1
|
Chen Y, Li Z, Kong F, Ju LA, Zhu C. Force-Regulated Spontaneous Conformational Changes of Integrins α 5β 1 and α Vβ 3. ACS NANO 2024; 18:299-313. [PMID: 38105535 PMCID: PMC10786158 DOI: 10.1021/acsnano.3c06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Integrins are cell surface nanosized receptors crucial for cell motility and mechanosensing of the extracellular environment, which are often targeted for the development of biomaterials and nanomedicines. As a key feature of integrins, their activity, structure and behavior are highly mechanosensitive, which are regulated by mechanical forces down to pico-Newton scale. Using single-molecule biomechanical approaches, we compared the force-modulated ectodomain bending/unbending conformational changes of two integrin species, α5β1 and αVβ3. It was found that the conformation of integrin α5β1 is determined by a threshold head-to-tail tension. By comparison, integrin αVβ3 exhibits bistability even without force and can spontaneously transition between the bent and extended conformations with an apparent transition time under a wide range of forces. Molecular dynamics simulations observed almost concurrent disruption of ∼2 hydrogen bonds during integrin α5β1 unbending, but consecutive disruption of ∼7 hydrogen bonds during integrin αVβ3 unbending. Accordingly, we constructed a canonical energy landscape for integrin α5β1 with a single energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to allow the conformational transition. In contrast, the energy landscape of integrin αVβ3 conformational changes was constructed with hexa-stable intermediate states and intermediate energy barriers that segregate the conformational change process into multiple small steps. Our study elucidates the different biomechanical inner workings of integrins α5β1 and αVβ3 at the submolecular level, helps understand their mechanosignaling processes and how their respective functions are facilitated by their distinctive mechanosensitivities, and provides useful design principles for the engineering of protein-based biomechanical nanomachines.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Biochemistry and Molecular Biology and Department of Pathology, The University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Zhenhai Li
- Shanghai
Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute
of Applied Mathematics and Mechanics, School of Mechanics and Engineering
Science, Shanghai University, Shanghai 200072, China
| | - Fang Kong
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School of
Biological Science, Nanyang Technological
University, Singapore 637551, Singapore
| | - Lining Arnold Ju
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Biomedical Engineering, The University
of Sydney, Darlington, New South Wales 2008, Australia
- Charles
Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering and Petit Institute
for Bioengineering
and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Adair BD, Xiong JP, Yeager M, Arnaout MA. Cryo-EM structures of full-length integrin αIIbβ3 in native lipids. Nat Commun 2023; 14:4168. [PMID: 37443315 PMCID: PMC10345127 DOI: 10.1038/s41467-023-39763-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Platelet integrin αIIbβ3 is maintained in a bent inactive state (low affinity to physiologic ligand), but can rapidly switch to a ligand-competent (high-affinity) state in response to intracellular signals ("inside-out" activation). Once bound, ligands drive proadhesive "outside-in" signaling. Anti-αIIbβ3 drugs like eptifibatide can engage the inactive integrin directly, inhibiting thrombosis but inadvertently impairing αIIbβ3 hemostatic functions. Bidirectional αIIbβ3 signaling is mediated by reorganization of the associated αIIb and β3 transmembrane α-helices, but the underlying changes remain poorly defined absent the structure of the full-length receptor. We now report the cryo-EM structures of full-length αIIbβ3 in its apo and eptifibatide-bound states in native cell-membrane nanoparticles at near-atomic resolution. The apo form adopts the bent inactive state but with separated transmembrane α-helices, and a fully accessible ligand-binding site that challenges the model that this site is occluded by the plasma membrane. Bound eptifibatide triggers dramatic conformational changes that may account for impaired hemostasis. These results advance our understanding of integrin structure and function and may guide development of safer inhibitors.
Collapse
Affiliation(s)
- Brian D Adair
- Leukocyte Biology and Inflammation Laboratory, Structural Biology Program, Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Jian-Ping Xiong
- Leukocyte Biology and Inflammation Laboratory, Structural Biology Program, Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Mark Yeager
- The Phillip and Patricia Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL, 33146, USA
- Department of Chemistry, School of Arts and Sciences, University of Miami, Coral Gables, FL 33146, University of Miami, Miami, FL, 33146, USA
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - M Amin Arnaout
- Leukocyte Biology and Inflammation Laboratory, Structural Biology Program, Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Chen Y, Kong F, Li Z, Ju LA, Zhu C. Force-regulated spontaneous conformational changes of integrins α 5 β 1 and α V β 3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523308. [PMID: 36712101 PMCID: PMC9881988 DOI: 10.1101/2023.01.09.523308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Force can modulate the properties and functions of macromolecules by inducing conformational changes, such as coiling/uncoiling, zipping/unzipping, and folding/unfolding. Here we compared force-modulated bending/unbending of two purified integrin ectodomains, α 5 β 1 and α V β 3 , using single-molecule approaches. Similar to previously characterized mechano-sensitive macromolecules, the conformation of α 5 β 1 is determined by a threshold head-to-tail tension, suggesting a canonical energy landscape with a deep energy well that traps the integrin in the bent state until sufficient force tilts the energy landscape to accelerate transition to the extended state. By comparison, α V β 3 exhibits bi-stability even without force and can spontaneously transition between the bent and extended conformations in a wide range of forces without energy supplies. Molecular dynamics simulations revealed consecutive formation and disruption of 7 hydrogen bonds during α V β 3 bending and unbending, respectively. Accordingly, we constructed an energy landscape with hexa-stable intermediate states to break down the energy barrier separating the bent and extended states into smaller ones, making it possible for the thermal agitation energy to overcome them sequentially and to be accumulated and converted into mechanical work required for α V β 3 to bend against force. Our study elucidates the different inner workings of α 5 β 1 and α V β 3 at the sub-molecular level, sheds lights on how their respectively functions are facilitated by their distinctive mechano-sensitivities, helps understand their signal initiation processes, and provides critical concepts and useful design principles for engineering of protein-based biomechanical nanomachines.
Collapse
|
4
|
Song G, Meng F, Luo B. The β
8
integrin EGF domains support a constitutive extended conformation, and the cytoplasmic domain impairs outside‐in signaling. J Cell Physiol 2022; 237:4251-4261. [DOI: 10.1002/jcp.30871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Guannan Song
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Fei Meng
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Bing‐Hao Luo
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| |
Collapse
|
5
|
Yang YF, Sun YY, Peters DM, Keller KE. The Effects of Mechanical Stretch on Integrins and Filopodial-Associated Proteins in Normal and Glaucomatous Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:886706. [PMID: 35573666 PMCID: PMC9100841 DOI: 10.3389/fcell.2022.886706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 01/29/2023] Open
Abstract
The trabecular meshwork (TM) is the tissue responsible for regulating aqueous humor fluid egress from the anterior eye. If drainage is impaired, intraocular pressure (IOP) becomes elevated, which is a primary risk factor for primary open angle glaucoma. TM cells sense elevated IOP via changes in their biomechanical environment. Filopodia cellular protrusions and integrin transmembrane proteins may play roles in detecting IOP elevation, yet this has not been studied in detail in the TM. Here, we investigate integrins and filopodial proteins, such as myosin-X (Myo10), in response to mechanical stretch, an in vitro technique that produces mechanical alterations mimicking elevated IOP. Pull-down assays showed Myo10 binding to α5 but not the β1 subunit, αvβ3, and αvβ5 integrins. Several of these integrins colocalized in nascent adhesions in the filopodial tip and shaft. Using conformation-specific antibodies, we found that β1 integrin, but not α5 or αvβ3 integrins, were activated following 1-h mechanical stretch. Cadherin -11 (CDH11), a cell adhesion molecule, did not bind to Myo10, but was associated with filopodia. Interestingly, CDH11 was downregulated on the TM cell surface following 1-h mechanical stretch. In glaucoma cells, CDH11 protein levels were increased. Finally, mechanical stretch caused a small, yet significant increase in Myo10 protein levels in glaucoma cells, but did not affect cellular communication of fluorescent vesicles via filopodia-like tunneling nanotubes. Together, these data suggest that TM cell adhesion proteins, β1 integrin and CDH11, have relatively rapid responses to mechanical stretch, which suggests a central role in sensing changes in IOP elevation in situ.
Collapse
Affiliation(s)
- Yong-Feng Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Kate E. Keller,
| |
Collapse
|
6
|
Constantinescu-Bercu A, Grassi L, Frontini M, Salles-Crawley II, Woollard K, Crawley JTB. Activated α IIbβ 3 on platelets mediates flow-dependent NETosis via SLC44A2. eLife 2020; 9:e53353. [PMID: 32314961 PMCID: PMC7253179 DOI: 10.7554/elife.53353] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/20/2020] [Indexed: 01/03/2023] Open
Abstract
Platelet-neutrophil interactions are important for innate immunity, but also contribute to the pathogenesis of deep vein thrombosis, myocardial infarction and stroke. Here we report that, under flow, von Willebrand factor/glycoprotein Ibα-dependent platelet 'priming' induces integrin αIIbβ3 activation that, in turn, mediates neutrophil and T-cell binding. Binding of platelet αIIbβ3 to SLC44A2 on neutrophils leads to mechanosensitive-dependent production of highly prothrombotic neutrophil extracellular traps. A polymorphism in SLC44A2 (rs2288904-A) present in 22% of the population causes an R154Q substitution in an extracellular loop of SLC44A2 that is protective against venous thrombosis results in severely impaired binding to both activated αIIbβ3 and VWF-primed platelets. This was confirmed using neutrophils homozygous for the SLC44A2 R154Q polymorphism. Taken together, these data reveal a previously unreported mode of platelet-neutrophil crosstalk, mechanosensitive NET production, and provide mechanistic insight into the protective effect of the SLC44A2 rs2288904-A polymorphism in venous thrombosis.
Collapse
Affiliation(s)
- Adela Constantinescu-Bercu
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Institute for Health Research BioResource, Rare Diseases, Cambridge University HospitalsCambridgeUnited Kingdom
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical CampusCambridgeUnited Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical CampusCambridgeUnited Kingdom
- British Heart Foundation Centre of Excellence, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Isabelle I Salles-Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Kevin Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - James TB Crawley
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
Chen Y, Ju LA, Zhou F, Liao J, Xue L, Su QP, Jin D, Yuan Y, Lu H, Jackson SP, Zhu C. An integrin α IIbβ 3 intermediate affinity state mediates biomechanical platelet aggregation. NATURE MATERIALS 2019; 18:760-769. [PMID: 30911119 PMCID: PMC6586518 DOI: 10.1038/s41563-019-0323-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 02/19/2019] [Indexed: 05/20/2023]
Abstract
Integrins are membrane receptors that mediate cell adhesion and mechanosensing. The structure-function relationship of integrins remains incompletely understood, despite the extensive studies carried out because of its importance to basic cell biology and translational medicine. Using a fluorescence dual biomembrane force probe, microfluidics and cone-and-plate rheometry, we applied precisely controlled mechanical stimulations to platelets and identified an intermediate state of integrin αIIbβ3 that is characterized by an ectodomain conformation, ligand affinity and bond lifetimes that are all intermediate between the well-known inactive and active states. This intermediate state is induced by ligand engagement of glycoprotein (GP) Ibα via a mechanosignalling pathway and potentiates the outside-in mechanosignalling of αIIbβ3 for further transition to the active state during integrin mechanical affinity maturation. Our work reveals distinct αIIbβ3 state transitions in response to biomechanical and biochemical stimuli, and identifies a role for the αIIbβ3 intermediate state in promoting biomechanical platelet aggregation.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering and Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Lining Arnold Ju
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Camperdown, New South Wales, Australia
| | - Fangyuan Zhou
- Woodruff School of Mechanical Engineering and Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jiexi Liao
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lingzhou Xue
- Department of Statistics, Pennsylvania State University, University Park, PA, USA
| | - Qian Peter Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yuping Yuan
- Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shaun P Jackson
- Department of Molecular Medicine, MERU-Roon Research Center on Vascular Biology, The Scripps Research Institute, La Jolla, CA, USA.
- Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering and Georgia Institute of Technology, Atlanta, GA, USA.
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Heart Research Institute, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
8
|
Clark RL. Genesis of placental sequestration in malaria and possible targets for drugs for placental malaria. Birth Defects Res 2019; 111:569-583. [PMID: 30919596 PMCID: PMC7432169 DOI: 10.1002/bdr2.1496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
Malaria during pregnancy results in intrauterine growth restriction, fetal anemia, and infant mortality. Women are more susceptible to malaria during pregnancy due to malaria‐induced inflammation and the sequestration of infected red blood cells in the placenta, which bind to the chondroitin sulfate portion of syndecan‐1 on the syncytiotrophoblast and in the intervillous space. Syndecan‐1 is a dimeric proteoglycan with an extracellular ectodomain that is cleaved from the transmembrane domain (referred to as “shedding”) by matrix metalloproteinases (MMPs), likely the secreted MMP‐9. The ectodomain includes four binding sites for chondroitin sulfate, which are proximal to the transmembrane domain, and six distal binding sites primarily for heparan sulfate. This “shedding” of syndecan‐1 is inhibited by the presence of the heparan sulfate chains, which can be removed by heparanase. The intervillous space contains fibrin strands and syndecan‐1 ectodomains free of heparan sulfate. The following is proposed as the sequence of events that leads to and is primarily responsible for sequestration in the intervillous space of the placenta. Inflammation associated with malaria triggers increased heparanase activity that degrades the heparan sulfate on the membrane‐bound syndecan‐1. Inflammation also upregulates MMP‐9 and the removal of heparan sulfate gives MMP‐9 access to cleave syndecan‐1, thereby releasing dimeric syndecan‐1 ectodomains with at least four chondroitin sulfate chains attached. These multivalent ectodomains bind infected RBCs together leading to their aggregation and entrapment in intervillous fibrin. This mechanism suggests possible new targets for anti‐placental malaria drugs such as the inhibition of MMP‐9. Doxycycline is an antimalarial drug which inhibits MMP‐9.
Collapse
|
9
|
Diaz C, Neubauer S, Rechenmacher F, Kessler H, Missirlis D. Recruitment of integrin ανβ3 to integrin α5β1-induced clusters enables focal adhesion maturation and cell spreading. J Cell Sci 2019; 133:jcs.232702. [DOI: 10.1242/jcs.232702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022] Open
Abstract
The major fibronectin (FN) binding integrins α5β1 and αvβ3 exhibit cooperativity during cell adhesion, migration and mechanosensing, through mechanisms that are not yet fully resolved. Exploiting mechanically-tunable, nano-patterned substrates, and peptidomimetic ligands designed to selectively bind corresponding integrins, we report that focal adhesions (FAs) of endothelial cells assembled on integrin α5β1-selective substrates, rapidly recruit αvβ3 integrins, but not vice versa. Blocking of integrin αvβ3 hindered FA maturation and cell spreading on α5β1-selective substrates, indicating a mechanism dependent on extracellular ligand binding and highlighting the requirement of αvβ3 engagement for efficient adhesion. Recruitment of αvβ3 integrins additionally occurred on hydrogel substrates of varying mechanical properties, above a threshold stiffness supporting FA formation. Mechanistic studies revealed the need for soluble factors present in serum to allow recruitment, and excluded exogenous, or endogenous, FN as the responsible ligand for integrin αvβ3 accumulation to adhesion clusters. Our findings highlight a novel mechanism of integrin co-operation and the critical role for αvβ3 integrins in promoting cell adhesion on α5β1-selective substrates.
Collapse
Affiliation(s)
- Carolina Diaz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research; postal address: Jahnstr. 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University; postal address: INF 253, D-69120 Heidelberg, Germany
| | - Stefanie Neubauer
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Florian Rechenmacher
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science (CIPSM), Technische Universität München; postal address: Lichtenbergstr. 4, D-85747, Garching, Germany
| | - Dimitris Missirlis
- Department of Cellular Biophysics, Max Planck Institute for Medical Research; postal address: Jahnstr. 29, D-69120, Heidelberg, Germany
- Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University; postal address: INF 253, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Wang L, Pan D, Yan Q, Song Y. Activation mechanisms of αVβ3 integrin by binding to fibronectin: A computational study. Protein Sci 2017; 26:1124-1137. [PMID: 28340512 PMCID: PMC5441423 DOI: 10.1002/pro.3163] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 01/29/2023]
Abstract
Integrin αVβ3 plays an important role in regulating cellular activities and in human diseases. Although the structure of αVβ3 has been studied by crystallography and electron microscopy, the detailed activation mechanism of integrin αVβ3 induced by fibronectin remains unclear. In this study, we investigated the conformational and dynamical motion changes of Mn2+ -bound integrin αVβ3 by binding to fibronectin with molecular dynamics simulations. Results showed that fibronectin binding to integrin αVβ3 caused the changes of the conformational flexibility of αVβ3 domains, the essential mode of motion for the domains of αV subunit and β3 subunit and the degrees of correlated motion of residues between the domains of αV subunit and β3 subunit of integrin αVβ3. The angle of Propeller domain with respect to the Calf-2 domain of αV subunit and the angle of Hybrid domain with respect to βA domain of β3 subunit significantly increased when integrin αVβ3 was bound to fibronectin. These changes could result in the conformational change tendency of αVβ3 from a bend conformation to an extended conformation and lead to the open swing of Hybrid domain relative to βA domain of β3 subunit, which have demonstrated their importance for αVβ3 activation. Fibronectin binding to integrin αVβ3 significantly decreased the relative position of α1 helix to βA domain and that to metal ion-dependent adhesion site, stabilized Mn2+ ions binding in integrin αVβ3 and changed fibronectin conformation, which are important for αVβ3 activation. Results from this study provide important molecular insight into the "outside-in" activation mechanism of integrin αVβ3 by binding to fibronectin.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Biomedical EngineeringThe University of Alabama at BirminghamBirminghamAlabama35294
| | - Di Pan
- Department of Biomedical EngineeringThe University of Alabama at BirminghamBirminghamAlabama35294
| | - Qi Yan
- Department of Biomedical EngineeringThe University of Alabama at BirminghamBirminghamAlabama35294
| | - Yuhua Song
- Department of Biomedical EngineeringThe University of Alabama at BirminghamBirminghamAlabama35294
| |
Collapse
|
11
|
Fiore VF, Strane PW, Bryksin AV, White ES, Hagood JS, Barker TH. Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol 2016; 211:173-90. [PMID: 26459603 PMCID: PMC4602038 DOI: 10.1083/jcb.201505007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lateral associations between inactive αv integrin and Thy-1 glycoprotein control integrin avidity to extracellular matrix ligand, the localization and kinetics of downstream signal activity, and mechanosensitive remodeling of the cytoskeleton. Progressive fibrosis is characterized by excessive deposition of extracellular matrix (ECM), resulting in gross alterations in tissue mechanics. Changes in tissue mechanics can further augment scar deposition through fibroblast mechanotransduction. In idiopathic pulmonary fibrosis, a fatal form of progressive lung fibrosis, previous work has shown that loss of Thy-1 (CD90) expression in fibroblasts correlates with regions of active fibrogenesis, thus representing a pathologically relevant fibroblast subpopulation. We now show that Thy-1 is a regulator of fibroblast rigidity sensing. Thy-1 physically couples to inactive αvβ3 integrins via its RGD-like motif, altering baseline integrin avidity to ECM ligands and also facilitating preadhesion clustering of integrin and membrane rafts via Thy-1’s glycophosphatidylinositol tether. Disruption of Thy-1–αvβ3 coupling altered recruitment of Src family kinases to adhesion complexes and impaired mechanosensitive, force-induced Rho signaling, and rigidity sensing. Loss of Thy-1 was sufficient to induce myofibroblast differentiation in soft ECMs and may represent a physiological mechanism important in wound healing and fibrosis.
Collapse
Affiliation(s)
- Vincent F Fiore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Patrick W Strane
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anton V Bryksin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - James S Hagood
- Division of Respiratory Medicine, Department of Pediatrics, University of California, Rady Children's Hospital, San Diego, CA 92105
| | - Thomas H Barker
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
12
|
Mor-Cohen R. Disulfide Bonds as Regulators of Integrin Function in Thrombosis and Hemostasis. Antioxid Redox Signal 2016; 24:16-31. [PMID: 25314675 DOI: 10.1089/ars.2014.6149] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Disulfide bonds are generally viewed as structure-stabilizing elements in proteins, but some display an alternative functional role as redox switches. Functional disulfide bonds have recently emerged as important regulators of integrin function in thrombosis and hemostasis. RECENT ADVANCES Functional disulfide bonds were identified in the β subunit of the major platelet integrin αIIbβ3 and in other integrins involved in thrombus formation that is, αvβ3 and α2β1. Most of these functional bonds are located in the four epidermal growth factor-like domains of the integrins. Redox agents such as glutathione and nitric oxide and enzymatic thiol isomerase activity were shown to regulate the function of these integrins by disulfide bond reduction and thiol/disulfide exchange. CRITICAL ISSUES Increasing evidence suggests that thiol isomerases such as protein disulfide isomerase (PDI) and Erp57 directly bind to the β3 subunit of αIIbβ3 and αvβ3 and regulate their function during thrombus formation. αIIbβ3 also exhibits an endogenous thiol isomerase activity. The specific functional disulfide bonds identified in the β3 subunit might be the targets for both exogenous and endogenous thiol isomerase activity. FUTURE DIRECTIONS Targeting redox sites of integrins or redox agents and enzymes that regulate their function can provide a useful tool for development of anti-thrombotic therapy. Hence, inhibitors of PDI are currently studied for this purpose.
Collapse
Affiliation(s)
- Ronit Mor-Cohen
- 1 The Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center , Tel Hashomer, Israel .,2 Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
13
|
Abstract
During the past decade, advanced techniques in structural biology have provided atomic level information on the platelet integrin αIIbβ3 activation mechanism that results in it adopting a high-affinity ligand-binding conformation(s). This review focuses on advances in imaging intact αIIbβ3 in a lipid bilayer in the absence of detergent and new structural insights into the changes in the ligand-binding pocket with receptor activation and ligand binding. It concludes with descriptions of novel therapeutic αIIbβ3 antagonists being developed based on an advanced knowledge of the receptor's structure.
Collapse
Affiliation(s)
- B S Coller
- Rockefeller University, New York, NY, USA
| |
Collapse
|
14
|
Estevez B, Shen B, Du X. Targeting integrin and integrin signaling in treating thrombosis. Arterioscler Thromb Vasc Biol 2015; 35:24-9. [PMID: 25256236 PMCID: PMC4270936 DOI: 10.1161/atvbaha.114.303411] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/09/2014] [Indexed: 12/19/2022]
Abstract
The critical roles of integrins in thrombosis have enabled the successful development and clinical use of the first generation of integrin antagonists as represented by abciximab (Reopro), eptifibatide (Integrilin), and tirofiban (Aggrastat). These integrin αIIbβ3 antagonists are not only potent antithrombotics but also have significant side effects. In particular, their induction of ligand-induced integrin conformational changes is associated with thrombocytopenia. Increased bleeding risk prevents integrin antagonists from being used at higher doses and in patients at risk for bleeding. To address the ligand-induced conformational changes caused by current integrin antagonists, compounds that minimally induce conformational changes in integrin αIIbβ3 have been developed. Recent studies on the mechanisms of integrin signaling suggest that selectively targeting integrin outside-in signaling mechanisms allows for potent inhibition of thrombosis, while maintaining hemostasis in animal models.
Collapse
Affiliation(s)
- Brian Estevez
- From the Department of Pharmacology, University of Illinois at Chicago
| | - Bo Shen
- From the Department of Pharmacology, University of Illinois at Chicago
| | - Xiaoping Du
- From the Department of Pharmacology, University of Illinois at Chicago.
| |
Collapse
|
15
|
Abstract
SIGNIFICANCE Reactive oxidant species (ROS) are highly reactive molecules produced by several cell lines including platelets and serve as second messenger for intracellular signaling. In recent years it became evident that ROS are also implicated in the thrombotic process. Statins are lipid lowering molecules which reduce serum cholesterol and retard atherosclerotic complication and its clinical sequelae. However there is evidence that statins may exert an antiplatelet effects by interfering with redox signaling. RECENT ADVANCES Experimental and clinical studies provided evidence that intra-platelet ROS formation is implicated in the process of thrombosis, as impaired ROS neutralization is associated with serious thrombotic complication and eventually death. Recent studies demonstrated that statins possess antiplatelet activity via inhibition of platelet NADPH oxidase-derived ROS formation. This effect results in down-regulation of isoprostanes, which are pro-aggregating molecules, and up-regulation of nitric oxide, which is a platelet inhibitor; such changes occurred immediately after statin's administration and were independent from lipid lowering property. CRITICAL ISSUES Experimental and clinical studies documented that statins possess an antithrombotic effects which may account for thrombotic-related vascular outcomes. This has been evidenced in clinical settings such as percutaneous coronary intervention, myocardial infarction and venous thrombosis. It is still unclear, however, if the statin's antithrombotic effect is dose-related. FUTURE DIRECTIONS Future studies should be addressed to analyze if the antiplatelet effect of statins may preferentially occur at high dosage of statins. Furthermore, the antiplatelet effects of statins could turn useful in clinical settings where the clinical efficacy of aspirin and other antiplatelet drugs are still uncertain.
Collapse
|
16
|
Violi F, Carnevale R, Pastori D, Pignatelli P. Antioxidant and antiplatelet effects of atorvastatin by Nox2 inhibition. Trends Cardiovasc Med 2013; 24:142-8. [PMID: 24263084 DOI: 10.1016/j.tcm.2013.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
In recent years, it became evident that reactive oxygen species (ROS) are implicated in the thrombotic process. Statins are lipid-lowering agents able to lower serum cholesterol levels and retard atherosclerotic complications and their clinical sequelae. There is evidence that, among statins, atorvastatin may exert antiplatelet effects by interfering with redox signaling. Recent studies demonstrated that atorvastatin possesses antiplatelet activity via inhibition of platelet formation of NADPH oxidase-derived ROS. This effect results in down-regulation of isoprostanes, which are pro-aggregating molecules, and up-regulation of nitric oxide, which is a platelet inhibitor; such changes occurred immediately after atorvastatin administration and were independent from lipid-lowering property. Experimental and clinical studies documented that statins possess antithrombotic effects, which may account for the reduction of thrombotic-related vascular outcomes. This has been evidenced in different cardiovascular clinical settings such as percutaneous coronary intervention (PCI), myocardial infarction (MI), and venous thrombosis. Future studies should be addressed to analyze if the antiplatelet effect of atorvastatin may preferentially occur at high dosage. Interestingly, the antiplatelet effects of statins could be useful in clinical settings where the clinical efficacy of aspirin and other antiplatelet drugs is still uncertain.
Collapse
Affiliation(s)
- Francesco Violi
- I Clinica Medica, Sapienza University of Rome, Viale del Policlinico 155, Rome 00161, Italy.
| | - Roberto Carnevale
- I Clinica Medica, Sapienza University of Rome, Viale del Policlinico 155, Rome 00161, Italy
| | - Daniele Pastori
- I Clinica Medica, Sapienza University of Rome, Viale del Policlinico 155, Rome 00161, Italy
| | - Pasquale Pignatelli
- I Clinica Medica, Sapienza University of Rome, Viale del Policlinico 155, Rome 00161, Italy
| |
Collapse
|
17
|
Chong BH, Choi PYI, Khachigian L, Perdomo J. Drug-induced immune thrombocytopenia. Hematol Oncol Clin North Am 2013; 27:521-40. [PMID: 23714310 DOI: 10.1016/j.hoc.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thrombocytopenia is caused by immune reactions elicited by diverse drugs in clinical practice. The activity of the drug-dependent antibodies produces a marked decrease in blood platelets and a risk of serious bleeding. Understanding of the cellular mechanisms that drive drug-induced thrombocytopenia has advanced recently but there is still a need for improved laboratory tests and treatment options. This article provides an overview of the different types of drug-induced thrombocytopenia, discusses potential pathologic mechanisms, and considers diagnostic methods and treatment options.
Collapse
Affiliation(s)
- Beng H Chong
- Haematology Department, St George Hospital, Kogarah, NSW 2217, Australia.
| | | | | | | |
Collapse
|
18
|
Antibodies causing thrombocytopenia in patients treated with RGD-mimetic platelet inhibitors recognize ligand-specific conformers of αIIb/β3 integrin. Blood 2012; 119:6317-25. [PMID: 22490676 DOI: 10.1182/blood-2012-01-406322] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arginine-glycine-aspartic acid (RGD)-mimetic platelet inhibitors act by occupying the RGD recognition site of α(IIb)/β(3) integrin (GPIIb/IIIa), thereby preventing the activated integrin from reacting with fibrinogen. Thrombocytopenia is a well-known side effect of treatment with this class of drugs and is caused by Abs, often naturally occurring, that recognize α(IIb)/β(3) in a complex with the drug being administered. RGD peptide and RGD-mimetic drugs are known to induce epitopes (ligand-induced binding sites [LIBS]) in α(IIb)/β(3) that are recognized by certain mAbs. It has been speculated, but not shown experimentally, that Abs from patients who develop thrombocytopenia when treated with an RGD-mimetic inhibitor similarly recognize LIBS determinants. We addressed this question by comparing the reactions of patient Abs and LIBS-specific mAbs against α(IIb)/β(3) in a complex with RGD and RGD-mimetic drugs, and by examining the ability of selected non-LIBS mAbs to block binding of patient Abs to the liganded integrin. Findings made provide evidence that the patient Abs recognize subtle, drug-induced structural changes in the integrin head region that are clustered about the RGD recognition site. The target epitopes differ from classic LIBS determinants, however, both in their location and by virtue of being largely drug-specific.
Collapse
|
19
|
Goodman SL, Grote HJ, Wilm C. Matched rabbit monoclonal antibodies against αv-series integrins reveal a novel αvβ3-LIBS epitope, and permit routine staining of archival paraffin samples of human tumors. Biol Open 2012; 1:329-40. [PMID: 23213423 PMCID: PMC3509452 DOI: 10.1242/bio.2012364] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The relationship between integrin expression and function in pathologies is often contentious as comparisons between human pathological expression and expression in cell lines is difficult. In addition, the expression of even integrins αvβ6 and αvβ8 in tumor cell lines is not comprehensively documented. Here, we describe rabbit monoclonal antibodies (RabMabs) against the extracellular domains of αv integrins that react with both native integrins and formalin fixed, paraffin embedded (FFPE) human tissues. These RabMabs, against αvβ3 (EM22703), αvβ5 (EM09902), αvβ6 (EM05201), αvβ8 (EM13309), and pan-αv (EM01309), recognize individual integrin chains in Western blots and in flow cytometry. EM22703 detected a ligand-induced binding site (LIBS), reporting an epitope enhanced by the binding of an RGD-peptide to αvβ3. αvβ8 was rarely expressed in human tumor specimens, and weakly expressed in non-small-cell lung carcinoma (NSCLC). However, ovarian carcinoma cell lines expressed αvβ8, as did some melanoma cells, whereas U87MG glioma lacked αvβ8 expression. We observed an unexpected strong expression of αvβ6 in tumor samples of invasive ductal breast adenoma, colorectal carcinoma (CRC), and NSCLC. αvβ3 was strongly expressed in some invasive NSCLC cohorts. Interestingly, PC3 prostate cell and human prostate tumors did not express αvβ3. The RabMabs stained plasma membranes in FFPE-immunohistochemistry (IHC) samples of tumor cell lines from lung, ovary, colon, prostate, squamous cell carcinoma of head and neck (SCCHN), breast, and pancreas carcinomas. The RabMabs are unique tools for probing αv integrin biology, and suggest that especially αvβ6 and αvβ8 biologies still have much to reveal.
Collapse
|
20
|
Violi F, Basili S, Raparelli V, Chowdary P, Gatt A, Burroughs AK. Patients with liver cirrhosis suffer from primary haemostatic defects? Fact or fiction? J Hepatol 2011; 55:1415-27. [PMID: 21718668 DOI: 10.1016/j.jhep.2011.06.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 02/06/2023]
Abstract
Patients with cirrhosis can have abnormalities in laboratory tests reflecting changes in primary haemostasis, including bleeding time, platelet function tests, markers of platelet activation, and platelet count. Such changes have been considered particularly relevant in the bleeding complications that occur in cirrhosis. However, several studies have shown that routine diagnostic tests, such as platelet count, bleeding time, PFA-100, thromboelastography are not clinically useful to stratify bleeding risk in patients with cirrhosis. Moreover, treatments used to increase platelet count or to modulate platelet function could potentially do harm. Consequently the optimal management of bleeding complications is still a matter of discussion. Moreover, in the last two decades there has been an increased recognition that not only bleeding but also thrombosis complicates the clinical course of cirrhosis. Thus, we performed a literature search looking at publications studying both qualitative and quantitative aspects of platelet function to verify which primary haemostasis defects occur in cirrhosis. In addition, we evaluated the contribution of qualitative and quantitative aspects of platelet function to the clinical outcome in cirrhosis and their therapeutic management according to the data available in the literature. From the detailed analysis of the literature, it appears clear that primary haemostasis may not be defective in cirrhosis, and a low platelet count should not necessarily be considered as an automatic index of an increased risk of bleeding. Conversely, caution should be observed in patients with severe thrombocytopenia where its correction is advised if bleeding occurs and before invasive diagnostic and therapeutic procedures.
Collapse
Affiliation(s)
- F Violi
- Divisione di I Clinica Medica, Sapienza-University of Rome, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Wang W, Jiang Y, Wang C, Luo BH. Effects of the Association between the α-Subunit Thigh and the β-Subunit EGF2 Domains on Integrin Activation and Signaling. Biochemistry 2011; 50:9264-72. [DOI: 10.1021/bi200744g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Wang
- Department of Biological Sciences,
202 Life Sciences
Building, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Yan Jiang
- Department of Biological Sciences,
202 Life Sciences
Building, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Chen Wang
- Department of Biological Sciences,
202 Life Sciences
Building, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Bing-Hao Luo
- Department of Biological Sciences,
202 Life Sciences
Building, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
22
|
Massicotte MP, Bauman ME. Dynamic and structural formation of a thrombus: the inciting event of arterial ischemic stroke. J Child Neurol 2011; 26:1199-202. [PMID: 21628694 PMCID: PMC3674575 DOI: 10.1177/0883073811408726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arterial ischemic stroke occurs as a result of abnormal clinical circumstances that alter hemostasis and cause thrombosis, either within a vessel or as an embolic event. Understanding normal hemostasis, including differences between children (developmental hemostasis) and adults, will provide background for determining the pathophysiology of stroke and potential treatments.
Collapse
Affiliation(s)
| | - M. E. Bauman
- University of Alberta, Stollery Children’s Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Type 1 fimbrial adhesin FimH elicits an immune response that enhances cell adhesion of Escherichia coli. Infect Immun 2011; 79:3895-904. [PMID: 21768279 DOI: 10.1128/iai.05169-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Escherichia coli causes about 90% of urinary tract infections (UTI), and more than 95% of all UTI-causing E. coli express type 1 fimbriae. The fimbrial tip-positioned adhesive protein FimH utilizes a shear force-enhanced, so-called catch-bond mechanism of interaction with its receptor, mannose, where the lectin domain of FimH shifts from a low- to a high-affinity conformation upon separation from the anchoring pilin domain. Here, we show that immunization with the lectin domain induces antibodies that exclusively or predominantly recognize only the high-affinity conformation. In the lectin domain, we identified four high-affinity-specific epitopes, all positioned away from the mannose-binding pocket, which are recognized by 20 separate clones of monoclonal antibody. None of the monoclonal or polyclonal antibodies against the lectin domain inhibited the adhesive function. On the contrary, the antibodies enhanced FimH-mediated binding to mannosylated ligands and increased by severalfold bacterial adhesion to urothelial cells. Furthermore, by natural conversion from the high- to the low-affinity state, FimH adhesin was able to shed the antibodies bound to it. When whole fimbriae were used, the antifimbrial immune serum that contained a significant amount of antibodies against the lectin domain of FimH was also able to enhance FimH-mediated binding. Thus, bacterial adhesins (or other surface antigens) with the ability to switch between alternative conformations have the potential to induce a conformation-specific immune response that has a function-enhancing rather than -inhibiting impact on the protein. These observations have implications for the development of adhesin-specific vaccines and may serve as a paradigm for antibody-mediated enhancement of pathogen binding.
Collapse
|
24
|
Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nat Struct Mol Biol 2011; 18:437-42. [PMID: 21378967 PMCID: PMC3077571 DOI: 10.1038/nsmb.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/07/2010] [Indexed: 01/06/2023]
Abstract
We describe a phage display methodology for engineering synthetic antigen binders (sABs) that recognize either the apo or the ligand-bound conformation of maltose-binding protein (MBP). sABs that preferentially recognize the maltose-bound form of MBP act as positive allosteric effectors by substantially increasing the affinity for maltose. A crystal structure of a sAB bound to the closed form of MBP reveals the basis for this allosteric effect. We show that sABs that recognize the bound form of MBP can rescue the function of a binding-deficient mutant by restoring its natural affinity for maltose. Furthermore, the sABs can enhance maltose binding in vivo, as they provide a growth advantage to bacteria under low-maltose conditions. The results demonstrate that structure-specific sABs can be engineered to dynamically control ligand-binding affinities by modulating the transition between different conformations.
Collapse
|
25
|
Raborn J, Wang W, Luo BH. Regulation of integrin αIIbβ3 ligand binding and signaling by the metal ion binding sites in the β I domain. Biochemistry 2011; 50:2084-91. [PMID: 21309594 DOI: 10.1021/bi2000092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of αIIbβ3 to bind ligands and undergo outside-in signaling is regulated by three divalent cation binding sites in the β I domain. Specifically, the metal ion-dependent adhesion site (MIDAS) and the synergistic metal binding site (SyMBS) are thought to be required for ligand binding due to their synergy between Ca(2+) and Mg(2+). The adjacent to MIDAS (ADMIDAS) is an important ligand binding regulatory site that also acts as a critical link between the β I and hybrid domains for signaling. Mutations in this site have provided conflicting results for ligand binding and adhesion in different integrins. We have mutated the β3 SyMBS and ADMIDAS. The SyMBS mutant abolished ligand binding and outside-in signaling, but when an activating glycosylation mutation in the αIIb Calf 2 domain was introduced, the ligand binding affinity and signaling were restored. Thus, the SyMBS is important but not absolutely required for integrin bidirectional signaling. The ADMIDAS mutants showed reduced ligand binding affinity and abolished outside-in signaling, and the activating glycosylation mutation could fully restore integrin signaling of the ADMIDAS mutant. We propose that the ADMIDAS ion stabilizes the low-affinity state when the integrin headpiece is in the closed conformation, whereas it stabilizes the high-affinity state when the headpiece is in the open conformation with the swung-out hybrid domain.
Collapse
Affiliation(s)
- Joel Raborn
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | | |
Collapse
|
26
|
Wang W, Zhu J, Springer TA, Luo BH. Tests of integrin transmembrane domain homo-oligomerization during integrin ligand binding and signaling. J Biol Chem 2010; 286:1860-7. [PMID: 21081497 DOI: 10.1074/jbc.m110.193797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin transmembrane (TM) and/or cytoplasmic domains play a critical role in integrin bidirectional signaling. Although it has been shown that TM and/or cytoplasmic α and β domains associate in the resting state and separation of these domains is required for both inside-out and outside-in signaling, the role of TM homomeric association remains elusive. Formation of TM homo-oligomers was observed in micelles and bacterial membranes previously, and it has been proposed that homomeric association is important for integrin activation and clustering. This study addresses whether integrin TM domains form homo-oligomers in mammalian cell membranes using cysteine scanning mutagenesis. Our results show that TM homomeric interaction does not occur before or after soluble ligand binding or during inside-out activation. In addition, even though the cysteine mutants and the heterodimeric disulfide-bounded mutant could form clusters after adhering to immobilized ligand, the integrin TM domains do not form homo-oligomers, suggesting that integrin TM homomeric association is not critical for integrin clustering or outside-in signaling. Therefore, integrin TM homo-oligomerization is not required for integrin activation, ligand binding, or signaling.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
27
|
Wang W, Fu G, Luo BH. Dissociation of the α-Subunit Calf-2 Domain and the β-Subunit I-EGF4 Domain in Integrin Activation and Signaling. Biochemistry 2010; 49:10158-65. [DOI: 10.1021/bi101462h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Wei Wang
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Guanyuan Fu
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bing-Hao Luo
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
28
|
Blue R, Li J, Steinberger J, Murcia M, Filizola M, Coller BS. Effects of limiting extension at the alphaIIb genu on ligand binding to integrin alphaIIbbeta3. J Biol Chem 2010; 285:17604-13. [PMID: 20363746 DOI: 10.1074/jbc.m110.107763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Structural data of integrin alphaIIbbeta3 have been interpreted as supporting a model in which: 1) the receptor exists primarily in a "bent," low affinity conformation on unactivated platelets and 2) activation induces an extended, high affinity conformation prior to, or following, ligand binding. Previous studies found that "clasping" the alphaIIb head domain to the beta3 tail decreased fibrinogen binding. To study the role of alphaIIb extension about the genu, we introduced a disulfide "clamp" between the alphaIIb thigh and calf-1 domains. Clamped alphaIIbbeta3 had markedly reduced ability to bind the large soluble ligands fibrinogen and PAC-1 when activated with monoclonal antibody (mAb) PT25-2 but not when activated by Mn(2+) or by coexpressing the clamped alphaIIb with a beta3 subunit containing the activating mutation N339S. The clamp had little effect on the binding of the snake venom kistrin (M(r) 7,500) or alphaIIbbeta3-mediated adhesion to immobilized fibrinogen, but it did diminish the enhanced binding of mAb AP5 in the presence of kistrin. Collectively, our studies support a role for alphaIIb extension about the genu in the binding of ligands of 340,000 and 900,000 M(r) with mAb-induced activation but indicate that it is not an absolute requirement. Our data are consistent with alphaIIb extension resulting in increased access to the ligand-binding site and/or facilitating the conformational change(s) in beta3 that affect the intrinsic affinity of the binding pocket for ligand.
Collapse
Affiliation(s)
- Robert Blue
- Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
29
|
Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 2010; 11:288-300. [PMID: 20308986 PMCID: PMC3929966 DOI: 10.1038/nrm2871] [Citation(s) in RCA: 785] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-directed changes in the ligand-binding affinity ('activation') of integrins regulate cell adhesion and migration, extracellular matrix assembly and mechanotransduction, thereby contributing to embryonic development and diseases such as atherothrombosis and cancer. Integrin activation comprises triggering events, intermediate signalling events and, finally, the interaction of integrins with cytoplasmic regulators, which changes an integrin's affinity for its ligands. The first two events involve diverse interacting signalling pathways, whereas the final steps are immediately proximal to integrins, thus enabling integrin-focused therapeutic strategies. Recent progress provides insight into the structure of integrin transmembrane domains, and reveals how the final steps of integrin activation are mediated by integrin-binding proteins such as talins and kindlins.
Collapse
Affiliation(s)
- Sanford J Shattil
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | |
Collapse
|
30
|
Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, McLean MA, Sligar SG, Taylor KA, Ginsberg MH. Recreation of the terminal events in physiological integrin activation. ACTA ACUST UNITED AC 2010; 188:157-73. [PMID: 20048261 PMCID: PMC2812850 DOI: 10.1083/jcb.200908045] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In vitro analysis confirms talin binding is sufficient for activation and extension of membrane-embedded integrin. Increased affinity of integrins for the extracellular matrix (activation) regulates cell adhesion and migration, extracellular matrix assembly, and mechanotransduction. Major uncertainties concern the sufficiency of talin for activation, whether conformational change without clustering leads to activation, and whether mechanical force is required for molecular extension. Here, we reconstructed physiological integrin activation in vitro and used cellular, biochemical, biophysical, and ultrastructural analyses to show that talin binding is sufficient to activate integrin αIIbβ3. Furthermore, we synthesized nanodiscs, each bearing a single lipid-embedded integrin, and used them to show that talin activates unclustered integrins leading to molecular extension in the absence of force or other membrane proteins. Thus, we provide the first proof that talin binding is sufficient to activate and extend membrane-embedded integrin αIIbβ3, thereby resolving numerous controversies and enabling molecular analysis of reconstructed integrin signaling.
Collapse
Affiliation(s)
- Feng Ye
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Provasi D, Murcia M, Coller BS, Filizola M. Targeted molecular dynamics reveals overall common conformational changes upon hybrid domain swing-out in beta3 integrins. Proteins 2009; 77:477-89. [PMID: 19455709 DOI: 10.1002/prot.22463] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The beta3 integrin family members alphaIIbeta3 and alphaVbeta3 signal bidirectionally through long-range allosteric changes, including a transition from a bent unliganded-closed low-affinity state to an extended liganded-open high-affinity state. To obtain an atomic-level description of this transition in an explicit solvent, we carried out targeted molecular dynamics simulations of the headpieces of alphaIIbeta3 and alphaVbeta3 integrins. Although minor differences were observed between these receptors, our results suggest a common transition pathway in which the hybrid domain swing-out is accompanied by conformational changes within the beta3 betaA (I-like) domain that propagate through the alpha7 helix C-terminus, and are followed by the alpha7 helix downward motion and the opening of the beta6-alpha7 loop. Breaking of contact interactions between the beta6-alpha7 loop and the alpha1 helix N-terminus results in helix straightening, internal rearrangements of the specificity determining loop (SDL), movement of the beta1-alpha1 loop toward the metal ion dependent adhesion site (MIDAS), and final changes at the interfaces between the beta3 betaA (I-like) domain and either the hybrid or the alpha beta-propeller domains. Taken together, our results suggest novel testable hypotheses of intradomain and interdomain interactions responsible for beta3 integrin activation.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
32
|
Barlow JN, Conrath K, Steyaert J. Substrate-dependent modulation of enzyme activity by allosteric effector antibodies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1259-68. [PMID: 19348968 DOI: 10.1016/j.bbapap.2009.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 01/26/2023]
Abstract
We investigate the kinetic effects of antibody variable domain fragments derived from heavy chain antibodies (VHH domains) that behave as allosteric effectors of the nucleoside hydrolase from Trypanosoma vivax (TvNH). Strikingly, these antibodies can stimulate or inhibit TvNH steady-state activity, depending on the substrate used. This effect was investigated in greater detail using steady-state and pre-steady-state kinetic experiments. The most potent allosteric effector, VHH 1589, inhibits certain steps on the TvNH catalytic pathway (e.g. N-glycosidic bond cleavage) but increases the rates of others (e.g. substrate and product release). For the natural nucleoside 7-methyl guanosine, where product ribose release is rate determining, the net effect of VHH 1589 binding is to increase k(cat). For the poor substrate pNPR, VHH 1589 causes chemistry (O-glycosidic bond cleavage) to become rate determining and both k(cat)/K(m) and k(cat) to decrease. Thus, the substrate-dependent effects of VHH 1589 binding are caused by differences in the relative rates of chemistry with respect to subsequent steps on the catalytic pathway for these two substrates. We discuss possible mechanisms for these kinetic effects and the implications for allosteric effector drug development.
Collapse
Affiliation(s)
- John N Barlow
- Structural Biology, Free University of Brussels, Brussels, Belgium.
| | | | | |
Collapse
|
33
|
Podolnikova NP, O'Toole TE, Haas TA, Lam SCT, Fox JEB, Ugarova TP. Adhesion-induced unclasping of cytoplasmic tails of integrin alpha(IIb)beta3. Biochemistry 2009; 48:617-29. [PMID: 19117493 DOI: 10.1021/bi801751s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integrin alpha(IIb)beta(3) plays a pivotal role in hemostasis and thrombosis by mediating adhesive interactions of platelets. Binding of alpha(IIb)beta(3) to its physiological ligands, immobilized fibrinogen and fibrin, induces outside-in signaling in platelets, leading to their adhesion and spreading even without prior stimulation by agonists. Implicit in these phenomena is a requirement for the linkage between integrins' cytoplasmic tails and intracellular proteins. However, the nature of the initiating signal has not been established. In this study, we examined whether binding of alpha(IIb)beta(3) to immobilized fibrin(ogen), per se, triggers interaction of the integrin with cytoplasmic proteins. Using the integrin-binding skelemin fragment as a marker of exposure of residues involved in the clasp between alpha(IIb) and beta(3) cytoplasmic tails, we showed that its binding site in the membrane-proximal beta(3) 715-730 segment is cryptic and becomes exposed as a result of binding of isolated alpha(IIb)beta(3) to immobilized ligands. Furthermore, the skelemin-like protein present in platelets and CHO cells does not associate with alpha(IIb)beta(3) in resting platelets or suspended alpha(IIb)beta(3)-expressing CHO cells but is recruited to integrin during cell adhesion. In addition, not only beta(3) but also the membrane-proximal 989-1000 segment of the alpha(IIb) cytoplasmic tail binds the skelemin fragment. Finally, the same residues, alpha(IIb) Val(990), alpha(IIb) Arg(995), and beta(3) His(722), involved in the formation of the clasp between the tails are also required for skelemin binding. These studies suggest that ligation of alpha(IIb)beta(3) by immobilized ligands during platelet adhesion induces a transmembrane conformation change in the integrin, resulting in unclasping of the complex between the membrane-proximal parts of cytoplasmic tails, thereby unmasking residues involved in binding the skelemin-like protein. Thus, the junction between alpha(IIb) and beta(3) cytoplasmic tails may contain the critical structural information for the initiation of outside-in signaling.
Collapse
Affiliation(s)
- Nataly P Podolnikova
- Center for Metabolic Biology, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | |
Collapse
|
34
|
Larkin D, Treumann A, Murphy D, DeChaumont C, Kiernan A, Moran N. Compartmentalization regulates the interaction between the platelet integrin alpha IIb beta 3 and ICln. Br J Haematol 2008; 144:580-90. [PMID: 19055659 DOI: 10.1111/j.1365-2141.2008.07483.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The volume-regulating protein, ICln, interacts with the conserved KxGFFKR alpha-integrin signature motif. ICln is an abundant protein (4455 +/- 650 molecules/platelet) found exclusively in the soluble cytosolic fraction of unactivated platelets. In contrast, its binding partner, the platelet integrin alpha(IIb)beta(3), is present in detergent-insoluble fractions associated with membrane and cytoskeleton subcellular localizations. This study investigated factors that regulate the interaction of ICln with alpha(IIb)beta(3) during platelet activation. His-tagged recombinant ICln bound equally to purified alpha(IIb)beta(3) and to integrin from resting or activated platelets. Binding was not affected by direct integrin activation with Mn(++) or by inhibitors of integrin occupancy (abciximab, RGD). However, the capacity for interaction between integrin and recombinant ICln was slowly downregulated following prolonged platelet activation for >300 s. In parallel, ICln redistributed to membrane and cytoskeletal platelet subcellular fractions. The time-course of this redistribution preceded the downregulation of integrin binding capacity and suggests that only a short window of opportunity exists for ICln interaction with alpha(IIb)beta(3) to occur. Thus, although ICln has the inherent capacity to bind to alpha(IIb)beta(3) regardless of its activation state, it can only do so following platelet activation. Activation-dependent subcellular redistribution of ICln represents a novel, temporally-regulated mechanism for control of integrin function in platelets.
Collapse
Affiliation(s)
- Deirdre Larkin
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
35
|
Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 2008; 112:3011-25. [PMID: 18840725 PMCID: PMC2569161 DOI: 10.1182/blood-2008-06-077891] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/21/2008] [Indexed: 01/24/2023] Open
Abstract
Starting 90 years ago with a clinical description by Glanzmann of a bleeding disorder associated with a defect in platelet function, technologic advances helped investigators identify the defect as a mutation(s) in the integrin family receptor, alphaIIbbeta3, which has the capacity to bind fibrinogen (and other ligands) and support platelet-platelet interactions (aggregation). The receptor's activation state was found to be under exquisite control, with activators, inhibitors, and elaborate inside-out signaling mechanisms controlling its conformation. Structural biology has produced high-resolution images defining the ligand binding site at the atomic level. Research on alphaIIbbeta3 has been bidirectional, with basic insights resulting in improved Glanzmann thrombasthenia carrier detection and prenatal diagnosis, assays to identify single nucleotide polymorphisms responsible for alloimmune neonatal thrombocytopenia, and the development of alphaIIbbeta3 antagonists, the first rationally designed antiplatelet agents, to prevent and treat thrombotic cardiovascular disease. The future looks equally bright, with the potential for improved drugs and the application of gene therapy and stem cell biology to address the genetic abnormalities. The alphaIIbbeta3 saga serves as a paradigm of rigorous science growing out of careful clinical observations of a rare disorder yielding both important new scientific information and improved diagnosis, therapy, and prevention of other disorders.
Collapse
Affiliation(s)
- Barry S Coller
- Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY, USA.
| | | |
Collapse
|
36
|
Vomund AN, Stuhlsatz-Krouper S, Dimitry J, Song Y, Frazier WA. A naturally occurring extracellular alpha-beta clasp contributes to stabilization of beta3 integrins in a bent, resting conformation. Biochemistry 2008; 47:11616-24. [PMID: 18841997 DOI: 10.1021/bi8015108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Control of alphaIIb beta3 and alphav beta3 integrin activation is critical for cardiovascular homeostasis. Mutations that perturb association of integrin alpha and beta subunits in their transmembrane and cytoplasmic regions activate the integrin heterodimer, suggesting that a low-affinity or "off" conformation is the default state, likely corresponding to the bent conformation seen in the crystal structure of alphav beta3. In this bent structure, a segment of alphav (301-308) and beta3 (560-567) are juxtaposed. Here we provide evidence that these regions of alphav/alphaIIb and beta3 function as a novel extracellular clasp to restrain activation. Synthetic peptides representing the alphaIIb and beta3 clasp regions promote integrin activation as judged by cell adhesion, cell spreading, and exposure of epitopes for three beta3 LIBS antibodies. Mutation of the clasp region of alphav or beta3 results in a constitutively activated integrin, confirming the role of the extracellular clasp in restraining integrin activation. Molecular dynamics simulations of the alphav beta3 structure yield a refined model for the alphav beta3 clasp and provide plausible explanations for the effects of the activating mutations.
Collapse
Affiliation(s)
- Anthony N Vomund
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
37
|
Matsumoto A, Kamata T, Takagi J, Iwasaki K, Yura K. Key interactions in integrin ectodomain responsible for global conformational change detected by elastic network normal-mode analysis. Biophys J 2008; 95:2895-908. [PMID: 18515366 PMCID: PMC2527288 DOI: 10.1529/biophysj.108.131045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 05/06/2008] [Indexed: 01/03/2023] Open
Abstract
Integrin, a membrane protein with a huge extracellular domain, participates in cell-cell and cell-extracellular-matrix interactions for metazoan. A group of integrins is known to perform a large-scale structural change when the protein is activated, but the activation mechanism and generality of the conformational change remain to be elucidated. We performed normal-mode analysis of the elastic network model on integrin alpha(V)beta(3) ectodomain in the bent form and identified key residues that influenced molecular motions. Iterative normal-mode calculations demonstrated that the specific nonbonded interactions involving the key residues work as a snap to keep integrin in the bent form. The importance of the key residues for the conformational change was further verified by mutation experiments, in which integrin alpha(IIb)beta(3) was used. The conservation pattern of amino acid residues among the integrin family showed that the characteristic pattern of residues seen around these key residues is found in the limited groups of integrin beta-chains. This conservation pattern suggests that the molecular mechanism of the conformational change relying on the interactions found in integrin alpha(V)beta(3) is unique to the limited types of integrins.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Quantum Bioinformatics Team, Center for Computational Science and Engineering, Japan Atomic Energy Agency, 8-1 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Bruce Furie
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, USA
| | | |
Collapse
|
39
|
Mor-Cohen R, Rosenberg N, Landau M, Lahav J, Seligsohn U. Specific Cysteines in β3 Are Involved in Disulfide Bond Exchange-dependent and -independent Activation of αIIbβ3. J Biol Chem 2008; 283:19235-44. [DOI: 10.1074/jbc.m802399200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
|
41
|
Hantgan RR, Stahle MC, Horita DA. Entropy Drives Integrin αIIbβ3:Echistatin Binding—Evidence from Surface Plasmon Resonance Spectroscopy. Biochemistry 2008; 47:2884-92. [DOI: 10.1021/bi701877a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Roy R. Hantgan
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1016
| | - Mary C. Stahle
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1016
| | - David A. Horita
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157-1016
| |
Collapse
|
42
|
Tchesnokova V, Aprikian P, Yakovenko O, Larock C, Kidd B, Vogel V, Thomas W, Sokurenko E. Integrin-like allosteric properties of the catch bond-forming FimH adhesin of Escherichia coli. J Biol Chem 2008; 283:7823-33. [PMID: 18174167 DOI: 10.1074/jbc.m707804200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
FimH is the adhesive subunit of type 1 fimbriae of the Escherichia coli that is composed of a mannose-binding lectin domain and a fimbria-incorporating pilin domain. FimH is able to interact with mannosylated surface via a shear-enhanced catch bond mechanism. We show that the FimH lectin domain possesses a ligand-induced binding site (LIBS), a type of allosterically regulated epitopes characterized in integrins. Analogous to integrins, in FimH the LIBS epitope becomes exposed in the presence of the ligand (or "activating" mutations) and is located far from the ligand-binding site, close to the interdomain interface. Also, the antibody binding to the LIBS shifts adhesin from the low to high affinity state. Binding of streptavidin to the biotinylated residue within the LIBS also locks FimH in the high affinity state, suggesting that the allosteric perturbations in FimH are sustained by the interdomain wedging. In the presence of antibodies, the strength of bacterial adhesion to mannose is increased similar to the increase observed under shear force, suggesting the same allosteric mechanism, a shift in the interdomain configuration. Thus, an integrin-like allosteric link between the binding pocket and the interdomain conformation can serve as the basis for the catch bond property of FimH and, possibly, other adhesive proteins.
Collapse
Affiliation(s)
- Veronika Tchesnokova
- Department of Microbiology, University of Washington, Seattle, Washington 98105, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tsuiji H, Xu L, Schwartz K, Gumbiner BM. Cadherin conformations associated with dimerization and adhesion. J Biol Chem 2007; 282:12871-82. [PMID: 17347145 DOI: 10.1074/jbc.m611725200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate conformations of C-cadherin associated with functional activity and physiological regulation, we generated monoclonal antibodies (mAbs) that bind differentially to monomeric or dimeric forms. These mAbs recognize conformational epitopes at multiple sites along the C-cadherin ectodomain aside from the well known Trp-2-mediated dimer interface in the N-terminal EC1 domain. Group 1 mAbs, which bind monomer better than dimer and the Trp-2-mutated protein (W2A) better than wild type, recognize epitopes in EC4 or EC5. Dimerization of the W2A mutant protein via a C-terminal immunoglobulin Fc domain restored the dimeric mAb-binding properties to EC4-5 and partial homophilic binding activity but did not restore full cell adhesion activity. Group 2 and Group 3 mAbs, which bind dimer better than monomer and wild type better than W2A, recognize epitopes in EC1 and the interface between EC1 and EC2, respectively. None of the mAbs could distinguish between different physiological states of C-cadherin at the cell surface of either Xenopus embryonic cells or Colo 205 cultured cells, demonstrating that changes in dimerization do not underlie regulation of adhesion activity. On the cell surface the EC3-EC5 domains are much less accessible to mAb binding than EC1-EC2, suggesting that they are masked by the state of cadherin organization or by other molecules. Thus, the EC2-EC5 domains either reflect, or are involved in, cadherin dimerization and organization at the cell surface.
Collapse
Affiliation(s)
- Hitomi Tsuiji
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | | | | | | |
Collapse
|
44
|
Mitchell WB, Li J, Murcia M, Valentin N, Newman PJ, Coller BS. Mapping early conformational changes in alphaIIb and beta3 during biogenesis reveals a potential mechanism for alphaIIbbeta3 adopting its bent conformation. Blood 2007; 109:3725-32. [PMID: 17209052 PMCID: PMC1874580 DOI: 10.1182/blood-2006-11-058420] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current evidence supports a model in which the low-affinity state of the platelet integrin alphaIIbbeta3 results from alphaIIbbeta3 adopting a bent conformation. To assess alphaIIbbeta3 biogenesis and how alphaIIbbeta3 initially adopts the bent conformation, we mapped the conformational states occupied by alphaIIb and beta3 during biogenesis using conformation-specific monoclonal antibodies (mAbs). We found that alphaIIbbeta3 complex formation was not limited by the availability of either free pro-alphaIIb or free beta3, suggesting that other molecules, perhaps chaperones, control complex formation. Five beta3-specific, ligand-induced binding site (LIBS) mAbs reacted with much or all free beta3 but not with beta3 when in complex with mature alphaIIb, suggesting that beta3 adopts its mature conformation only after complex formation. Conversely, 2 alphaIIb-specific LIBS mAbs directed against the alphaIIb Calf-2 region adjacent to the membrane reacted with only minor fractions of free pro-alphaIIb, raising the possibility that pro-alphaIIb adopts a bent conformation early in biogenesis. Our data suggest a working model in which pro-alphaIIb adopts a bent conformation soon after synthesis, and then beta3 assumes its bent conformation by virtue of its interaction with the bent pro-alphaIIb.
Collapse
Affiliation(s)
- W Beau Mitchell
- Department of Pediatrics, Mount Sinai School of Medicine, and New York Blood Center, 310 E. 67th Street, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Nishida N, Xie C, Shimaoka M, Cheng Y, Walz T, Springer TA. Activation of leukocyte beta2 integrins by conversion from bent to extended conformations. Immunity 2006; 25:583-94. [PMID: 17045822 DOI: 10.1016/j.immuni.2006.07.016] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/26/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
We used negative stain electron microscopy (EM) to examine the conformational changes in the ectodomains required for activation of the leukocyte integrins alpha(X)beta(2) and alpha(L)beta(2). They transitioned between a bent conformation and two extended conformations in which the headpiece was in either a closed or an open state. Extended integrins exhibited marked flexibility at the alpha subunit genu and between integrin epidermal growth factor-like (I-EGF) domains 1 and 2. A clasp to mimic juxtamembrane association between the integrin alpha and beta subunits stabilized the bent conformation strongly for alpha(X)beta(2) and less so for alpha(L)beta(2). A small molecule allosteric antagonist induced the extended, open headpiece conformation. A Fab known to activate beta(2) integrins on leukocytes induced extension, and a Fab reporter of activation bound only after extension had been induced. The results establish an intimate relationship between extension of beta(2) integrins and their activation in immune responses and leukocyte trafficking.
Collapse
Affiliation(s)
- Noritaka Nishida
- CBR Institute for Biomedical Research, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Xi X, Flevaris P, Stojanovic A, Chishti A, Phillips DR, Lam SCT, Du X. Tyrosine phosphorylation of the integrin beta 3 subunit regulates beta 3 cleavage by calpain. J Biol Chem 2006; 281:29426-30. [PMID: 16935858 DOI: 10.1074/jbc.c600039200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Outside-in signaling of beta(3) integrins induces and requires phosphorylation at tyrosine 747 (Tyr(747)) and tyrosine 759 (Tyr(759)) of the beta(3) subunit, but the mechanism for this requirement is unclear. On the other hand, a key consequence of integrin signaling, cell spreading, is inhibited by calpain cleavage of beta(3) cytoplasmic domain. Here we show that beta(3) tyrosine phosphorylation inhibits calpain cleavage. Mutating both tyrosines to phenylalanine sensitizes beta(3) to calpain cleavage. Furthermore, phosphorylation at Tyr(747) and Tyr(759) of beta(3) in the focal adhesion sites and the leading edge of spreading platelets was differentially regulated. Selective dephosphorylation of Tyr(759) is associated with calpain cleavage at Tyr(759). Thus, one mechanism by which tyrosine phosphorylation promotes integrin signaling and cell spreading is its inhibition of calpain cleavage of the beta(3) cytoplasmic domain.
Collapse
Affiliation(s)
- Xiaodong Xi
- Department of Pharmacology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The vascular wall contains intimal endothelium and medial smooth muscle that act as contiguous tissues with tight spatial and functional coordination in response to tonic and episodic input from the bloodstream and the surrounding parenchyma. Focal adhesions are molecular bridges between the intracellular and extracellular spaces that integrate a variety of environmental stimuli and mediate 2-way crosstalk between the extracellular matrix and the cytoskeleton. Focal adhesion components are targets for biochemical and mechanical stimuli that evoke crucial developmental and injury response mechanisms including cell growth, movement, and differentiation, and tailoring of the extracellular microenvironment. Focal adhesions provide the vascular wall constituents with flexible and specific tools for exchanging cues in a complex system. The molecular mechanisms that underlie these vital communications are detailed in this review with the goal of defining future targets for vascular tissue engineering and for the therapeutic modulation of disordered vascular growth, inflammation, thrombosis, and angiogenesis.
Collapse
Affiliation(s)
- Lewis H Romer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287-4904, USA.
| | | | | |
Collapse
|
48
|
Kamata T, Handa M, Sato Y, Ikeda Y, Aiso S. Membrane-proximal α/β Stalk Interactions Differentially Regulate Integrin Activation. J Biol Chem 2005; 280:24775-83. [PMID: 15863495 DOI: 10.1074/jbc.m409548200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The affinity of integrin-ligand interaction is regulated extracellularly by divalent cations and intracellularly by inside-out signaling. We report here that the extracellular, membrane-proximal alpha/beta stalk interactions not only regulate cation-induced integrin activation but also play critical roles in propagating inside-out signaling. Two closely related integrins, alphaIIbbeta3 and alphaVbeta3, share high structural homology and bind to similar ligands in an RGD-dependent manner. Despite these structural and functional similarities, they exhibit distinct responses to Mn(2+). Although alphaVbeta3 showed robust ligand binding in the presence of Mn(2+), alphaIIbbeta3 showed a limited increase but failed to achieve full activation. Swapping alpha stalk regions between alphaIIb and alphaV revealed that the alpha stalk, but not the ligand-binding head region, was responsible for the difference. A series of alphaIIb/alphaV domain-swapping chimeras were constructed to identify the responsible domain. Surprisingly, the minimum component required to render alphaIIbbeta3 susceptible to Mn(2+) activation was the alphaV calf-2 domain, which does not contain any divalent cation-binding sites. The calf-2 domain makes interface with beta epidermal growth factor 4 and beta tail domain in three-dimensional structure. The effect of calf-2 domain swapping was partially reproduced by mutating the specific amino acid residues in the calf-2/epidermal growth factor 4-beta tail domain interface. When this interface was constrained by an artificially introduced disulfide bridge, the Mn(2+)-induced alphaVbeta3-fibrinogen interaction was significantly impaired. Notably, a similar disulfide bridge completely abrogated fibrinogen binding to alphaIIbbeta3 when alphaIIbbeta3 was activated by cytoplasmic tail truncation to mimic inside-out signaling. Thus, disruption/formation of the membrane-proximal alpha/beta stalk interface may act as an on/off switch that triggers integrin-mediated bidirectional signaling.
Collapse
Affiliation(s)
- Tetsuji Kamata
- Departments of Anatomy, Transfusion Medicine and Cell Therapy, and Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | | | | | |
Collapse
|
49
|
Arias-Salgado EG, Lizano S, Shattil SJ, Ginsberg MH. Specification of the direction of adhesive signaling by the integrin beta cytoplasmic domain. J Biol Chem 2005; 280:29699-707. [PMID: 15937333 DOI: 10.1074/jbc.m503508200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Integrin adhesion receptors can signal in two directions: first, they can regulate cellular behaviors by modulating cellular signaling enzymes ("outside-in signaling"); second, cells can regulate the affinity of integrins ("inside-out signaling") by such pathways. Integrin beta cytoplasmic domains (tails) mediate both types of signaling, and Src family kinases (SFKs) and talin, which bind to beta tails, are important for integrin signaling. Here, we utilized "homology scanning" mutagenesis to identify beta tail mutants selectively defective in c-Src binding and found that amino acid exchanges affecting a combination of an Arg and Thr residue in the integrin beta3 tail control the binding specificity for SFKs but have no effect on talin binding. Using beta tail mutants at these residues, we found that SFK binding to integrin beta tails is dispensable for inside-out signaling but is obligatory for cell spreading, a marker of outside-in signaling. Conversely, we found that point mutations that disrupt talin binding abolish integrin activation, but they do not inhibit SFK binding to the beta3 tail or the initiation of outside-in signaling once the integrins are in a high affinity form. Thus, we show that inside-out and outside-in integrin signaling are mediated by distinct and separable interactions of the integrin beta tails. Furthermore, based on our results, it is possible to discern the relative contributions of the direction of integrin signaling on biological functions in cell culture and, ultimately, in vivo.
Collapse
Affiliation(s)
- Elena G Arias-Salgado
- Department of Medicine, University of California San Diego, La Jolla, 92093-0726, USA
| | | | | | | |
Collapse
|
50
|
Sekimoto H, Eipper-Mains J, Pond-Tor S, Boney CM. (alpha)v(beta)3 integrins and Pyk2 mediate insulin-like growth factor I activation of Src and mitogen-activated protein kinase in 3T3-L1 cells. Mol Endocrinol 2005; 19:1859-67. [PMID: 15761030 DOI: 10.1210/me.2004-0481] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IGF-I stimulates cell growth through interaction of the IGF receptor with multiprotein signaling complexes. However, the mechanisms of IGF-I receptor-mediated signaling are not completely understood. We have previously shown that IGF-I-stimulated 3T3-L1 cell proliferation is dependent on Src activation of the ERK-1/2 MAPK pathway. We hypothesized that IGF-I activation of the MAPK pathway is mediated through integrin activation of Src-containing signaling complexes. The disintegrin echistatin decreased IGF-I phosphorylation of Src and MAPK, and blocking antibodies to (alpha)v and beta3 integrin subunits inhibited IGF-I activation of MAPK, suggesting that (alpha)v(beta)3 integrins mediate IGF-I mitogenic signaling. IGF-I increased ligand binding to (alpha)v(beta)3 as detected by immunofluorescent staining of ligand-induced binding site antibody and stimulated phosphorylation of the beta3 subunit, consistent with inside-out activation of (alpha)v(beta)3 integrins. IGF-I increased tyrosine phosphorylation of the focal adhesion kinase (FAK) Pyk2 (calcium-dependent proline-rich tyrosine kinase-2) to a much greater extent than FAK, and increased association of Src with Pyk2 but not FAK. The intracellular calcium chelator BAPTA prevented IGF-I phosphorylation of Pyk2, Src, and MAPK, suggesting that IGF-I activation of Pyk2 is calcium dependent. Transient transfection with a dominant-negative Pyk2, which lacks the autophosphorylation and Src binding site, decreased IGF-I activation of MAPK, but no inhibition was seen with transfected wild-type Pyk2. These results indicate that IGF-I signaling to MAPK is dependent on inside-out activation of (alpha)v(beta)3 integrins and integrin-facilitated multiprotein complex formation involving Pyk2 activation and association with Src.
Collapse
Affiliation(s)
- Hiroko Sekimoto
- Rhode Island Hospital, Department of Pediatrics, 593 Eddy Street, MPS-2, Providence, RI 02903, USA
| | | | | | | |
Collapse
|