1
|
Shieh M, Xu S, Lederberg OL, Xian M. Detection of sulfane sulfur species in biological systems. Redox Biol 2022; 57:102502. [PMID: 36252340 PMCID: PMC9579362 DOI: 10.1016/j.redox.2022.102502] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Sulfane sulfur species such as hydropersulfides (RSSH), polysulfides (RSnR), and hydrogen polysulfides (H2Sn) are critically involved in sulfur-mediated redox signaling, but their detailed mechanisms of action need further clarification. Therefore, there is a need to develop selective and sensitive sulfane sulfur detection methods to gauge a better understanding of their functions. This review summarizes current detection methods that include cyanolysis, chemical derivatization and mass spectrometry, proteomic analysis, fluorescent probes, and resonance synchronous/Raman spectroscopic methods. The design principles, advantages, applications, and limitations of each method are discussed, along with suggested directions for future research on these methods. The development of robust detection methods for sulfane sulfur species will help to elucidate their mechanisms and functions in biological systems.
Collapse
Affiliation(s)
- Meg Shieh
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Oren L Lederberg
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Fukuto JM. The Biological/Physiological Utility of Hydropersulfides (RSSH) and Related Species: What Is Old Is New Again. Antioxid Redox Signal 2022; 36:244-255. [PMID: 33985355 DOI: 10.1089/ars.2021.0096] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is reported to be an important mediator involved in numerous physiological processes. H2S and hydropersulfides (RSSH) species are intimately linked biochemically. Therefore, interest in the mechanisms of the biological activity of H2S has led to investigations of the chemical biology of RSSH since they are likely to coexist in a biological system. Currently it is hypothesized that RSSH may be responsible for a least part of the observed H2S-mediated biology/physiology. Recent Advances: It has been recently touted that thiols (RSH) and RSSH have some important differences in terms of their chemical biology and that the generation of RSSH from RSH is purposeful to exploit these chemical differences as a response to a physiological or biological stress. This transformation may represent an unappreciated/unrecognized biological mechanism for dealing with cellular stresses. Critical Issues: Although recent studies indicate a diverse and potentially important chemical biology associated with RSSH species, these ideas have their foundations in early studies (some over 60 years old). It is vital to recognize the nature of this early work to fully appreciate the current ideas regarding RSSH biology. Importantly, these early studies were performed before the realization of purposeful H2S biosynthesis (before 1996). Future Directions: Taking clues from the past studies of RSSH chemistry and biology, progress in delineating the chemical biology of RSSH will continue. Determination of the possible relevance of RSSH chemical biology to signaling and cellular physiology will be a primary focus of many future studies. Antioxid. Redox Signal. 36, 244-255.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Chemistry, Sonoma State University, Rohnert Park, California, USA
| |
Collapse
|
3
|
Xu R, Wang Y, You H, Zhang L, Wang Y, Chen L. A near-infrared fluorescent probe for evaluating endogenous hydrogen peroxide during ischemia/reperfusion injury. Analyst 2019; 144:2556-2564. [DOI: 10.1039/c9an00243j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A fluorescent probe, Cy-ArB, is developed for real-time monitoring of H2O2 fluctuations in cells and in vivo during ischemia/reperfusion processes.
Collapse
Affiliation(s)
- Runfeng Xu
- School of Environment and Chemical Engineering
- Dalian University
- Dalian 116622
- China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Huiyan You
- School of Environment and Chemical Engineering
- Dalian University
- Dalian 116622
- China
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
4
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Saadaoui M, Sánchez A, Díez P, Raouafi N, Pingarrón JM, Villalonga R. Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1840-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Park CM, Weerasinghe L, Day JJ, Fukuto JM, Xian M. Persulfides: current knowledge and challenges in chemistry and chemical biology. MOLECULAR BIOSYSTEMS 2016; 11:1775-85. [PMID: 25969163 DOI: 10.1039/c5mb00216h] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies conducted in hydrogen sulfide (H2S) signaling have revealed potential importance of persulfides (RSSH) in redox biology. The inherent instability of RSSH makes these species difficult to study and sometimes controversial results are reported. In this review article we summarize known knowledge about both small molecule persulfides and protein persulfides. Their fundamental physical and chemical properties such as preparation/formation and reactivity are discussed. The biological implications of persulfides and their detection methods are also discussed.
Collapse
Affiliation(s)
- Chung-Min Park
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
7
|
Saund SS, Sosa V, Henriquez S, Nguyen QNN, Bianco CL, Soeda S, Millikin R, White C, Le H, Ono K, Tantillo DJ, Kumagai Y, Akaike T, Lin J, Fukuto JM. The chemical biology of hydropersulfides (RSSH): Chemical stability, reactivity and redox roles. Arch Biochem Biophys 2015; 588:15-24. [PMID: 26519887 DOI: 10.1016/j.abb.2015.10.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/01/2015] [Accepted: 10/24/2015] [Indexed: 01/08/2023]
Abstract
Recent reports indicate the ubiquitous prevalence of hydropersulfides (RSSH) in mammalian systems. The biological utility of these and related species is currently a matter of significant speculation. The function, lifetime and fate of hydropersulfides will be assuredly based on their chemical properties and reactivity. Thus, to serve as the basis for further mechanistic studies regarding hydropersulfide biology, some of the basic chemical properties/reactivity of hydropersulfides was studied. The nucleophilicity, electrophilicity and redox properties of hydropersulfides were examined under biological conditions. These studies indicate that hydropersulfides can be nucleophilic or electrophilic, depending on the pH (i.e. the protonation state) and can act as good one- and two-electron reductants. These diverse chemical properties in a single species make hydropersulfides chemically distinct from other, well-known sulfur containing biological species, giving them unique and potentially important biological function.
Collapse
Affiliation(s)
- Simran S Saund
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Victor Sosa
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Stephanie Henriquez
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Q Nhu N Nguyen
- Department of Chemistry, University of California, Davis, One Shield Ave., Davis, CA, 95616, USA
| | | | - Shuhei Soeda
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Robert Millikin
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Corey White
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Henry Le
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Katsuhiko Ono
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, One Shield Ave., Davis, CA, 95616, USA
| | - Yoshito Kumagai
- Environmental Biology Section, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Joseph Lin
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA.
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA.
| |
Collapse
|
8
|
Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem 2015; 20:195-207. [PMID: 25501928 PMCID: PMC4334109 DOI: 10.1007/s00775-014-1210-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/21/2014] [Indexed: 12/17/2022]
Abstract
Xanthine oxidoreductase (XOR), which is widely distributed from humans to bacteria, has a key role in purine catabolism, catalyzing two steps of sequential hydroxylation from hypoxanthine to xanthine and from xanthine to urate at its molybdenum cofactor (Moco). Human XOR is considered to be a target of drugs not only for therapy of hyperuricemia and gout, but also potentially for a wide variety of other diseases. In this review, we focus on studies of XOR inhibitors and their implications for understanding the chemical nature and reaction mechanism of the Moco active site of XOR. We also discuss further experimental or clinical studies that would be helpful to clarify remaining issues.
Collapse
Affiliation(s)
- Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyou-ku, Tokyo, 113-8602, Japan,
| | | |
Collapse
|
9
|
Cao H, Pauff JM, Hille R. X-ray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. JOURNAL OF NATURAL PRODUCTS 2014; 77:1693-1699. [PMID: 25060641 DOI: 10.1021/np500320g] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Xanthine oxidase catalyzes the sequential hydroxylation of hypoxanthine to uric acid via xanthine as intermediate. Deposition of crystals of the catalytic product uric acid or its monosodium salt in human joints with accompanying joint inflammation is the major cause of gout. Natural flavonoids are attractive leads for rational design of preventive and therapeutic xanthine oxidase inhibitors due to their beneficial antioxidant, anti-inflammatory, and antiproliferative activities in addition to their micromolar inhibitory activities toward xanthine oxidase. We determined the first complex X-ray structure of mammalian xanthine oxidase with the natural flavonoid inhibitor quercetin at 2.0 Å resolution. The inhibitor adopts a single orientation with its benzopyran moiety sandwiched between Phe 914 and Phe 1009 and ring B pointing toward the solvent channel leading to the molybdenum active center. The favorable steric complementarity of the conjugated three-ring structure of quercetin with the active site and specific hydrogen-bonding interactions of exocyclic hydroxy groups with catalytically relevant residues Arg 880 and Glu 802 correlate well with a previously reported structure-activity relationship of flavonoid inhibitors of xanthine oxidase. The current complex provides a structural basis for the rational design of flavonoid-type inhibitors against xanthine oxidase useful for the treatment of hyperuricemia, gout, and inflammatory disease states.
Collapse
Affiliation(s)
- Hongnan Cao
- Department of Biochemistry, University of California , Riverside, California 92521, United States
| | | | | |
Collapse
|
10
|
Li Q, Lancaster JR. Chemical foundations of hydrogen sulfide biology. Nitric Oxide 2013; 35:21-34. [PMID: 23850631 DOI: 10.1016/j.niox.2013.07.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/22/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022]
Abstract
Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, University of Alabama at Birmingham, United States; Center for Free Radical Biology, University of Alabama at Birmingham, United States.
| | | |
Collapse
|
11
|
Bir SC, Kolluru GK, McCarthy P, Shen X, Pardue S, Pattillo CB, Kevil CG. Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia-inducible factor-1α and vascular endothelial growth factor-dependent angiogenesis. J Am Heart Assoc 2012; 1:e004093. [PMID: 23316304 PMCID: PMC3541625 DOI: 10.1161/jaha.112.004093] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/14/2012] [Indexed: 12/03/2022]
Abstract
Background Hydrogen sulfide (H2S) therapy is recognized as a modulator of vascular function during tissue ischemia with the notion of potential interactions of nitric oxide (NO) metabolism. However, little is known about specific biochemical mechanisms or the importance of H2S activation of NO metabolism during ischemic tissue vascular remodeling. The goal of this study was to determine the effect of H2S on NO metabolism during chronic tissue ischemia and subsequent effects on ischemic vascular remodeling responses. Methods and Results The unilateral, permanent femoral artery ligation model of hind‐limb ischemia was performed in C57BL/6J wild‐type and endothelial NO synthase–knockout mice to evaluate exogenous H2S effects on NO bioavailability and ischemic revascularization. We found that H2S selectively restored chronic ischemic tissue function and viability by enhancing NO production involving both endothelial NO synthase and nitrite reduction mechanisms. Importantly, H2S increased ischemic tissue xanthine oxidase activity, hind‐limb blood flow, and angiogenesis, which were blunted by the xanthine oxidase inhibitor febuxostat. H2S treatment increased ischemic tissue and endothelial cell hypoxia‐inducible factor‐1α expression and activity and vascular endothelial growth factor protein expression and function in a NO‐dependent manner that was required for ischemic vascular remodeling. Conclusions These data demonstrate that H2S differentially regulates NO metabolism during chronic tissue ischemia, highlighting novel biochemical pathways to increase NO bioavailability for ischemic vascular remodeling.
Collapse
Affiliation(s)
- Shyamal C Bir
- Departments of Pathology and Medicine, LSU Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Fukuto JM, Carrington SJ, Tantillo DJ, Harrison JG, Ignarro LJ, Freeman BA, Chen A, Wink DA. Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species. Chem Res Toxicol 2012; 25:769-93. [PMID: 22263838 PMCID: PMC4061765 DOI: 10.1021/tx2005234] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several small molecule species formally known primarily as toxic gases have, over the past 20 years, been shown to be endogenously generated signaling molecules. The biological signaling associated with the small molecules NO, CO, H₂S (and the nonendogenously generated O₂), and their derived species have become a topic of extreme interest. It has become increasingly clear that these small molecule signaling agents form an integrated signaling web that affects/regulates numerous physiological processes. The chemical interactions between these species and each other or biological targets is an important factor in their roles as signaling agents. Thus, a fundamental understanding of the chemistry of these molecules is essential to understanding their biological/physiological utility. This review focuses on this chemistry and attempts to establish the chemical basis for their signaling functions.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, California 94928, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimkühler S. The Impact of Single Nucleotide Polymorphisms on Human Aldehyde Oxidase. Drug Metab Dispos 2012. [DOI: 10.1124/dmd.111.043828 10.1124/dmd.112.043828err] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimkühler S. The impact of single nucleotide polymorphisms on human aldehyde oxidase. Drug Metab Dispos 2012; 40:856-64. [PMID: 22279051 DOI: 10.1124/dmd.111.043828] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N(1)-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95% and a yield of 50 μg/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs.
Collapse
Affiliation(s)
- Tobias Hartmann
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Cao H, Pauff JM, Hille R. Substrate orientation and catalytic specificity in the action of xanthine oxidase: the sequential hydroxylation of hypoxanthine to uric acid. J Biol Chem 2010; 285:28044-53. [PMID: 20615869 PMCID: PMC2934669 DOI: 10.1074/jbc.m110.128561] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/27/2010] [Indexed: 11/06/2022] Open
Abstract
Xanthine oxidase is a molybdenum-containing enzyme catalyzing the hydroxylation of a sp(2)-hybridized carbon in a broad range of aromatic heterocycles and aldehydes. Crystal structures of the bovine enzyme in complex with the physiological substrate hypoxanthine at 1.8 A resolution and the chemotherapeutic agent 6-mercaptopurine at 2.6 A resolution have been determined, showing in each case two alternate orientations of substrate in the two active sites of the crystallographic asymmetric unit. One orientation is such that it is expected to yield hydroxylation at C-2 of substrate, yielding xanthine. The other suggests hydroxylation at C-8 to give 6,8-dihydroxypurine, a putative product not previously thought to be generated by the enzyme. Kinetic experiments demonstrate that >98% of hypoxanthine is hydroxylated at C-2 rather than C-8, indicating that the second crystallographically observed orientation is significantly less catalytically effective than the former. Theoretical calculations suggest that enzyme selectivity for the C-2 over C-8 of hypoxanthine is largely due to differences in the intrinsic reactivity of the two sites. For the orientation of hypoxanthine with C-2 proximal to the molybdenum center, the disposition of substrate in the active site is such that Arg(880) and Glu(802), previous shown to be catalytically important for the conversion of xanthine to uric acid, play similar roles in hydroxylation at C-2 as at C-8. Contrary to the literature, we find that 6,8-dihydroxypurine is effectively converted to uric acid by xanthine oxidase.
Collapse
Affiliation(s)
- Hongnan Cao
- From the Department of Biochemistry, University of California at Riverside, Riverside, California 92521 and
| | - James M. Pauff
- From the Department of Biochemistry, University of California at Riverside, Riverside, California 92521 and
- the Medical Scientist Program, The Ohio State University, Columbus, Ohio 43210
| | - Russ Hille
- From the Department of Biochemistry, University of California at Riverside, Riverside, California 92521 and
| |
Collapse
|
16
|
Stiefel EI. The Coordination and Bioinorganic Chemistry of Molybdenum. PROGRESS IN INORGANIC CHEMISTRY 2007. [DOI: 10.1002/9780470166239.ch1] [Citation(s) in RCA: 318] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
|
18
|
|
19
|
Bray RC. The reactions and the structures of molybdenum centers in enzymes. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 51:107-65. [PMID: 6255771 DOI: 10.1002/9780470122969.ch3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Wilchek M, Hexter CS. The purification of biologically active compounds by affinity chromatography. METHODS OF BIOCHEMICAL ANALYSIS 2006; 23:347-85. [PMID: 187896 DOI: 10.1002/9780470110430.ch5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Tramper J, Müller F, Van Der Plas HC. Immobilized xanthine oxidase: Kinetics, (in)stability, and stabilization by coimmobilization with superoxide dismutase and catalase. Biotechnol Bioeng 2004. [DOI: 10.1002/bit.260201002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Leonard K, Plute K, Haltiwanger RC, DuBois MR. Reactions of metal-disulfur complexes with nucleophiles and electrophiles. Inorg Chem 2002. [DOI: 10.1021/ic50201a061] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Gardner JK, Pariyadath N, Corbin JL, Stiefel EI. Molybdenum and rhenium complexes of aromatic aminethiolate ligands. Inorg Chem 2002. [DOI: 10.1021/ic50182a021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Sau AK, Mondal MS, Mitra S. Interaction of Cu2+ ion with milk xanthine oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1544:89-95. [PMID: 11341919 DOI: 10.1016/s0167-4838(00)00207-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction of Cu2+ ion with milk xanthine oxidase (XO) has been studied by optical spectroscopy, circular dichroism, ESR and transient kinetic techniques. It is observed that XO forms optically observable complexes with Cu2+ ion. The pH dependence studies of the formation of Cu2+-XO complex by optical spectroscopy and circular dichroism show that at least one ionizable group may be responsible for the formation of the complex. The EPR studies show that Cu2+ ion binds to XO with sulfur and nitrogenous ligands. The transient kinetic study of the interaction of Cu2+ with XO shows the existence of two Cu2+ bound XO complexes formed at two different time scales of the interaction, one at < or =5 ms and the other one at around 20 s. The complex formed at longer time scale may be responsible for the inhibition of the enzyme activity.
Collapse
Affiliation(s)
- A K Sau
- Department of Chemical Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, 40 0005, Mumbai, India.
| | | | | |
Collapse
|
25
|
Sau AK, Mitra S. Steady state and picosecond time-resolved fluorescence studies on native, desulpho and deflavo xanthine oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:273-82. [PMID: 11018718 DOI: 10.1016/s0167-4838(00)00136-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Steady state and time-resolved fluorescence studies on native, desulpho and deflavo xanthine oxidase (XO) have been carried out to investigate the conformational changes associated with the replacement of the molybdenum double bonded sulphur by oxygen and the removal of the flavin adenine dinucleotide (FAD). The steady state quenching experiments of the intrinsic tryptophan residues of the enzyme show that all the nine tryptophans are accessible to neutral quencher, acrylamide, in the native as well as desulpho and deflavo enzymes. However, the number of the tryptophan residues accessible to the ionic quenchers, potassium iodide and cesium chloride, increases upon removal of the FAD centre from the enzyme. This indicates that two tryptophan residues move out from the core of the enzyme to the solvent upon the removal of the FAD. The time-resolved fluorescence studies were carried out on the native, desulpho and deflavo XO by means of the time-correlated single photon counting technique, and the data were analysed by discrete exponential and maximum entropy methods. The results show that the fluorescence decay curve fitted best to a three-exponential model with lifetimes tau(1)=0.4, tau(2)=1.4 and tau(3)=3.0 ns for the native and desulpho XO, and tau(1)=0.7, tau(2)=1.7 and tau(3)=4.8 ns for the deflavo XO. The replacement of the molybdenum double bonded sulphur by oxygen in the desulpho enzyme does not cause any significant change of the lifetime components. However, removal of the FAD centre causes a significant change in the shortest and longest lifetime components indicating a conformational change in the deflavo XO possibly in the flavin domain. Decay-associated emission spectra at various emission wavelengths have been used to determine the origin of the lifetimes. The results show that tau(1) and tau(3) of the native and desulpho XO originate from the tryptophan residues which are completely or partially accessible to the solvent but tau(2) corresponds to those residues which are buried in the core of the enzyme and not exposed to the solvent. For deflavo enzyme, tau(2) is red shifted compared to the native enzyme indicating the movement of tryptophan residues from the core of the enzyme to the solvents.
Collapse
Affiliation(s)
- A K Sau
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, 400 005, Mumbai, India.
| | | |
Collapse
|
26
|
Mondal MS, Sau AK, Mitra S. Mechanism of the inhibition of milk xanthine oxidase activity by metal ions: a transient kinetic study. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1480:302-10. [PMID: 11004570 DOI: 10.1016/s0167-4838(00)00084-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nature and mechanism of the inhibition of the oxidoreductase activity of milk xanthine oxidase (XO) by Cu(2+), Hg(2+) and Ag(+) ions has been studied by steady state and stopped flow transient kinetic measurements. The results show that the nature of the inhibition is noncompetitive. The inhibition constants for Cu(2+) and Hg(2+) are in the micromolar and that for Ag(+) is in the nanomolar range. This suggests that the metal ions have strong affinity towards XO. pH dependence studies of the inhibition indicate that at least two ionisable groups of XO are involved in the binding of these metal ions. The effect of the interaction of the metal ions on the reductive and oxidative half reactions of XO has been investigated, and it is observed that the kinetic parameters of the reductive half reaction are not affected by these metal ions. However, the interaction of these metal ions with XO significantly affects the kinetic parameters of the oxidative half reaction. It is suggested that this may be the main cause for the inhibition of XO activity by the metal ions.
Collapse
Affiliation(s)
- M S Mondal
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, 400 005, Mumbai, India
| | | | | |
Collapse
|
27
|
Spasojevic I, Liochev SI, Fridovich I. Lucigenin: redox potential in aqueous media and redox cycling with O-(2) production. Arch Biochem Biophys 2000; 373:447-50. [PMID: 10620371 DOI: 10.1006/abbi.1999.1579] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of lucigenin luminescence as a measure of ¿O-(2) has been questioned because lucigenin has been shown to be capable of mediating the production of O-(2). This being the case, lucigenin can signal the presence of O-(2) even in systems not producing it in the absence of lucigenin. The reduction potential of lucigenin should be in accord with its ability to mediate O-(2) production; but it has not heretofore been measured in aqueous media. The problems facing such measurement are the insolubility of the divalently reduced form, which deposits on the electrode, and the slow conformational transition that follows the second electron transfer and which interferes with reversibility. We have now used rapid scan cyclic voltammetry to determine that the reduction potential for lucigenin is -0.14 +/- 0.02 V versus the normal hydrogen electrode. This value applies to both the first and the second electron transfers to lucigenin and it is in accord with the facile mediation of O-(2) production by this compound.
Collapse
Affiliation(s)
- I Spasojevic
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
28
|
Mondal MS, Mitra S. Altered redox affinity of xanthine oxidase active sites by copper(II) ions. J CHEM SCI 1999. [DOI: 10.1007/bf02870847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Mondal MS, Mitra S. The inhibition of bovine xanthine oxidase activity by Hg2+ and other metal ions. J Inorg Biochem 1996; 62:271-9. [PMID: 8676104 DOI: 10.1016/0162-0134(95)00160-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The inhibition of the activity of bovine xanthine oxidase (XO) by divalent mercury and other metal ions has been investigated by optical spectroscopy and stop-flow kinetic measurements. The study shows that Hg2+ ion completely inhibits the activity of XO, while other metal ions such as Zn2+, Mg2+, Co2+, and Ni2+ inhibit the activity only marginally (approximately 10%). The inhibition by the Hg2+ ion was found to be monophasic and noncompetitive with strong affinity for binding to XO. The pH-dependent study of the inhibition indicates that at least two ionizing groups of XO are involved in the binding of the Hg2+ ion.
Collapse
Affiliation(s)
- M S Mondal
- Chemical Physics Group, Tata Institute of Fundamental Research, Bombay, India
| | | |
Collapse
|
30
|
Xiang Q, Edmondson DE. Purification and characterization of a prokaryotic xanthine dehydrogenase from Comamonas acidovorans. Biochemistry 1996; 35:5441-50. [PMID: 8611534 DOI: 10.1021/bi952880d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Xanthine dehydrogenase (XDH) is induced in Comamonas acidovorans cells incubated in a limited medium with hypoxanthine as the only carbon and nitrogen source. The enzyme has been purified to homogeneity using standard techniques and characterized. It contains two subunits with M(r) values of 90 and 60 kDa. Gel filtration studies show the enzyme to have an alpha 2 beta 2 native structure. No precursor form of the enzyme is observed on Western blot analysis of cell extracts obtained at various stages of enzyme induction. Metal analysis of the purified enzyme shows 1.1 Mo, 4.0 Fe, and 3.6 phosphorus atoms per alpha beta protomer. Cofactor analysis shows the enzyme to contain a single molybdopterin mononucleotide and one FAD per alpha beta protomer. Electron spin resonance and circular dichroism spectral studies of the oxidized and reduced forms of the enzyme suggest the Fe centers to be two nonidentical [2Fe-2S] clusters. Electron spin resonance signals due to Mo(V) and neutral FAD radical are also observed in the reduced form of the enzyme. Purified enzyme preparations ranged from 70% to 100% functionality. The enzyme is irreversibly inactivated by CN- and is inhibited on incubation with allopurinol. With xanthine and NAD+ as substrates the enzyme has a specific activity of 50 units/mg, a kcat value of 120 s-1, an activity/flavin ratio of 1930, and respective Km values of 66 and 160 mM. Using 8-D-xanthine as substrate, a DV value of 1.8 is found with no change in Km. Thus, the Km and KD values of the enzyme for xanthine are equal. These data show Comamonas XDH to exhibit structural properties similar to bovine milk xanthine oxidase/dehydrogenase and to chicken liver xanthine dehydrogenase. Although the bacterial enzyme exhibits a 6-7-fold greater turnover rate than bovine or avian enzymes, the catalytic efficiencies (as measured by V/K) are similar for all three enzymes.
Collapse
Affiliation(s)
- Q Xiang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322-3050, USA
| | | |
Collapse
|
31
|
|
32
|
Inhibition of oxidoreductase activity of xanthine oxidase by Cu2+ and Hg2+ ions. J CHEM SCI 1994. [DOI: 10.1007/bf02867590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Sauter M, Tshisuaka B, Fetzner S, Lingens F. Microbial metabolism of quinoline and related compounds. XX. Quinaldic acid 4-oxidoreductase from Pseudomonas sp. AK-2 compared to other procaryotic molybdenum-containing hydroxylases. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1993; 374:1037-46. [PMID: 8292263 DOI: 10.1515/bchm3.1993.374.7-12.1037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Quinaldic acid 4-oxidoreductase from Pseudomonas sp. AK-2 catalyses the hydroxylation of quinoline 2-carboxylic (quinaldic acid) to 4-hydroxyquinoline 2-carboxylic acid (kynurenic acid) with concomitant reduction of a suitable electron acceptor. An analogous hydroxylation in para-position relative to the N-heteroatom was only recently described for quinaldine 4-oxidoreductase (de Beyer & Lingens, 1993, Biol. Chem. Hoppe-Seyler 374, 101-110) and for quinaldic acid 4-oxidoreductase from Serratia marcescens 2CC-1 (Fetzner & Lingens, 1993, Biol. Chem. Hoppe-Seyler 374, 363-376). Quinaldic acid 4-oxidoreductase from Pseudomonas putida AK-2 was purified 78-fold to electrophoretic homogeneity with a recovery of 22%. The native enzyme (300 kDa) was composed of three subunits with molecular masses of 90, 34 and 20 kDa, indicating an alpha 2 beta 2 gamma 2 structure. Quinaldic acid 4-oxidoreductase contained FAD, molybdenum, iron and acid-labile sulfur in a ratio of 2:2:8:8. Molybdenum is probably associated with molybdopterin cytosine dinucleotide as organic part of the pterin molybdenum cofactor. The absorption spectrum of quinaldic acid 4-oxido-reductase exhibited the typical features of a molybdo-iron/sulfur-flavoprotein, namely, maxima at 274 nm, 340 nm and 450 nm, a shoulder at 550 nm, a ratio A280/A450 of 4.7 and a ratio A450/A550 of 3.5. The enzyme was susceptible to inactivation by methanol, sodium m-arsenite, p-hydroxymercuribenzoate, and potassium cyanide. Cyanide caused an alteration at 320 nm in the absorption spectrum, typical for the change in the coordination sphere of the molybdenum. Enzyme inactivated with cyanide was reactivated to 74% by incubation with sulfide. Thus, quinaldic acid 4-oxidoreductase possesses a monooxo-monosulfido-type molybdenum center.
Collapse
Affiliation(s)
- M Sauter
- Institut für Mikrobiologie, Universität Hohenheim
| | | | | | | |
Collapse
|
34
|
Kim J, Hille R. Reductive half-reaction of xanthine oxidase with xanthine. Observation of a spectral intermediate attributable to the molybdenum center in the reaction of enzyme with xanthine. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54112-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Abadeh S, Killacky J, Benboubetra M, Harrison R. Purification and partial characterization of xanthine oxidase from human milk. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1117:25-32. [PMID: 1627588 DOI: 10.1016/0304-4165(92)90157-p] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Xanthine oxidase was purified from human milk in yields comparable with those obtained from bovine milk. The freshly purified enzyme appeared homogeneous in gel permeation FPLC and SDS-PAGE, consistent with its being a homodimer with total M(r) 290,000 +/- 6000. The ultraviolet/visible absorption spectrum differed only slightly from that of bovine milk enzyme and showed an A280/A450 ratio of 5.13 +/- 0.29, indicating a high degree of purity. Xanthine oxidase activities of purified enzyme varied with batches of milk, ranging between 3 and 46 mU/mg protein; values that are some two to three orders of magnitude smaller than those shown by the most highly purified samples of bovine milk enzyme. Direct comparison with commercially-available bovine milk enzyme showed that activities involving xanthine as reducing substrate were 1-6% that of the bovine enzyme, whereas those involving NADH, in contrast, were of the same order for the two enzymes. Anaerobic bleaching experiments indicated that less than 2% of the human enzyme was present as a form active with xanthine. These findings, together with the activity data, are consistent with a very high content, possibly greater than 98%, of demolybdo- and/or desulpho-forms of human enzyme, both of which occur, to a lesser extent, in bovine xanthine oxidase. Molybdenum assay indicated that demolybdo-enzyme could only account for some 26% of this inactive component, suggesting that desulpho-enzyme may account for the remainder.
Collapse
Affiliation(s)
- S Abadeh
- Biochemistry Department, University of Bath, UK
| | | | | | | |
Collapse
|
36
|
Xanthine oxidase-catalyzed reductive debromination of 6-(bromomethyl)-9H-purine with concomitant covalent modification of the FAD prosthetic group. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77381-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Nishino T, Nishino T, Schopfer LM, Massey V. Reactivity of Chicken Liver Xanthine Dehydrogenase Containing Modified Flavins. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83315-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Schopfer LM, Massey V, Nishino T. Rapid reaction studies on the reduction and oxidation of chicken liver xanthine dehydrogenase by the xanthine/urate and NAD/NADH couples. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68274-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Manchester KM, Amy NK. Xanthine oxidase activity and immunologically detectable protein in the C57B1/6 mouse. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1988; 20:1061-6. [PMID: 3248666 DOI: 10.1016/0020-711x(88)90250-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. Xanthine oxidase (XO) was purified from livers of C57B1/6 mice. Antibodies generated against the purified protein were used in an immunoassay to measure total XO protein. 2. Both the specific activity and amount of XO protein were greater in the proximal small intestine than in the liver. A pool of inactive enzyme was present in the small intestine which developed after weaning. 3. Male C57B1/6 mice had the same XO specific activity as females and neither the hepatic nor the intestinal XO activity were affected by the level of dietary protein. 4. When mice were fed diets with tungsten, XO activity was lost and the amount of XO protein in the small intestine was decreased.
Collapse
Affiliation(s)
- K M Manchester
- Department of Nutritional Sciences, University of California, Berkeley 94720
| | | |
Collapse
|
40
|
Nishino T, Tsushima K. Interaction of milk xanthine oxidase with folic acid. Inhibition of milk xanthine oxidase by folic acid and separation of the enzyme into two fractions on Sepharose 4B/folate gel. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67374-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
41
|
Ikegami T, Nishino T. The presence of desulfo xanthine dehydrogenase in purified and crude enzyme preparations from rat liver. Arch Biochem Biophys 1986; 247:254-60. [PMID: 3459393 DOI: 10.1016/0003-9861(86)90582-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Crude and purified xanthine dehydrogenase preparations from rat liver were examined for the existence of a naturally occurring inactive form. Reduction of the purified enzyme by xanthine under anaerobic conditions proceeded in two phases. The enzyme was inactivated by cyanide, which caused the release of a sulfur atom from the molybdenum center as thiocyanate. The amount of thiocyanate released was almost in parallel with the initial specific activity. The active and inactive enzymes could be resolved by affinity chromatography on Sepharose 4B/folate gel. These results provided evidence that the purified enzyme preparation from rat liver contained an inactive form. A method for the determination of the active and inactive enzymes in crude enzyme preparations from rat liver was devised based on the fact that only active enzyme could react with [14C]allopurinol and both active and inactive enzymes could be immunoprecipitated quantitatively by excess specific antibody to xanthine dehydrogenase. The amount of [14C]alloxanthine (derived from [14C]allopurinol) bound to the active sulfo enzyme in crude rat liver extracts was about 0.5 mol/mol of FAD. As this content is closely similar to that in the purified enzyme, these results suggest the existence of an inactive desulfo form in vivo.
Collapse
|
42
|
Woolfolk CA. Purification and properties of a novel ferricyanide-linked xanthine dehydrogenase from Pseudomonas putida 40. J Bacteriol 1985; 163:600-9. [PMID: 3860496 PMCID: PMC219164 DOI: 10.1128/jb.163.2.600-609.1985] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The isolation of a xanthine dehydrogenase from Pseudomonas putida 40 which utilizes ferricyanide as an electron acceptor at high efficiency is presented. The new activity is separate from the NAD+ and oxygen-utilizing activities of the same organism but displays a broad pattern for reducing substrates typical of those of previously studied xanthine-oxidizing enzymes. Unlike the previously studied enzymes, the new enzyme appears to lack flavin but possess heme and is resistant to cyanide treatment. However, sensitivity of the purified enzyme to methanol and the selective elimination of the activity when tungstate is added to certain growth media suggest a role for molybdenum. The enzyme is subject to a selective proteolytic action during processing which is not accompanied by denaturation or loss of activity and which is minimized by the continuous exposure of the activity to EDTA and phenylmethylsulfonyl fluoride. Electrophoresis of the denatured enzyme in the presence of sodium dodecyl sulfate suggests that the enzyme is constructed of subunits with a molecular weight of approximately 72,000. Electrophoresis under native conditions of a purified enzyme previously exposed to magnesium ion reveals a series of major and minor activity bands which display some selectivity toward both electron donors and acceptors. An analysis of the effect of gel concentration on this pattern suggests that the enzyme forms a series of charge and size isomers with a pair of trimeric forms predominating. Comparison of the rate of sedimentation of the enzyme in sucrose gradients with its elution profile from standardized Sepharose 6B columns suggests a molecular weight of 255,000 for the major form of the native enzyme.
Collapse
|
43
|
Influence of some metal ions on oxidation of nadh and on formation of the superoxide anion radical (O2−), during enzymatic catalysis by E.C. 1.2.3.2 xanthine oxidase. Talanta 1985; 32:359-62. [DOI: 10.1016/0039-9140(85)80099-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/1984] [Revised: 11/14/1984] [Accepted: 01/11/1985] [Indexed: 11/22/2022]
|
44
|
Davis MD, Edmondson DE, Müller F. 31P nuclear magnetic resonance and chemical studies of the phosphorus residues in bovine milk xanthine oxidase. ACTA ACUST UNITED AC 1984; 145:237-43. [PMID: 6548706 DOI: 10.1111/j.1432-1033.1984.tb08544.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In addition to the phosphate residues contained in the acid-dissociable FAD and the molybdenum cofactor moieties, milk xanthine oxidase contains one mole of covalently bound phosphorus per active-center molybdenum. Acid hydrolysis of the apoprotein moiety and subsequent analysis by high-voltage thin-layer electrophoresis has identified the phosphorylated amino acid residue to be phosphoserine. 31P NMR data show the phosphopeptide to be monosubstituted, in agreement with the chemical analysis. A pH-dependent chemical shift of the phosphorus residue in the molybdenum cofactor moiety is also observed which provides unequivocal support for suggestions in the literature that this cofactor contains a monosubstituted phosphate. 31P NMR studies on the intact enzyme show phosphorus resonances at about -3 ppm, +1 ppm, +8.8 ppm and at +13.5 ppm. The resonances at +8.8 ppm and at +13.5 ppm are assigned to those of the pyrophosphate linkage of the FAD moiety by analogy with chemical shift data of the FAD on glucose oxidase [James, T.L., Edmondson, D.E., and Husain, M. (1981) Biochemistry 20, 617] and from the absence of any resonances in this region upon examination of preparations of deflavo xanthine oxidase. The intensity and resolution of the resonance at about -3 ppm is dependent on the degree of functionality of the enzyme. This resonance has a small amplitude relative to the FAD resonances in 50-60% functional enzyme, but increases dramatically in intensity in the desulpho enzyme. This resonance is the only one exposed to solvent as it is the only one susceptible to paramagnetic line-broadening on the addition of Mn(II) to the enzyme solution. Treatment of the enzyme with allopurinol leads to alteration of the approximately equal to -3-ppm resonance, but does not significantly affect the other resonances. Formation of the stable Mo(V) 'inhibited' form of the enzyme with ethylene glycol results in extensive line-broadening of the resonances at -3 ppm and +1 ppm, but has no observable affect on the FAD resonances. These data suggest that in addition to the phosphate on the molybdenum cofactor, the phosphoserine residue in xanthine oxidase is also in close proximity to the activesite molybdenum center of this enzyme. These results are discussed with respect to possible implications on the catalytic mechanism of the enzyme.
Collapse
|
45
|
Johnson C, Stubley-Beedham C, Stell JG. Elevation of molybdenum hydroxylase levels in rabbit liver after ingestion of phthalazine or its hydroxylated metabolite. Biochem Pharmacol 1984; 33:3699-705. [PMID: 6548914 DOI: 10.1016/0006-2952(84)90159-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Oral administration of phthalazine (50 mg/kg/day) or 1-hydroxyphthalazine (10 mg/kg/day) to female rabbits caused an increase in the specific activity of the hepatic molybdenum hydroxylases aldehyde oxidase and xanthine oxidase, whereas no effect on microsomal cytochrome P-450 activity was observed. The rise in the specific activity of purified aldehyde oxidase fractions was accompanied by a similar increase in molybdenum content. A significant lowering of the Km value for phthalazine was demonstrated with enzyme from treated rabbits whereas Km values for structurally similar substrates such as isoquinoline were unchanged from control values. Iso-electric focusing of DEAE-cellulose fractions showed the presence of an additional band of activity indicating that genuine induction of aldehyde oxidase had occurred in rabbits treated with phthalazine or 1-hydroxyphthalazine.
Collapse
|
46
|
Darr D, Fridovich I. Vanadate and molybdate stimulate the oxidation of NADH by superoxide radical. Arch Biochem Biophys 1984; 232:562-5. [PMID: 6087731 DOI: 10.1016/0003-9861(84)90573-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Vanadate or molybdate strongly accelerate the cooxidation of NADH, or of reduced nicotinamide mononucleotide, by the xanthine oxidase plus xanthine reaction. Superoxide dismutase eliminated the effect of vanadate or molybdate, while catalase was without effect. It follows that vanadate or molybdate accelerate the oxidation of dihydropyridines by O-2. A stoichiometry of 4 NADH oxidized per O-2 introduced suggests a chain reaction for which a mechanism is proposed. These results provide an explanation for the reported stimulation, by vanadate, of NADH oxidation by biological membranes.
Collapse
|
47
|
Abstract
Cell extracts of Clostridium acidiurici, C. cylindrosporum, and C. purinolyticum converted purine, hypoxanthine, 2-hydroxypurine, 6,8-dihydroxypurine, and uric acid into xanthine by the shortest possible route. Adenine was transformed to xanthine only by C. purinolyticum, whereas the other two species formed 6-amino-8-hydroxypurine, which was neither deaminated nor hydroxylated further. 8-Hydroxypurine was formed from purine by all three species. Xanthine dehydrogenase activity was constitutively expressed by C. purinolyticum. Due to the lability of the enzyme activity, comparative studies could not be done with a purified preparation. All enzymes reported to be involved in formiminoglycine metabolism of C. acidiurici and C. cylindrosporum were present in C. purinolyticum. However, glycine was reduced directly to acetate in all three species, as indicated by radiochemical data and by the detection of glycine reductase in cell extracts of C. cylindrosporum and C. purinolyticum. The expression of glycine reductase and the high ratio of glycine fermented to uric acid present points to an energetic advantage for the glycine reductase system, which is expressed when selenium compounds are added to the growth media.
Collapse
|
48
|
|
49
|
Davis MD, Olson JS, Palmer G. Charge transfer complexes between pteridine substrates and the active center molybdenum of xanthine oxidase. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33341-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Sawahata T, Neal RA. Use of 1-fluoro-2,4-dinitrobenzene as a probe for the presence of hydrodisulfide groups in proteins. Anal Biochem 1982; 126:360-4. [PMID: 6897606 DOI: 10.1016/0003-2697(82)90528-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|