1
|
Musik JE, Zalucki YM, Beacham IR, Jennings MP. The role of signal sequence proximal residues in the mature region of bacterial secreted proteins in E. coli. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184000. [PMID: 35798072 DOI: 10.1016/j.bbamem.2022.184000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Secreted proteins contain an N-terminal signal peptide to guide them through the secretion pathway. Once the protein is translocated, the signal peptide is removed by a signal peptidase, such as signal peptidase I. The signal peptide has been extensively studied and reviewed; however, the mature region has not been the focus of review. Here we cover the experimental evidence that highlights the important role of the mature region amino acid residues in both the efficiency and the ability of secreted proteins to be successfully exported via secretion pathways and cleaved by signal peptidase I.
Collapse
Affiliation(s)
- Joanna E Musik
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Yaramah M Zalucki
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
2
|
Pratama F, Linton D, Dixon N. Genetic and process engineering strategies for enhanced recombinant N-glycoprotein production in bacteria. Microb Cell Fact 2021; 20:198. [PMID: 34649588 PMCID: PMC8518210 DOI: 10.1186/s12934-021-01689-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background The production of N-linked glycoproteins in genetically amenable bacterial hosts offers great potential for reduced cost, faster/simpler bioprocesses, greater customisation, and utility for distributed manufacturing of glycoconjugate vaccines and glycoprotein therapeutics. Efforts to optimize production hosts have included heterologous expression of glycosylation enzymes, metabolic engineering, use of alternative secretion pathways, and attenuation of gene expression. However, a major bottleneck to enhance glycosylation efficiency, which limits the utility of the other improvements, is the impact of target protein sequon accessibility during glycosylation. Results Here, we explore a series of genetic and process engineering strategies to increase recombinant N-linked glycosylation, mediated by the Campylobacter-derived PglB oligosaccharyltransferase in Escherichia coli. Strategies include increasing membrane residency time of the target protein by modifying the cleavage site of its secretion signal, and modulating protein folding in the periplasm by use of oxygen limitation or strains with compromised oxidoreductase or disulphide-bond isomerase activity. These approaches achieve up to twofold improvement in glycosylation efficiency. Furthermore, we also demonstrate that supplementation with the chemical oxidant cystine enhances the titre of glycoprotein in an oxidoreductase knockout strain by improving total protein production and cell fitness, while at the same time maintaining higher levels of glycosylation efficiency. Conclusions In this study, we demonstrate that improved protein glycosylation in the heterologous host could be achieved by mimicking the coordination between protein translocation, folding and glycosylation observed in native host such as Campylobacter jejuni and mammalian cells. Furthermore, it provides insight into strain engineering and bioprocess strategies, to improve glycoprotein yield and titre, and to avoid physiological burden of unfolded protein stress upon cell growth. The process and genetic strategies identified herein will inform further optimisation and scale-up of heterologous recombinant N-glycoprotein production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01689-x.
Collapse
Affiliation(s)
- Fenryco Pratama
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.,Microbial Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Dennis Linton
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M1 7DN, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, M1 7DN, UK. .,Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
3
|
Li R, Zeng W, Ma M, Wei Z, Liu H, Liu X, Wang M, Shi X, Zeng J, Yang L, Mo D, Liu X, Chen Y, He Z. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs. Transgenic Res 2020; 29:149-163. [PMID: 31927726 DOI: 10.1007/s11248-020-00188-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
Myostatin (MSTN), a member of the transforming growth factor-β superfamily, is a negative regulator of muscle growth and development. Disruption of the MSTN gene in various mammalian species markedly promotes muscle growth. Previous studies have mainly focused on the disruption of the MSTN peptide coding region in pigs but not on the modification of the signal peptide region. In this study, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system was used to successfully introduce two mutations (PVD20H and GP19del) in the MSTN signal peptide region of the indigenous Chinese pig breed, Liang Guang Small Spotted pig. Both mutations in signal peptide increased the muscle mass without inhibiting the production of mature MSTN peptide in the cells. Histological analysis revealed that the enhanced muscle mass in MSTN+/PVD20H pig was mainly due to an increase in the number of muscle fibers. The expression of MSTN in the longissimus dorsi muscle of MSTN+/PVD20H and MSTNKO/PVD20H pigs was significantly downregulated, whereas that of myogenic regulatory factors, including MyoD, Myogenin, and Myf-5, was significantly upregulated when compared to those in the longissimus dorsi muscle of wild-type pigs. Meanwhile, the mutations also activated the PI3K/Akt pathway. The results of this study indicated that precise editing of the MSTN signal peptide can enhance porcine muscle development without markedly affecting the expression of mature MSTN peptide, which could exert other beneficial biological functions in the edited pigs.
Collapse
Affiliation(s)
- Ruiqiang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Wu Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Miao Ma
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Zixuan Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Hongbo Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Xiaofeng Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Jianhua Zeng
- Guangdong YIHAO Food Co., Ltd., Guangzhou, 510620, People's Republic of China
| | - Linfang Yang
- Guangdong YIHAO Food Co., Ltd., Guangzhou, 510620, People's Republic of China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, No. 3 Road of Higher Education Mega Centre North, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
4
|
Musik JE, Zalucki YM, Day CJ, Jennings MP. Efficient function of signal peptidase 1 of Escherichia coli is partly determined by residues in the mature N-terminus of exported proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1018-1022. [PMID: 30849301 DOI: 10.1016/j.bbamem.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 11/25/2022]
Abstract
Exported proteins require an N-terminal signal peptide to direct them from the cytoplasm to the periplasm. Once the protein has been translocated across the cytoplasmic membrane, the signal peptide is cleaved by a signal peptidase, allowing the remainder of the protein to fold into its mature state in the periplasm. Signal peptidase I (LepB) cleaves non-lipoproteins and recognises the sequence Ala-X-Ala. Amino acids present at the N-terminus of mature, exported proteins have been shown to affect the efficiency at which the protein is exported. Here we investigated a bias against aromatic amino acids at the second position in the mature protein (P2'). Maltose binding protein (MBP) was mutated to introduce aromatic amino acids (tryptophan, tyrosine and phenylalanine) at P2'. All mutants with aromatic amino acids at P2' were exported less efficiently as indicated by a slight increase in precursor protein in vivo. Binding of LepB to peptides that encompass the MBP cleavage site were analysed using surface plasmon resonance. These studies showed peptides with an aromatic amino acid at P2' had a slower off rate, due to a significantly higher binding affinity for LepB. These data are consistent with the accumulation of small amounts of preMBP in purified protein samples. Hence, the reason for the lack of aromatic amino acids at P2' in E. coli is likely due to interference with efficient LepB activity. These data and previous bioinformatics strongly suggest that aromatic amino acids are not preferred at P2' and this should be incorporated into signal peptide prediction algorithms.
Collapse
Affiliation(s)
- Joanna E Musik
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Yaramah M Zalucki
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia.
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
5
|
A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97:422-441. [DOI: 10.1016/j.ejcb.2018.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
|
6
|
Tien C, Huang L, Watanabe SM, Speidel JT, Carter CA, Chen C. Context-dependent autoprocessing of human immunodeficiency virus type 1 protease precursors. PLoS One 2018; 13:e0191372. [PMID: 29338056 PMCID: PMC5770051 DOI: 10.1371/journal.pone.0191372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/03/2018] [Indexed: 11/29/2022] Open
Abstract
HIV-1 protease autoprocessing is responsible for liberation of free mature protease (PR) from the Gag-Pol polyprotein precursor. A cell-based model system was previously developed to examine the autoprocessing mechanism of fusion precursors carrying the p6*-PR miniprecursor sandwiched between various proteins or epitopes. We here report that precursor autoprocessing is context-dependent as its activity and outcomes can be modulated by sequences upstream of p6*-PR. This was exemplified by the 26aa maltose binding protein (MBP) signal peptide (SigP) when placed at the N-terminus of a fusion precursor. The mature PRs released from SigP-carrying precursors are resistant to self-degradation whereas those released from SigP-lacking fusion precursors are prone to self-degradation. A H69D mutation in PR abolished autoprocessing of SigP-containing fusion precursors whereas it only partially suppressed autoprocessing of fusion precursors lacking SigP. An autoprocessing deficient GFP fusion precursor with SigP exhibited a subcellular distribution pattern distinct from the one without it in transfected HeLa cells. Furthermore, a SigP fusion precursor carrying a substitution at the P1 position released the mature PR and PR-containing fragments that were different from those released from the precursor carrying the same mutation but lacking SigP. We also examined autoprocessing outcomes in viral particles produced by a NL4-3 derived proviral construct and demonstrated the existence of several PR-containing fragments along with the mature PR. Some of these resembled the SigP precursor autoprocessing outcomes. This finding of context-dependent modulation reveals the complexity of precursor autoprocessing regulation that most likely accompanies sequence variation imposed by the evolution of the upstream Gag moiety.
Collapse
Affiliation(s)
- ChihFeng Tien
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Liangqun Huang
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Susan M. Watanabe
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jordan T. Speidel
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carol A. Carter
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Chaoping Chen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Signal peptidases are membrane proteases that play crucial roles in the protein transport pathway of bacteria. They cleave off the signal peptide from precursor proteins that are membrane inserted by the SecYEG or Tat translocons. Signal peptide cleavage releases the translocated protein from the inner membrane allowing the protein to be exported to the periplasm, outer membrane, or secreted into the medium. Signal peptidases are very important proteins to study. They are unique serine proteases with a Ser-Lys dyad, catalyze cleavage at the membrane surface, and are promising potential antibacterial drug targets. This chapter will focus on the isolation of signal peptidases and the preprotein substrates, as well as describe a peptide library approach for characterizing the substrate specificity.
Collapse
Affiliation(s)
- R E Dalbey
- The Ohio State University, Columbus, OH, United States.
| | - D Pei
- The Ohio State University, Columbus, OH, United States
| | - Ö D Ekici
- The Ohio State University, Newark, OH, United States
| |
Collapse
|
8
|
Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 2016; 531:395-399. [PMID: 26950603 PMCID: PMC4855518 DOI: 10.1038/nature17163] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/25/2016] [Indexed: 02/07/2023]
Abstract
Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61α, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid1-10. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation 11. How a translocating polypeptide inserts into the channel is uncertain, as cryo-EM structures of the active channel have a relatively low resolution (~10Å) or are of insufficient quality 6-8. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The C-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Thus, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.
Collapse
|
9
|
Ting YT, Harris PWR, Batot G, Brimble MA, Baker EN, Young PG. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. IUCRJ 2016; 3:10-9. [PMID: 26870377 PMCID: PMC4704075 DOI: 10.1107/s2052252515019971] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/22/2015] [Indexed: 05/22/2023]
Abstract
Bacterial type I signal peptidases (SPases) are membrane-anchored serine proteases that process the signal peptides of proteins exported via the Sec and Tat secretion systems. Despite their crucial importance for bacterial virulence and their attractiveness as drug targets, only one such enzyme, LepB from Escherichia coli, has been structurally characterized, and the transient nature of peptide binding has stymied attempts to directly visualize SPase-substrate complexes. Here, the crystal structure of SpsB, the type I signal peptidase from the Gram-positive pathogen Staphylococcus aureus, is reported, and a peptide-tethering strategy that exploits the use of carrier-driven crystallization is described. This enabled the determination of the crystal structures of three SpsB-peptide complexes, both with cleavable substrates and with an inhibitory peptide. SpsB-peptide interactions in these complexes are almost exclusively limited to the canonical signal-peptide motif Ala-X-Ala, for which clear specificity pockets are found. Minimal contacts are made outside this core, with the variable side chains of the peptides accommodated in shallow grooves or exposed faces. These results illustrate how high fidelity is retained despite broad sequence diversity, in a process that is vital for cell survival.
Collapse
Affiliation(s)
- Yi Tian Ting
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Paul W R Harris
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Gaelle Batot
- School of Biological Sciences, The University of Auckland , Auckland 1142, New Zealand
| | - Margaret A Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand; School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Edward N Baker
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Paul G Young
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Midorikawa T, Endow JK, Dufour J, Zhu J, Inoue K. Plastidic type I signal peptidase 1 is a redox-dependent thylakoidal processing peptidase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:592-603. [PMID: 25182596 DOI: 10.1111/tpj.12655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/08/2014] [Accepted: 08/21/2014] [Indexed: 05/09/2023]
Abstract
Thylakoids are the photosynthetic membranes in chloroplasts and cyanobacteria. The aqueous phase inside the thylakoid known as the thylakoid lumen plays an essential role in the photosynthetic electron transport. The presence and significance of thiol-disulfide exchange in this compartment have been recognized but remain poorly understood. All proteins found free in the thylakoid lumen and some proteins associated to the thylakoid membrane require an N-terminal targeting signal, which is removed in the lumen by a membrane-bound serine protease called thylakoidal processing peptidase (TPP). TPP is homologous to Escherichia coli type I signal peptidase (SPI) called LepB. Genetic data indicate that plastidic SPI 1 (Plsp1) is the main TPP in Arabidopsis thaliana (Arabidopsis) although biochemical evidence had been lacking. Here we demonstrate catalytic activity of bacterially produced Arabidopsis Plsp1. Recombinant Plsp1 showed processing activity against various TPP substrates at a level comparable to that of LepB. Plsp1 and LepB were also similar in the pH optima, sensitivity to arylomycin variants and a preference for the residue at -3 to the cleavage site within a substrate. Plsp1 orthologs found in angiosperms contain two unique Cys residues located in the lumen. Results of processing assays suggested that these residues were redox active and formation of a disulfide bond between them was necessary for the activity of recombinant Arabidopsis Plsp1. Furthermore, Plsp1 in Arabidopsis and pea thylakoids migrated faster under non-reducing conditions than under reducing conditions on SDS-PAGE. These results underpin the notion that Plsp1 is a redox-dependent signal peptidase in the thylakoid lumen.
Collapse
Affiliation(s)
- Takafumi Midorikawa
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | | | | | | | | |
Collapse
|
11
|
Liu M, Wright J, Guo H, Xiong Y, Arvan P. Proinsulin entry and transit through the endoplasmic reticulum in pancreatic beta cells. VITAMINS AND HORMONES 2014; 95:35-62. [PMID: 24559913 DOI: 10.1016/b978-0-12-800174-5.00002-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin is an essential hormone for maintaining metabolic homeostasis in the body. To make fully bioactive insulin, pancreatic beta cells initiate synthesis of the insulin precursor, preproinsulin, at the cytosolic side of the endoplasmic reticulum (ER), whereupon it undergoes co- and post-translational translocation across the ER membrane. Preproinsulin is cleaved by signal peptidase to form proinsulin that folds on the luminal side of the ER, forming three evolutionarily conserved disulfide bonds. Properly folded proinsulin forms dimers and exits from the ER, trafficking through Golgi complex into immature secretory granules wherein C-peptide is endoproteolytically excised, allowing fully bioactive two-chain insulin to ultimately be stored in mature granules for insulin secretion. Although insulin biosynthesis has been intensely studied in recent decades, the earliest events, including proinsulin entry and exit from the ER, have been relatively understudied. However, over the past 5 years, more than 20 new insulin gene mutations have been reported to cause a new syndrome termed Mutant INS-gene-induced Diabetes of Youth (MIDY). Although these mutants have not been completely characterized, most of them affect proinsulin entry and exit from the ER. Here, we summarize our current knowledge about the early events of insulin biosynthesis and review recent advances in understanding how defects in these events may lead to pancreatic beta cell failure.
Collapse
Affiliation(s)
- Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Metabolism, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Jordan Wright
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yi Xiong
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, The University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
12
|
Fuchs JE, von Grafenstein S, Huber RG, Margreiter MA, Spitzer GM, Wallnoefer HG, Liedl KR. Cleavage entropy as quantitative measure of protease specificity. PLoS Comput Biol 2013; 9:e1003007. [PMID: 23637583 PMCID: PMC3630115 DOI: 10.1371/journal.pcbi.1003007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/07/2013] [Indexed: 01/05/2023] Open
Abstract
A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases) and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity. Proteases show a broad range of cleavage specificities. Promiscuous proteases as digestive enzymes unspecifically degrade peptides, whereas highly specific proteases are involved in signaling cascades. As a quantitative index of substrate specificity was lacking, we introduce cleavage entropy as a measure of substrate specificity of proteases. This quantitative score allows for straight-forward rationalization of substrate recognition by a subpocket-wise assessment of substrate readout leading to specificity profiles of individual proteases as well as an estimate of overall substrate promiscuity. We present an exemplary application of the descriptor ‘cleavage entropy’ to trace substrate specificity through the evolution of different protease folds. Our score highlights the diversity of substrate specificity within evolutionary related proteases and hence the complex relationship between sequence, structure and substrate recognition. By taking into account the whole distribution of known substrates rather than simple substrate counting, cleavage entropy provides the unique opportunity to dissect the molecular origins of protease substrate specificity.
Collapse
Affiliation(s)
- Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Susanne von Grafenstein
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Roland G. Huber
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Michael A. Margreiter
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Gudrun M. Spitzer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Hannes G. Wallnoefer
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
13
|
Thoendel M, Horswill AR. Random mutagenesis and topology analysis of the autoinducing peptide biosynthesis proteins in Staphylococcus aureus. Mol Microbiol 2013; 87:318-37. [PMID: 23216863 PMCID: PMC3545067 DOI: 10.1111/mmi.12100] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/28/2022]
Abstract
The Staphylococcus aureus accessory gene regulator (agr) is a peptide signalling system that regulates the production of secreted virulence factors required to cause infections. The signal controlling agr function is a 7-9 residue thiolactone-containing peptide called an autoinducing peptide (AIP) that is biosynthesized from the AgrD precursor by the membrane peptidase AgrB. To gain insight into AgrB and AgrD function, the agrBD genes were mutagenized and screened for deficiencies in AIP production. In total, single-site mutations at 14 different residues in AgrD were identified and another 20 within AgrB. In AgrD, novel mutations were characterized in the N-terminal leader and throughout the central region encoding the AIP signal. In AgrB, most mutations blocked peptidase activity, but mutations in the K129-K131 residues were defective in a later step in AIP biosynthesis, separating the peptidase function from thiolactone ring formation and AIP transport. With the identification of residues in AgrB essential for AgrD processing, we reevaluated the membrane topology and the new model predicts four transmembrane helices and a potential re-entrant loop on the cytoplasmic face. Finally, co-immunoprecipitation studies indicate that AgrB forms oligomeric structures within the membrane. These studies provide further insight into the unique structural and functional properties of AgrB.
Collapse
Affiliation(s)
| | - Alexander R. Horswill
- Department of Microbiology Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, IA 52242
| |
Collapse
|
14
|
Auclair SM, Bhanu MK, Kendall DA. Signal peptidase I: cleaving the way to mature proteins. Protein Sci 2011; 21:13-25. [PMID: 22031009 DOI: 10.1002/pro.757] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 11/07/2022]
Abstract
Signal peptidase I (SPase I) is critical for the release of translocated preproteins from the membrane as they are transported from a cytoplasmic site of synthesis to extracytoplasmic locations. These proteins are synthesized with an amino-terminal extension, the signal sequence, which directs the preprotein to the Sec- or Tat-translocation pathway. Recent evidence indicates that the SPase I cleaves preproteins as they emerge from either pathway, though the steps involved are unclear. Now that the structure of many translocation pathway components has been elucidated, it is critical to determine how these components work in concert to support protein translocation and cleavage. Molecular modeling and NMR studies have provided insight on how the preprotein docks on SPase I in preparation for cleavage. This is a key area for future work since SPase I enzymes in a variety of species have now been identified and the inhibition of these enzymes by antibiotics is being pursued. The eubacterial SPase I is essential for cell viability and belongs to a unique group of serine endoproteases which utilize a Ser-Lys catalytic dyad instead of the prototypical Ser-His-Asp triad used by eukaryotes. As such, SPase I is a desirable antimicrobial target. Advances in our understanding of how the preprotein interfaces with SPase I during the final stages of translocation will facilitate future development of inhibitors that display a high efficacy against SPase I function.
Collapse
Affiliation(s)
- Sarah M Auclair
- Department of Pharmaceutical Sciences, The University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
15
|
Fisher AC, Kim JY, Perez-Rodriguez R, Tullman-Ercek D, Fish WR, Henderson LA, DeLisa MP. Exploration of twin-arginine translocation for expression and purification of correctly folded proteins in Escherichia coli. Microb Biotechnol 2011; 1:403-15. [PMID: 21261860 PMCID: PMC3057487 DOI: 10.1111/j.1751-7915.2008.00041.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Historically, the general secretory (Sec) pathway of Gram‐negative bacteria has served as the primary route by which heterologous proteins are delivered to the periplasm in numerous expression and engineering applications. Here we have systematically examined the twin‐arginine translocation (Tat) pathway as an alternative, and possibly advantageous, secretion pathway for heterologous proteins. Overall, we found that: (i) export efficiency and periplasmic yield of a model substrate were affected by the composition of the Tat signal peptide, (ii) Tat substrates were correctly processed at their N‐termini upon reaching the periplasm and (iii) proteins fused to maltose‐binding protein (MBP) were reliably exported by the Tat system, but only when correctly folded; aberrantly folded MBP fusions were excluded by the Tat pathway's folding quality control feature. We also observed that Tat export yield was comparable to Sec for relatively small, well‐folded proteins, higher relative to Sec for proteins that required cytoplasmic folding, and lower relative to Sec for larger, soluble fusion proteins. Interestingly, the specific activity of material purified from the periplasm was higher for certain Tat substrates relative to their Sec counterparts, suggesting that Tat expression can give rise to relatively pure and highly active proteins in one step.
Collapse
Affiliation(s)
- Adam C Fisher
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Insights into the functionality of the putative residues involved in enterocin AS-48 maturation. Appl Environ Microbiol 2010; 76:7268-76. [PMID: 20833793 DOI: 10.1128/aem.01154-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AS-48 is a 70-residue, α-helical, cationic bacteriocin produced by Enterococcus faecalis and is very singular in its circular structure and its broad antibacterial spectrum. The AS-48 preprotein consists of an N-terminal signal peptide (SP) (35 residues) followed by a proprotein moiety that undergoes posttranslational modifications to yield the mature and active circular protein. For the study of the specificity of the region of AS-48 that is responsible for maturation, three single mutants have been generated by site-directed mutagenesis in the as-48A structural gene. The substitutions were made just in the residues that are thought to constitute a recognition site for the SP cleavage enzyme (His-1, Met1) and in those involved in circularization (Met1, Trp70). Each derivative was expressed in the enterococcal JH2-2 strain containing the necessary native biosynthetic machinery for enterocin production. The importance of these derivatives in AS-48 processing has been evaluated on the basis of the production and structural characterization of the corresponding derivatives. Notably, only two of them (Trp70Ala and Met1Ala derivatives) could be purified in different forms and amounts and are characterized for their bactericidal activity and secondary structure. We could not detect any production of AS-48 in JH2-2(pAM401-81(His-1Ile)) by using the conventional chromatographic techniques, despite the high efficiency of the culture conditions applied to produce this enterocin. Our results underline the different important roles of the mutated residues in (i) the elimination of the SP, (ii) the production levels and antibacterial activity of the mature proteins, and (iii) protein circularization. Moreover, our findings suggest that His-1 is critically involved in cleavage site recognition, its substitution being responsible for the blockage of processing, thereby hampering the production of the specific protein in the cellular culture supernatant.
Collapse
|
17
|
Ravipaty S, Reilly JP. Comprehensive characterization of methicillin-resistant Staphylococcus aureus subsp. aureus COL secretome by two-dimensional liquid chromatography and mass spectrometry. Mol Cell Proteomics 2010; 9:1898-919. [PMID: 20418541 DOI: 10.1074/mcp.m900494-mcp200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two-dimensional LC combined with whole protein and peptide mass spectrometry is used to characterize proteins secreted by methicillin-resistant Staphylococcus aureus COL. Protein identifications were accomplished via off-line protein fractionation followed by digestion and subsequent peptide analysis by reverse phase LC-ESI-LTQ-FT-MS/MS. Peptide MS/MS analysis identified 127 proteins comprising 59 secreted proteins, seven cell wall-anchored proteins, four lipoproteins, four membrane proteins, and 53 cytoplasmic proteins. The identified secreted proteins included various virulence factors of known functions (cytotoxins, enterotoxins, proteases, lipolytic enzymes, peptidoglycan hydrolases, etc.). Accurate whole protein mass measurement (+/-1.5 Da) of the secreted proteins combined with peptide analysis enabled identification of signal peptide cleavage sites and various post-translational modifications. In addition, new observations were possible using the present approach. Although signal peptide cleavage is highly specific, signal peptide processing can occur at more than one site. Surprisingly, cleaved signal peptides and their fragments can be observed in the extracellular medium. The prediction accuracies of several signal peptide prediction programs were also evaluated.
Collapse
Affiliation(s)
- Shobha Ravipaty
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
18
|
Kotia RB, Raghani AR. Analysis of monoclonal antibody product heterogeneity resulting from alternate cleavage sites of signal peptide. Anal Biochem 2010; 399:190-5. [PMID: 20074542 DOI: 10.1016/j.ab.2010.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/01/2009] [Accepted: 01/07/2010] [Indexed: 12/16/2022]
Abstract
Signal peptides used in biosynthesis of proteins are cleaved at a very specific site by signal peptidase during posttranslational translocation of cytoplasmic proteins across the membrane. In some cases, however, there can be cleavage at nonspecific sites, giving rise to heterogeneity in the mature protein, which manifests itself as either elongation or truncation of the N terminus of the mature protein. When used as biopharmaceutical therapeutics, such heterogeneities may be a cause for concern, depending on the nature of the heterogeneity. This article describes the determination of such heterogeneity by peptide mapping in both the heavy chain and the light chain (LC) of a Chinese hamster ovary (CHO) cell-expressed monoclonal antibody (mAb). The peptide map method described here was capable of detecting the extended N-terminal peptides at levels as low as 1% relative to the peak area of the intact N-terminal peptide. The LC of a mAb product was truncated at its N termini by two amino acid residues at approximately 3-4% levels, resulting from alternate signal peptide cleavage. This article describes the quantitation of this truncation by liquid chromatography-mass spectrometry (LC-MS) peptide mapping. Also described is analysis and characterization of LC truncation by reduced and denatured capillary electrophoresis in sodium dodecyl sulfate (CE-SDS). The truncated mAb, which was devoid of the two N-terminal amino acids, was engineered and shown to migrate as the "pre-LC" peak in reduced CE-SDS assay. The amount of the pre-LC peak recovered from the CE-SDS assay was shown to correlate with the amount of truncated peptide observed from the reduced and alkylated peptide map of the engineered mAb.
Collapse
Affiliation(s)
- Ruchi B Kotia
- Analytical and Formulation Sciences, Amgen, Thousand Oaks, CA 91320, USA.
| | | |
Collapse
|
19
|
Pène V, Hernandez C, Vauloup-Fellous C, Garaud-Aunis J, Rosenberg AR. Sequential processing of hepatitis C virus core protein by host cell signal peptidase and signal peptide peptidase: a reassessment. J Viral Hepat 2009; 16:705-15. [PMID: 19281487 DOI: 10.1111/j.1365-2893.2009.01118.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) core protein is believed to play critical roles in the virus morphogenesis and pathogenesis. In HCV polyprotein, core protein terminates with a signal peptide followed by E1 envelope protein. It has remained unclear whether cleavage by host cell signal peptidase (SP) at the core-E1 junction to generate the complete form of core protein, which is anchored in the endoplasmic reticulum membrane, is absolutely required for cleavage within the signal peptide by host cell signal peptide peptidase (SPP) to liberate the mature form of core protein, which is then free for trafficking to lipid droplets. In this study, the possible sources of disagreement in published reports have been examined, and we conclude that a product generated upon inhibition of SP-catalysed cleavage at the core-E1 junction in heterologous expression systems was incorrectly identified as mature core protein. Moreover, inhibition of this cleavage in the most relevant model of human hepatoma cells replicating a full-length HCV genome was shown to abolish interaction of core protein with lipid droplets and production of infectious progeny virus. These results firmly establish that SPP-catalysed liberation of mature core protein is absolutely dependent on prior cleavage by SP at the correct core-E1 site to generate the complete form of core protein, consistent with this obligatory order of processing playing a role in HCV infectious cycle.
Collapse
Affiliation(s)
- V Pène
- INSERM, Equipe Avenir Virologie de l'hépatite C, Institut Cochin, Paris, France
| | | | | | | | | |
Collapse
|
20
|
Ohara-Nemoto Y, Ono T, Shimoyama Y, Kimura S, Nemoto TK. Homologous and heterologous expression and maturation processing of extracellular glutamyl endopeptidase of Staphylococcus epidermidis. Biol Chem 2008; 389:1209-17. [PMID: 18783343 DOI: 10.1515/bc.2008.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The extracellular serine endopeptidase GluSE (EC 3.4.21.19) is considered to be one of the virulence factors of Staphylococcus epidermidis. The present study investigated maturation processing of native GluSE and that heterologously expressed in Escherichia coli. In addition to the 28-kDa mature protease, small amounts of proenzymes with molecular masses of 32, 30, and 29 kDa were identified in the extracellular and cell wall-associated fractions. We defined the pre (M1-A27)- and pro (K28-S66)-segments, and found that processing at the E32-S33 and D48-I49 bonds was responsible for production of the 30- and 29-kDa intermediates, respectively. The full-length form of C-terminally His-tagged GluSE was purified as three proenzymes equivalent to the native ones. These molecules possessing an entire or a part of the pro-segment were proteolytically latent and converted to a mature 28-kDa form by thermolysin cleavage at the S66-V67 bond. Mutation of the essential amino acid S235 suggested auto-proteolytic production of the 30- and 29-kDa intermediates. Furthermore, an undecapeptide (I56-S66) of the truncated pro-segment not only functions as an inhibitor of the protease but also facilitates thermolysin processing. These findings could offer clues to the molecular mechanism involved in the regulation of proteolytic activity of pathogenic proteases secreted from S. epidermidis.
Collapse
Affiliation(s)
- Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | | | | | | | | |
Collapse
|
21
|
Choo KH, Tong JC, Ranganathan S. Modeling Escherichia coli signal peptidase complex with bound substrate: determinants in the mature peptide influencing signal peptide cleavage. BMC Bioinformatics 2008; 9 Suppl 1:S15. [PMID: 18315846 PMCID: PMC2259416 DOI: 10.1186/1471-2105-9-s1-s15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Type I signal peptidases (SPases) are essential membrane-bound serine proteases responsible for the cleavage of signal peptides from proteins that are translocated across biological membranes. The crystal structure of SPase in complex with signal peptide has not been solved and their substrate-binding site and binding specificities remain poorly understood. We report here a structure-based model for Escherichia coli DsbA 13–25 in complex with its endogenous type I SPase. Results The bound structure of DsbA 13–25 in complex with its endogenous type I SPase reported here reveals the existence of an extended conformation of the precursor protein with a pronounced backbone twist between positions P3 and P1'. Residues 13–25 of DsbA occupy, and thereby define 13 subsites, S7 to S6', within the SPase substrate-binding site. The newly defined subsites, S1' to S6' play critical roles in the substrate specificities of E. coli SPase. Our results are in accord with available experimental data. Conclusion Collectively, the results of this study provide interesting new insights into the binding conformation of signal peptides and the substrate-binding site of E. coli SPase. This is the first report on the modeling of a precursor protein into the entire SPase binding site. Together with the conserved precursor protein binding conformation, the existing and newly identified substrate binding sites readily explain SPase cleavage fidelity, consistent with existing biochemical results and solution structures of inhibitors in complex with E. coli SPase. Our data suggests that both signal and mature moiety sequences play important roles and should be considered in the development of predictive tools.
Collapse
Affiliation(s)
- Khar Heng Choo
- Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613.
| | | | | |
Collapse
|
22
|
Ludden M, Mulder A, Schulze K, Subramaniam V, Tampé R, Huskens J. Anchoring of Histidine-Tagged Proteins to Molecular Printboards: Self-assembly, Thermodynamic Modeling, and Patterning. Chemistry 2008; 14:2044-51. [DOI: 10.1002/chem.200701478] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Abstract
Understanding the transport of hydrophilic proteins across biological membranes continues to be an important undertaking. The general secretory (Sec) pathway in Escherichia coli transports the majority of E. coli proteins from their point of synthesis in the cytoplasm to their sites of final localization, associating sequentially with a number of protein components of the transport machinery. The targeting signals for these substrates must be discriminated from those of proteins transported via other pathways. While targeting signals for each route have common overall characteristics, individual signal peptides vary greatly in their amino acid sequences. How do these diverse signals interact specifically with the proteins that comprise the appropriate transport machinery and, at the same time, avoid targeting to an alternate route? The recent publication of the crystal structures of components of the Sec transport machinery now allows a more thorough consideration of the interactions of signal sequences with these components.
Collapse
Affiliation(s)
| | - Debra A. Kendall
- To whom correspondence should be addressed. Mailing address: Department of Molecular and Cell Biology, 91 North Eagleville Road, The University of Connecticut, Storrs, CT 06269-3125. Phone: (860) 486-1891. Fax: (860) 486-4331. E-mail:
| |
Collapse
|
24
|
Nagai N, Habuchi H, Kitazume S, Toyoda H, Hashimoto Y, Kimata K. Regulation of Heparan Sulfate 6-O-Sulfation by β-Secretase Activity. J Biol Chem 2007; 282:14942-51. [PMID: 17363373 DOI: 10.1074/jbc.m610691200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The enzymes involved in glycosaminoglycan chain biosynthesis are mostly Golgi resident proteins, but some are secreted extracellularly. For example, the activities of heparan sulfate 6-O-sulfotransferase (HS6ST) and heparan sulfate 3-O-sulfotransferase are detected in the serum as well in the medium of cell lines. However, the biological significance of this is largely unknown. Here we have investigated by means of monitoring green fluorescent protein (GFP) fluorescence how C-terminally GFP-tagged HS6STs that are stably expressed in CHO-K1 cell lines are secreted/shed. Brefeldin A and monensin treatments revealed that the N-terminal hydrophobic domain of HS6ST3 is processed in the endoplasmic reticulum or cis/medial Golgi. Treatment of HS6ST3-GFP-expressing cells with various protease inhibitors revealed that the cell-permeable beta-secretase inhibitor N-benzyloxycarbonyl-Val-Leu-leucinal (Z-VLL-CHO) specifically inhibits HS6ST secretion, although this effect was specific for HS6ST3 but not for HS6ST1 and HS6ST2. However, Z-VLL-CHO treatment did not increase the molecular size of the HS6ST3-GFP that accumulated in the cell. Z-VLL-CHO treatment also induced the intracellular accumulation of SP-HS6ST3(-TMD)-GFP, a modified secretory form of HS6ST3 that has the preprotrypsin leader sequence as its N-terminal hydrophobic domain. Diminishment of beta-secretase activity by coexpressing the amyloid precursor protein of a Swedish mutant, a potent beta-secretase substrate, also induced intracellular HS6ST3-GFP accumulation. Moreover, Z-VLL-CHO treatment increased the 6-O-sulfate (6S) levels of HS, especially in the disaccharide unit of hexuronic acid-GlcNS(6S). Thus, the HS6ST3 enzyme in the Golgi apparatus and therefore the 6-O sulfation of heparan sulfates in the cell are at least partly regulated by beta-secretase via an indirect mechanism.
Collapse
Affiliation(s)
- Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, Yazako, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Guarnieri M, Kim KH, Bang G, Li J, Zhou Y, Tang X, Wands J, Tong S. Point mutations upstream of hepatitis B virus core gene affect DNA replication at the step of core protein expression. J Virol 2006; 80:587-95. [PMID: 16378961 PMCID: PMC1346833 DOI: 10.1128/jvi.80.2.587-595.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pregenomic RNA directs replication of the hepatitis B virus (HBV) genome by serving both as the messenger for core protein and polymerase and as the genome precursor following its packaging into the core particle. RNA packaging is mediated by a stem-loop structure present at its 5' end designated the epsilon signal, which includes the core gene initiator AUG. The precore RNA has a slightly extended 5' end to cover the entire precore region and, consequently, directs the translation of a precore/core protein, which is secreted as e antigen (HBeAg) following removal of precore-derived signal peptide and the carboxyl terminus. A naturally occurring G1862T mutation upstream of the core AUG affects the bulge of the epsilon signal and generates a "forbidden" residue at the -3 position of the signal peptide cleavage site. Transfection of this and other mutants into human hepatoma cells failed to prove their inhibition of HBeAg secretion but rather revealed great impairment of genome replication. This replication defect was associated with reduced expression of core protein and could be overcome by a G1899A covariation, or by nonsense or frameshift mutation in the precore region. All these mutations antagonized the G1862T mutation on core protein expression. Cotransfection of the G1862T mutant with a replication-deficient HBV genome that provides core protein in trans also restored genome replication. Consistent with our findings in cell culture, HBV genotype A found in African/Asian patients has T1862 and is associated with much lower viremia titers than the European subgroup of genotype A.
Collapse
Affiliation(s)
- Michael Guarnieri
- The Liver Research Center and Brown Medical School, Providence, RI 02903, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Siggaard C, Christensen JH, Corydon TJ, Rittig S, Robertson GL, Gregersen N, Bolund L, Pedersen EB. Expression of three different mutations in the arginine vasopressin gene suggests genotype-phenotype correlation in familial neurohypophyseal diabetes insipidus kindreds. Clin Endocrinol (Oxf) 2005; 63:207-16. [PMID: 16060916 DOI: 10.1111/j.1365-2265.2005.02327.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE AND STUDY DESIGN The autosomal dominant form of familial neurohypophyseal diabetes insipidus (adFNDI) is a rare disease characterized by a severe and progressive deficiency of AVP secondary to mutations in the gene encoding the AVP precursor. Whereas a number of studies have investigated the pathogenetic mechanisms behind the disease only few studies have included detailed clinical characterization of the affected patients, thereby making genotype-phenotype correlations difficult. The aims of the present study were to investigate the cellular effects of three different adFNDI mutations (A19T, L81P and C110X) by heterologous expression in a neurogenic cell line and to correlate these findings to the corresponding clinical phenotype as determined by extensive clinical tests. RESULTS The clinical studies showed a later age of onset in the family carrying the A19T mutation (3.4 years, range 2-9 years) compared with families with the L81P and C110X mutations [0.75 year, range 0.5-1 year and 1.0 year (n = 1), respectively]. No other differences could be demonstrated in the clinical phenotype between families. Expression studies showed that each of the three mutant genes caused significant reduction of the amount of immunoreactive AVP in the cell culture medium and severe impairment of the intracellular trafficking and processing of the AVP prohormone, supporting the disease causing nature of all three mutations. However, the A19T mutation was associated with some capacity for processing and trafficking consistent with the clinical observations. Immunoflourescence studies provided evidence of reticular accumulation of protein within the ER in the A19T and C110X mutants but a unique accumulation of much larger aggregates in the L81P, which were localized both within and immediately outside the ER. CONCLUSION The study suggests a genotype-phenotype correlation with regard to age of onset of diabetes insipidus symptoms and provides support by expression studies.
Collapse
Affiliation(s)
- Charlotte Siggaard
- Department of Pediatrics, Aarhus University Hospital, Skejby Sygehus, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chang HS, Kim JS, Lee JH, Cho JI, Rhim TY, Uh ST, Park BL, Chung IY, Park CS, Shin HD. A single nucleotide polymorphism on the promoter of eotaxin1 associates with its mRNA expression and asthma phenotypes. THE JOURNAL OF IMMUNOLOGY 2005; 174:1525-31. [PMID: 15661912 DOI: 10.4049/jimmunol.174.3.1525] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eotaxin1 plays a pivotal role in eosinophil-associated inflammation. Previously, we demonstrated 14 single-nucleotide polymorphisms (SNPs) in the human eotaxin1 gene and the association between the EOT+67G>A allele and the level of IgE. In this study, we investigated the association between the SNPs and plasma eotaxin1 levels, peripheral blood eosinophil counts, and PC20 methacholine values in normal and asthmatic subjects, and the effects of SNPs on the process of eotaxin1 production. The EOT-576C>T and EOT-384A>G polymorphisms and haplotypes (ht1 and ht4) were significantly associated with plasma eotaxin1 levels in the asthmatics (p < 0.001-0.040). The log [plasma eotaxin1] values correlated with the log [serum total IgE] values in the asthmatics and the normal controls (p = 0.012 and p = 0.004, respectively), and with the log [PC20 methacholine] values in the asthmatics (p = 0.014). A DNA-protein complex was formed with EOT-384A>G, but not with the other SNPs of the promoter. The interaction was stronger with the minor allele than with the common allele, and was reduced upon TNF-alpha exposure. TNF-alpha-stimulated PBMCs from the asthmatics with the minor allele homozygote expressed significantly lower levels of eotaxin1 mRNA than those from individuals with the common allele. The EOT+67G>A polymorphism, which substitutes alanine with threonine, did not affect eotaxin1 production or activity. Our data suggest that the EOT-384A>G SNP participates in the regulation of eotaxin1 expression by providing a potential binding site for a repressor, and that the ANOVA of EOT-384A>G may predict asthma phenotypes.
Collapse
Affiliation(s)
- Hun Soo Chang
- Division of Molecular and Life Sciences, Hanyang University, Ansan, Gyeonggi-do, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Karla A, Lively MO, Paetzel M, Dalbey R. The Identification of Residues That Control Signal Peptidase Cleavage Fidelity and Substrate Specificity. J Biol Chem 2005; 280:6731-41. [PMID: 15598653 DOI: 10.1074/jbc.m413019200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptidase, which removes signal peptides from preproteins, has a substrate specificity for small uncharged residues at -1 (P1) and small or larger aliphatic residues at the -3 (P3) position. Structures of the catalytic domain with a 5S-penem inhibitor and a lipopeptide inhibitor reveal candidate residues that make up the S1 and S3 pockets that bind the P1 and P3 specificity residues of the preprotein substrate. We have used site-directed mutagenesis, mass spectrometric analysis, and in vivo and in vitro activity assays as well as molecular modeling to examine the importance of the substrate pocket residues. Generally, we find that the S1 and S3 binding sites can tolerate changes that are expected to increase or decrease the size of the pocket without large effects on activity. One residue that contributes to the high fidelity of cleavage of signal peptidase is the Ile-144 residue. Changes of the Ile-144 residue to cysteine result in cleavage at multiple sites, as determined by mass spectrometry and Edman sequencing analysis. In addition, we find that signal peptidase is able to cleave after phenylalanine at the -1 residue in a double mutant in which both Ile-86 and Ile-144 were changed to an alanine. Also, alteration of the Ile-144 and Ile-86 residues to the corresponding residues found in the homologous Imp1 protease changes the specificity to promote cleavage following a -1 Asn residue. This work shows that Ile-144 and Ile-86 contribute to the signal peptidase substrate specificity and that Ile-144 is important for the accuracy of the cleavage reaction.
Collapse
Affiliation(s)
- Andrew Karla
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis.
Collapse
Affiliation(s)
- Paul A. Cullen
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
| | - David A. Haake
- School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Division of Infectious Diseases, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Ben Adler
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
- Corresponding author. Tel.: +61-3-9905-4815; fax: +61-3-9905-4811. E-mail address: (B. Adler)
| |
Collapse
|
30
|
Stephenson S, Mueller C, Jiang M, Perego M. Molecular analysis of Phr peptide processing in Bacillus subtilis. J Bacteriol 2003; 185:4861-71. [PMID: 12897006 PMCID: PMC166482 DOI: 10.1128/jb.185.16.4861-4871.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, an export-import pathway regulates production of the Phr pentapeptide inhibitors of Rap proteins. Processing of the Phr precursor proteins into the active pentapeptide form is a key event in the initiation of sporulation and competence development. The PhrA (ARNQT) and PhrE (SRNVT) peptides inhibit the RapA and RapE phosphatases, respectively, whose activity is directed toward the Spo0F approximately P intermediate response regulator of the sporulation phosphorelay. The PhrC (ERGMT) peptide inhibits the RapC protein acting on the ComA response regulator for competence with regard to DNA transformation. The structural organization of PhrA, PhrE, and PhrC suggested a role for type I signal peptidases in the processing of the Phr preinhibitor, encoded by the phr genes, into the proinhibitor form. The proinhibitor was then postulated to be cleaved to the active pentapeptide inhibitor by an additional enzyme. In this report, we provide evidence that Phr preinhibitor proteins are subject to only one processing event at the peptide bond on the amino-terminal end of the pentapeptide. This processing event is most likely independent of type I signal peptidase activity. In vivo and in vitro analyses indicate that none of the five signal peptidases of B. subtilis (SipS, SipT, SipU, SipV, and SipW) are indispensable for Phr processing. However, we show that SipV and SipT have a previously undescribed role in sporulation, competence, and cell growth.
Collapse
Affiliation(s)
- Sophie Stephenson
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
31
|
Luo W, Chen X, Fang H, Green N. Factors governing nonoverlapping substrate specificity by mitochondrial inner membrane peptidase. J Biol Chem 2003; 278:4943-8. [PMID: 12482857 DOI: 10.1074/jbc.m210916200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At least three peptidases are involved in cleaving presequences from imported mitochondrial proteins. One of the peptidase, the inner membrane peptidase, has two catalytic subunits, Imp1p and Imp2p, which are structurally related but functionally distinct in the yeast Saccharomyces cerevisiae. Whereas both subunits are members of the type I signal peptidase family, they exhibit nonoverlapping substrate specificities. A clue to the substrate specificity mechanism has come from our discovery of the importance not only of the -1 and -3 residues in the signal peptides cleaved by Imp1p and Imp2p but also the +1 cargo residues attached to the signal peptides. We specifically find that Imp1p prefers substrates having a negatively charged residue (Asp or Glu) at the +1 position, whereas Imp2p prefers substrates having the Met residue at the +1 position. We further suggest that the conformation of the cargo is important for substrate recognition by Imp2p. A role for the cargo in presequence recognition distinguishes Imp1p and Imp2p from other type I signal peptidases.
Collapse
Affiliation(s)
- Wentian Luo
- Department of Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-2363, USA.
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Mark Paetzel
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
33
|
Bacterial Type I Signal Peptidases. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1874-6047(02)80003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Brandon LD, Goldberg MB. Periplasmic transit and disulfide bond formation of the autotransported Shigella protein IcsA. J Bacteriol 2001; 183:951-8. [PMID: 11208794 PMCID: PMC94963 DOI: 10.1128/jb.183.3.951-958.2001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Shigella outer membrane protein IcsA belongs to the family of type V secreted (autotransported) virulence factors. Members of this family mediate their own translocation across the bacterial outer membrane: the carboxy-terminal beta domain forms a beta barrel channel in the outer membrane through which the amino-terminal alpha domain passes. IcsA, which is localized at one pole of the bacterium, mediates actin assembly by Shigella, which is essential for bacterial intracellular movement and intercellular dissemination. Here, we characterize the transit of IcsA across the periplasm during its secretion. We show that an insertion in the dsbB gene, whose gene product mediates disulfide bond formation of many periplasmic intermediates, does not affect the surface expression or unipolar targeting of IcsA. However, IcsA forms one disulfide bond in the periplasm in a DsbA/DsbB-dependent fashion. Furthermore, cellular fractionation studies reveal that IcsA has a transient soluble periplasmic intermediate. Our data also suggest that IcsA is folded in a proteinase K-resistant state in the periplasm. From these data, we propose a novel model for the secretion of IcsA that may be applicable to other autotransported proteins.
Collapse
Affiliation(s)
- L D Brandon
- Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
35
|
Carlos JL, Paetzel M, Brubaker G, Karla A, Ashwell CM, Lively MO, Cao G, Bullinger P, Dalbey RE. The role of the membrane-spanning domain of type I signal peptidases in substrate cleavage site selection. J Biol Chem 2000; 275:38813-22. [PMID: 10982814 DOI: 10.1074/jbc.m007093200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I signal peptidase (SPase I) catalyzes the cleavage of the amino-terminal signal sequences from preproteins destined for cell export. Preproteins contain a signal sequence with a positively charged n-region, a hydrophobic h-region, and a neutral but polar c-region. Despite having no distinct consensus sequence other than a commonly found c-region "Ala-X-Ala" motif preceding the cleavage site, signal sequences are recognized by SPase I with high fidelity. Remarkably, other potential Ala-X-Ala sites are not cleaved within the preprotein. One hypothesis is that the source of this fidelity is due to the anchoring of both the SPase I enzyme (by way of its transmembrane segment) and the preprotein substrate (by the h-region in the signal sequence) in the membrane. This limits the enzyme-substrate interactions such that cleavage occurs at only one site. In this work we have, for the first time, successfully isolated Bacillus subtilis type I signal peptidase (SipS) and a truncated version lacking the transmembrane domain (SipS-P2). With purified full-length as well as truncated constructs of both B. subtilis and Escherichia coli (Lep) SPase I, in vitro specificity studies indicate that the transmembrane domains of either enzyme are not important determinants of in vitro cleavage fidelity, since enzyme constructs lacking them reveal no alternate site processing of pro-OmpA nuclease A substrate. In addition, experiments with mutant pro-OmpA nuclease A substrate constructs indicate that the h-region of the signal peptide is also not critical for substrate specificity. In contrast, certain mutants in the c-region of the signal peptide result in alternate site cleavage by both Lep and SipS enzymes.
Collapse
Affiliation(s)
- J L Carlos
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
van Roosmalen ML, Jongbloed JD, Kuipers A, Venema G, Bron S, van DijL JM. A truncated soluble Bacillus signal peptidase produced in Escherichia coli is subject to self-cleavage at its active site. J Bacteriol 2000; 182:5765-70. [PMID: 11004175 PMCID: PMC94698 DOI: 10.1128/jb.182.20.5765-5770.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble forms of Bacillus signal peptidases which lack their unique amino-terminal membrane anchor are prone to degradation, which precludes their high-level production in the cytoplasm of Escherichia coli. Here, we show that the degradation of soluble forms of the Bacillus signal peptidase SipS is largely due to self-cleavage. First, catalytically inactive soluble forms of this signal peptidase were not prone to degradation; in fact, these mutant proteins were produced at very high levels in E. coli. Second, the purified active soluble form of SipS displayed self-cleavage in vitro. Third, as determined by N-terminal sequencing, at least one of the sites of self-cleavage (between Ser15 and Met16 of the truncated enzyme) strongly resembles a typical signal peptidase cleavage site. Self-cleavage at the latter position results in complete inactivation of the enzyme, as Ser15 forms a catalytic dyad with Lys55. Ironically, self-cleavage between Ser15 and Met16 cannot be prevented by mutagenesis of Gly13 and Ser15, which conform to the -1, -3 rule for signal peptidase recognition, because these residues are critical for signal peptidase activity.
Collapse
Affiliation(s)
- M L van Roosmalen
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Paetzel M, Dalbey RE, Strynadka NC. The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target. Pharmacol Ther 2000; 87:27-49. [PMID: 10924740 DOI: 10.1016/s0163-7258(00)00064-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Type I signal peptidases are essential membrane-bound serine proteases that function to cleave the amino-terminal signal peptide extension from proteins that are translocated across biological membranes. The bacterial signal peptidases are unique serine proteases that utilize a Ser/Lys catalytic dyad mechanism in place of the classical Ser/His/Asp catalytic triad mechanism. They represent a potential novel antibiotic target at the bacterial membrane surface. This review will discuss the bacterial signal peptidases that have been characterized to date, as well as putative signal peptidase sequences that have been recognized via bacterial genome sequencing. We review the investigations into the mechanism of Escherichia coli and Bacillus subtilis signal peptidase, and discuss the results in light of the recent crystal structure of the E. coli signal peptidase in complex with a beta-lactam-type inhibitor. The proposed conserved structural features of Type I signal peptidases give additional insight into the mechanism of this unique enzyme.
Collapse
Affiliation(s)
- M Paetzel
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
38
|
Klenotic PA, Carlos JL, Samuelson JC, Schuenemann TA, Tschantz WR, Paetzel M, Strynadka NC, Dalbey RE. The role of the conserved box E residues in the active site of the Escherichia coli type I signal peptidase. J Biol Chem 2000; 275:6490-8. [PMID: 10692453 DOI: 10.1074/jbc.275.9.6490] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I signal peptidases are integral membrane proteins that function to remove signal peptides from secreted and membrane proteins. These enzymes carry out catalysis using a serine/lysine dyad instead of the prototypical serine/histidine/aspartic acid triad found in most serine proteases. Site-directed scanning mutagenesis was used to obtain a qualitative assessment of which residues in the fifth conserved region, Box E, of the Escherichia coli signal peptidase I are critical for maintaining a functional enzyme. First, we find that there is no requirement for activity for a salt bridge between the invariant Asp-273 and the Arg-146 residues. In addition, we show that the conserved Ser-278 is required for optimal activity as well as conserved salt bridge partners Asp-280 and Arg-282. Finally, Gly-272 is essential for signal peptidase I activity, consistent with it being located within van der Waals proximity to Ser-278 and general base Lys-145 side-chain atoms. We propose that replacement of the hydrogen side chain of Gly-272 with a methyl group results in steric crowding, perturbation of the active site conformation, and specifically, disruption of the Ser-90/Lys-145 hydrogen bond. A refined model is proposed for the catalytic dyad mechanism of signal peptidase I in which the general base Lys-145 is positioned by Ser-278, which in turn is held in place by Asp-280.
Collapse
Affiliation(s)
- P A Klenotic
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen X, Van Valkenburgh C, Fang H, Green N. Signal peptides having standard and nonstandard cleavage sites can be processed by Imp1p of the mitochondrial inner membrane protease. J Biol Chem 1999; 274:37750-4. [PMID: 10608835 DOI: 10.1074/jbc.274.53.37750] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have performed a site-directed mutagenesis study showing that residues comprising the type I signal peptidase signature in the two catalytic subunits of the yeast inner membrane protease, Imp1p and Imp2p, are functionally important, consistent with the idea that these subunits contain a serine/lysine catalytic dyad. Previous studies have shown that Imp1p cleaves signal peptides having asparagine at the -1 position, which deviates from the typical signal peptide possessing a small uncharged amino acid at this position. To determine whether asparagine is responsible for the nonoverlapping substrate specificities exhibited by the inner membrane protease subunits, we have substituted asparagine with 19 amino acids in the Imp1p substrate i-cytochrome (cyt) b(2). The resulting signal peptides containing alanine, serine, cysteine, leucine, and methionine can be cleaved efficiently by Imp1p. The remaining mutant signal peptides are cleaved inefficiently or not at all. Surprisingly, none of the amino acid changes results in the recognition of i-cyt b(2) by Imp2p, whose natural substrate, i-cyt c(1), has alanine at the -1 position. The data demonstrate that (i) although the -1 residue is important in substrates recognized by Imp1p, signal peptides having standard and nonstandard cleavage sites can be processed by Imp1p, and (ii) a -1 asparagine does not govern the substrate specificity of the inner membrane protease subunits.
Collapse
Affiliation(s)
- X Chen
- Department of Microbiology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-2363, USA
| | | | | | | |
Collapse
|
40
|
Seydel A, Gounon P, Pugsley AP. Testing the '+2 rule' for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 1999; 34:810-21. [PMID: 10564520 DOI: 10.1046/j.1365-2958.1999.01647.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report a novel strategy for selecting mutations that mislocalize lipoproteins within the Escherichia coli cell envelope and describe the mutants obtained. A strain carrying a deletion of the chromosomal malE gene, coding for the periplasmic maltose-binding protein (MalE), cannot use maltose unless a wild-type copy of malE is present in trans. Replacement of the natural signal peptide of preMalE by the signal peptide and the first four amino acids of a cytoplasmic membrane-anchored lipoprotein resulted in N-terminal fatty acylation of MalE (lipoMalE) and anchoring to the periplasmic face of the cytoplasmic membrane, where it could still function. When the aspartate at position +2 of this protein was replaced by a serine, lipoMalE was sorted to the outer membrane, where it could not function. Chemical mutagenesis followed by selection for maltose-using mutants resulted in the identification of two classes of mutations. The single class I mutant carried a plasmid-borne mutation that replaced the serine at position +2 by phenylalanine. Systematic substitutions of the amino acid at position +2 revealed that, besides phenylalanine, tryptophan, tyrosine, glycine and proline could all replace classical cytoplasmic membrane lipoprotein sorting signal (aspartate +2). Analysis of known and putative lipoproteins encoded by the E. coli K-12 genome indicated that these amino acids are rarely found at position +2. In the class II mutants, a chromosomal mutation caused small and variable amounts of lipoMalE to remain associated with the cytoplasmic membrane. Similar amounts of another, endogenous outer membrane lipoprotein, NlpD, were also present in the cytoplasmic membrane in these mutants, indicating a minor, general defect in the sorting of outer membrane lipoproteins. Four representative class II mutants analysed were shown not to carry mutations in the lolA or lolB genes, known to be involved in the sorting of lipoproteins to the outer membrane.
Collapse
Affiliation(s)
- A Seydel
- Unité de Génétique moléculaire, CNRS URA 1773, Paris, France
| | | | | |
Collapse
|
41
|
Walther-Rasmussen J, Johnsen AH, Høiby N. Terminal truncations in amp C beta-lactamase from a clinical isolate of Pseudomonas aeruginosa. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:478-85. [PMID: 10406957 DOI: 10.1046/j.1432-1327.1999.00529.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AmpC beta-lactamases from strains of Pseudomonas aeruginosa have previously been shown to be heterogeneous with respect to their isoelectric point (pI). In order to elucidate the origin of this heterogeneity enzymes were isolated from a clinical isolate of a multiresistant P. aeruginosa strain and biochemically characterized. The purification was accomplished in four chromatographic steps comprising dye-affinity, size-exclusion, hydrophobic interaction chromatography, and chromatofocusing; this resulted in five forms with pI values of 9.1, 8.7, 8.3, 8.2, and 7.6. When analysed by SDS/PAGE and agarose IEF each separated beta-lactamase appeared to be both size- and charge-homogeneous. The specific activities of the variants were very similar. MS of each isolated beta-lactamase form showed minor differences in molecular mass (range 40.0-40.8 kDa). MS of the beta-lactamase with a pI of 8.2 demonstrated the presence of two subforms. The N-terminal sequences of three of the beta-lactamases were identical to the published sequence [Lodge, J.M. , Minchin, S.D., Piddock, L.J.V. & Busby, J.W. (1990) Biochem. J. 272, 627-631], while two variants were truncated by two amino-acid residues, one of which was acidic. The previously published sequence contains an alanine as the ultimate residue, but two of the beta-lactamases showed a substitution of Ala371 for arginine, whereas in the remaining forms C-terminal truncations by one and three residues were found. Our results indicate that the P. aeruginosa strain does not harbour multiple copies of the ampC gene, but rather that the five beta-lactamase isoforms are products of a single structural gene. The combinations of the identified N- and/or C-terminal truncations explained the multiple pI values of the beta-lactamase isoforms.
Collapse
Affiliation(s)
- J Walther-Rasmussen
- Department of Clinical Microbiology and Department of Clinical Biochemistry, Rigshospitalet, The National University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
42
|
van Klompenburg W, Paetzel M, de Jong JM, Dalbey RE, Demel RA, von Heijne G, de Kruijff B. Phosphatidylethanolamine mediates insertion of the catalytic domain of leader peptidase in membranes. FEBS Lett 1998; 431:75-9. [PMID: 9684869 DOI: 10.1016/s0014-5793(98)00733-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Leader peptidase is an integral membrane protein of E. coli and it catalyses the removal of most signal peptides from translocated precursor proteins. In this study it is shown that when the transmembrane anchors are removed in vivo, the remaining catalytic domain can bind to inner and outer membranes of E. coli. Furthermore, the purified catalytic domain binds to inner membrane vesicles and vesicles composed of purified inner membrane lipids with comparable efficiency. It is shown that the interaction is caused by penetration of a part of the catalytic domain between the lipids. Penetration is mediated by phosphatidylethanolamine, the most abundant lipid in E. coli, and does not seem to depend on electrostatic interactions. A hydrophobic segment around the catalytically important residue serine 90 is required for the interaction with membranes.
Collapse
Affiliation(s)
- W van Klompenburg
- Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Utrecht University, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Karamyshev AL, Karamysheva ZN, Kajava AV, Ksenzenko VN, Nesmeyanova MA. Processing of Escherichia coli alkaline phosphatase: role of the primary structure of the signal peptide cleavage region. J Mol Biol 1998; 277:859-70. [PMID: 9545377 DOI: 10.1006/jmbi.1997.1617] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A wide range (69) of mutant Escherichia coli alkaline phosphatases with single amino acid substitutions at positions from -5 to +1 of the signal peptide were obtained for studying protein processing as a function of the primary structure of the cleavage region. Amber suppressor mutagenesis, used to create mutant proteins, included: (i) introduction of amber mutations into respective positions of the phoA gene; and (ii) expression of each mutant phoA allele in E. coli strains producing amber suppressor tRNAs specific to Ala, Cys, Gln, Glu, Gly, His, Leu, Lys, Phe, Pro, Ser and Tyr. Most amino acid substitutions at positions -3 and -1 resulted in a complete block of protein processing. These data give new experimental support for the "-3, -1 rule". Only Ala, Gly and Ser at position -1 allowed protein processing, and Ala provided the highest rate of processing. The results revealed the more conservative nature of the amino acids at the -1 position of signal peptides of Gram-negative bacteria as compared with those of eukaryotic organisms. Position -3 was less regular, since not only Ala, Ser and Gly, but also Leu and Cys at this position, allowed the processing. Mutations at position -4 had an insignificant effect on the processing. Surprisingly, efficient processing was provided mainly by large amino acid residues at position -2 and by middle-sized residues at position -5, indicating that the processing rate is affected by the size of amino acid residues not only at positions -1 and -3. Conformation analysis of the cleavage site taken together with the mutation and statistical data suggests an extended beta-conformation of the -5 to -1 region in the signal peptidase binding pocket.
Collapse
Affiliation(s)
- A L Karamyshev
- Research group "Protein Secretion in Bacteria", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia.
| | | | | | | | | |
Collapse
|
44
|
Seibel JL, Wilson N, Kozono H, Marrack P, Kappler JW. Influence of the NH2-terminal amino acid of the T cell receptor alpha chain on major histocompatibility complex (MHC) class II + peptide recognition. J Exp Med 1997; 185:1919-27. [PMID: 9166421 PMCID: PMC2196340 DOI: 10.1084/jem.185.11.1919] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1997] [Revised: 03/31/1997] [Indexed: 02/04/2023] Open
Abstract
The alpha/beta T cell receptor (TCR) recognizes peptide fragments bound in the groove of major histocompatibility complex (MHC) molecules. We modified the TCR alpha chain from a mouse T cell hybridoma and tested its ability to reconstitute TCR expression and function in an alpha chain-deficient variant of the hybridoma. The modified alpha chain differed from wild type only in its leader peptide and mature NH2-terminal amino acid. Reconstituted cell surface TCR complexes reacted normally with anti-TCR and anti-CD3 antibodies. Although cross-linking of this TCR with an antibody to the TCR idiotype elicited vigorous T cell hybridoma activation, stimulation with its natural MHC + peptide ligand did not. We demonstrated that this phenotype could be reproduced simply by substituting the glutamic acid (E) at the mature NH2 terminus of the wild type TCR alpha chain with aspartic acid (D). The substitution also dramatically reduced the affinity of soluble alpha/beta-TCR heterodimers for soluble MHC + peptide molecules in a cell-free system, suggesting that it did not exert its effect simply by disrupting TCR interactions with accessory molecules on the hybridoma. These results demonstrate for the first time that amino acids which are not in the canonical TCR complementarity determining regions can be critical in determining how the TCR engages MHC + peptide.
Collapse
Affiliation(s)
- J L Seibel
- Department of Medicine, National Jewish Medical and Research Center, University of Colorado Health Sciences Center, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
45
|
Dalbey RE, Lively MO, Bron S, van Dijl JM. The chemistry and enzymology of the type I signal peptidases. Protein Sci 1997; 6:1129-38. [PMID: 9194173 PMCID: PMC2143710 DOI: 10.1002/pro.5560060601] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The discovery that proteins exported from the cytoplasm are typically synthesized as larger precursors with cleavable signal peptides has focused interest on the peptidases that remove the signal peptides. Here, we review the membrane-bound peptidases dedicated to the processing of protein precursors that are found in the plasma membrane of prokaryotes and the endoplasmic reticulum, the mitochondrial inner membrane, and the chloroplast thylakoidal membrane of eukaryotes. These peptidases are termed type I signal (or leader) peptidases. They share the unusual feature of being resistant to the general inhibitors of the four well-characterized peptidase classes. The eukaryotic and prokaryotic signal peptidases appear to belong to a single peptidase family. This review emphasizes the evolutionary concepts, current knowledge of the catalytic mechanism, and substrate specificity requirements of the signal peptidases.
Collapse
Affiliation(s)
- R E Dalbey
- Department of Chemistry, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
46
|
Paetzel M, Chernaia M, Strynadka N, Tschantz W, Cao G, Dalbey RE, James MN. Crystallization of a soluble, catalytically active form of Escherichia coli leader peptidase. Proteins 1995; 23:122-5. [PMID: 8539246 DOI: 10.1002/prot.340230115] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leader peptidase, a novel serine protease in Escherichia coli, catalyzes the cleavage of the amino-terminal leader sequences from exported proteins. It is an integral membrane protein containing two transmembrane segments with its carboxy-terminal catalytic domain residing in the periplasmic space. Here, we report a procedure for the purification and the crystallization of a soluble non-membrane-bound form of leader peptidase (delta 2-75). Crystals were obtained by the sitting-drop vapor diffusion technique using ammonium dihydrogen phosphate as the precipitant. Interestingly, we have found that the presence of the detergent Triton X-100 is required to obtain crystals sufficiently large for X-ray analysis. The crystals belong to the tetragonal space group P4(2)2(1)2, with unit cell dimensions of a = b = 115 A and c = 100 A, and contain 2 molecules per asymmetric unit. This is the first report of the crystallization of a leader (or signal) peptidase.
Collapse
Affiliation(s)
- M Paetzel
- Department of Chemistry, Ohio State University, Columbus 43210, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Taguchi F, Yamamoto Y, Satoh K. Recognition of the structure around the site of cleavage by the carboxyl-terminal processing protease for D1 precursor protein of the photosystem II reaction center. J Biol Chem 1995; 270:10711-6. [PMID: 7738009 DOI: 10.1074/jbc.270.18.10711] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to analyze the structural requirement(s) for proteolytic cleavage, synthetic oligopeptides corresponding to the carboxyl-terminal (COOH-terminal) sequence of the precursor to the D1 protein (pD1) of the photosystem II reaction center, with or without substituted side chain(s) around the cleavage site, were subjected to enzymatic analysis with partially purified processing protease from spinach. The efficiency of action as a competitive inhibitor of the enzymatic cleavage of the COOH-terminal extension, as well as the capacity to serve as a substrate, was used as an indication of effective binding to the protease. Neither a COOH-terminal fragment consisting of the 9 amino acids that are cleaved from pD1 by the protease nor a COOH-terminal fragment of the mature protein consisting of 15 amino acids inhibited the enzymatic processing of pD1. By contrast, a COOH-terminal fragment of pD1 consisting of 24 amino acids, which included the sequences of both the COOH-terminal extension and the COOH-terminal 15 amino acids of the mature protein, was effective both as a competitive inhibitor and as a substrate. This result suggests that the structure formed by linkage between these two parts of the protein moiety is important in the substrate-enzyme interaction. Among substitutions around the cleavage site, the replacement of Leu-343 by Ala (L343A) specifically destroyed the ability of the oligopeptide to serve as either a substrate or an inhibitor, suggesting that the presence of the hydrophobic Leu residue is crucial for the formation of the recognition site. A series of six substitutions at Ala-345 had marked effects on the value of Vmax, without affecting the binding affinity, as represented by Km; the order of substitutions at residue 345 in terms of their effects on Vmax was Ala,Ser,Phe,Cys > Gly > Val >> Pro. With a Pro residue at position 345, the oligopeptide was practically inactive as a substrate.
Collapse
Affiliation(s)
- F Taguchi
- Department of Biology, Okayama University, Japan
| | | | | |
Collapse
|
48
|
Arkowitz RA, Bassilana M. Protein translocation in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:311-43. [PMID: 7819269 DOI: 10.1016/0304-4157(94)90012-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R A Arkowitz
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
49
|
|
50
|
Der Vartanian M, Méchin MC, Jaffeux B, Bertin Y, Félix I, Gaillard-Martinie B. Permissible peptide insertions surrounding the signal peptide-mature protein junction of the ClpG prepilin: CS31A fimbriae of Escherichia coli as carriers of foreign sequences. Gene 1994; 148:23-32. [PMID: 7523252 PMCID: PMC7131889 DOI: 10.1016/0378-1119(94)90229-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The clpG gene, expressing the Escherichia coli major CS31A fimbrial subunit ClpG, was subjected to random mutagenesis by insertion of an EcoRI linker and a kanamycin-resistance (KmR) cassette into the multiple newly generated EcoRI sites. The KmR gene was then excised by PstI, which left a 48-bp linker representing the heterologous sequence. The same procedure was followed to introduce a synthetic oligodeoxyribonucleotide (oligo) corresponding to epitope C from the spike protein S from the porcine transmissible gastroenteritis coronavirus (TGEV). Nine insertion/deletion mutants (indels) that contained long foreign peptides variously located around the ClpG signal peptide (SP) processing site were characterized. A striking feature of this study is the variety of amino acid (aa) insertions in the ClpG prepilin that have little or no effect on CS31A fimbria biogenesis. These 'permissive' sites tolerate inserts of 18 or 19 aa and accept sequences of different natures in view of their aa composition, charge and hydrophobicity. The results obtained here are also interesting in light of the high level of aa sequence conservation seen in the SP and N-terminal domains of the ClpG-related subunits. The structure-function relationship of the ClpG SP is discussed. The TGEV-C epitope fused to the N-terminal end of the mature ClpG protein was cell-surface exposed, as observed on immuno-electron microscopy. Therefore, the CS31A fimbria seems to be a potent tool for the presentation of foreign antigenic determinants or the production of heterologous polypeptides in E. coli.
Collapse
Key Words
- recombinant dna
- random mutagenesis
- signal sequence
- genetic fusions
- hybrid protein secretion
- chaperone
- transmissible gastroenteritis virus
- epitope
- antigen display
- pilin
- a, absorbance (1 cm)
- aa, amino acid(s)
- ab, antibody (ies)
- ap, ampicillin
- bp, base pair(s)
- clpg, major cs31a fimbrial subunit
- cmm, chloramphenicol
- dnase i, bovine pancreatic deoxyribonuclease
- dntp, deoxynucleotide triphosphate
- em, electron microscopy
- igg, immunoglobulin g
- indel, insertion/deletion mutant
- iptg, isopropyl-β-d-thiogalactopyranoside
- kb, kilobase(s) or 1000 bp
- km, kanamycin
- mab, monoclonal ab
- mcs, multiple cloning site(s)
- nt, nucleotide(s)
- oligo, oligodeoxyribonucleotide
- pa, polyacrylamide
- pab, polyclonal ab
- page, pa-gel electrophoresis
- pbs, 0.14 m nacl/2.7 mm kcl/1.8 mm kh2po4/10 mm na2 · hpo4 ph 7.2
- polik, klenow (large) fragment of e. coli dna polymerase i
- r, resistance/resistant
- sds, sodium dodecyl sulfate
- sp, signal peptide
- tgev, transmissible gastroenteritis virus
- wt, wild type
- x, any aa
- ::, novel junction (fusion or insertion)
- [ ], denotes plasmid-carrier state
Collapse
Affiliation(s)
- M Der Vartanian
- Laboratoire de Microbiologie, Centre de Recherches de Clermont-Ferrand-Theix, Saint-Genès-Champanelle, France
| | | | | | | | | | | |
Collapse
|