1
|
Zhu L, Huang Q, Li X, Jin B, Ding Y, Chou CJ, Su KJ, Zhang Y, Chen X, Hwa KY, Thyparambil S, Liao W, Han Z, Mortensen R, Jin Y, Li Z, Schilling J, Li Z, Sylvester KG, Sun X, Ling XB. Serological Phenotyping Analysis Uncovers a Unique Metabolomic Pattern Associated With Early Onset of Type 2 Diabetes Mellitus. Front Mol Biosci 2022; 9:841209. [PMID: 35463946 PMCID: PMC9024215 DOI: 10.3389/fmolb.2022.841209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a multifaceted disorder affecting epidemic proportion at global scope. Defective insulin secretion by pancreatic β-cells and the inability of insulin-sensitive tissues to respond effectively to insulin are the underlying biology of T2DM. However, circulating biomarkers indicative of early diabetic onset at the asymptomatic stage have not been well described. We hypothesized that global and targeted mass spectrometry (MS) based metabolomic discovery can identify novel serological metabolic biomarkers specifically associated with T2DM. We further hypothesized that these markers can have a unique pattern associated with latent or early asymptomatic stage, promising an effective liquid biopsy approach for population T2DM risk stratification and screening. Methods: Four independent cohorts were assembled for the study. The T2DM cohort included sera from 25 patients with T2DM and 25 healthy individuals for the biomarker discovery and sera from 15 patients with T2DM and 15 healthy controls for the testing. The Pre-T2DM cohort included sera from 76 with prediabetes and 62 healthy controls for the model training and sera from 35 patients with prediabetes and 27 healthy controls for the model testing. Both global and targeted (amino acid, acylcarnitine, and fatty acid) approaches were used to deep phenotype the serological metabolome by high performance liquid chromatography-high resolution mass spectrometry. Different machine learning approaches (Random Forest, XGBoost, and ElasticNet) were applied to model the unique T2DM/Pre-T2DM metabolic patterns and contrasted with their effectiness to differentiate T2DM/Pre-T2DM from controls. Results: The univariate analysis identified unique panel of metabolites (n = 22) significantly associated with T2DM. Global metabolomics and subsequent structure determination led to the identification of 8 T2DM biomarkers while targeted LCMS profiling discovered 14 T2DM biomarkers. Our panel can effectively differentiate T2DM (ROC AUC = 1.00) or Pre-T2DM (ROC AUC = 0.84) from the controls in the respective testing cohort. Conclusion: Our serological metabolite panel can be utilized to identifiy asymptomatic population at risk of T2DM, which may provide utility in identifying population at risk at an early stage of diabetic development to allow for clinical intervention. This early detection would guide ehanced levels of care and accelerate development of clinical strategies to prevent T2DM.
Collapse
Affiliation(s)
- Linmin Zhu
- School of Laboratory Medicine, Tianjin Medical University, Tianjin, China
- Tianjin Teda Hospital, Tianjin, China
| | | | - Xiao Li
- Tianjin Yunjian Medical Laboratory Institute Co., Ltd, Tianjin, China
- Binhai Industrial Technology Research Institute, Zhejiang University, Tianjin, China
| | - Bo Jin
- Tianjin Yunjian Medical Laboratory Institute Co., Ltd, Tianjin, China
| | - Yun Ding
- mProbe Inc, Mountain View, CA, United States
| | | | - Kuo-Jung Su
- mProbe Inc, Mountain View, CA, United States
| | - Yani Zhang
- Tianjin Yunjian Medical Laboratory Institute Co., Ltd, Tianjin, China
| | | | | | | | - Weili Liao
- mProbe Inc, Mountain View, CA, United States
| | - Zhi Han
- mProbe Inc, Mountain View, CA, United States
| | | | - Yi Jin
- Tianjin Yunjian Medical Laboratory Institute Co., Ltd, Tianjin, China
| | - Zhen Li
- Shanghai Yunxiang Medical Technology Co., Ltd., Shanghai, China
| | - James Schilling
- mProbe Inc, Mountain View, CA, United States
- Binhai Industrial Technology Research Institute, Zhejiang University, Tianjin, China
| | - Zhen Li
- Tianjin Yunjian Medical Laboratory Institute Co., Ltd, Tianjin, China
- Binhai Industrial Technology Research Institute, Zhejiang University, Tianjin, China
| | - Karl G. Sylvester
- Department of Surgery, Stanford University, School of Medicine, Stanford, CA, United States
| | - Xuguo Sun
- School of Laboratory Medicine, Tianjin Medical University, Tianjin, China
- *Correspondence: Xuguo Sun, ; Xuefeng B. Ling,
| | - Xuefeng B. Ling
- Department of Surgery, Stanford University, School of Medicine, Stanford, CA, United States
- *Correspondence: Xuguo Sun, ; Xuefeng B. Ling,
| |
Collapse
|
2
|
Shamshoum H, Vlavcheski F, MacPherson REK, Tsiani E. Rosemary extract activates AMPK, inhibits mTOR and attenuates the high glucose and high insulin-induced muscle cell insulin resistance. Appl Physiol Nutr Metab 2021; 46:819-827. [PMID: 33471600 DOI: 10.1139/apnm-2020-0592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Impaired action of insulin in skeletal muscle, termed insulin resistance, leads to increased blood glucose levels resulting in compensatory increase in insulin levels. The elevated blood glucose and insulin levels exacerbate insulin resistance and contribute to the pathogenesis of type 2 diabetes mellitus. In previous studies we found attenuation of free fatty acid-induced muscle cell insulin resistance by rosemary extract (RE). In the present study we investigated the effects of RE on high glucose (HG) and high insulin (HI)-induced muscle cell insulin resistance. Exposure of L6 myotubes to 25 mmol/L glucose and 100 nmol/L insulin for 24 h, to mimic hyperglycemia and hyperinsulinemia, abolished the acute insulin-stimulated glucose uptake, increased the serine phosphorylation of IRS-1 and the phosphorylation/activation of mTOR and p70S6K. Treatment with RE significantly improved the insulin-stimulated glucose uptake and increased the acute insulin-stimulated tyrosine phosphorylation while reducing the HG+HI-induced serine phosphorylation of IRS-1 and phosphorylation of mTOR and p70S6K. Additionally, treatment with RE significantly increased the phosphorylation of AMPK, its downstream effector ACC and the plasma membrane GLUT4 levels. Our data indicate a potential of RE to counteract muscle cell insulin resistance and more studies are required to investigate its effectiveness in vivo. Novelty: RE phosphorylated muscle cell AMPK and ACC under both normal and HG+HI conditions. The HG+HI-induced serine phosphorylation of IRS-1 and activation of mTOR and p70S6K were attenuated by RE. RE restored the insulin-stimulated glucose uptake by enhancing GLUT4 glucose transporter translocation to plasma membrane.
Collapse
Affiliation(s)
- Hesham Shamshoum
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Filip Vlavcheski
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
3
|
Veronese N, Cooper C, Reginster JY, Hochberg M, Branco J, Bruyère O, Chapurlat R, Al-Daghri N, Dennison E, Herrero-Beaumont G, Kaux JF, Maheu E, Rizzoli R, Roth R, Rovati LC, Uebelhart D, Vlaskovska M, Scheen A. Type 2 diabetes mellitus and osteoarthritis. Semin Arthritis Rheum 2019; 49:9-19. [PMID: 30712918 PMCID: PMC6642878 DOI: 10.1016/j.semarthrit.2019.01.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Type 2 diabetes mellitus (T2DM) and osteoarthritis (OA) are common diseases that frequently co-exist, along with overweight/obesity. While the mechanical impact of excess body weight on joints may explain lower limb OA, we sought to explore whether T2DM is linked to OA outside of excess weight and whether T2DM may play a role in OA pathophysiology. The consequence of T2DM on OA outcomes is a question of research interest. METHODS We conducted a critical review of the literature to explore the association between T2DM and OA, whether any association is site-specific for OA, and whether the presence of T2DM impacts on OA outcomes. We also reviewed the literature to assess the safety of anti-OA treatments in patients with T2DM. RESULTS T2DM has a pathogenic effect on OA through 2 major pathways involving oxidative stress and low-grade chronic inflammation resulting from chronic hyperglycemia and insulin resistance. T2DM is a risk factor for OA progression and has a negative impact on arthroplasty outcomes. Evidence is mounting for safety concerns with some of the most frequently prescribed anti-OA medications, including paracetamol, non-steroidal anti-inflammatory drugs, and corticosteroid injections, while other anti-OA medications may be safely prescribed in OA patients with T2DM, such as glucosamine and intra-articular hyaluronic acid. CONCLUSIONS Future research is needed to better understand whether diabetes control and prevention can modulate OA occurrence and progression. The selection of therapy to treat OA symptoms in patients with T2DM may require careful consideration of the evidence based to avoid untoward safety issues.
Collapse
Affiliation(s)
- Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy.
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK; NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK; WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liège, Belgium
| | - Jean-Yves Reginster
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liège, Belgium; Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium; Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Marc Hochberg
- Division of Rheumatology & Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Geriatric Research, Education and Clinical Center, Baltimore, MD, USA; Medical Care Clinical Center, VA Maryland Health Care System, Baltimore, MD, USA
| | - Jaime Branco
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Department of Rheumatology, CHLO, Hospital Egas Moniz, Lisbon, Portugal
| | - Olivier Bruyère
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liège, Belgium; Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000 Liège, Belgium
| | - Roland Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital E Herriot, 69437 Lyon cedex 03, France
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Gabriel Herrero-Beaumont
- Department of Rheumatology, Bone and Joint Research Unit, Fundación Jiménez Diaz, Universidad Autonoma, Madrid, Spain
| | - Jean-François Kaux
- Department of Physical & Rehabilitation Medicine and Sports Traumatology, SportS(2), FIFA Medical Centre of Excellence, University and University Hospital of Liège, 4000 Liège, Belgium
| | - Emmanuel Maheu
- Rheumatology Department, AP-HP, Saint-Antoine Hospital, 4 Blvd. Beaumarchais, 75011 Paris, France
| | - René Rizzoli
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liège, Belgium; Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Roland Roth
- Max-Reger-Strasse 17-19, 45128 Essen-Suedviertel, Germany
| | - Lucio C Rovati
- School of Medicine and Surgery, University of Milano - Bicocca, Milan, Italy; Department of Clinical Research, Rottapharm Biotech, Monza, Italy
| | - Daniel Uebelhart
- Division of Musculoskeletal, Internal Medicine and Oncological Rehabilitation, Department of Orthopaedics and Traumatology, Hôpital du Valais (HVS), Centre Hospitalier du Valais Romand (CHVR), CVP, Crans-Montana, Switzerland
| | - Mila Vlaskovska
- Medical University Sofia, Medical Faculty, Department of Pharmacology, 2, Zdrave str., 1431 Sofia, Bulgaria
| | - André Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders and Clinical Pharmacology Unit, Department of Medicine, University of Liège, CHU Liège, Sart Tilman B35, B-4000 Liège, Belgium
| |
Collapse
|
4
|
Lu H, Bogdanovic E, Yu Z, Cho C, Liu L, Ho K, Guo J, Yeung LSN, Lehmann R, Hundal HS, Giacca A, Fantus IG. Combined Hyperglycemia- and Hyperinsulinemia-Induced Insulin Resistance in Adipocytes Is Associated With Dual Signaling Defects Mediated by PKC-ζ. Endocrinology 2018; 159:1658-1677. [PMID: 29370351 PMCID: PMC5939637 DOI: 10.1210/en.2017-00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/03/2018] [Indexed: 12/27/2022]
Abstract
A hyperglycemic and hyperinsulinemic environment characteristic of type 2 diabetes causes insulin resistance. In adipocytes, defects in both insulin sensitivity and maximum response of glucose transport have been demonstrated. To investigate the molecular mechanisms, freshly isolated rat adipocytes were incubated in control (5.6 mM glucose, no insulin) and high glucose (20 mM)/high insulin (100 nM) (HG/HI) for 18 hours to induce insulin resistance. Insulin-resistant adipocytes manifested decreased sensitivity of glucose uptake associated with defects in insulin receptor substrate (IRS)-1 Tyr phosphorylation, association of p85 subunit of phosphatidylinositol-3-kinase, Akt Ser473 and Thr308 phosphorylation, accompanied by impaired glucose transporter 4 translocation. In contrast, protein kinase C (PKC)-ζ activity was augmented by chronic HG/HI. Inhibition of PKC-ζ with a specific cell-permeable peptide reversed the signaling defects and insulin sensitivity of glucose uptake. Transfection of dominant-negative, kinase-inactive PKC-ζ blocked insulin resistance, whereas constitutively active PKC-ζ recapitulated the defects. The HG/HI incubation was associated with stimulation of IRS-1 Ser318 and Akt Thr34 phosphorylation, targets of PKC-ζ. Transfection of IRS-1 S318A and Akt T34A each partially corrected insulin signaling, whereas combined transfection of both completely normalized insulin signaling. In vivo hyperglycemia/hyperinsulinemia in rats for 48 hours similarly resulted in activation of PKC-ζ and increased phosphorylation of IRS-1 Ser318 and Akt Thr34. These data indicate that impairment of insulin signaling by chronic HG/HI is mediated by dual defects at IRS-1 and Akt mediated by PKC-ζ.
Collapse
Affiliation(s)
- Huogen Lu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Elena Bogdanovic
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zhiwen Yu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Charles Cho
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lijiang Liu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Karen Ho
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - June Guo
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lucy S N Yeung
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Reiner Lehmann
- Department of Internal Medicine IV, Endocrinology, Metabolism, Pathobiochemistry and Clinical Chemistry, University Hospital Tuebingen, Tuebingen, Germany
| | - Harinder S Hundal
- Division of Molecular Physiology Unit, Faculty of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Adria Giacca
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - I George Fantus
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Correspondence: I. George Fantus, MD, Departments of Medicine and Physiology, Mount Sinai Hospital, Joseph and Wolfe Lebovic Building, 60 Murray Street, 5th Floor, Room 5028, Toronto, Ontario M5T 3L9, Canada. E-mail:
| |
Collapse
|
5
|
Garvey WT. Ablation of the Duodenal Mucosa as a Strategy for Glycemic Control in Type 2 Diabetes: Role of Nutrient Signaling or Simple Weight Loss. Diabetes Care 2016; 39:2108-2110. [PMID: 27879354 PMCID: PMC5127227 DOI: 10.2337/dc16-1611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, and Birmingham VA Medical Center, Birmingham, AL
| |
Collapse
|
6
|
Rotondo F, Romero MDM, Ho-Palma AC, Remesar X, Fernández-López JA, Alemany M. Quantitative analysis of rat adipose tissue cell recovery, and non-fat cell volume, in primary cell cultures. PeerJ 2016; 4:e2725. [PMID: 27917316 PMCID: PMC5131620 DOI: 10.7717/peerj.2725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND White adipose tissue (WAT) is a complex, diffuse, multifunctional organ which contains adipocytes, and a large proportion of fat, but also other cell types, active in defense, regeneration and signalling functions. Studies with adipocytes often require their isolation from WAT by breaking up the matrix of collagen fibres; however, it is unclear to what extent adipocyte number in primary cultures correlates with their number in intact WAT, since recovery and viability are often unknown. EXPERIMENTAL DESIGN Epididymal WAT of four young adult rats was used to isolate adipocytes with collagenase. Careful recording of lipid content of tissue, and all fraction volumes and weights, allowed us to trace the amount of initial WAT fat remaining in the cell preparation. Functionality was estimated by incubation with glucose and measurement of glucose uptake and lactate, glycerol and NEFA excretion rates up to 48 h. Non-adipocyte cells were also recovered and their sizes (and those of adipocytes) were measured. The presence of non-nucleated cells (erythrocytes) was also estimated. RESULTS Cell numbers and sizes were correlated from all fractions to intact WAT. Tracing the lipid content, the recovery of adipocytes in the final, metabolically active, preparation was in the range of 70-75%. Cells showed even higher metabolic activity in the second than in the first day of incubation. Adipocytes were 7%, erythrocytes 66% and other stromal (nucleated cells) 27% of total WAT cells. However, their overall volumes were 90%, 0.05%, and 0.2% of WAT. Non-fat volume of adipocytes was 1.3% of WAT. CONCLUSIONS The methodology presented here allows for a direct quantitative reference to the original tissue of studies using isolated cells. We have also found that the "live cell mass" of adipose tissue is very small: about 13 µL/g for adipocytes and 2 µL/g stromal, plus about 1 µL/g blood (the rats were killed by exsanguination). These data translate (with respect to the actual "live cytoplasm" size) into an extremely high metabolic activity, which make WAT an even more significant agent in the control of energy metabolism.
Collapse
Affiliation(s)
- Floriana Rotondo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
| | - María del Mar Romero
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER OBN, Barcelona, Spain
| | - Ana Cecilia Ho-Palma
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER OBN, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER OBN, Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- CIBER OBN, Barcelona, Spain
| |
Collapse
|
7
|
Zhang W, Wu M, Kim T, Jariwala RH, Garvey WJ, Luo N, Kang M, Ma E, Tian L, Steverson D, Yang Q, Fu Y, Garvey WT. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet-Induced Insulin Resistance. Diabetes 2016; 65:2380-91. [PMID: 27207527 PMCID: PMC4955990 DOI: 10.2337/db16-0154] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/26/2016] [Indexed: 01/05/2023]
Abstract
In the current study, we used muscle-specific TRIB3 overexpressing (MOE) and knockout (MKO) mice to determine whether TRIB3 mediates glucose-induced insulin resistance in diabetes and whether alterations in TRIB3 expression as a function of nutrient availability have a regulatory role in metabolism. In streptozotocin diabetic mice, TRIB3 MOE exacerbated, whereas MKO prevented, glucose-induced insulin resistance and impaired glucose oxidation and defects in insulin signal transduction compared with wild-type (WT) mice, indicating that glucose-induced insulin resistance was dependent on TRIB3. In response to a high-fat diet, TRIB3 MOE mice exhibited greater weight gain and worse insulin resistance in vivo compared with WT mice, coupled with decreased AKT phosphorylation, increased inflammation and oxidative stress, and upregulation of lipid metabolic genes coupled with downregulation of glucose metabolic genes in skeletal muscle. These effects were prevented in the TRIB3 MKO mice relative to WT mice. In conclusion, TRIB3 has a pathophysiological role in diabetes and a physiological role in metabolism. Glucose-induced insulin resistance and insulin resistance due to diet-induced obesity both depend on muscle TRIB3. Under physiological conditions, muscle TRIB3 also influences energy expenditure and substrate metabolism, indicating that the decrease and increase in muscle TRIB3 under fasting and nutrient excess, respectively, are critical for metabolic homeostasis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Mengrui Wu
- Department of Molecular & Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Teayoun Kim
- Department of Medicine-Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, Birmingham, AL
| | - Ravi H Jariwala
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - W John Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Nanlan Luo
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Minsung Kang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Elizabeth Ma
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Ling Tian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Dennis Steverson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL Birmingham Veterans Affairs Medical Center, Birmingham, AL
| |
Collapse
|
8
|
Walton RG, Zhu X, Tian L, Heywood EB, Liu J, Hill HS, Liu J, Bruemmer D, Yang Q, Fu Y, Garvey WT. AP2-NR4A3 transgenic mice display reduced serum epinephrine because of increased catecholamine catabolism in adipose tissue. Am J Physiol Endocrinol Metab 2016; 311:E69-81. [PMID: 27166283 PMCID: PMC4967153 DOI: 10.1152/ajpendo.00330.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 05/03/2016] [Indexed: 01/25/2023]
Abstract
The NR4A orphan nuclear receptors function as early response genes to numerous stimuli. Our laboratory has previously demonstrated that overexpression of NR4A3 (NOR-1, MINOR) in 3T3-L1 adipocytes enhances insulin-stimulated glucose uptake. To assess the in vivo effect of NR4A3 on adipocytes, we generated transgenic mice with NR4A3 overexpression driven by the adipocyte fatty acid-binding protein (AP2) promoter (AP2-NR4A3 mice). We hypothesized that AP2-NR4A3 mice would display enhanced glucose tolerance and insulin sensitivity. However, AP2-NR4A3 mice exhibit metabolic impairment, including increased fasting glucose and insulin, impaired glucose tolerance, insulin resistance, decreased serum free fatty acids, and increased low-density lipoprotein-cholesterol. AP2-NR4A3 mice also display a significant reduction in serum epinephrine due to increased expression of catecholamine-catabolizing enzymes in adipose tissue, including monoamine oxidase-A. Furthermore, enhanced expression of monoamine oxidase-A is due to direct transcriptional activation by NR4A3. Finally, AP2-NR4A3 mice display cardiac and behavioral alterations consistent with chronically low circulating epinephrine levels. In conclusion, overexpression of NR4A3 in adipocytes produces a complex phenotype characterized by impaired glucose metabolism and low serum catecholamines due to enhanced degradation by adipose tissue.
Collapse
Affiliation(s)
- R Grace Walton
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama;
| | - Xiaolin Zhu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ling Tian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth B Heywood
- Saha Cardiovascular Research Center and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Jian Liu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Helliner S Hill
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jiarong Liu
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Dennis Bruemmer
- Saha Cardiovascular Research Center and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama; Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
9
|
Banerjee PS, Lagerlöf O, Hart GW. Roles of O-GlcNAc in chronic diseases of aging. Mol Aspects Med 2016; 51:1-15. [PMID: 27259471 DOI: 10.1016/j.mam.2016.05.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/18/2016] [Accepted: 05/30/2016] [Indexed: 12/22/2022]
Abstract
O-GlcNAcylation, a dynamic nutrient and stress sensitive post-translational modification, occurs on myriad proteins in the cell nucleus, cytoplasm and mitochondria. O-GlcNAcylation serves as a nutrient sensor to regulate signaling, transcription, translation, cell division, metabolism, and stress sensitivity in all cells. Aberrant protein O-GlcNAcylation plays a critical role both in the development, as well as in the progression of a variety of age related diseases. O-GlcNAcylation underlies the etiology of diabetes, and changes in specific protein O-GlcNAc levels and sites are responsible for insulin expression and sensitivity and glucose toxicity. Abnormal O-GlcNAcylation contributes directly to diabetes related dysfunction of the heart, kidney and eyes and affects progression of cardiomyopathy, nephropathy and retinopathy. O-GlcNAcylation is a critical modification in the brain and plays a role in both plaque and tangle formation, thus making its study important in neurodegenerative disorders. O-GlcNAcylation also affects cellular growth and metabolism during the development and metastasis of cancer. Finally, alterations in O-GlcNAcylation of transcription factors in macrophages and lymphocytes affect inflammation and cytokine production. Thus, O-GlcNAcylation plays key roles in many of the major diseases associated with aging. Elucidation of its specific functions in both normal and diseased tissues is likely to uncover totally novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Partha S Banerjee
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2185
| | - Olof Lagerlöf
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2185
| | - Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2185.
| |
Collapse
|
10
|
Grams J, Garvey WT. Weight Loss and the Prevention and Treatment of Type 2 Diabetes Using Lifestyle Therapy, Pharmacotherapy, and Bariatric Surgery: Mechanisms of Action. Curr Obes Rep 2015; 4:287-302. [PMID: 26627223 DOI: 10.1007/s13679-015-0155-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Weight loss, whether achieved by lifestyle intervention, pharmacotherapy, or bariatric surgery, is highly effective as a primary interventional strategy in both the prevention and treatment of type 2 diabetes. In high-risk patients with prediabetes and/or metabolic syndrome, weight loss effectively prevents progression to type 2 diabetes mellitus (T2DM) and improves cardiovascular risk factors. These benefits are the result of improvements in insulin resistance, which is central to the pathophysiology of cardiometabolic disease. In patients with T2DM, weight loss improves glycemia, while reducing the need for conventional glucose-lowering medicines, by affecting all three processes that produce and sustain the hyperglycemic state, namely via increments in peripheral insulin sensitivity with improvements in insulin signal transduction at the cellular level, more robust insulin secretory responses, and reduced rates of hepatic glucose production. In both nondiabetic and diabetic subjects, hypocaloric feeding (e.g., treatment with very low-calorie diet or bariatric surgery) produces a rapid improvement in insulin sensitivity due to mobilization of fat from the intramyocellular, intrahepatocellular, and intra-abdominal compartments, and via a more long-term mechanism that correlates with the loss of total body fat. In diabetes, by improving glycemia, weight loss also enhances glucose homeostasis by reversing the defects in insulin action and secretion attributable to glucose toxicity. Regardless of the therapeutic approach, weight loss of ∼ 10 % maximally prevents future diabetes in patients with prediabetes or metabolic syndrome. In T2DM, greater degrees of weight loss lead to progressive improvements in glucose homeostasis. Therefore, when accompanied by greater weight loss, the metabolic benefits following bariatric surgery are generally more pronounced than those achieved following lifestyle and medical treatment. In addition, the mechanisms by which bariatric operations improve diabetes may include both weight-dependent and weight-independent mechanisms, and the latter may involve changes in gut hormones, bile acids, or gut microflora.
Collapse
Affiliation(s)
- J Grams
- Department of Surgery, University of Alabama at Birmingham and the Birmingham VA Medical Center, KB401, 1720 2nd Ave S, Birmingham, AL, 35294-0016, USA.
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham and the Birmingham VA Medical Center, 1675 University Boulevard, Birmingham, AL, 35294-3360, USA.
| |
Collapse
|
11
|
Abstract
The post-translational modification of serine and threonine residues of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is highly ubiquitous, dynamic and inducible. Protein O-GlcNAcylation serves as a key regulator of critical biological processes including transcription, translation, proteasomal degradation, signal transduction and apoptosis. Increased O-GlcNAcylation is directly linked to insulin resistance and to hyperglycemia-induced glucose toxicity, two hallmarks of diabetes and diabetic complications. In this review, we briefly summarize what is known about protein O-GlcNAcylation and nutrient metabolism, as well as discuss the commonly used tools to probe changes of O-GlcNAcylation in cultured cells and in animal models. We then focus on some key proteins modified by O-GlcNAc, which play crucial roles in the etiology and progression of diabetes and diabetic complications. Proteomic approaches are also highlighted to provide a system view of protein O-GlcNAcylation. Finally, we discuss how aberrant O-GlcNAcylation on certain proteins may be exploited to develop methods for the early diagnosis of pre-diabetes and/or diabetes.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
12
|
Zhang W, Liu J, Tian L, Liu Q, Fu Y, Garvey WT. TRIB3 mediates glucose-induced insulin resistance via a mechanism that requires the hexosamine biosynthetic pathway. Diabetes 2013; 62:4192-200. [PMID: 23990361 PMCID: PMC3837074 DOI: 10.2337/db13-0312] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the current study, we investigated the role of tribbles homolog 3 (TRIB3) in glucose-induced insulin resistance and whether the induction of TRIB3 by glucose is dependent on the nutrient-sensing hexosamine biosynthetic pathway (HBP) known to mediate glucose toxicity in diabetes. In diabetic rats, TRIB3 expression in skeletal muscle was increased after 10 days of hyperglycemia, and glycemia and muscle TRIB3 were both restored toward normal by insulin therapy. In L6 myocytes, the induction of TRIB3 by high glucose or glucosamine was reversible upon removal of these substrates. To assess the role of HBP in the induction of TRIB3, we demonstrated that the ability of high glucose to augment TRIB3 expression was prevented by azaserine, an inhibitor of glutamine: fructose-6-phosphate amidotransferase (GFAT), which is the rate-limiting enzyme in the HBP pathway. TRIB3 expression was also substantially stimulated by glucosamine, which bypasses GFAT, accompanied by a decrease in the insulin-stimulated glucose transport rate, and neither response was affected by azaserine. Further, knockdown of TRIB3 inhibited, and TRIB3 overexpression enhanced, the ability of both high glucose and glucosamine to induce insulin resistance. These data provide the mechanistic link between the HBP flux and insulin resistance and point to TRIB3 as a novel target for treatment of glucose-induced insulin resistance.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Corresponding author: Wei Zhang,
| | - Jiarong Liu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ling Tian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qinglan Liu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuchang Fu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
| | - W. Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
13
|
Crivat G, Lizunov VA, Li CR, Stenkula KG, Zimmerberg J, Cushman SW, Pick L. Insulin stimulates translocation of human GLUT4 to the membrane in fat bodies of transgenic Drosophila melanogaster. PLoS One 2013; 8:e77953. [PMID: 24223128 PMCID: PMC3819322 DOI: 10.1371/journal.pone.0077953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/05/2013] [Indexed: 12/23/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an excellent model system for studies of genes controlling development and disease. However, its applicability to physiological systems is less clear because of metabolic differences between insects and mammals. Insulin signaling has been studied in mammals because of relevance to diabetes and other diseases but there are many parallels between mammalian and insect pathways. For example, deletion of Drosophila Insulin-Like Peptides resulted in 'diabetic' flies with elevated circulating sugar levels. Whether this situation reflects failure of sugar uptake into peripheral tissues as seen in mammals is unclear and depends upon whether flies harbor the machinery to mount mammalian-like insulin-dependent sugar uptake responses. Here we asked whether Drosophila fat cells are competent to respond to insulin with mammalian-like regulated trafficking of sugar transporters. Transgenic Drosophila expressing human glucose transporter-4 (GLUT4), the sugar transporter expressed primarily in insulin-responsive tissues, were generated. After expression in fat bodies, GLUT4 intracellular trafficking and localization were monitored by confocal and total internal reflection fluorescence microscopy (TIRFM). We found that fat body cells responded to insulin with increased GLUT4 trafficking and translocation to the plasma membrane. While the amplitude of these responses was relatively weak in animals reared on a standard diet, it was greatly enhanced in animals reared on sugar-restricted diets, suggesting that flies fed standard diets are insulin resistant. Our findings demonstrate that flies are competent to mobilize translocation of sugar transporters to the cell surface in response to insulin. They suggest that Drosophila fat cells are primed for a response to insulin and that these pathways are down-regulated when animals are exposed to constant, high levels of sugar. Finally, these studies are the first to use TIRFM to monitor insulin-signaling pathways in Drosophila, demonstrating the utility of TIRFM of tagged sugar transporters to monitor signaling pathways in insects.
Collapse
Affiliation(s)
- Georgeta Crivat
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Vladimir A. Lizunov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline R. Li
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Karin G. Stenkula
- Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Zimmerberg
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Samuel W. Cushman
- Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Mitochondrial stress causes increased succination of proteins in adipocytes in response to glucotoxicity. Biochem J 2012; 445:247-54. [PMID: 22524437 DOI: 10.1042/bj20112142] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
2SC [S-(2-succino)-cysteine] is a chemical modification formed by a Michael addition reaction of fumarate with cysteine residues in proteins. Formation of 2SC, termed 'succination' of proteins, increases in adipocytes grown in high-glucose medium and in adipose tissues of Type 2 diabetic mice. However, the metabolic mechanisms leading to increased fumarate and succination of protein in the adipocyte are unknown. Treatment of 3T3 cells with high glucose (30 mM compared with 5 mM) caused a significant increase in cellular ATP/ADP, NADH/NAD+ and Δψm (mitochondrial membrane potential). There was also a significant increase in the cellular fumarate concentration and succination of proteins, which may be attributed to the increase in NADH/NAD+ and subsequent inhibition of tricarboxylic acid cycle NAD+-dependent dehydrogenases. Chemical uncouplers, which dissipated Δψm and reduced the NADH/NAD+ ratio, also decreased the fumarate concentration and protein succination. High glucose plus metformin, an inhibitor of complex I in the electron transport chain, caused an increase in fumarate and succination of protein. Thus excess fuel supply (glucotoxicity) appears to create a pseudohypoxic environment (high NADH/NAD+ without hypoxia), which drives the increase in succination of protein. We propose that increased succination of proteins is an early marker of glucotoxicity and mitochondrial stress in adipose tissue in diabetes.
Collapse
|
15
|
Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 2011; 302:C327-59. [PMID: 21900692 DOI: 10.1152/ajpcell.00168.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For many years, there was little interest in the biochemistry or physiology of adipose tissue. It is now well recognized that adipocytes play an important dynamic role in metabolic regulation. They are able to sense metabolic states via their ability to perceive a large number of nervous and hormonal signals. They are also able to produce hormones, called adipokines, that affect nutrient intake, metabolism and energy expenditure. The report by Rodbell in 1964 that intact fat cells can be obtained by collagenase digestion of adipose tissue revolutionized studies on the hormonal regulation and metabolism of the fat cell. In the context of the advent of systems biology in the field of cell biology, the present seems an appropriate time to look back at the global contribution of the fat cell to cell biology knowledge. This review focuses on the very early approaches that used the fat cell as a tool to discover and understand various cellular mechanisms. Attention essentially focuses on the early investigations revealing the major contribution of mature fat cells and also fat cells originating from adipose cell lines to the discovery of major events related to hormone action (hormone receptors and transduction pathways involved in hormonal signaling) and mechanisms involved in metabolite processing (hexose uptake and uptake, storage, and efflux of fatty acids). Dormant preadipocytes exist in the stroma-vascular fraction of the adipose tissue of rodents and humans; cell culture systems have proven to be valuable models for the study of the processes involved in the formation of new fat cells. Finally, more recent insights into adipocyte secretion, a completely new role with major metabolic impact, are also briefly summarized.
Collapse
Affiliation(s)
- Max Lafontan
- Institut National de la Santé et de la Recherche Médicale, UMR, Hôpital Rangueil, Toulouse, France.
| |
Collapse
|
16
|
Lai YH, Chien Y, Kwok CF, Ho LT. Enhanced long-chain fatty acid uptake contributes to overaccumulation of triglyceride in hyperinsulinemic insulin-resistant 3T3-L1 adipocytes. Metabolism 2010; 59:1784-93. [PMID: 20580042 DOI: 10.1016/j.metabol.2010.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 04/21/2010] [Accepted: 05/11/2010] [Indexed: 11/21/2022]
Abstract
The precise pathogenesis of obesity remains controversial. In obesity, diminished adipose glucose utilization suggests that some other substrates may be responsible for the adipose triglyceride (TG) overaccumulation. Here we attempted to evaluate if long-chain fatty acid (LCFA) flux was modulated by a physiologically relevant condition of hyperinsulinemia in 3T3-L1 adipocytes and if the altered LCFA influx might eventually contribute to the TG overaccumulation in obesity. The effects of prolonged insulin exposure to adipocytes on basal, insulin-stimulated LCFA uptake as well as intracellular LCFA metabolism were measured. Prolonged insulin exposure was found to induce insulin resistance (IR) yet enhance basal and insulin-stimulated LCFA uptake in normoglycemic condition, and the addition of high glucose exacerbated these abnormalities of both glucose and LCFA influx. Along with the enhanced LCFA uptake was an increase in the rates of intracellular LCFA deposition and incorporation into TG; but a decrease was found in basal and insulin-suppressive LCFA oxidation, as well as in isoproterenol-induced fatty acid efflux. Inhibition of either phosphatidylinositol 3-kinase or mitogen-activated protein kinase (MAPK) pathway did not prevent the induction of IR, whereas the enhanced basal and insulin-stimulated LCFA uptake was abrogated by inhibition of MAPK pathway. In hyperinsulinemic insulin-resistant 3T3-L1 adipocytes, basal and insulin-stimulated LCFA uptake tends to increase via a MAPK-dependent mechanism. The increment of LCFA influx predominantly accounts for TG overaccumulation, but not for mitochondrial oxidation, and is prone to retain within adipocytes. These findings may interpret the plausible mechanism of pathogenesis for obesity in hyperinsulinemia-associated IR.
Collapse
Affiliation(s)
- Ying-Hsiu Lai
- Institute of Physiology, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | |
Collapse
|
17
|
Liu J, Wu X, Franklin JL, Messina JL, Hill HS, Moellering DR, Walton RG, Martin M, Garvey WT. Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose-induced insulin resistance. Am J Physiol Endocrinol Metab 2010; 298:E565-76. [PMID: 19996382 PMCID: PMC2838520 DOI: 10.1152/ajpendo.00467.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 12/02/2009] [Indexed: 11/22/2022]
Abstract
Tribbles homolog 3 (TRIB3) was found to inhibit insulin-stimulated Akt phosphorylation and modulate gluconeogenesis in rodent liver. Currently, we examined a role for TRIB3 in skeletal muscle insulin resistance. Ten insulin-sensitive, ten insulin-resistant, and ten untreated type 2 diabetic (T2DM) patients were metabolically characterized by hyperinsulinemic euglycemic glucose clamps, and biopsies of vastus lateralis were obtained. Skeletal muscle samples were also collected from rodent models including streptozotocin (STZ)-induced diabetic rats, db/db mice, and Zucker fatty rats. Finally, L6 muscle cells were used to examine regulation of TRIB3 by glucose, and stable cell lines hyperexpressing TRIB3 were generated to identify mechanisms underlying TRIB3-induced insulin resistance. We found that 1) skeletal muscle TRIB3 protein levels are significantly elevated in T2DM patients; 2) muscle TRIB3 protein content is inversely correlated with glucose disposal rates and positively correlated with fasting glucose; 3) skeletal muscle TRIB3 protein levels are increased in STZ-diabetic rats, db/db mice, and Zucker fatty rats; 4) stable TRIB3 hyperexpression in muscle cells blocks insulin-stimulated glucose transport and glucose transporter 4 (GLUT4) translocation and impairs phosphorylation of Akt, ERK, and insulin receptor substrate-1 in insulin signal transduction; and 5) TRIB3 mRNA and protein levels are increased by high glucose concentrations, as well as by glucose deprivation in muscle cells. These data identify TRIB3 induction as a novel molecular mechanism in human insulin resistance and diabetes. TRIB3 acts as a nutrient sensor and could mediate the component of insulin resistance attributable to hyperglycemia (i.e., glucose toxicity) in diabetes.
Collapse
Affiliation(s)
- Jiarong Liu
- Dept. of Nutrition Sciences, Univ. of Alabama at Birmingham, 35294-3360, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu HY, Cao SY, Hong T, Han J, Liu Z, Cao W. Insulin is a stronger inducer of insulin resistance than hyperglycemia in mice with type 1 diabetes mellitus (T1DM). J Biol Chem 2009; 284:27090-100. [PMID: 19654321 PMCID: PMC2785638 DOI: 10.1074/jbc.m109.016675] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/22/2009] [Indexed: 12/13/2022] Open
Abstract
Subjects with type 1 diabetes mellitus (T1DM) eventually develop insulin resistance and other features of T2DM such as cardiovascular disorders. The exact mechanism has been not been completely understood. In this study, we tested the hypothesis that excessive or inappropriate exposure to insulin is a primary mediator of insulin resistance in T1DM. We found that continuous exposure of mice with non-obese diabetes to insulin detemir, which is similar to some current conventional treatment of human T1DM, induced severe insulin resistance, whereas untreated hyperglycemia for the same amount of time (2 weeks) did not cause obvious insulin resistance. Insulin resistance was accompanied by decreased mitochondrial production as evaluated by mitochondrial DNA and levels of transcripts and proteins of mitochondrion-associated genes, increased ectopic fat accumulation in liver and skeletal muscle (gastrocnemius) evaluated by measurements of triglyceride content, and elevated oxidative stress detected by the GSH/GSSG ratio. Prolonged exposure of cultured hepatocytes to insulin induced significant insulin resistance, whereas the same length of exposure to a high level of glucose (33 mm) did not cause obvious insulin resistance. Furthermore, our results showed that prolonged exposure to insulin caused oxidative stress, and blockade of mitochondrion-derived oxidative stress by overexpression of manganese-superoxide dismutase prevented insulin resistance induced by the prolonged exposure to insulin. Together, our results show that excessive exposure to insulin is a primary inducer of insulin resistance in T1DM in mice.
Collapse
Affiliation(s)
- Hui-Yu Liu
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Sophia Y. Cao
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Tao Hong
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Jianmin Han
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Zhenqi Liu
- Department of Medicine (Endocrinology), University of Virginia Medical Science Center, Charlottesville, Virginia 22908, and
| | - Wenhong Cao
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
- Department of Internal Medicine (Endocrinology), Duke University Medical System, Durham, North Carolina 27705
| |
Collapse
|
19
|
Root-Bernstein R, Vonck J. Glucose binds to the insulin receptor affecting the mutual affinity of insulin and its receptor. Cell Mol Life Sci 2009; 66:2721-32. [PMID: 19554259 PMCID: PMC11115712 DOI: 10.1007/s00018-009-0065-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/01/2009] [Accepted: 06/04/2009] [Indexed: 10/20/2022]
Abstract
Insulin activity is sensitive to glucose concentration but the mechanisms are still unclear. An unexamined possibility is that the insulin receptor (IR) is sensitive to glucose concentration. We demonstrate here that insulin-like peptides derived from the IR bind glucose at low millimolar, and cytochalasin B at low micromolar, concentrations; several insulin-like IR peptides bind insulin at nanomolar Kd; and this binding is antagonized by increasing glucose concentrations. In addition, glucose and cytochalasin B bind to IR isolated from rat liver and increasing glucose decreases insulin binding to this IR preparation. The presence of GLUT 1 in our IR preparation suggests the possibility of additional glucose-mediated allosteric control. We propose a model in which glucose binds to insulin, the IR, and GLUT; insulin binds to the IR; and the IR binds to GLUT. This set of interactions produces an integrated system of insulin-dependent interactions that is highly sensitive to glucose concentration.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, 2174 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA.
| | | |
Collapse
|
20
|
Ju HW, Koh EJ, Kim SH, Kim KI, Lee H, Hong SW. Glucosamine causes overproduction of reactive oxygen species, leading to repression of hypocotyl elongation through a hexokinase-mediated mechanism in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:203-212. [PMID: 18541338 DOI: 10.1016/j.jplph.2008.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 05/26/2023]
Abstract
Glucosamine (GlcN) is a naturally occurring amino-sugar that is synthesized by amidation of fructose-6-phosphate. Although a number of reports have examined the biological effects of GlcN on insulin resistance in mammalian systems, little is known about its effects on plant growth. In this study, we have shown that exogenous GlcN inhibits hypocotyl elongation in Arabidopsis, whereas glucose and its analogs alleviate this inhibitory effect. The hexokinase (HXK)-specific inhibitor mannoheptulose also restored hypocotyl elongation. The gin2-1 mutants with an alteration in AtHXK1 exhibited higher tolerance to GlcN. We also found that GlcN induces a significant increase in the production of reactive oxygen species (ROS). In addition, the GlcN-mediated inhibition of hypocotyl elongation was relieved by reducing agents such as ascorbic acid and glutathione. GlcN treatment resulted in significant induction of expression of GST1, GST2 and GST6, which are marker genes for ROS production. The gin2 mutation also represses the ROS production and the GST2 induction by GlcN treatment. Taken together, these results provide evidence that GlcN induces HXK-mediated induction of oxidative stress, leading to growth repression in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hyun-Woo Ju
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center and Biotechnology Research Institute, College of Agriculture and Life Science, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Robinson KA, Buse MG. Mechanisms of high-glucose/insulin-mediated desensitization of acute insulin-stimulated glucose transport and Akt activation. Am J Physiol Endocrinol Metab 2008; 294:E870-81. [PMID: 18303120 PMCID: PMC2703196 DOI: 10.1152/ajpendo.00644.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-glucose/low-dose insulin-mediated insulin resistance of glucose transport was studied in 3T3-L1 adipocytes. In this model, proximal insulin signaling, including insulin receptor substrate (IRS)-1-bound phosphatidylinositol 3-kinase (PI 3-kinase) activation, is preserved, but insulin-stimulated protein kinase B (Akt) activation is markedly impaired. To assess a difference in acute insulin-stimulated production of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], cells were labeled with [32P]orthophosphate, and glycerophosphoinositides were quantified by HPLC. Although basal PtdIns(3,4,5)P3 was similar, insulin stimulated its production 33.6% more in controls (P < 0.03) than in insulin-resistant cells. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein, a lipid phosphatase that dephosphorylates PtdIns(3,4,5)P3 in the 3-position, was significantly and specifically increased in insulin-resistant cells. Treatment with rapamycin [a specific inhibitor of mammalian target of rapamycin complex 1 (mTORC1)] inhibited the increased PTEN expression and partially restored insulin-stimulated glucose transport and Akt activation to insulin-resistant cells. Acute insulin markedly stimulated Ser(636/639) phosphorylation of IRS-1; this was rapamycin inhibited but was significantly decreased in cells that had been preexposed to insulin, whereas total IRS-1 was unaffected. These findings were essentially paralleled by changes in the activation of p70 S6 kinase and S6-ribosomal protein. Overexpression of uncoupling protein-1 or manganese superoxide dismutase did not prevent the development of insulin-resistant glucose transport and impaired Akt activation in high-glucose/low-insulin-pretreated cells. The insulin resistance associated with glucotoxicity in our model reflects in part decreased availability of PtdIns(3,4,5)P3, which correlates with increased PTEN protein expression. Chronic activation of mTORC1 plays a role in stimulating PTEN expression and possibly in activation or induction of a phosphoprotein phosphatase. No evidence was found for a role for increased mitochondrial superoxide production in this model.
Collapse
Affiliation(s)
- Katherine A Robinson
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
22
|
Vestri HS, Maianu L, Moellering DR, Garvey WT. Atypical antipsychotic drugs directly impair insulin action in adipocytes: effects on glucose transport, lipogenesis, and antilipolysis. Neuropsychopharmacology 2007; 32:765-72. [PMID: 16823387 DOI: 10.1038/sj.npp.1301142] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Treatment with second-generation antipsychotics (SGAs) has been associated with weight gain and the development of diabetes mellitus, although the mechanisms are unknown. We tested the hypothesis that SGAs exert direct cellular effects on insulin action and substrate metabolism in adipocytes. We utilized two cultured cell models including 3T3-L1 adipocytes and primary cultured rat adipocytes, and tested for effects of SGAs risperidone (RISP), clozapine (CLZ), olanzapine (OLZ), and quetiapine (QUE), together with conventional antipsychotic drugs butyrophenone (BUTY), and trifluoperazine (TFP), over a wide concentration range from 1 to 500 microM. The effects of antipsychotic drugs on basal and insulin-stimulated rates of glucose transport were studied at 3 h, 15 h, and 3 days. Both CLZ and OLZ (but not RISP) at doses as low as 5 microM were able to significantly decrease the maximal insulin-stimulated glucose transport rate by approximately 40% in 3T3-L1 cells, whereas CLZ and RISP reduced insulin-stimulated glucose transport rates in primary cultured rat adipocytes by approximately 50-70%. Conventional drugs (BUTY and TFP) did not affect glucose transport rates. Regarding intracellular glucose metabolism, both SGAs (OLZ, QUE, RISP) and conventional drugs (BUTY and TFP) increased basal and/or insulin-stimulated glucose oxidation rates, whereas rates of lipogenesis were increased by CLZ, OLZ, QUE, and BUTY. Finally, rates of lipolysis in response to isoproterenol were reduced by the SGAs (CLZ, OLZ, QUE, RISP), but not by BUTY or TFP. These experiments demonstrate that antipsychotic drugs can differentially affect insulin action and metabolism through direct cellular effects in adipocytes. However, only SGAs were able to impair the insulin-responsive glucose transport system and to impair lipolysis in adipocytes. Thus, SGAs directly induce insulin resistance and alter lipogenesis and lipolysis in favor of progressive lipid accumulation and adipocyte enlargement. These effects of SGAs on adipocytes could explain, in part, the association of SGAs with weight gain and diabetes.
Collapse
Affiliation(s)
- Helliner S Vestri
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-3360, USA.
| | | | | | | |
Collapse
|
23
|
Robinson KA, Ball LE, Buse MG. Reduction of O-GlcNAc protein modification does not prevent insulin resistance in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2007; 292:E884-90. [PMID: 17122093 PMCID: PMC2366901 DOI: 10.1152/ajpendo.00569.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
3T3-L1 adipocytes develop insulin-resistant glucose transport upon preincubation with high (25 mM) glucose, provided that insulin (0.6 nM) is included, Akt activation is impaired, and high glucose and insulin act synergistically. Considerable evidence suggests that increased glucose flux via the hexosamine biosynthesis pathway enhances the O-GlcNAc modification (O-GlcNAcylation) of some critical protein(s) that may contribute to insulin resistance. However, whether enhanced protein O-GlcNAcylation is necessary for the development of insulin resistance is unknown. We used two strategies to test this hypothesis. The first strategy was the overexpression of O-GlcNAcase, which removes O-GlcNAc from Ser/Thr of proteins. Cells were infected with O-GlcNAcase-expressing adenovirus (or empty virus) 5 days before they were submitted to protocols that elicit (or not) insulin resistance. O-GlcNAcase was highly expressed and functional as assessed by Western blot, O-GlcNAcase assay, and marked reduction of O-GlcNAcylated proteins. The activity was mainly cytosolic. The second strategy was the expression of O-GlcNAc transferase (OGT) being markedly reduced by transfection of OGT siRNA, resulting in an approximately 90% decrease of nuclear and cytosolic OGT protein expression and similar reduction in O-GlcNAcylated proteins. Nontargeting siRNA had no effect. Preincubation in high glucose with low-dose insulin decreased the acute insulin response of glucose transport by at least 50% and impaired Akt activation. None of these parameters were affected by overexpression of O-GlcNAcase or by OGT knockout. Excess O-GlcNAcylation is one of many factors that can cause insulin resistance. It does not seem to be required for the development of glucose/insulin-induced insulin resistance of glucose transport and Akt activation in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Katherine A Robinson
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
24
|
Renström F, Burén J, Svensson M, Eriksson JW. Insulin resistance induced by high glucose and high insulin precedes insulin receptor substrate 1 protein depletion in human adipocytes. Metabolism 2007; 56:190-8. [PMID: 17224332 DOI: 10.1016/j.metabol.2006.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 09/08/2006] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate whether high glucose and/or high insulin produces cellular insulin resistance in human adipocytes and, if so, to evaluate the time course and content of key proteins in the insulin signaling pathway. Subcutaneous fat biopsies were taken from 27 nondiabetic subjects. Insulin action in vitro was studied by measurement of glucose uptake after incubation at a physiologic glucose level (6 mmol/L) for 24 hours or with the last 2, 6, or 24 hours at a high glucose level (20 mmol/L) with or without high insulin (10(4)microU/mL). High glucose alone for 24 hours produced a small but significant impairment (by approximately 20%, P < .05) of insulin's effect to stimulate glucose transport, whereas nonstimulated glucose uptake was left intact. In contrast, the combination of high glucose and high insulin for 6 hours or more reduced basal glucose uptake by approximately 40% (P < .05). In addition, insulin-stimulated glucose uptake capacity was reduced by approximately 40% already after 2 hours (P < .05) and reached a maximal decline (by approximately 50%, P < .05) after a 6-hour culture in high glucose and high insulin. Treatment with high glucose and high insulin in combination for at least 6 hours reduced cellular insulin receptor substrate (IRS)-1, but not IRS-2, protein content by approximately 45% or more (P < .05). Moreover, after 24 hours, the ability of insulin to activate protein kinase B (ie, the phosphorylated protein kinase B [pPKB]-protein kinase B ratio) was decreased by approximately 50% (P < .05). No significant effects were seen on insulin signaling proteins or glucose transporter 4 after a long-term high-glucose culture. Culture with high insulin alone (and low glucose, 6 mmol/L) decreased basal and insulin-stimulated glucose uptake in conformity with the high-glucose/high-insulin setting. However, IRS-1 protein content remained unchanged. We conclude that, in adipocytes from healthy humans, high insulin alone for 2 hours or more decrease glucose uptake capacity. Likewise, high glucose and high insulin in combination for 2 hours or more decrease glucose uptake to the same extent as when cells were cultured with high insulin alone but, in addition, with a diminishment in IRS-1 protein lagging behind. Thus, IRS-1 depletion appears to be a secondary phenomenon in this model of insulin resistance. High glucose alone induces only a minor insulin resistance in human fat cells.
Collapse
Affiliation(s)
- Frida Renström
- Department of Public Health and Clinical Medicine, Medicine, Umeå University Hospital, S-901 85 Umeå, Sweden
| | | | | | | |
Collapse
|
25
|
Abstract
South Africa has not been spared in the rampant global increase in obesity. Throughout Africa, as elsewhere, ethnicity has a major impact on the incidence and pathogenesis of comorbid diseases, particularly diabetes. Combined figures for obesity and overweight (body mass index [BMI] > 25 kg m(-2)) obtained across all ethnic groups in the adult population in 1998, were 57% for women and 29% for men. From the 1960s until the late 1980s, the notion of 'healthy' or 'benign' obesity was propagated in South Africa. Not surprisingly, this led to ignorance around the problem of obesity, and treatment of some of the comorbid diseases was neglected. Fortunately, as an increasing number of seminal studies draw us closer to reality, the misperception of benign obesity is being corrected. This is allowing us to address the real issues underlying the current epidemic, and to recognize and manage the comorbid diseases, in particular type 2 diabetes. A new framework for research is also emerging as we begin to define the factors underlying the impact of ethnicity on obesity.
Collapse
Affiliation(s)
- M-T van der Merwe
- University of the Witwatersrand and Johannesburg General Hospital, South Africa.
| | | |
Collapse
|
26
|
Abstract
A dynamic cycle of addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) at serine and threonine residues is emerging as a key regulator of nuclear and cytoplasmic protein activity. Like phosphorylation, protein O-GlcNAcylation dramatically alters the posttranslational fate and function of target proteins. Indeed, O-GlcNAcylation may compete with phosphorylation for certain Ser/Thr target sites. Like kinases and phosphatases, the enzymes of O-GlcNAc metabolism are highly compartmentalized and regulated. Yet, O-GlcNAc addition is subject to an additional and unique level of metabolic control. O-GlcNAc transfer is the terminal step in a "hexosamine signaling pathway" (HSP). In the HSP, levels of uridine 5'-diphosphate (UDP)-GlcNAc respond to nutrient excess to activate O-GlcNAcylation. Removal of O-GlcNAc may also be under similar metabolic regulation. Differentially targeted isoforms of the enzymes of O-GlcNAc metabolism allow the participation of O-GlcNAc in diverse intracellular functions. O-GlcNAc addition and removal are key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in animals and the gibberellin signaling pathway in plants. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. This review will focus on current approaches to deciphering the "O-GlcNAc code" in order to elucidate how O-GlcNAc participates in its diverse functions. This ongoing effort requires analysis of the enzymes of O-GlcNAc metabolism, their many targets, and how the O-GlcNAc modification may be regulated.
Collapse
Affiliation(s)
- Dona C Love
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | |
Collapse
|
27
|
Wallis MG, Smith ME, Kolka CM, Zhang L, Richards SM, Rattigan S, Clark MG. Acute glucosamine-induced insulin resistance in muscle in vivo is associated with impaired capillary recruitment. Diabetologia 2005; 48:2131-9. [PMID: 16059714 DOI: 10.1007/s00125-005-1887-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 04/18/2005] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Glucose toxicity and glucosamine-induced insulin resistance have been attributed to products of glucosamine metabolism. In addition, endothelial cell nitric oxide synthase is inhibited by glucosamine. Since insulin has endothelial nitric-oxide-dependent vasodilatory effects in muscle, we hypothesise that glucosamine-induced insulin resistance in muscle in vivo is associated with impaired vascular responses including capillary recruitment. MATERIALS AND METHODS Glucosamine (6.48 mg kg(-1) min(-1) for 3 h) was infused with or without insulin (10 mU kg(-1) min(-1)) into anaesthetised rats under euglycaemic conditions. RESULTS Glucosamine infusion alone increased blood glucosamine (1.9+/-0.1 mmol/l) and glucose (5.4+/-0.2 to 7.7+/-0.3 mmol/l) (p<0.05) but not insulin. Glucosamine induced both hepatic and muscle insulin resistance as evident from measures of glucose appearance and disposal as well as hind-leg glucose uptake, which was inhibited by approx. 50% (p<0.05). Insulin-mediated increases in femoral arterial blood flow and capillary recruitment were completely blocked by glucosamine. CONCLUSION/INTERPRETATION Glucosamine mediates a major impairment of insulin action in muscle vasculature associated with the insulin resistance of muscle. Further studies will be required to assess whether the impaired capillary recruitment contributes to insulin resistance.
Collapse
Affiliation(s)
- M G Wallis
- Biochemistry, School of Medicine, University of Tasmania, Private Bag 58, Hobart, Tasmania 7001, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Juan CC, Chien Y, Wu LY, Yang WM, Chang CL, Lai YH, Ho PH, Kwok CF, Ho LT. Angiotensin II enhances insulin sensitivity in vitro and in vivo. Endocrinology 2005; 146:2246-54. [PMID: 15705782 DOI: 10.1210/en.2004-1136] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The renin-angiotensin system plays a critical role in the pathogenesis of obesity, obesity-associated hypertension, and insulin resistance. However, the biological actions of angiotensin II (AII) on insulin sensitivity remain controversial. Because angiotensinogen and AII receptors are expressed on adipose tissue, we investigated the effect of AII on the insulin sensitivity of isolated rat adipocytes. The results of a receptor binding assay showed the maximal AII binding capacity of adipocytes to be 8.3 +/- 0.9 fmol/7 x 10(6) cells and the dissociation constant to be 2.72 +/- 0.11 nM. Substantial expression of both type 1 and 2 AII (AT1 and AT2) receptors was detected by RT-PCR. AII had no effect on basal glucose uptake, but significantly potentiated insulin-stimulated glucose uptake; this effect was abolished by the AT1 antagonist, losartan. In addition, AII did not alter the insulin binding capacity of adipocytes, but increased insulin-stimulated tyrosine phosphorylation of the insulin receptor beta-subunit, Akt phosphorylation, and translocation of glucose transporter 4 to the plasma membrane. AII potentiated insulin-stimulated glucose uptake through the AT1 receptor and by alteration of the intracellular signaling of insulin. Intraperitoneal injection of Sprague Dawley rats with AII increased insulin sensitivity in vivo. In conclusion, we have shown that AII enhances insulin sensitivity both in vitro and in vivo, suggesting that dysregulation of the insulin-sensitizing effect of AII may be involved in the development of insulin resistance.
Collapse
MESH Headings
- Adipocytes/chemistry
- Adipocytes/drug effects
- Adipocytes/metabolism
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Blood Glucose/analysis
- Drug Synergism
- Gene Expression
- Glucose/metabolism
- Glucose Tolerance Test
- Glucose Transporter Type 4
- Insulin/blood
- Insulin/metabolism
- Insulin/pharmacology
- Insulin Resistance
- Losartan/pharmacology
- Male
- Monosaccharide Transport Proteins/metabolism
- Muscle Proteins/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/physiology
- Receptor, Insulin/drug effects
- Receptor, Insulin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Chi-Chang Juan
- Institute of Physiology, National Yang-Ming University, and Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hyun CK, Kim IY, Frost SC. Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J Nutr 2004; 134:3257-63. [PMID: 15570022 DOI: 10.1093/jn/134.12.3257] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes is characterized by hyperglycemia and hyperinsulinemia, features of insulin resistance. In vivo treatment of ob/ob mice with hydrolyzed fibroin reverses these pathological attributes. To explore the mechanism underlying this effect, we used the murine, 3T3-L1 adipocyte cell line, which has been used extensively to model adipocyte function. Chronic exposure of 3T3-L1 adipocytes to insulin leads to a 50% loss of insulin-stimulated glucose uptake. Chronic exposure to different preparations of fibroin partially blocked the response to insulin but also increased the sensitivity of control cells to the acute action of insulin. The latter effect was most robust at physiologic concentrations of insulin. Fibroin did not prevent the insulin-induced downregulation of the insulin receptor or the tyrosine kinase activity associated with the receptor. Further, fibroin had no effect on the activity of the insulin-sensitive downstream kinase, Akt. Interestingly, fibroin accelerated glucose metabolism and glycogen turnover independent of insulin action. In addition, fibroin upregulated glucose transporter (GLUT)1, which increased its expression at the cell surface and enhanced GLUT4 translocation. Together, these phenomena may underlie the improvement in diabetic hyperglycemia noted in vivo in response to fibroin.
Collapse
Affiliation(s)
- Chang-Kee Hyun
- School of Bioscience and Food Technology, Handong Global University, Pohang, South Korea
| | | | | |
Collapse
|
30
|
Chen G, Raman P, Bhonagiri P, Strawbridge AB, Pattar GR, Elmendorf JS. Protective effect of phosphatidylinositol 4,5-bisphosphate against cortical filamentous actin loss and insulin resistance induced by sustained exposure of 3T3-L1 adipocytes to insulin. J Biol Chem 2004; 279:39705-9. [PMID: 15277534 PMCID: PMC2413414 DOI: 10.1074/jbc.c400171200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Muscle and fat cells develop insulin resistance when cultured under hyperinsulinemic conditions for sustained periods. Recent data indicate that early insulin signaling defects do not fully account for the loss of insulin action. Given that cortical filamentous actin (F-actin) represents an essential aspect of insulin regulated glucose transport, we tested to see whether cortical F-actin structure was compromised during chronic insulin treatment. The acute effect of insulin on GLUT4 translocation and glucose uptake was diminished in 3T3-L1 adipocytes exposed to a physiological level of insulin (5 nm) for 12 h. This insulin-induced loss of insulin responsiveness was apparent under both low (5.5 mm) and high (25 mm) glucose concentrations. Microscopic and biochemical analyses revealed that the hyperinsulinemic state caused a marked loss of cortical F-actin. Since recent data link phosphatidylinositol 4,5-bisphosphate (PIP(2)) to actin cytoskeletal mechanics, we tested to see whether the insulin-resistant condition affected PIP(2) and found a noticeable loss of this lipid from the plasma membrane. Using a PIP(2) delivery system, we replenished plasma membrane PIP(2) in cells following the sustained insulin treatment and observed a restoration in cortical F-actin and insulin responsiveness. These data reveal a novel molecular aspect of insulin-induced insulin resistance involving defects in PIP(2)/actin regulation.
Collapse
Affiliation(s)
- Guoli Chen
- Departments of Cellular & Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, Indiana 46202
| | - Priya Raman
- Departments of Cellular & Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, Indiana 46202
| | - Padma Bhonagiri
- Departments of Cellular & Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, Indiana 46202
| | - Andrew B. Strawbridge
- Departments of Cellular & Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, Indiana 46202
| | - Guruprasad R. Pattar
- Departments of Cellular & Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, Indiana 46202
| | - Jeffrey S. Elmendorf
- Departments of Cellular & Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, Indiana 46202
- Biochemistry & Molecular Biology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, Indiana 46202
- ** To whom correspondence should be addressed: Dept. of Cellular & Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, IN 46202. Tel.: 317-274-7852; Fax: 317-274-3318; E-mail:
| |
Collapse
|
31
|
Marshall S, Nadeau O, Yamasaki K. Dynamic actions of glucose and glucosamine on hexosamine biosynthesis in isolated adipocytes: differential effects on glucosamine 6-phosphate, UDP-N-acetylglucosamine, and ATP levels. J Biol Chem 2004; 279:35313-9. [PMID: 15199059 DOI: 10.1074/jbc.m404133200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose and glucosamine (GlcN) cause insulin resistance over several hours by increasing metabolite flux through the hexosamine biosynthesis pathway (HBP). To elucidate the early events underlying glucose-induced desensitization, we treated isolated adipocytes with either glucose or GlcN and then measured intracellular levels of glucose-6-P (G-6-P), GlcN-6-P, UDP-Glc-NAc, and ATP. Glucose treatment rapidly increased G-6-P levels (t((1/2)) < 1 min), which plateaued by 15 min and remained elevated for up to 4 h (glucose ED(50) = 4mm). In glucose-treated cells, GlcN-6-P was undetectable; however, GlcN treatment (2 mm) caused a rapid and massive accumulation of GlcN-6-P. Levels increased by 5 min ( approximately 400 nmol/g) and continued to rise over 2 h (t((1/2)) approximately 20 min) before reaching a plateau at >1,400 nmol/g (ED(50) = 900 microm). Thus, at high GlcN concentrations, unrestricted flux into the HBP greatly exceeds the biosynthetic capacity of the pathway leading to a rapid buildup of GlcN-6-P. The GlcN-induced rise in GlcN-6-P levels was correlated with ATP depletion, suggesting that ATP loss is caused by phosphate sequestration (with the formation of GlcN-6-P) or the energy demands of phosphorylation. As expected, GlcN and glucose increased UDP-GlcNAc levels (t((1/2)) approximately 14-18 min), but greater levels were obtained with GlcN (4-5-fold for GlcN, 2-fold for glucose). Importantly, we found that low doses of GlcN (<250 microm, ED(50) = 80 microm) could markedly elevate UDP-GlcNAc levels without increasing GlcN-6-P levels or depleting ATP levels. These studies on the dynamic actions of glucose and GlcN on hexosamine levels should be useful in exploring the functional role of the HBP and in avoiding the potential pitfalls in the pharmacological use of GlcN.
Collapse
|
32
|
Arias EB, Kim J, Cartee GD. Prolonged incubation in PUGNAc results in increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle. Diabetes 2004; 53:921-30. [PMID: 15047606 DOI: 10.2337/diabetes.53.4.921] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increased flux through the hexosamine biosynthetic pathway and increased O-linked glycosylation (N-acetylglucosamine [O-GlcNAc]) of proteins have been implicated in insulin resistance. Previous research in 3T3-L1 adipocytes indicated that insulin-stimulated glucose uptake and phosphorylation of Akt were reduced after incubation with O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc; 100 micromol/l), an inhibitor of the O-GlcNAcase that catalyzes removal of O-GlcNAc from proteins. Therefore, in this study, we tested the effects of PUGNAc on skeletal muscle. Incubation of rat epitrochlearis muscles for 19 h with 100 micromol/l PUGNAc resulted in a marked increase in O-GlcNAcylation of multiple proteins. Incubation with PUGNAc reduced glucose transport with a physiologic insulin concentration without affecting glucose transport without insulin or with supraphysiologic insulin. PUGNAc did not significantly alter insulin-stimulated phosphorylation of Akt (serine and threonine) or its substrates glycogen synthase kinase (GSK)3 alpha and GSK3 beta. Insulin stimulated a dose-dependent (12.0 > 0.6 > 0 nmol/l) increase in the phosphorylation of a 160-kDa protein detected using an antibody against an Akt substrate phosphomotif. PUGNAc treatment did not alter phosphorylation of this protein. These results indicate that PUGNAc is an effective inhibitor of O-GlcNAcase in skeletal muscle and suggest that O-GlcNAc modification of proteins can induce insulin resistance in skeletal muscle independent of attenuated phosphorylation of Akt, GSK 3 alpha, GSK3 beta, and a 160-kDa protein with an Akt phosphomotif.
Collapse
Affiliation(s)
- Edward B Arias
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Stuart A Ross
- Department of Cardiovascular and Metabolic Diseases, Mail Zone T2E, Pharmacia Corporation, 800 North Lindbergh Boulevard, St Louis, Missouri 63167, USA
| | | | | |
Collapse
|
34
|
Han DH, Chen MM, Holloszy JO. Glucosamine and glucose induce insulin resistance by different mechanisms in rat skeletal muscle. Am J Physiol Endocrinol Metab 2003; 285:E1267-72. [PMID: 12954597 DOI: 10.1152/ajpendo.00255.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been hypothesized that glucose-induced insulin resistance is mediated by accumulation of UDP-N-acetylhexosamines (UDP-HexNAcs). In a previous study on rat epitrochlearis muscles incubated with high concentrations of glucose and insulin (Kawanaka K, D-H Han, J Gao, LA Nolte, and JO Holloszy. J Biol Chem 276: 20101-20107, 2001), we found that insulin resistance developed even when the increase in UDP-Hex-NAcs was prevented. Furthermore, actinomycin D completely prevented glucose-induced insulin resistance despite a greater accumulation of UDP-HexNAcs. In the present study, we used the same epitrochlearis muscle preparation, as well as the rat hemidiaphragm, to determine whether, like glucose, glucosamine causes insulin resistance by an actinomycin D-inhibitable process. Incubation of diaphragm muscles with 10 mM glucosamine for 3 h resulted in an approximately fivefold increase in UDP-HexNAcs, an approximately 50% reduction in insulin responsiveness of glucose transport, and a 58% reduction in ATP concentration. These effects of glucosamine were not prevented by actinomycin D. Incubation of epitrochlearis muscles with 20 mM glucosamine for 3 h or with 10 mM glucosamine for 5 h also caused large decreases in insulin responsiveness of glucose transport but with no reduction in ATP concentration. Actinomycin D did not prevent the glucosamine-induced insulin resistance. The insulin-induced increases in tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the binding of PI 3-kinase to IRS-1 were decreased approximately 60% in epitrochlearis muscles exposed to glucosamine. This is in contrast to glucose-induced insulin resistance, which was not associated with impaired insulin signaling. These results provide evidence that glucosamine and glucose induce insulin resistance by different mechanisms.
Collapse
Affiliation(s)
- Dong-Ho Han
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
35
|
Haber CA, Lam TKT, Yu Z, Gupta N, Goh T, Bogdanovic E, Giacca A, Fantus IG. N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab 2003; 285:E744-53. [PMID: 12799318 DOI: 10.1152/ajpendo.00355.2002] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exposure to high concentrations of glucose and insulin results in insulin resistance of metabolic target tissues, a characteristic feature of type 2 diabetes. High glucose has also been associated with oxidative stress, and increased levels of reactive oxygen species have been proposed to cause insulin resistance. To determine whether oxidative stress contributes to insulin resistance induced by hyperglycemia in vivo, nondiabetic rats were infused with glucose for 6 h to maintain a circulating glucose concentration of 15 mM with and without coinfusion of the antioxidant N-acetylcysteine (NAC), followed by a 2-h hyperinsulinemic-euglycemic clamp. High glucose (HG) induced a significant decrease in insulin-stimulated glucose uptake [tracer-determined disappearance rate (Rd), control 41.2 +/- 1.7 vs. HG 32.4 +/- 1.9 mg. kg-1. min-1, P < 0.05], which was prevented by NAC (HG + NAC 45.9 +/- 3.5 mg. kg-1. min-1). Similar results were obtained with the antioxidant taurine. Neither NAC nor taurine alone altered Rd. HG caused a significant (5-fold) increase in soleus muscle protein carbonyl content, a marker of oxidative stress that was blocked by NAC, as well as elevated levels of malondialdehyde and 4-hydroxynonenal, markers of lipid peroxidation, which were reduced by taurine. In contrast to findings after long-term hyperglycemia, there was no membrane translocation of novel isoforms of protein kinase C in skeletal muscle after 6 h. These data support the concept that oxidative stress contributes to the pathogenesis of hyperglycemia-induced insulin resistance.
Collapse
Affiliation(s)
- C Andrew Haber
- Department of Medicine, Mount Sinai Hospital, 60 Murray Street, Toronto, Ontario, Canada M5G 1X5
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen G, Liu P, Thurmond DC, Elmendorf JS. Glucosamine-induced insulin resistance is coupled to O-linked glycosylation of Munc18c. FEBS Lett 2003; 534:54-60. [PMID: 12527361 DOI: 10.1016/s0014-5793(02)03774-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Evidence suggests that glucosamine inhibits distal components regulating insulin-stimulated GLUT4 translocation to the plasma membrane. Here we assessed whether key membrane docking and fusion events were targeted. Consistent with a plasma membrane-localized effect, 3T3-L1 adipocytes exposed to glucosamine displayed an increase in cell-surface O-linked glycosylation and a simultaneously impaired mobilization of GLUT4 by insulin. Analysis of syntaxin 4 and SNAP23, plasma membrane-localized target receptor proteins (t-SNAREs) for the GLUT4 vesicle, showed that they were not cell-surface targets of O-linked glycosylation. However, the syntaxin 4 binding protein, Munc18c, was targeted by O-linked glycosylation. This occurred concomitantly with a block in insulin-stimulated association of syntaxin 4 with its cognate GLUT4 vesicle receptor protein (v-SNARE), VAMP2. In conclusion, our data suggest that the mechanism by which glucosamine inhibits insulin-stimulated GLUT4 translocation involves modification of Munc18c.
Collapse
Affiliation(s)
- Guoli Chen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, IN 46202-5120, USA
| | | | | | | |
Collapse
|
37
|
Huang C, Somwar R, Patel N, Niu W, Török D, Klip A. Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity. Diabetes 2002; 51:2090-8. [PMID: 12086937 DOI: 10.2337/diabetes.51.7.2090] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hyperglycemia and hyperinsulinemia are cardinal features of acquired insulin resistance. In adipose cell cultures, high glucose and insulin cause insulin resistance of glucose uptake, but because of altered GLUT4 expression and contribution of GLUT1 to glucose uptake, the basis of insulin resistance could not be ascertained. Here we show that GLUT4 determines glucose uptake in L6 myotubes stably overexpressing myc-tagged GLUT4. Preincubation for 24 h with high glucose and insulin (high Glc/Ins) reduced insulin-stimulated GLUT4 translocation by 50%, without affecting GLUT4 expression. Insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, phosphatidylinositol 3-kinase activation, and Akt phosphorylation also diminished, as did insulin-mediated glucose uptake. However, basal glucose uptake rose by 40% without any gain in surface GLUT4. High Glc/Ins elevated basal p38 mitogen-activated protein kinase (MAPK) phosphorylation and activity, and a short inhibition of p38 MAPK with SB202190 corrected the rise in basal glucose uptake, suggesting that p38 MAPK activity contributes to this rise. We propose that in a cellular model of skeletal muscle, chronic exposure to high Glc/Ins reduced the acute, insulin-elicited GLUT4 translocation. In addition, basal state GLUT4 activity was augmented to partially compensate for the translocation defect, resulting in a more robust glucose uptake than what would be predicted from the amount of cell surface GLUT4 alone.
Collapse
Affiliation(s)
- Carol Huang
- Programme in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
38
|
Nelson BA, Robinson KA, Buse MG. Defective Akt activation is associated with glucose- but not glucosamine-induced insulin resistance. Am J Physiol Endocrinol Metab 2002; 282:E497-506. [PMID: 11832350 DOI: 10.1152/ajpendo.00438.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED 3T3-L1 adipocytes develop insulin-resistant glucose transport upon preincubation with high glucose or glucosamine, provided insulin (0.6 nM) is present during preincubation. Insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol (PI) 3-kinase activity is unaffected (30). Total cellular IRS-1, PI 3-kinase, or Akt concentrations were unchanged. Akt activation in subcellular fractions was assessed by immunoblotting with two phospho-Akt-specific antibodies. Upon acute 100 nM insulin stimulation, plasma membrane (PM)-associated phospho-Akt was highest in cells preincubated in low glucose with no insulin, less in high glucose with no insulin, even less in low glucose+insulin, and lowest in high glucose+insulin. Only high glucose+insulin caused insulin-resistant glucose transport. Acute insulin stimulation increased total PM-Akt about twofold after preincubation without insulin in low or high glucose. Preincubation with 0.6 nM insulin decreased Akt PM translocation by approximately 25% in low and approximately 50% in high glucose. Preincubation with glucosamine did not affect Akt phosphorylation or translocation. CONCLUSIONS chronic exposure to high glucose or insulin downregulates acute insulin-stimulated Akt activation, acting synergistically distal to PI 3-kinase. Maximal insulin activates more Akt than required for maximal glucose transport stimulation. Insulin resistance may ensue when PM-associated phospho-Akt decreases below a threshold. High glucose and glucosamine cause insulin resistance by different mechanisms in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Bryce A Nelson
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
39
|
Juan CC, Au LC, Fang VS, Kang SF, Ko YH, Kuo SF, Hsu YP, Kwok CF, Ho LT. Suppressed gene expression of adipocyte resistin in an insulin-resistant rat model probably by elevated free fatty acids. Biochem Biophys Res Commun 2001; 289:1328-33. [PMID: 11741341 DOI: 10.1006/bbrc.2001.6132] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resistin, the peptide specifically secreted from adipocytes, is a hormone antagonistic to insulin action and, thus, may serve as a link between human obesity due to adiposity and insulin resistance associated with type 2 diabetes. To test this hypothesis, we studied the gene expression of resistin in adipocytes isolated from rats fed with a fructose diet which induced insulin resistance. Compared to the control rats (C) on a normal chow diet, the fructose-fed rats (F) developed hyperinsulinemia, glucose intolerance, hypertriglyceridemia and hypertension, a profile reminiscent of the syndrome X of patients with non-insulin-dependent diabetes mellitus (NIDDM). The F rats had significantly elevated plasma free fatty acids (FFA), enlarged epididymal fat pads, and increased adipocyte size compared with the C rats. We examined the glucose transport and the relative quantity of resistin mRNA produced in the adipocytes of these two groups of rats. Compared to the C rats, the F rats had a clearly reduced insulin-stimulated glucose transport. The gene expression of resistin and other adipocyte peptides was measured on the mRNA by semiquantitative RT-PCR; the validity of this technique was established in advance with a rat-fasting and then refeeding experiment. The F rats showed a decreased expression of the resistin gene, whereas gene expression of leptin and angiotensinogen in contrast increased. Free fatty acids were found to suppress the expression of resistin gene in normal rat adipocytes. These results demonstrate that an insulin-resistant instance in the fructose diet rat model exists with the decreased gene expression of resistin.
Collapse
Affiliation(s)
- C C Juan
- Department of Medical Research and Education, Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tardif A, Julien N, Pelletier A, Thibault G, Srivastava AK, Chiasson JL, Coderre L. Chronic exposure to beta-hydroxybutyrate impairs insulin action in primary cultures of adult cardiomyocytes. Am J Physiol Endocrinol Metab 2001; 281:E1205-12. [PMID: 11701435 DOI: 10.1152/ajpendo.2001.281.6.e1205] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 1 and type 2 diabetic patients often show elevated plasma ketone body concentrations. Because ketone bodies compete with other energetic substrates and reduce their utilization, they could participate in the development of insulin resistance in the heart. We have examined the effect of elevated levels of ketone bodies on insulin action in primary cultures of adult cardiomyocytes. Cardiomyocytes were cultured with the ketone body beta-hydroxybutyrate (beta-OHB) for 4 or 16 h, and insulin-stimulated glucose uptake was evaluated. Although short-term exposure to ketone bodies was not associated with any change in insulin action, our data demonstrated that preincubation with beta-OHB for 16 h markedly reduced insulin-stimulated glucose uptake in cardiomyocytes. This effect is concentration dependent and persists for at least 6 h after the removal of beta-OHB from the media. Ketone bodies also decreased the stimulatory effect of phorbol 12-myristate 13-acetate and pervanadate on glucose uptake. This diminution could not be explained by a change in either GLUT-1 or GLUT-4 protein content in cardiomyocytes. Chronic exposure to beta-OHB was associated with impaired protein kinase B activation in response to insulin and pervanadate. These results indicate that prolonged exposure to ketone bodies altered insulin action in cardiomyocytes and suggest that this substrate could play a role in the development of insulin resistance in the heart.
Collapse
Affiliation(s)
- A Tardif
- Department of Medicine, Research Center, Centre Hospitalier de l'Université de Montréal, University of Montreal, Montreal H2W 1T8, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Maianu L, Keller SR, Garvey WT. Adipocytes exhibit abnormal subcellular distribution and translocation of vesicles containing glucose transporter 4 and insulin-regulated aminopeptidase in type 2 diabetes mellitus: implications regarding defects in vesicle trafficking. J Clin Endocrinol Metab 2001; 86:5450-6. [PMID: 11701721 DOI: 10.1210/jcem.86.11.8053] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Insulin resistance in type 2 diabetes is due to impaired stimulation of the glucose transport system in muscle and fat. Different defects are operative in these two target tissues because glucose transporter 4 (GLUT 4) expression is normal in muscle but markedly reduced in fat. In muscle, GLUT 4 is redistributed to a dense membrane compartment, and insulin-mediated translocation to plasma membrane (PM) is impaired. Whether similar trafficking defects are operative in human fat is unknown. Therefore, we studied subcellular localization of GLUT4 and insulin-regulated aminopeptidase (IRAP; also referred to as vp165 or gp160), which is a constituent of GLUT4 vesicles and also translocates to PM in response to insulin. Subcutaneous fat was obtained from eight normoglycemic control subjects (body mass index, 29 +/- 2 kg/m2) and eight type 2 diabetic patients (body mass index, 30 +/- 1 kg/m2; fasting glucose, 14 +/- 1 mM). In adipocytes isolated from diabetics, the basal 3-O-methylglucose transport rate was decreased by 50% compared with controls (7.1 +/- 2.9 vs. 14.1 +/- 3.7 mmol/mm2 surface area/min), and there was no increase in response to maximal insulin (7.9 +/- 2.7 vs. 44.5 +/- 9.2 in controls). In membrane subfractions from controls, insulin led to a marked increase of IRAP in the PM from 0.103 +/- 0.04 to 1.00 +/- 0.33 relative units/mg protein, concomitant with an 18% decrease in low-density microsomes and no change in high-density microsomes (HDM). In type 2 diabetes, IRAP overall expression in adipocytes was similar to that in controls; however, two abnormalities were observed. First, in basal cells, IRAP was redistributed away from low-density microsomes, and more IRAP was recovered in HDM (1.2-fold) and PM (4.4-fold) from diabetics compared with controls. Second, IRAP recruitment to PM by maximal insulin was markedly impaired. GLUT4 was depleted in all membrane subfractions (43-67%) in diabetes, and there was no increase in PM GLUT4 in response to insulin. Type 2 diabetes did not affect the fractionation of marker enzymes. We conclude that in human adipocytes: 1) IRAP is expressed and translocates to PM in response to insulin; 2) GLUT4 depletion involves all membrane subfractions in type 2 diabetes, although cellular levels of IRAP are normal; and 3) in type 2 diabetes, IRAP accumulates in membrane vesicles cofractionating with HDM and PM under basal conditions, and insulin-mediated recruitment to PM is impaired. Therefore, in type 2 diabetes, adipocytes express defects in trafficking of GLUT4/IRAP-containing vesicles similar to those causing insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- L Maianu
- Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
42
|
Lu B, Ennis D, Lai R, Bogdanovic E, Nikolov R, Salamon L, Fantus C, Le-Tien H, Fantus IG. Enhanced sensitivity of insulin-resistant adipocytes to vanadate is associated with oxidative stress and decreased reduction of vanadate (+5) to vanadyl (+4). J Biol Chem 2001; 276:35589-98. [PMID: 11463798 DOI: 10.1074/jbc.m106783200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vanadate (sodium orthovanadate), an inhibitor of phosphotyrosine phosphatases (PTPs), mimics many of the metabolic actions of insulin in vitro and in vivo. The potential of vanadate to stimulate glucose transport independent of the early steps in insulin signaling prompted us to test its effectiveness in an in vitro model of insulin resistance. In primary rat adipocytes cultured for 18 h in the presence of high glucose (15 mm) and insulin (10(-7) m), sensitivity to insulin-stimulated glucose transport was decreased. In contrast, there was a paradoxical enhanced sensitivity to vanadate of the insulin-resistant cells (EC(50) for control, 325 +/- 7.5 microm; EC(50) for insulin-resistant, 171 +/- 32 microm; p < 0.002). Enhanced sensitivity was also present for vanadate stimulation of insulin receptor kinase activity and autophosphorylation and Akt/protein kinase B Ser-473 phosphorylation consistent with more effective PTP inhibition in the resistant cells. Investigation of this phenomenon revealed that 1) depletion of GSH with buthionine sulfoximine reproduced the enhanced sensitivity to vanadate while preincubation of resistant cells with N-acetylcysteine (NAC) prevented it, 2) intracellular GSH was decreased in resistant cells and normalized by NAC, 3) exposure to high glucose and insulin induced an increase in reactive oxygen species, which was prevented by NAC, 4) EPR (electron paramagnetic resonance) spectroscopy showed a decreased amount of vanadyl (+4) in resistant and buthionine sulfoximine-treated cells, which correlated with decreased GSH and increased vanadate sensitivity, while total vanadium uptake was not altered, and 5) inhibition of recombinant PTP1B in vitro was more sensitive to vanadate (+5) than vanadyl (+4). In conclusion, the paradoxical increased sensitivity to vanadate in hyperglycemia-induced insulin resistant adipocytes is due to oxidative stress and decreased reduction of vanadate (+5) to vanadyl (+4). Thus, sensitivity of PTP inhibition and glucose transport to vanadate is regulated by cellular redox state.
Collapse
Affiliation(s)
- B Lu
- Department of Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kawanaka K, Han DH, Gao J, Nolte LA, Holloszy JO. Development of glucose-induced insulin resistance in muscle requires protein synthesis. J Biol Chem 2001; 276:20101-7. [PMID: 11274201 DOI: 10.1074/jbc.m010599200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscles and fat cells develop insulin resistance when exposed to high concentrations of glucose and insulin. We used an isolated muscle preparation incubated with high levels of glucose and insulin to further evaluate how glucose-induced insulin resistance (GIIR) is mediated. Incubation with 2 milliunits/ml insulin and 36 mm glucose for 5 h resulted in an approximately 50% decrease in insulin-stimulated muscle glucose transport. The decrease in insulin responsiveness of glucose transport induced by glucose was not due to impaired insulin signaling, as insulin-stimulated phosphatidylinositol 3-kinase activity and protein kinase B phosphorylation were not reduced. It has been hypothesized that entry of glucose into the hexosamine biosynthetic pathway with accumulation of UDP-N-acetylhexosamines (UDP-HexNAcs) mediates GIIR. However, inhibition of the rate-limiting enzyme GFAT (glutamine:fructose-6-phosphate amidotransferase) did not protect against GIIR despite a marked reduction of UDP-HexNAcs. The mRNA synthesis inhibitor actinomycin D and the protein synthesis inhibitor cycloheximide both completely protected against GIIR despite the massive increases in UDP-HexNAcs and glycogen that resulted from increased glucose entry. Activation of AMP-activated protein kinase also protected against GIIR. These results provide evidence that GIIR can occur in muscle without increased accumulation of hexosamine pathway end products, that neither high glycogen concentration nor impaired insulin signaling is responsible for GIIR, and that synthesis of a protein with a short half-life mediates GIIR. They also suggest that dephosphorylation of a transcription factor may be involved in the induction of GIIR.
Collapse
Affiliation(s)
- K Kawanaka
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
44
|
Singh LP, Gennerette D, Simmons S, Crook ED. Glucose-induced insulin resistance of phosphatidylinositol 3'-OH kinase and AKT/PKB is mediated by the hexosamine biosynthesis pathway. J Diabetes Complications 2001; 15:88-96. [PMID: 11274905 DOI: 10.1016/s1056-8727(00)00140-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyperglycemia is responsible for many of the vascular complications and metabolic derangements seen in diabetes. One potential regulator of the effects of glucose is the hexosamine biosynthesis pathway (HBP). Glutamine: fructose-6-phosphate amidotransferase (GFA), the first and rate-limiting enzyme in this pathway, catalyzes the transfer of an amino group from glutamine to fructose-6-phosphate to form glucosamine-6-phosphate. Overexpression of GFA in rat-1 fibroblasts results in insulin resistance for glycogen synthase (GS) activity, and renders these cells more sensitive to the effects of glucose. Using rat-1 cells, we examine further the mechanisms whereby hexosamines lead to insulin resistance. Insulin stimulated GS activity was found to occur via a PI-3 kinase (PI-3K)-dependent pathway as wortmannin, an inhibitor of PI-3K, blocked insulin's ability to stimulate GS activity. Subsequently, we examined the effects of hexosamines on PI-3K and Akt/PKB activity. Cells were cultured in 1 mM glucose (low glucose, LG), 20 mM glucose (high glucose, HG), or 1 mM glucose plus 3 mM glucosamine (GlcN) for 16--20 h. After treatment with insulin (100 nM) for 5 min, cell extracts were assayed for IRS-1 associated and total PI-3K activity. At LG, insulin increased PI-3K activity by 43%. There was no insulin stimulation of PI-3K activity in cells cultured in HG or GlcN. There was a trend for IRS-1 protein levels to decrease in HG but not GlcN. PI-3K protein levels were not altered by HG or GlcN. Finally PKB activity was assayed. At LG, insulin stimulated PKB activity. Again, both HG and GlcN significantly reduced insulin's ability to stimulate PKB activity. We conclude that the hexosamine-mediated insulin resistance of GS activity seen in rat-1 cells is mediated by hexosamine regulation of PI-3K and PKB.
Collapse
Affiliation(s)
- L P Singh
- Division of Nephrology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
45
|
Tang S, Le-Tien H, Goldstein BJ, Shin P, Lai R, Fantus IG. Decreased in situ insulin receptor dephosphorylation in hyperglycemia-induced insulin resistance in rat adipocytes. Diabetes 2001; 50:83-90. [PMID: 11147799 DOI: 10.2337/diabetes.50.1.83] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The regulation of insulin receptor (IR) tyrosine (tyr) phosphorylation is a key step in the control of insulin signaling. Augmented IR tyr dephosphorylation by protein tyrosine phosphatases (PTPs) may contribute to insulin resistance. To investigate this possibility in hyperglycemia-induced insulin resistance, primary cultured rat adipocytes were rendered insulin-resistant by chronic exposure (18 h) to 15 mmo/l glucose combined with 10(-7) mol/l insulin. Insulin-resistant adipocytes showed a decrease in insulin sensitivity and a maximum response of 2-deoxyglucose uptake, which was associated with a decrease in maximum insulin-stimulated IR tyr phosphorylation in situ. To assess tyr dephosphorylation, IRs of insulin-stimulated permeabilized adipocytes were labeled with [gamma-32P]ATP and chased for 2 min with unlabeled ATP in the presence of EDTA. In a nonradioactive protocol, insulin-stimulated adipocytes were permeabilized and exposed to EDTA and erbstatin for 2 min, and IRs were immunoblotted with anti-phosphotyrosine (pY) antibodies. Both methods showed a similar diminished extent of IR tyr dephosphorylation in resistant cells. Immunoblotting of four candidate IR-PTPs demonstrated no change in PTP1B or the SH2 domain containing phosphatase-2 (SHP-2), whereas a significant decrease in leukocyte antigen-related phosphatase (LAR) (51 +/- 3% of control) and an increase in PTP-alpha (165 +/- 16%) were found. Activity of immunoprecipitated PTPs toward a triple tyr phosphorylated IR peptide revealed a correlation with protein content for PTP1B, SHP-2, and LAR but a decrease in apparent specific activity of PTP-alpha. The data indicate that decreased IR tyr phosphorylation in hyperglycemia-induced insulin resistance is not due to enhanced dephosphorylation. The diminished IR tyr dephosphorylation observed in this model is associated with decreased LAR protein content and activity.
Collapse
Affiliation(s)
- S Tang
- Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Crook ED, Crenshaw G, Veerababu G, Singh LP. Overexpression of glutamine:fructose-6-phosphate amidotransferase in rat-1 fibroblasts enhances glucose-mediated glycogen accumulation via suppression of glycogen phosphorylase activity. Endocrinology 2000; 141:1962-70. [PMID: 10830278 DOI: 10.1210/endo.141.6.7483] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hexosamine biosynthesis pathway (HBP) mediates many of the adverse effects of excess glucose. We have shown previously that glucose down-regulates basal and insulin-stimulated glycogen synthase (GS) activity. Overexpression of the rate-limiting enzyme in the HBP, glutamine:fructose-6-phosphate amidotransferase (GFA), mimics these effects of high glucose and renders the cells more sensitive to glucose. Here we examine the role of the HBP in regulating cellular glycogen content. Glycogen content and glycogen phosphorylase (GP) activity were determined in Rat-1 fibroblasts that overexpress GFA. In both GFA and controls there was a dose-dependent increase in glycogen content (approximately 8-fold) in cells cultured in increasing glucose concentrations (1-20 mM). There was a shift to the left in the glucose dose-response curve for glycogen content in GFA cells (ED50 for glycogen content = 5.80+/-1.05 vs. 8.84+/-0.87 mM glucose, GFA vs. control). Inhibition of GFA reduced glycogen content by 28.4% in controls cultured in 20 mM glucose. In a dose-dependent manner, glucose resulted in a more than 35% decrease in GP activity in controls. GP activity in GFA cells was suppressed compared with that in controls, and there was no glucose-induced down-regulation of GP activity. Glucosamine and uridine mimicked the effects of glucose on glycogen content and GP activity. However, chronic overexpression of GFA is a unique model of hexosamine excess, as culturing control cells in low dose glucosamine (0.1-0.25 mM) did not suppress GP activity and did not eliminate the glucose-mediated down-regulation of GP activity. We conclude that increased flux through the HBP results in enhanced glycogen accumulation due to suppression of GP activity. These results demonstrate that the HBP is an important regulator of cellular glucose metabolism and supports its role as a cellular glucose/satiety sensor.
Collapse
Affiliation(s)
- E D Crook
- Department of Medicine, University of Mississippi Medical Center, and Veterans Administration Medical Center, Jackson 39216, USA.
| | | | | | | |
Collapse
|
47
|
Shih KC, Kwok CF, Ho LT. Combined use of insulin and endothelin-1 causes decrease of protein expression of beta-subunit of insulin receptor, insulin receptor substrate-1, and insulin-stimulated glucose uptake in rat adipocytes. J Cell Biochem 2000; 78:231-40. [PMID: 10842318 DOI: 10.1002/(sici)1097-4644(20000801)78:2<231::aid-jcb6>3.0.co;2-o] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Previously, we reported that insulin-stimulated glucose uptake (ISGU) can be inhibited by endothelin (ET-1). However, the mechanism by which ET-1 impairs ISGU in adipocytes remains unclear. This study investigated the effects of ET-1 on insulin action in rat adipocytes in order to elucidate the molecular mechanism of action of ET-1 on ISGU. The results show that ISGU was increased fivefold after 3-h treatment with 1 nM insulin. Treatment with 100 nM ET-1 had no effect on basal glucose uptake. However, ET-1 inhibited approximately 25% of ISGU and 20% of insulin binding after 3-h treatment in the presence of 1 nM insulin. Expression of the beta-subunit of the insulin receptor (IRbeta) and the insulin receptor substrate-1 (IRS-1) in adipocytes was not significantly affected by 1 nM insulin or by 100 nM ET-1, even after 3-h treatment. However, expressions of IRbeta and IRS-1 were dramatically decreased in a dose- and time-dependent manner when adipocytes were treated with both insulin and ET-1. Approximately 50% of IRbeta and 65% of IRS-1 expression levels were suppressed when adipocytes were simultaneously treated with both 1 nM insulin and 100 nM ET-1 for 3 h. These results suggest that the inhibitory effect of ET-1 on ISGU may be mediated via the insulin receptor and suppression of IRbeta/IRS-1 expression.
Collapse
Affiliation(s)
- K C Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
48
|
Abstract
Impaired function of the hormone insulin (insulin resistance) is a major feature of type 2 diabetes, a condition that is expected to afflict over 200 million people by early next century. Intensive investigation has failed to find a genetic basis for insulin resistance in the majority of cases. In this brief review the evidence that insulin resistance may be caused by excess nutrient supply will be presented. Both excess glucose and excess fat can cause insulin resistance in muscle and fat tissue, while excess fat can cause impaired suppression of endogenous glucose production. Each nutrient may impair insulin action by several mechanisms, at least one of which may be common to both.
Collapse
Affiliation(s)
- J Proietto
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
49
|
Gustafson TA, Moodie SA, Lavan BE. The insulin receptor and metabolic signaling. Rev Physiol Biochem Pharmacol 1999; 137:71-190. [PMID: 10207305 DOI: 10.1007/3-540-65362-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- T A Gustafson
- Metabolex, Inc., Section of Signal Transduction, Hayward, CA 94545, USA
| | | | | |
Collapse
|
50
|
Cooksey RC, Hebert LF, Zhu JH, Wofford P, Garvey WT, McClain DA. Mechanism of hexosamine-induced insulin resistance in transgenic mice overexpressing glutamine:fructose-6-phosphate amidotransferase: decreased glucose transporter GLUT4 translocation and reversal by treatment with thiazolidinedione. Endocrinology 1999; 140:1151-7. [PMID: 10067838 DOI: 10.1210/endo.140.3.6563] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hexosamines have been hypothesized to mediate aspects of glucose sensing and toxic effects of hyperglycemia. For example, insulin resistance results when the rate-limiting enzyme for hexosamine synthesis, glutamine:fructose-6-phosphate amidotransferase (GFA), is overexpressed in muscle and adipose tissue of transgenic mice. The glucose infusion rates required to maintain euglycemia at insulin infusion rates of 0.5, 2, 15, and 20 mU/kg x min were 39-90% lower in such transgenic mice, compared with their control littermates (P < or = 0.01). No differences were observed in hepatic glucose output, serum insulin levels, or muscle ATP levels. Uptake of 2-deoxyglucose, measured under conditions of hyperinsulinemia, was significantly lower in transgenic hindlimb muscle, compared with controls (85.9 +/- 17.8 vs. 166.8 +/- 15.1 pmol deoxyglucose/g x min). The decrease in glucose uptake by transgenic muscle was associated with a disruption in the translocation of the insulin-stimulated glucose transporter GLUT4. Fractionation of muscle membranes on a discontinuous sucrose gradient revealed that insulin stimulation of control muscle led to a 28.8% increase in GLUT4 content in the 25% fraction and a 61.2% decrease in the 35% fraction. In transgenic muscle, the insulin-stimulated shifts in GLUT4 distribution were inhibited by over 70%. Treatment of the transgenic animals with the thiazolidinedione troglitazone completely reversed the defect in glucose disposal without changing GFA activity or the levels of uridine 5'-diphosphate-N-acetylglucosamine. Overexpression of GFA in skeletal muscle thus leads to defects in glucose transport similar to those seen in type 2 diabetes. These data support the hypothesis that excess glucose metabolism through the hexosamine pathway may be responsible for the diminished insulin sensitivity and defective glucose uptake that are seen with hyperglycemia.
Collapse
Affiliation(s)
- R C Cooksey
- Department of Medicine of the University of Mississippi Medical Center, Jackson 39216, USA
| | | | | | | | | | | |
Collapse
|