicates that predominant glycoforms HexNAc2Hex8 and HexNAc2Hex11 are found at Asn119, Asn378, and Asn743, three of the canonical four N-glycosylation sites of human CP. The availability of high-quality recombinant human CP represents a significant advancement in the field of CP biology. However, productivity needs to be increased and further careful glycoengineering of the SM5 strain is mandatory in order to evaluate the possible therapeutic use of the recombinant protein for enzyme replacement therapy of aceruloplasminemia patients.
Collapse
Affiliation(s)
- Maria Carmela Bonaccorsi di Patti
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (M.C.B.d.P.); (G.M.)
| | - Antimo Cutone
- Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Marek Nemčovič
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia; (M.N.); (Z.P.); (P.B.)
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia; (M.N.); (Z.P.); (P.B.)
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia; (M.N.); (Z.P.); (P.B.)
| | - Giovanni Musci
- Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
- Correspondence: (M.C.B.d.P.); (G.M.)
| |
Collapse
|
5
|
Noninvasive Analysis Using Data-Independent Acquisition Mass Spectrometry: New Epidermal Proteins That Reveal Sex Differences in the Aging Process. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/8849328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of mass spectrometry has provided a method with extremely high sensitivity and selectivity that can be used to identify protein biomarkers. Epidermal proteins, lipids, and cornified envelopes are involved in the formation of the skin epidermal barrier. The epidermal protein composition changes with age. Therefore, quantitative proteomic changes may be indicative of skin aging. We sought to utilize data-independent acquisition mass spectrometry for noninvasive analysis of epidermal proteins in healthy Chinese individuals of different age groups and sexes. In our study, we completed high-throughput protein detection, analyzed protein differences with MaxQuant software, and performed statistical analyses of the proteome. We obtained interesting findings regarding ceruloplasmin (CP), which exhibited significant differences and is involved in ferroptosis, a signaling pathway significantly associated with aging. There were also several proteins that differed between sexes in the younger group, but the sex differences disappeared with aging. These proteins, which were associated with both aging processes and sex differences, are involved in signaling pathways such as apoptosis, oxidative stress, and genomic stability and can serve as candidate biomarkers for sex differences during aging. Our approach for noninvasive detection of epidermal proteins and its application to accurately quantify protein expression can provide ideas for future epidermal proteomics studies.
Collapse
|
6
|
Ceruloplasmin Deamidation in Neurodegeneration: From Loss to Gain of Function. Int J Mol Sci 2021; 22:ijms22020663. [PMID: 33440850 PMCID: PMC7827708 DOI: 10.3390/ijms22020663] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders can induce modifications of several proteins; one of which is ceruloplasmin (Cp), a ferroxidase enzyme found modified in the cerebrospinal fluid (CSF) of neurodegenerative diseases patients. Cp modifications are caused by the oxidation induced by the pathological environment and are usually associated with activity loss. Together with oxidation, deamidation of Cp was found in the CSF from Alzheimer’s and Parkinson’s disease patients. Protein deamidation is a process characterized by asparagine residues conversion in either aspartate or isoaspartate, depending on protein sequence/structure and cellular environment. Cp deamidation occurs at two Asparagine-Glycine-Arginine (NGR)-motifs which, once deamidated to isoAspartate-Glycine-Arginine (isoDGR), bind integrins, a family of receptors mediating cell adhesion. Therefore, on the one hand, Cp modifications lead to loss of enzymatic activity, while on the other hand, these alterations confer gain of function to Cp. In fact, deamidated Cp binds to integrins and triggers intracellular signaling on choroid plexus epithelial cells, changing cell functioning. Working in concert with the oxidative environment, Cp deamidation could reach different target cells in the brain, altering their physiology and causing detrimental effects, which might contribute to the pathological mechanism.
Collapse
|
7
|
Portis SM, Chaput D, Burroughs B, Hudson C, Sanberg PR, Bickford PC. Effects of nutraceutical intervention on serum proteins in aged rats. GeroScience 2020; 42:703-713. [PMID: 32157596 PMCID: PMC7205771 DOI: 10.1007/s11357-020-00174-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
Aging is associated with many pathophysiological changes that could lead to the onset of degenerative disease. Some of the physiological changes that occur with aging include increased inflammation and decreased stem cell proliferation, leading to decreased capacity for tissue regeneration and loss of function. In previous studies, we and others have found nutraceutical intervention to ameliorate some of the deleterious effects associated with aging. In particular, we have previously shown that NT-020, a supplement composed of a proprietary blend of blueberries, green tea, vitamin D3, and carnosine, is able to rescue age-related cognitive deficits, impaired neurogenesis, and inflammation in rats. We have also previously demonstrated that stem cells cultured with old serum showed decreased proliferation; however, when stem cells were cultured in serum from old rats given a diet supplemented with NT-020, proliferation did not differ from that of cells cultured with serum from young rats. While it is clear that NT-020 is exerting a therapeutic, anti-aging effect, the mechanisms of action were yet to be fully elucidated.To that end, in the present study, we conducted a bioinformatics experiment to examine the rat proteome of serum from young and old control rats and young and old rats given a diet supplemented with NT-020. Serum from old rats showed an increase in some inflammatory and pro-aging factors while serum from old rats given a diet supplemented with NT-020 showed an increase in some anti-aging factors, most notably proteins associated with the complement system and autophagy. A number of immune functions that increase with age were shown to be downregulated with NT-020 treatment.
Collapse
Affiliation(s)
- Samantha M Portis
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, USF Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Dale Chaput
- Proteomics and Mass Spectrometry Facility, College of Arts and Sciences, University of South Florida, Tampa, FL, 33612, USA
| | - Beau Burroughs
- Proteomics Core Facility, College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Charles Hudson
- James A. Haley VA Hospital, Research Service, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, USF Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Paula C Bickford
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, USF Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- James A. Haley VA Hospital, Research Service, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
8
|
Squitti R, Quattrocchi CC, Forno GD, Antuono P, Wekstein DR, Capo CR, Salustri C, Rossini PM. Ceruloplasmin (2-D PAGE) Pattern and Copper Content in Serum and Brain of Alzheimer Disease Patients. Biomark Insights 2017. [DOI: 10.1177/117727190600100019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A dysfunction in copper homeostasis seems to occur in Alzheimer's disease (AD). We previously evidenced that an excess of non-ceruloplasmin-copper (NCC) correlated with the main functional, anatomical as well as cerebrospinal markers of the disease. Aim of our study was to investigate ceruloplasmin isoforms as potential actors in this AD copper dysfunction. Our data show that AD patients have ceruloplasmin fragments of low molecular weight (<50 kDa) both in their serum and brain, contrary to healthy controls. Ceruloplasmin isoforms of higher molecular weight (115 and 135 kDa in serum and 135 kDa in brain), as well as copper levels in the brain, instead, do not seem to mark a difference between AD and healthy subjects. These data suggest a ceruloplasmin fragmentation in the serum of AD patients. Some clues in this direction have been found also in the AD brain.
Collapse
Affiliation(s)
- Rosanna Squitti
- AFaR, Dept. of Neuroscience, Fatebenefratelli Hospital, Rome, Italy
| | | | | | - Piero Antuono
- Dept. of Neurology, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| | - David R. Wekstein
- University of Kentucky Alzheimer's Disease Research Center, Lexington, KY, U.S.A
| | | | - Carlo Salustri
- Institute of Cognition Sciences and Technologies (CNR), Rome, Italy
| | - Paolo M. Rossini
- AFaR, Dept. of Neuroscience, Fatebenefratelli Hospital, Rome, Italy
- Depts. of Neurology, “Campus Biomedico” University, Rome, Italy
- IRCCS ‘Centro S. Giovanni di Dio-FBF’, Brescia, Italy
| |
Collapse
|
9
|
Barbariga M, Curnis F, Andolfo A, Zanardi A, Lazzaro M, Conti A, Magnani G, Volontè MA, Ferrari L, Comi G, Corti A, Alessio M. Ceruloplasmin functional changes in Parkinson's disease-cerebrospinal fluid. Mol Neurodegener 2015; 10:59. [PMID: 26537957 PMCID: PMC4634150 DOI: 10.1186/s13024-015-0055-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/29/2015] [Indexed: 01/23/2023] Open
Abstract
Background Ceruloplasmin, a ferroxidase present in cerebrospinal fluid (CSF), plays a role in iron homeostasis protecting tissues from oxidative damage. Its reduced enzymatic activity was reported in Parkinson’s disease (PD) contributing to the pathological iron accumulation. We previously showed that ceruloplasmin is modified by oxidation in vivo, and, in addition, in vitro by deamidation of specific NGR-motifs that foster the gain of integrin-binding function. Here we investigated whether the loss of ceruloplasmin ferroxidase activity in the CSF of PD patients was accompanied by NGR-motifs deamidation and gain of function. Results We have found that endogenous ceruloplasmin in the CSF of PD patients showed structural changes, deamidation of the 962NGR-motif which is usually hidden within the ceruloplasmin structure, and the gain of integrin-binding function. These effects occur owing to the presence of abnormal levels of hydrogen peroxide we detected in the CSF of PD patients. Interestingly, the pathological CSF's environment of PD patients promoted the same modifications in the exogenously added ceruloplasmin, which in turn resulted in loss of ferroxidase-activity and acquisition of integrin-binding properties. Conclusions We show that in pathological oxidative environment of PD-CSF the endogenous ceruloplasmin, in addition to loss-of-ferroxidase function, is modified as to gain integrin-binding function. These findings, beside the known role of ceruloplasmin in iron homeostasis, might have important pathogenic implications due to the potential triggering of signals mediated by the unusual integrin binding in cells of central nervous system. Furthermore, there are pharmacological implications because, based on data obtained in murine models, the administration of ceruloplasmin has been proposed as potential therapeutic treatment of PD, however, the observed CSF's pro-oxidant properties raise the possibility that in human the ceruloplasmin-based therapeutic approach might not be efficacious. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0055-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Barbariga
- Proteome Biochemistry, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy. .,Present address: Translational Neurology group, Wallenberg Neuroscience Center, BMC A10, 221 84, Lund, Sweden.
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | - Annapaola Andolfo
- ProMiFa-Protein Microsequencing Facility, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | - Alan Zanardi
- Proteome Biochemistry, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy. .,Vita-Salute San Raffaele University, via Olgettina 60, 20132, Milan, Italy.
| | - Massimo Lazzaro
- Proteome Biochemistry, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | - Antonio Conti
- Proteome Biochemistry, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | - Giuseppe Magnani
- INSPE-Institute of Experimental Neurology, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | - Maria Antonietta Volontè
- INSPE-Institute of Experimental Neurology, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | - Laura Ferrari
- INSPE-Institute of Experimental Neurology, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | - Giancarlo Comi
- INSPE-Institute of Experimental Neurology, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy. .,Vita-Salute San Raffaele University, via Olgettina 60, 20132, Milan, Italy.
| | - Angelo Corti
- Tumor Biology and Vascular Targeting, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | - Massimo Alessio
- Proteome Biochemistry, IRCCS-San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
10
|
Conti A, Alessio M. Comparative Proteomics for the Evaluation of Protein Expression and Modifications in Neurodegenerative Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 121:117-52. [PMID: 26315764 DOI: 10.1016/bs.irn.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Together with hypothesis-driven approaches, high-throughput differential proteomic analysis performed primarily not only in human cerebrospinal fluid and serum but also on protein content of other tissues (blood cells, muscles, peripheral nerves, etc.) has been used in the last years to investigate neurodegenerative diseases. Even if the goal for these analyses was mainly the discovery of neurodegenerative disorders biomarkers, the characterization of specific posttranslational modifications (PTMs) and the differential protein expression resulted in being very informative to better define the pathological mechanisms. In this chapter are presented and discussed the positive aspects and challenges of the outcomes of some of our investigations on neurological and neurodegenerative disease, in order to highlight the important role of protein PTMs studies in proteomics-based approaches.
Collapse
Affiliation(s)
- Antonio Conti
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Alessio
- Proteome Biochemistry, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
11
|
Cabiscol E, Tamarit J, Ros J. Protein carbonylation: proteomics, specificity and relevance to aging. MASS SPECTROMETRY REVIEWS 2014; 33:21-48. [PMID: 24114980 DOI: 10.1002/mas.21375] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 06/02/2023]
Abstract
Detection and quantification of protein carbonyls present in biological samples has become a popular, albeit indirect, method to determine the existence of oxidative stress. Moreover, the rise of proteomics has allowed the identification of the specific proteins targeted by protein carbonylation. This review discusses these methodologies and proteomic strategies and then focuses on the relationship between protein carbonylation and aging and the parameters that may explain the increased sensitivity of certain proteins to protein carbonylation.
Collapse
Affiliation(s)
- Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, IRB Lleida, Universitat de Lleida, Av. Rovira Roure, 80, 25198, Lleida, Catalonia, Spain
| | | | | |
Collapse
|
12
|
Barbariga M, Curnis F, Spitaleri A, Andolfo A, Zucchelli C, Lazzaro M, Magnani G, Musco G, Corti A, Alessio M. Oxidation-induced structural changes of ceruloplasmin foster NGR motif deamidation that promotes integrin binding and signaling. J Biol Chem 2013; 289:3736-48. [PMID: 24366863 DOI: 10.1074/jbc.m113.520981] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Asparagine deamidation occurs spontaneously in proteins during aging; deamidation of Asn-Gly-Arg (NGR) sites can lead to the formation of isoAsp-Gly-Arg (isoDGR), a motif that can recognize the RGD-binding site of integrins. Ceruloplasmin (Cp), a ferroxidase present in the cerebrospinal fluid (CSF), contains two NGR sites in its sequence: one exposed on the protein surface ((568)NGR) and the other buried in the tertiary structure ((962)NGR). Considering that Cp can undergo oxidative modifications in the CSF of neurodegenerative diseases, we investigated the effect of oxidation on the deamidation of both NGR motifs and, consequently, on the acquisition of integrin binding properties. We observed that the exposed (568)NGR site can deamidate under conditions mimicking accelerated Asn aging. In contrast, the hidden (962)NGR site can deamidate exclusively when aging occurs under oxidative conditions, suggesting that oxidation-induced structural changes foster deamidation at this site. NGR deamidation in Cp was associated with gain of integrin-binding function, intracellular signaling, and cell pro-adhesive activity. Finally, Cp aging in the CSF from Alzheimer disease patients, but not in control CSF, causes Cp deamidation with gain of integrin-binding function, suggesting that this transition might also occur in pathological conditions. In conclusion, both Cp NGR sites can deamidate during aging under oxidative conditions, likely as a consequence of oxidative-induced structural changes, thereby promoting a gain of function in integrin binding, signaling, and cell adhesion.
Collapse
|
13
|
Bondarenko TI, Maiboroda EA, Mikhaleva II, Prudchenko IA. Mechanism of geroprotective action of delta-sleep inducing peptide. ADVANCES IN GERONTOLOGY 2012. [DOI: 10.1134/s2079057011040035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Case–control studies on ceruloplasmin and superoxide dismutase (SOD1) in neurodegenerative diseases: A short review. J Neurol Sci 2010; 299:51-4. [DOI: 10.1016/j.jns.2010.08.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 11/18/2022]
|
15
|
Veurink G, Fuller SJ, Atwood CS, Martins RN. ReviewGenetics, lifestyle and the roles of amyloid β and oxidative stress in Alzheimer’s disease. Ann Hum Biol 2009; 30:639-67. [PMID: 14675907 DOI: 10.1080/03014460310001620144] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper reviews a wide range of recent studies that have linked AD-associated biochemical and physiological changes with oxidative stress and damage. Some of these changes include disruptions in metal ion homeostasis, mitochondrial damage, reduced glucose metabolism, decreased intracellular pH and inflammation. Although the changes mentioned above are associated with oxidative stress, in most cases, a cause and effect relationship is not clearcut, as many changes are interlinked. Increases in the levels of Abeta peptides, the main protein components of the cerebral amyloid deposits of AD, have been demonstrated to occur in inherited early-onset forms of AD, and as a result of certain environmental and genetic risk factors. Abeta peptides have been shown to exhibit superoxide dismutase activity, producing hydrogen peroxide which may be responsible for the neurotoxicity exhibited by this peptide in vitro. This review also discusses the biochemical aspects of oxidative stress, antioxidant defence mechanisms, and possible antioxidant therapeutic measures which may be effective in counteracting increased levels of oxidative stress. In conclusion, this review provides support for the theory that damage caused by free radicals and oxidative stress is a primary cause of the neurodegeneration seen in AD with Abeta postulated as an initiator of this process.
Collapse
Affiliation(s)
- G Veurink
- The Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Australia
| | | | | | | |
Collapse
|
16
|
Aouffen M, Paquin J, Furtos A, Waldron KC, Mateescu MA. Oxidative Aggregation of Ceruloplasmin Induced by Hydrogen Peroxide is Prevented by Pyruvate. Free Radic Res 2009; 38:19-26. [PMID: 15061650 DOI: 10.1080/10715760310001624079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ceruloplasmin (CP) is a blue copper glycoprotein with multiple physiological functions including ferroxidase and oxidase activities. CP is also an important serum oxygen free radical (OFR) scavenger and antioxidant, exerting cardioprotective and antifibrillatory actions. Although it has been reported that CP activities can be inhibited by OFR, the intimate mechanism of this inactivation is still not clear. Exposure of bovine CP to H2O2 induced inactivation of the protein as well as structural alterations as indicated by loss of protein bands by SDS-PAGE. Both phenomena were H2O2 concentration and time dependent. HPLC gel filtration and capillary electrophoresis analysis of CP treated with H2O2 revealed an aggregation of the protein. Quantification of dityrosine formation by fluorescence indicated the involvement of dityrosine bridging, which could be responsible for aggregation of CP under oxidative attack. Oxidative damage to CP under H2O2 treatment was completely prevented by pyruvate, suggesting that the association of CP with antioxidants could extend the range of the protective action of this protein.
Collapse
Affiliation(s)
- M'hammed Aouffen
- Department of Chemistry and Biochemistry, Université du Québec à Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Qué., Canada H3C 3P8
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Squitti R, Quattrocchi CC, Salustri C, Rossini PM. Ceruloplasmin fragmentation is implicated in 'free' copper deregulation of Alzheimer's disease. Prion 2008; 2:23-7. [PMID: 19164917 DOI: 10.4161/pri.2.1.6297] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A dysfunction in copper homeostasis seems to occur in Alzheimer's disease (AD). We recently demonstrated that an excess of non-ceruloplasmin-copper (i.e., 'free' copper) correlates with the main functional and anatomical deficits as well as the cerebrospinal markers of the disease, thus suggesting that copper contributes to AD neurodegeneration. Aim of this study was to investigate the profile of serum ceruloplasmin isoforms immunoreactive protein in relation to copper dysfunction in AD. Twenty-five AD patients and 25 controls were included in the study. All subjects underwent individual measurements of serum ceruloplasmin and copper concentrations, and the amount of 'free' copper was computed for each copper and ceruloplasmin pair. Serum samples were also pooled and analyzed by two dimensional polyacrylamide gel electrophoresis (2-D PAGE) and western blot analysis. The mean concentration of 'free' copper resulted higher in AD patients than in controls. Ceruloplasmin 2-D PAGE western blot analysis of pooled sera showed in the AD samples low-molecular-weight spots in the <50 kDa range that were not detected in controls' pooled sera (p < 0.029). Our data indicate a ceruloplasmin fragmentation in the serum of AD patients, possibly related to 'free' copper deregulation in this disease.
Collapse
Affiliation(s)
- Rosanna Squitti
- AfaR, Department of Neuroscience, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy.
| | | | | | | |
Collapse
|
19
|
Features of ceruloplasmin in the cerebrospinal fluid of Alzheimer's disease patients. Biometals 2007; 21:367-72. [PMID: 18060472 DOI: 10.1007/s10534-007-9125-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 11/16/2007] [Indexed: 11/27/2022]
Abstract
The level of the apo-form of the copper enzyme ceruloplasmin (CP) is an established peripheral marker in diseases associated with copper imbalance. In view of the proposal that disturbances of copper homeostasis may contribute to neurodegeneration associated with Alzheimer's disease (AD), the present work investigates, by Western blot and non-reducing SDS-PAGE followed by activity staining, the features of CP protein, and the copper/CP relationship in cerebrospinal fluid (CSF) and serum of AD patients. Results show that only a fraction of total copper is associated with CP in the CSF, at variance with serum, both in affected and in healthy individuals. Furthermore, a conspicuous amount of apo-ceruloplasmin and a decrease of CP oxidase activity characterize the CSF of the affected individuals, and confirm that an impairment of copper metabolism occurs in their central nervous system. In the CSF of AD patients the decrease of active CP, associated with the increase in the pool of copper not sequestered by this protein, may play a role in the neurodegenerative process.
Collapse
|
20
|
Sokolov AV, Pulina MO, Ageeva KV, Ayrapetov MI, Berlov MN, Volgin GN, Markov AG, Yablonsky PK, Kolodkin NI, Zakharova ET, Vasilyev VB. Interaction of ceruloplasmin, lactoferrin, and myeloperoxidase. BIOCHEMISTRY (MOSCOW) 2007; 72:409-15. [PMID: 17511605 DOI: 10.1134/s0006297907040074] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When lactoferrin (LF) and myeloperoxidase (MPO) are added to ceruloplasmin (CP), a CP-LF-MPO triple complex forms. The complex is formed under physiological conditions, but also in the course of SDS-free PAGE. Polyclonal antibodies to both LF and MPO displace the respective proteins from the CP-LF-MPO complex. Similar replacement is performed by a PACAP38 fragment (amino acids 29-38) and protamine that bind to CP. Interaction of LF and MPO with CP-Sepharose is blocked at ionic strength above 0.3 M NaCl and at pH below 4.1 (LF) and 3.9 (MPO). Two peptides (amino acids 50-109 and 929-1012) were isolated by affinity chromatography from a preparation of CP after its spontaneous proteolytic cleavage. These peptides are able to displace CP from its complexes with LF and MPO. Both human and canine MPO could form a complex when mixed with CP from seven mammalian species. Upon intravenous injection of human MPO into rats, the rat CP-human MPO complex could be detected in plasma. Patients with inflammation were examined and CP-LF, CP-MPO, and CP-LF-MPO complexes were revealed in 80 samples of blood serum and in nine exudates from purulent foci. These complexes were also found in 45 samples of serum and pleural fluid obtained from patients with pleurisies of various etiology.
Collapse
Affiliation(s)
- A V Sokolov
- Institute for Experimental Medicine, Russian Academy of Medical Sciences, ul. Akademika Pavlova 12, 197376 St. Petersburg, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The oxidative hypothesis of senescence, since its origin in 1956, has garnered significant evidence and growing support among scientists for the notion that free radicals play an important role in ageing, either as "damaging" molecules or as signaling molecules. Age-increasing oxidative injuries induced by free radicals, higher susceptibility to oxidative stress in short-lived organisms, genetic manipulations that alter both oxidative resistance and longevity and the anti-ageing effect of caloric restriction and intermittent fasting are a few examples of accepted scientific facts that support the oxidative theory of senescence. Though not completely understood due to the complex "network" of redox regulatory systems, the implication of oxidative stress in the ageing process is now well documented. Moreover, it is compatible with other current ageing theories (e.g, those implicating the mitochondrial damage/mitochondrial-lysosomal axis, stress-induced premature senescence, biological "garbage" accumulation, etc). This review is intended to summarize and critically discuss the redox mechanisms involved during the ageing process: sources of oxidant agents in ageing (mitochondrial -electron transport chain, nitric oxide synthase reaction- and non-mitochondrial- Fenton reaction, microsomal cytochrome P450 enzymes, peroxisomal beta -oxidation and respiratory burst of phagocytic cells), antioxidant changes in ageing (enzymatic- superoxide dismutase, glutathione-reductase, glutathion peroxidase, catalase- and non-enzymatic glutathione, ascorbate, urate, bilirubine, melatonin, tocopherols, carotenoids, ubiquinol), alteration of oxidative damage repairing mechanisms and the role of free radicals as signaling molecules in ageing.
Collapse
Affiliation(s)
- M Gilca
- Department of Biochemistry, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 8, Eroilor Sanitari, 76241 Bucharest, Romania.
| | | | | | | |
Collapse
|
22
|
Abstract
The present study was undertaken to compare the oxidant statuses of mice with collagen-induced arthritis (CIA) and those of healthy mice. For this purpose, serum oxidant products and arthritic profiles were measured in DBA/1J mice with CIA. In addition, the levels of oxidation products and the activities of antioxidant enzymes were determined in liver, heart, spleen, kidney, lung and brain. The induction of arthritis significantly increased anti-collagen antibody, rheumatoid factor, interleukin (IL)-1beta, IL-6, protein carbonyl (PCO), advanced glycation end-products (AGE), malondialdehyde (MDA) and low density lipoprotein (LDL)-cholesterol levels in serum (P < 0.05). CIA in DBA/1J mice was associated with significantly lower activities of superoxide dismutase, glutathione peroxidase and glutathione reductase in spleen but higher levels of oxidation products in spleen, kidney and liver than healthy normal mice (P < 0.05). However, lower concentrations of oxidized protein and higher activities of antioxidant enzymes were observed in CIA mouse lung and brain than in healthy normal mice. Dexamethasone treated CIA mice had decreased arthritis-related indices and showed: reduced PCO and AGE in spleen and brain, and increased PCO and AGE in heart, kidney and lung; increased MDA in heart, spleen, lung and brain; reduced SOD and GR activities in lung and brain; increased GPx activity in spleen and brain; and increased GR activity heart and spleen. These data suggest that mice with CIA were more susceptible to oxidative damage in the spleen and liver under the chronic inflammatory conditions.
Collapse
Affiliation(s)
- Eun-Mi Choi
- Department of Food and Nutrition, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
23
|
Tórsdóttir G, Sveinbjörnsdóttir S, Kristinsson J, Snaedal J, Jóhannesson T. Ceruloplasmin and superoxide dismutase (SOD1) in Parkinson's disease: A follow-up study. J Neurol Sci 2006; 241:53-8. [PMID: 16352311 DOI: 10.1016/j.jns.2005.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 10/19/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
In this follow-up study concentration, oxidative activity and specific oxidative activity of ceruloplasmin (CP) in serum and the activity of superoxide dismutase (SOD1) in erythrocytes were reexamined in 28 of originally 40 patients with Parkinson's disease (PD), and their age- and gender-matched controls. The mean CP and SOD1 parameters were significantly lower in the patients than in the controls. SOD1 activity and age of the patients were inversely correlated. The patients were divided into two subgroups based on their H&Y score i.e. groups II and III (12 patients) versus groups IV and V (16 patients). No significant difference was found in the CP or SOD1 parameters between the subgroups. Patients were also divided into two subgroups based on treatment with levodopa and decarboxylase blocker alone (12 patients) or given additionally a dopamine agonist (15 patients). No significant difference in the parameters was found between these subgroups in relation to intake of dopamine agonists. Results of this study are in agreement with results of the former study 5 years earlier. There is considerable overlap in individual values between patients and controls of the parameters studied. Thus CP and SOD1 have no obvious value for diagnosis or clinical evaluation of PD.
Collapse
Affiliation(s)
- Gudlaug Tórsdóttir
- Institute of Pharmacy, Pharmacology and Toxicology, Department of Pharmacology and Toxicology, University of Iceland, Hofsvallagata 53, 107 Reykjavík, Iceland.
| | | | | | | | | |
Collapse
|
24
|
Sokolov AV, Pulina MO, Zakharova ET, Susorova AS, Runova OL, Kolodkin NI, Vasilyev VB. Identification and isolation from breast milk of ceruloplasmin-lactoferrin complex. BIOCHEMISTRY (MOSCOW) 2006; 71:160-6. [PMID: 16489920 DOI: 10.1134/s0006297906020076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The presence of a complex of the copper-containing protein ceruloplasmin (Cp) with lactoferrin (Lf) in breast milk (BM) is shown for the first time. In SDS-free polyacrylamide gel electrophoresis (PAGE), electrophoretic mobility of Cp in BM is lower than that of plasma Cp, coinciding with the mobility of the complex obtained upon mixing purified Cp and Lf. Affinity chromatography of delipidated BM on Cp-Sepharose resulted in retention of Lf. SDS-PAGE of the 0.3 M NaCl eluate revealed a single band with Mr approximately 78,000 that has the N-terminal amino acid sequence of Lf and reacts with antibodies to that protein. Synthetic peptides R-R-R-R (the N-terminal amino acid stretch 2-5 in Lf) and K-R-Y-K-Q-R-V-K-N-K (the C-terminal stretch 29-38 in PACAP 38) caused efficient elution of Lf from Cp-Sepharose. Cp-Lf complex from delipidated BM is not retained on the resins used for isolation of Cp (AE-agarose) and of Lf (CM-Sephadex). Anionic peptides from Cp--(586-597), (721-734), and (905-914)--provide an efficient elution of Cp from AE-agarose, but do not cause dissociation of Cp-Lf complex. When anti-Lf is added to BM flowed through CM-Sephadex, Cp co-precipitates with Lf. Cp-Lf complex can be isolated from BM by chromatography on CM-Sephadex, ethanol precipitation, and affinity chromatography on AE-agarose, yielding 98% pure complex. The resulting complex Cp-Lf (1 : 1) was separated into components by chromatography on heparin-Sepharose. Limited tryptic hydrolysis of Cp obtained from BM and from blood plasma revealed identical proteolytic fragments.
Collapse
Affiliation(s)
- A V Sokolov
- Institute for Experimental Medicine, Russian Academy of Medical Sciences, 197376 St. Petersburg, Russia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Hwang IK, Yoon DK, Yoo KY, Eum WS, Bahn JH, Kim DW, Kang JH, Kwon HY, Kang TC, Choi SY, Won MH. Ischemia-related change of ceruloplasmin immunoreactivity in neurons and astrocytes in the gerbil hippocampus and dentate gyrus. Neurochem Int 2004; 44:601-7. [PMID: 15016475 DOI: 10.1016/j.neuint.2003.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 10/07/2003] [Indexed: 11/28/2022]
Abstract
In the present study, we investigated the temporal and spatial alterations of ceruloplasmin immunoreactivity in the gerbil hippocampus and dentate gyrus after 5 min transient forebrain ischemia. In sham-operated animals, ceruloplasmin immunoreactivity in the hippocampal CA2/3 areas was higher than that of other areas. Ceruloplasmin immunoreactivity and its protein content significantly increased and were highest in the CA1 area 1 day after ischemia-reperfusion. At this time point, the immunoreactivity was shown in pyramidal cells of the CA1 area. Four days after ischemia-reperfusion, ceruloplasmin immunoreactivity was shown in astrocytes in the hippocamapal CA1 area. These results suggest that reactive oxygen species (ROS) do not immediately damage neuronal cytosol, unlike DNA. An interval of time is required for the full expression of the cytoplasmic protein injury by ROS. This delayed neuronal injury 1 day after ischemic insult might provide a window of opportunity for therapeutic interventions using antioxidants.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Galli I, Musci G, Bonaccorsi di Patti MC. Sequential reconstitution of copper sites in the multicopper oxidase CueO. J Biol Inorg Chem 2003; 9:90-5. [PMID: 14648285 DOI: 10.1007/s00775-003-0501-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 10/17/2003] [Indexed: 11/24/2022]
Abstract
CueO belongs to the family of multicopper oxidases which are characterized by the presence of multiple copper-binding sites with different structural and functional properties. These enzymes share the ability to couple the one-electron oxidation of substrate to reduction of oxygen to water by way of a functional unit composed of a mononuclear type 1 blue copper site, which is the entry site for electrons, and of a trinuclear copper cluster formed by type 2 and binuclear type 3 sites, where oxygen binding and reduction take place. The mechanism of copper incorporation in CueO has been investigated by optical and EPR spectroscopy. The results indicate unambiguously that the process is sequential, with type 1 copper being the first to be reconstituted, followed by type 2 and type 3 sites.
Collapse
Affiliation(s)
- Ilaria Galli
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Università degli Studi di Roma 'La Sapienza', P.le Aldo Moro 5, 00185, Roma, Italy
| | | | | |
Collapse
|
27
|
Cuzzocrea S, Persichini T, Dugo L, Colasanti M, Musci G. Copper induces type II nitric oxide synthase in vivo. Free Radic Biol Med 2003; 34:1253-62. [PMID: 12726913 DOI: 10.1016/s0891-5849(03)00110-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intravenous administration of copper (up to a final concentration of ca. 35 micromol/l in the plasma) led to a progressive, dramatic fall of mean arterial pressure in rats. Copper-induced pressure changes were comparable to those elicited by 2 mg/kg LPS, and were greatly prevented by previous infusion of the inducible NOS (NOS-II) inhibitors aminoguanidine or l-N(6)-(L-imino-ethyl)lysine. RT-PCR analysis showed a significant transcriptional induction of NOS-II in a number of tissues, including aorta, liver, and lungs. Immunohistochemistry revealed that NOS-II was massively synthesized in these tissues upon copper or LPS treatment. The protein was active, as revealed by enzymatic assays on lung homogenates and by the large increase of nitrite/nitrate levels in the plasma. Copper-challenged rats displayed elevated plasma levels of TNFalpha. Extensive formation of nitrotyrosines, indicative of peroxynitrite production, was accompanied by marked morphological changes in examined tissues. Our results clearly show that copper can act as a proinflammatory agent through activation of the nitric oxide pathway, leading to the same pathological frame induced by bacterial lipopolysaccharide.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Clinical-Experimental Department of Medicine and Pharmacology, University of Messina, Messina, Italy.
| | | | | | | | | |
Collapse
|
28
|
El-Khawaga OAY. Protective action of copper (II) complex of a Schiff base against DNA damage induced by m-chloroperbenzoic acid using a novel DNA unwinding technique. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2003; 55:205-14. [PMID: 12706905 DOI: 10.1016/s0165-022x(03)00050-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA strand breaks can be detected with great sensitivity by exposing calf thymus DNA to alkaline solutions and monitoring the rate of strand unwinding. Fluorometric analysis of DNA unwinding (FADU) is a reliable method for detecting single-strand DNA breaks as an index of DNA damage induced by photosensitizer.m-Chloroperbenzoic acid (CPBA) was used as a photosensitizer in the photodamage of calf thymus DNA. When DNA is exposed to ionizing radiation, the radicals produced in the irradiated sample modify the base-pair regions of the double strands. The protective action of copper salt, Schiff base [ethylene diamine with ethyl acetate](L) and its Cu(II) complex (Cu(7) L Cl(14)) against DNA damage photoinduced by CPBA was studied using ethidium bromide as a fluorescent probe. Treatment of DNA with 5, 10, 50, 100, or 200 microM CPBA produced 75%, 48%, 38%, 32% and 30% double-stranded DNA remaining, respectively after 30 min of alkaline treatment at 15 degrees C. Treatment of calf thymus DNA irradiated with CPBA with a dose of 1 mM [Cu(7) L Cl(14)] produced 96% double-stranded remaining protection under the same conditions compared with irradiated DNA without addition of Cu(II) complex of Schiff base.
Collapse
Affiliation(s)
- Om Ali Y El-Khawaga
- Department of Chemistry, Faculty of Science, University of Mansoura, Mansoura, Egypt.
| |
Collapse
|
29
|
Kim KS, Choi SY, Kwon HY, Won MH, Kang TC, Kang JH. The ceruloplasmin and hydrogen peroxide system induces alpha-synuclein aggregation in vitro. Biochimie 2002; 84:625-31. [PMID: 12453634 DOI: 10.1016/s0300-9084(02)01435-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alpha-synuclein is a key component of Lewy bodies in the brain of patients with Parkinson's disease (PD) and recent studies suggest that oxidative stress reactions might contribute to abnormal aggregation of this molecule. Since hydrogen peroxide-mediated ceruloplasmin (CP) modification can induce the formation of free radicals and release of copper ions, we investigated the role of CP in the aggregation of alpha-synuclein. When alpha-synuclein was incubated with both CP and H(2)O(2), alpha-synuclein concomitantly was induced to be aggregated. Thioflavin-S staining of alpha-synuclein aggregates showed that they displayed characteristic fibrillar structures. Hydroxyl radical scavengers and spin-trapping agent such as 5,5'-dimethyl 1-pyrolline N-oxide and tert-butyl-alpha-phenylnitrone significantly inhibited the aggregation of alpha-synuclein. Copper chelator, penicillamine also inhibited the CP/H(2)O(2) system-induced alpha-synuclein aggregation. This indicates that the aggregation of alpha-synuclein can be mediated by the CP/H(2)O(2) system via the generation of hydroxyl radical. The CP/H(2)O(2) system-induced alpha-synuclein aggregation resulted in the generation of protein carbonyl derivatives. Antioxidant molecules, carnosine, homocarnosine and anserine significantly inhibited the CP/H(2)O(2) system-induced aggregation of alpha-synuclein. These results suggest that the CP/H(2)O(2) system may be related to abnormal aggregation of alpha-synuclein which may be involved in the pathogenesis of PD and related disorders.
Collapse
Affiliation(s)
- Kyung Sik Kim
- Department of Genetic Engineering, Chongju University, Chongju 360-764, Republic of Korea
| | | | | | | | | | | |
Collapse
|
30
|
Essamadi AK, Bengoumi M, Zaoui D, Faye B, Bellenchi GC, Musci G, Calabrese L. Purification and partial characterization of camel (Camelus Dromedarius) ceruloplasmin. Comp Biochem Physiol B Biochem Mol Biol 2002; 131:509-17. [PMID: 11959033 DOI: 10.1016/s1096-4959(02)00030-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adult and young camel ceruloplasmin (Cp) were isolated and purified using the single-step chromatography on amino ethyl-activated sepharose. There are no differences between the adult and the young camel protein. The molecular mass of the protein, as estimated by SDS-PAGE (denaturant conditions), was approximately 130000 Da. The electrophoretic mobility of camel Cp is slightly higher as compared to human and sheep protein suggesting that the camel Cp is homogeneous, compact and more acid. The copper content was estimated to be 5.8+/-0.3 atoms per molecule. The spectroscopic feature includes an absorption maximum at 610 nm, which could be attributed to type 1 copper. The EPR spectrum was completely devoid of any typical signal of the type 2 copper. The kinetic parameters of the adult camel Cp for the specific activity as p-phenylendiamine oxidase were determined as K(m)=0.42 mM and V(max)=0.93 microM NADH/mn/mg Cp. The optimum pH for the activity was 5.7.
Collapse
Affiliation(s)
- Abdel Khalid Essamadi
- Laboratoire de Biochimie, Université Hassan 1er, Faculté des Sciences et Techniques de Settat, BP 577, 26000, Settat, Morocco
| | | | | | | | | | | | | |
Collapse
|
31
|
Kang JH, Kim KS, Choi SY, Kwon HY, Won MH. Oxidative modification of human ceruloplasmin by peroxyl radicals. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:30-6. [PMID: 11731082 DOI: 10.1016/s0304-4165(01)00198-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ceruloplasmin (CP), the blue oxidase present in all vertebrates, is the major copper-containing protein of plasma. We investigated oxidative modification of human CP by peroxyl radicals generated in a solution containing 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). When CP was incubated with AAPH, the aggregation of proteins was increased in a time- and dose-dependent manner. Incubation of CP with AAPH resulted in a loss of ferroxidase activity. Superoxide dismutase and catalase did not protect the aggregation of CP, whereas hydroxyl radical scavengers such as ethanol and mannitol protected the protein aggregation. The aggregation of proteins was significantly inhibited by the copper chelators, diethyldithiocarbamate and penicillamine. Exposure of CP to AAPH led to the release of copper ions from the enzyme and the generation of protein carbonyl derivatives. Subsequently, when the amino acid composition of CP reacted with AAPH was analyzed, cysteine, tryptophan, methionine, histidine, tyrosine, and lysine residues were particularly sensitive.
Collapse
Affiliation(s)
- J H Kang
- Department of Genetic Engineering, Chongju University, South Korea.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Accumulating experimental evidence supports the proposal that many of the changes which occur during aging are a consequence of oxidative damage. Reactive oxygen species react with all three of the major cellular macromolecules, nucleic acids, lipids, and proteins. This minireview focuses on proteins as targets of oxidizing species during aging. Many of the reactions mediated by these oxidizing species result in the introduction of carbonyl groups into proteins. The steady-state level of carbonyl-bearing proteins increases exponentially during the last third of lifespan in animals ranging from C. elegans to man. Genetic and non-genetic manipulations which lengthen lifespan cause a decrease in the level of protein carbonyl while those which shorten lifespan increase the level. Oxidized proteins bearing carbonyl groups are generally dysfunctional, and in the last third of lifespan the content of these oxidized proteins rises to a level likely to cause substantial disruption of cellular function.
Collapse
Affiliation(s)
- R L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892-0812, USA.
| | | |
Collapse
|
33
|
Bielli P, Bellenchi GC, Calabrese L. Site-directed mutagenesis of human ceruloplasmin:. production of a proteolytically stable protein and structure-activity relationships of type 1 sites. J Biol Chem 2001; 276:2678-85. [PMID: 11042176 DOI: 10.1074/jbc.m007176200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A fully active recombinant human ceruloplasmin was obtained, and it was mutated to produce a ceruloplasmin stable to proteolysis. The stable ceruloplasmin was further mutated to perturb the environment of copper at the type 1 copper sites in two different domains. The wild type and the mutated ceruloplasmin were produced in the yeast Pichia pastoris and characterized. The mutations R481A, R701A, and K887A were at the proteolytic sites, did not alter the enzymatic activity, and were all necessary to protect ceruloplasmin from degradation. The mutation L329M was at the tricoordinate type 1 site of the domain 2 and was ineffective to induce modifications of the spectroscopic and catalytic properties of ceruloplasmin, supporting the hypothesis that this site is reduced and locked in a rigid frame. In contrast the mutation C1021S at the type 1 site of domain 6 substantially altered the molecular properties of the protein, leaving a small fraction endowed with oxidase activity. This result, while indicating the importance of this site in stabilizing the overall protein structure, suggests that another type 1 site is competent for dioxygen reduction. During the expression of ceruloplasmin, the yeast maintained a high level of Fet3 that was released from membranes of yeast not harboring the ceruloplasmin gene. This indicates that expression of ceruloplasmin induces a state of iron deficiency in yeast because the ferric iron produced in the medium by its ferroxidase activity is not available for the uptake.
Collapse
Affiliation(s)
- P Bielli
- Department of Biology, University Roma Tre, Rome, Italy.
| | | | | |
Collapse
|
34
|
Kim RH, Park JE, Park JW. Ceruloplasmin enhances DNA damage induced by hydrogen peroxide in vitro. Free Radic Res 2000; 33:81-9. [PMID: 10826924 DOI: 10.1080/10715760000300641] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ceruloplasmin (Cp) was found to promote the oxidative damage to DNA, as evidenced by the formation of 8-hydroxy-2'-deoxyguanosine and strand breaks, when incubated with H2O2 in vitro. The capacity of Cp to enhance oxidative damage to DNA was inhibited by hydroxyl radical scavengers such as sodium azide and mannitol, a metal chelator, diethylenetriaminepentaacetic acid, and catalase. Although the oxidized protein resulted in an increase in the content of carbonyl groups, the ferroxidase activity and the proteolytic susceptibility were not significantly altered. The release of a portion of Cu from Cp was observed, and conformational alterations were indicated by the changes in fluorescence spectra. Based on these results, we suggest that damage to DNA is mediated in the H2O2/Cp system via the generation of *OH by released Cu2+ and/or loosely bound Cu exposed from oxidatively damaged Cp through the conformational change. The release of Cu from Cp during oxidative stress could enhance the formation of reactive oxygen species and could also potentiate cellular damage.
Collapse
Affiliation(s)
- R H Kim
- Department of Biochemistry, College of Natural Sciences, Kyungpook National University, Taegu, Korea
| | | | | |
Collapse
|
35
|
Abstract
Transition metal ion-mediated oxidation is a commonly used model system for studies of the chemical, structural, and functional modifications of low-density lipoprotein (LDL). The physiological relevance of studies using free metal ions is unclear and has led to an exploration of free metal ion-independent mechanisms of oxidation. We and others have investigated the role of human ceruloplasmin (Cp) in oxidative processes because it the principal copper-containing protein in serum. There is an abundance of epidemiological data that suggests that serum Cp may be an important risk factor predicting myocardial infarction and cardiovascular disease. Biochemical studies have shown that Cp is a potent catalyst of LDL oxidation in vitro. The pro-oxidant activity of Cp requires an intact structure, and a single copper atom at the surface of the protein, near His(426), is required for LDL oxidation. Under conditions where inhibitory protein (such as albumin) is present, LDL oxidation by Cp is optimal in the presence of superoxide, which reduces the surface copper atom of Cp. Cultured vascular endothelial and smooth muscle cells also oxidize LDL in the presence of Cp. Superoxide release by these cells is a critical factor regulating the rate of oxidation. Cultured monocytic cells, when activated by zymosan, can oxidize LDL, but these cells are unique in their secretion of Cp. Inhibitor studies using Cp-specific antibodies and antisense oligonucleotides show that Cp is a major contributor to LDL oxidation by these cells. The role of Cp in lipoprotein oxidation and atherosclerotic lesion progression in vivo has not been directly assessed and is an important area for future studies.
Collapse
Affiliation(s)
- P L Fox
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|
36
|
|
37
|
Bonaccorsi di Patti MC, Bellenchi GC, Bielli P, Calabrese L. Release of highly active Fet3 from membranes of the yeast Pichia pastoris by limited proteolysis. Arch Biochem Biophys 1999; 372:295-9. [PMID: 10600167 DOI: 10.1006/abbi.1999.1493] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A soluble derivative of Fet3 has been obtained from the methylotrophic yeast Pichia pastoris by limited proteolysis of membrane suspensions with trypsin. The soluble protein and the membrane-bound parent Fet3 have been purified to apparent homogeneity. Soluble Fet3 had molecular mass 100 kDa, while the full-length protein had molecular mass 110 kDa, in line with the expected decrease for cleavage and loss of a single transmembrane helix and a small cytoplasmic domain. The optical and EPR spectra of Fet3 were typical of the multicopper oxidases, indicating the presence of one type 1 blue copper site and a type 2/type 3 copper trinuclear cluster. V(max) values for iron oxidation by P. pastoris Fet3 were obtained similar to human ceruloplasmin and much higher than those reported for Saccharomyces cerevisiae Fet3.
Collapse
Affiliation(s)
- M C Bonaccorsi di Patti
- CNR Center of Molecular Biology, University of Rome, "La Sapienza," P.le A. Moro 5, Rome, 00185, Italy.
| | | | | | | |
Collapse
|
38
|
Musci G, Bellenchi GC, Calabrese L. The multifunctional oxidase activity of ceruloplasmin as revealed by anion binding studies. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:589-97. [PMID: 10504390 DOI: 10.1046/j.1432-1327.1999.00737.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of multiple binding of azide, N3-, on the structural and functional properties of ceruloplasmin (CP) has been reinvestigated by means of both spectroscopic and enzymatic techniques. High affinity binding of the anion to human CP resulted in a dramatic increase of the absorbance at 610 nm and in a concomitant decrease of the optical density at 330 nm. The oxidase activity toward Fe(II) was essentially unaffected, while turnover parameters versus nonferrous substrates dramatically changed, with an approximately 100-fold enhancement of the kcat/Km parameter. Chloride at physiological concentration proved to behave very similarly to N3- bound with high affinity, in that it not only induced the spectroscopic changes previously interpreted in terms of an intramolecular electron transfer from reduced type 1 to type 3 copper ions [Musci, G., Bonaccorsi di Patti, M.C. & Calabrese, L. (1995) J. Protein Chem. 14, 611-617], but it also enhanced some 60-fold the kcat/Km value. A different behavior was observed with chicken CP, where a decrease at 330 nm occurred without a concomitant modification at 603 nm. The chicken enzyme was less sensitive also in terms of enzymatic activity, which was nearly unchanged in the presence of either high affinity N3- or Cl-. At higher N3- concentrations, optical changes of both human and chicken CP were mainly focussed on the appearance of ligand-to-metal charge transfer bands below 500 nm, and the anion behaved as an inhibitor of the oxidase activity versus Fe(II) as well as noniron substrates. The well known bleaching of the blue chromophore could be observed, at neutral pH, only at very high N3-/CP ratios. The data presented in this paper are consistent with a mechanism of structural and functional modulation of CP by anions, that would be able to dictate the substrate specificity of the cuproprotein, and suggest the possibility that CP may act in vivo as a multifunctional oxidase.
Collapse
Affiliation(s)
- G Musci
- Department of Organic and Biological Chemistry, University of Messina, Italy.
| | | | | |
Collapse
|
39
|
Cha MK, Kim IH. Ceruloplasmin has a distinct active site for the catalyzing glutathione-dependent reduction of alkyl hydroperoxide. Biochemistry 1999; 38:12104-10. [PMID: 10508415 DOI: 10.1021/bi990444b] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ceruloplasmin, a blue multi-copper alpha(2)-glycoprotein found in the plasma of all vertebrates, is capable of oxidizing aromatic amines and ferrous iron. Here, we report that human ceruloplasmin exhibits an alkyl hydroperoxide peroxidase activity, which is independent of the oxidase activity. The site-specific modification of the sulfhydryl of cysteine at position 699 in ceruloplasmin completely abolished the antioxidant activity, suggesting that ceruloplasmin is a peroxidase with a cysteinyl thiol as a functional nucleophile. The crystal structure of human ceruloplasmin reveals that the domain containing Cys-699 is apart from the multi-copper complex domains. Taken together, these data suggest that ceruloplasmin has a distinct active site for a glutathione-linked peroxidase activity apart from the copper complex site exerting ferroxidase activity.
Collapse
Affiliation(s)
- M K Cha
- National Creative Research Initiative Center for Antioxidant Proteins, Department of Biochemistry, Pai-Chai University, Taejon, Korea
| | | |
Collapse
|
40
|
Bianchini A, Musci G, Calabrese L. Inhibition of endothelial nitric-oxide synthase by ceruloplasmin. J Biol Chem 1999; 274:20265-70. [PMID: 10400645 DOI: 10.1074/jbc.274.29.20265] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasma copper protein ceruloplasmin (CP) was found to inhibit endothelial nitric-oxide synthase activation in cultured endothelial cells, in line with previous evidence showing that the endothelium-dependent vasorelaxation of the aorta is impaired by physiological concentrations of ceruloplasmin. The data presented here indicate a direct relationship between the extent of inhibition of agonist-triggered endothelial nitric oxide synthase activation and CP-induced enrichment of the copper content of endothelial cells. Copper discharged by CP was mainly localized in the soluble fraction of cells. The subcellular distribution of the metal seems to be of relevance to the inhibitory effect of CP, because it was mimicked by copper chelates, like copper-histidine, able to selectively enrich the cytosolic fraction of cells, but not by copper salts, which preferentially located the metal to the particulate fraction.
Collapse
Affiliation(s)
- A Bianchini
- Department of Biochemical Sciences, University La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | |
Collapse
|
41
|
Kim IG, Park SY. Requirement of intact human ceruloplasmin for the glutathione-linked peroxidase activity. FEBS Lett 1998; 437:293-6. [PMID: 9824310 DOI: 10.1016/s0014-5793(98)01253-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Structural integrity may be needed for the glutathione-linked peroxidase activity of human ceruloplasmin. Intact human ceruloplasmin has a potent peroxidase property to decompose H2O2 in the presence of reduced glutathione. However, the fragment of approximately 116000 Da produced by proteolytic degradation had less than one-third of the glutathione-linked peroxidase activity of intact ceruloplasmin. When further proteolysis occurred, glutathione-linked peroxidase activity of human ceruloplasmin disappeared. In contrast, ceruloplasmin (116000 Da and <96000 Da) fragmented by proteolysis significantly removed H2O2 irrespective of the presence of reduced glutathione. Although proteolytic fragmentation of ceruloplasmin occurs, the antioxidant activity of ceruloplasmin that prevents DNA strand breaks in a metal-catalyzed reaction system was significantly maintained.
Collapse
Affiliation(s)
- I G Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Yusong, Taejon, South Korea.
| | | |
Collapse
|
42
|
|
43
|
Abstract
Human ceruloplasmin exhibited different antioxidant effects according to the electron donors in a metal-catalyzed oxidation system. Purified ceruloplasmin did not play a significant role in the protection of DNA strand breaks in the ascorbate/Fe3+/O2 system. However, when ascorbates were replaced with a thiol-reducing equivalent such as dithiothreitol, DNA strand breaks were significantly prevented by the same amount of ceruloplasmin. Ceruloplasmin did not catalyze the decomposition of H2O2 in the absence of reduced glutathione. On the contrary, ceruloplasmin showed a potent peroxidase ability to destroy H2O2 in the presence of reduced glutathione. In conclusion, the removal of H2O2 by human ceruloplasmin is not simply stoichiometric but thiol-dependent.
Collapse
Affiliation(s)
- I G Kim
- Department of Radiation Biology, Korea Atomic Energy Research Institute, Yusong, Taejon, South Korea.
| | | | | | | |
Collapse
|
44
|
Handelman GJ, Nightingale ZD, Dolnikowski GG, Blumberg JB. Formation of carbonyls during attack on insulin by submolar amounts of hypochlorite. Anal Biochem 1998; 258:339-48. [PMID: 9570850 DOI: 10.1006/abio.1998.2592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine insulin was reacted at pH 4.0 with submolar amounts of hypochlorite. At least one molecule of insulin was modified per two molecules of hypochlorite added, as estimated by HPLC of native and modified insulin. About 5% of the hypochlorite-modified insulin reacted with dinitrophenylhydrazine (DNPH), a reagent which specifically labels carbonyl groups. The major DNPH-labeled product was isolated from the native insulin on reverse-phase HPLC, using trifluoroacetic acid/water/acetonitrile gradients. The UV spectrum of the major peak on the HPLC diode-array detector was representative of DNPH adducts, with lambda max = 365 nm. Several methods, including total amino acid analysis, tryptic digestion, and collision-induced dissociation-electrospray MS, indicate that the major carbonyl in the DNPH-labeled product was on the amino-terminal phenylalanine of the insulin B-chain. Amino acid analysis indicated that tyrosine was also degraded by hypochlorite, but we could not detect a carbonyl group formed at tyrosine. These findings suggest that the terminal amino groups of proteins are highly vulnerable to carbonyl formation during hypochlorite attack. The use of relatively low amounts of active oxygen species (such as hypochlorite), followed by chromatographic isolation of the protein labeled with a carbonyl-specific reagent, can be a useful approach to the study of reactive sites on proteins.
Collapse
Affiliation(s)
- G J Handelman
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
45
|
Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 1997; 10:485-94. [PMID: 9168245 DOI: 10.1021/tx960133r] [Citation(s) in RCA: 494] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E R Stadtman
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892-0342, USA.
| | | |
Collapse
|
46
|
Affiliation(s)
- Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305
| | | | | |
Collapse
|
47
|
Loeffler DA, LeWitt PA, Juneau PL, Sima AA, Nguyen HU, DeMaggio AJ, Brickman CM, Brewer GJ, Dick RD, Troyer MD, Kanaley L. Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders. Brain Res 1996; 738:265-74. [PMID: 8955522 DOI: 10.1016/s0006-8993(96)00782-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ceruloplasmin (CP), the major plasma anti-oxidant and copper transport protein, is synthesized in several tissues, including the brain. We compared regional brain concentrations of CP and copper between subjects with Alzheimer's disease (AD, n = 12), Parkinson's disease (PD, n = 14), Huntington's disease (HD, n = 11), progressive supranuclear palsy (PSP, n = 11), young adult normal controls (YC, n = 6) and elderly normal controls (EC, n = 7). Mean CP concentrations were significantly increased vs. EC (P < 0.05) in AD hippocampus, entorhinal cortex, frontal cortex, and putamen. PD hippocampus, frontal, temporal, and parietal cortices, and HD hippocampus, parietal cortex, and substantia nigra. Immunocytochemical staining for CP in AD hippocampus revealed marked staining within neurons, astrocytes, and neuritic plaques. Increased CP concentrations in brain in these disorders may indicate a localized acute phase-type response and/or a compensatory increase to oxidative stress.
Collapse
Affiliation(s)
- D A Loeffler
- Department of Medicine, Sinai Hospital, Detroit, MI 48235, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chicca MC, Nesti C, Muzzoli M, Pasetti P, Pinamonti S. Correlation between age and DNA damage detected by FADU in human peripheral blood lymphocytes. Mutat Res 1996; 316:201-8. [PMID: 8649455 DOI: 10.1016/s0921-8734(96)90004-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fluorometric analysis of DNA unwinding (FADU) is a fast and reliable method for detecting single strand DNA breaks as an index of DNA damage induced by clastogenic agents. A study of damage detected by FADU was conducted on DNA extracted from peripheral blood lymphocytes of 128 healthy nonsmoking regular donors (ranging in age from 19 to 67 years) and from 5 umbilical cord blood samples. DNA damage was measured as percentage of unwound DNA after alkalinization. Statistical analyses, both parametric (Pearson r correlation coefficient, b regression coefficient, ANOVA) and nonparametric (Kruskal-Wallis H test, Spearman rs rank correlation coefficient), support a significant correlation between age of donors and amount of DNA damage. The same results are found when adult donors are divided in four age classes and the ANOVA test performed among the mean percentages of unwound DNA of each class. Furthermore, donors of the same age belonging to different blood groups (A, B, AB and O) do not show any difference in DNA damage detected by FADU.
Collapse
Affiliation(s)
- M C Chicca
- Department of Biology (Evolutionary Biology Branch) University of Ferrara, Italy.
| | | | | | | | | |
Collapse
|
49
|
Musci G, Bonaccorsi di Patti MC, Calabrese L. Modulation of the redox state of the copper sites of human ceruloplasmin by chloride. JOURNAL OF PROTEIN CHEMISTRY 1995; 14:611-9. [PMID: 8561857 DOI: 10.1007/bf01886887] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Incubation of human ceruloplasmin with physiological concentrations of chloride at neutral pH invariably caused dramatic changes of both the spectroscopic and the functional properties of the protein. The optical intensity at 610 nm increased up to 60%, with a concomitant decrease at 330 nm and the appearance of new bands between 410 and 500 nm. Signals previously undetectable appeared in the EPR spectrum. On the basis of computer simulations, they were interpreted as stemming from an oxidized type 1 copper site and from a half-reduced type 3 copper pair. Removal of chloride completely restored the original optical and EPR lineshapes. Hydrogen peroxide, added to ceruloplasmin in the presence of chloride, was able to capture the electron of the half-reduced type 3 site and to yield a protein insensitive to subsequent removal and readdition of the anion. As a whole, the spectroscopic data indicate that a blue site is partially reduced in the resting protein and that, upon binding of chloride, human ceruloplasmin undergoes a structural change leading to displacement of an electron from the reduced type 1 site to the type 3 site pair. Chloride dramatically affected the catalytic efficiency of human ceruloplasmin. At neutral pH, the anion was an activator of the oxidase activity, being able to enhance up to tenfold the catalytic rate. At pH < 6, in line with all previous reports, chloride strongly inhibited the activity. At intermediate pH values, i.e., around 6, the effect was composite, with an activating effect at low concentration and an inhibitory effect at higher concentration. Since chloride is present at very high concentrations in the plasma, these results suggest that human ceruloplasmin is, in the plasma, under control of this anion.
Collapse
Affiliation(s)
- G Musci
- Department of Organic and Biological Chemistry, University of Messina, Italy.
| | | | | |
Collapse
|
50
|
Fox PL, Mukhopadhyay C, Ehrenwald E. Structure, oxidant activity, and cardiovascular mechanisms of human ceruloplasmin. Life Sci 1995; 56:1749-58. [PMID: 7739349 DOI: 10.1016/0024-3205(95)00146-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ceruloplasmin is the principal carrier of copper in human plasma. It is an abundant protein that participates in the acute phase reaction to stress, but its physiological function(s) is unknown. An antioxidant activity of ceruloplasmin has been described, but recent evidence suggests that the protein may also exhibit potent pro-oxidant activity and cause oxidative modification of low density lipoprotein (LDL). The pro-oxidant activity is highly dependent on the structure of the protein; removal of a single one of the seven integral copper atoms, or a specific proteolytic cleavage event, completely suppresses LDL oxidation. This newly described pro-oxidant activity may help to explain epidemiological studies indicating that ceruloplasmin is an independent risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- P L Fox
- Department of Cell Biology, Cleveland Clinic Foundation, OH 44195, USA
| | | | | |
Collapse
|