1
|
Hempe JM, Hsia DS, Hagar A, Byers L. The glucosylamine oxidation pathway of vitamin C recycling. J Diabetes Complications 2024; 38:108797. [PMID: 38909585 DOI: 10.1016/j.jdiacomp.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/06/2024] [Accepted: 06/09/2024] [Indexed: 06/25/2024]
Abstract
The proposed glucosylamine oxidation pathway (GOP) is a two-step, intraerythrocyte, thermodynamically favorable nonenzymatic reaction that first binds glucose to the N-terminal valine of beta globin (βVal1) to form a closed-chain glucosylamine that can spontaneously reduce oxidized vitamin C to its antioxidant form. This review summarizes analytical, biochemical and clinical research supporting the existence of the GOP and the surprising hypothesis that βVal1 glucosylamine is a reducing agent that works cooperatively with reduced glutathione to dynamically regulate vitamin C recycling during naturally occurring periods of transiently or chronically elevated blood glucose and oxidant production. Rationale for the existence of the GOP is presented from the perspective of the hemoglobin glycation index, a clinically practical biomarker of risk for chronic vascular disease that we propose is mechanistically explained by person-to-person variation in GOP activity.
Collapse
Affiliation(s)
- James M Hempe
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Daniel S Hsia
- Pennington Biomedical Research Center, Baton Rouge, LA, USA; Department of Pediatrics, Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - Arthur Hagar
- Georgia Public Health Laboratory, Atlanta, GA, USA
| | - Larry Byers
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| |
Collapse
|
2
|
Sacks DB, Kirkman MS, Little RR. Point-of-Care HbA1c in Clinical Practice: Caveats and Considerations for Optimal Use. Diabetes Care 2024; 47:1104-1110. [PMID: 38552140 PMCID: PMC11208753 DOI: 10.2337/dci23-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 06/22/2024]
Abstract
Hemoglobin A1c (A1C) is widely used for the diagnosis and management of diabetes. Accurate measurement of A1C is necessary for optimal clinical value. Assay standardization has markedly improved the accuracy and consistency of A1C testing. Devices to measure A1C at point of care (POC) are commercially available, allowing rapid results when the patient is seen. In this review, we describe how standardization of A1C testing was achieved, leading to high-quality results in clinical laboratories. We address the use of POC A1C testing in clinical situations and summarize the advantages and disadvantages of POC A1C testing. We emphasize the importance of considering the limitations of these devices and following correct testing procedures to ensure that accurate A1C results are obtained for optimal care of patients.
Collapse
Affiliation(s)
- David B. Sacks
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - M. Sue Kirkman
- Division of Endocrinology and Metabolism, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Randie R. Little
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO
| |
Collapse
|
3
|
Martin MS, Jacob-Dolan JW, Pham VTT, Sjoblom NM, Scheck RA. The chemical language of protein glycation. Nat Chem Biol 2024:10.1038/s41589-024-01644-y. [PMID: 38942948 DOI: 10.1038/s41589-024-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/10/2024] [Indexed: 06/30/2024]
Abstract
Glycation is a non-enzymatic post-translational modification (PTM) that is correlated with many diseases, including diabetes, cancer and age-related disorders. Although recent work points to the importance of glycation as a functional PTM, it remains an open question whether glycation has a causal role in cellular signaling and/or disease development. In this Review, we contextualize glycation as a specific mechanism of carbon stress and consolidate what is known about advanced glycation end-product (AGE) structures and mechanisms. We highlight the current understanding of glycation as a PTM, focusing on mechanisms for installing, removing or recognizing AGEs. Finally, we discuss challenges that have hampered a more complete understanding of the biological consequences of glycation. The development of tools for predicting, modulating, mimicking or capturing glycation will be essential for interpreting a post-translational glycation network. Therefore, continued insights into the chemistry of glycation will be necessary to advance understanding of glycation biology.
Collapse
|
4
|
Duval C, Criscuolo F, Bertile F. Glycation resistance and life-history traits: lessons from non-conventional animal models. Biol Lett 2024; 20:20230601. [PMID: 38863347 DOI: 10.1098/rsbl.2023.0601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 06/13/2024] Open
Abstract
Glycation reactions play a key role in the senescence process and are involved in numerous age-related pathologies, such as diabetes complications or Alzheimer's disease. As a result, past studies on glycation have mostly focused on human and laboratory animal models for medical purposes. Very little is known about glycation and its link to senescence in wild animal species. Yet, despite feeding on high-sugar diets, several bat and bird species are long-lived and seem to escape the toxic effects of high glycaemia. The study of these models could open new avenues both for understanding the mechanisms that coevolved with glycation resistance and for treating the damaging effects of glycations in humans. Our understanding of glycaemia's correlation to proxies of animals' pace of life is emerging in few wild species; however, virtually nothing is known about their resistance to glycation, nor on the relationship between glycation, species' life-history traits and individual fitness. Our review summarizes the scarce current knowledge on the links between glycation and life-history traits in non-conventional animal models, highlighting the predominance of avian research. We also investigate some key molecular and physiological parameters involved in glycation regulation, which hold promise for future research on fitness and senescence of individuals.
Collapse
Affiliation(s)
- Cyrielle Duval
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178 , Strasbourg 67000, France
- Infrastructure de Protéomique, ProFi , Strasbourg FR2048, France
| | - François Criscuolo
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178 , Strasbourg 67000, France
| | - Fabrice Bertile
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178 , Strasbourg 67000, France
- Infrastructure de Protéomique, ProFi , Strasbourg FR2048, France
| |
Collapse
|
5
|
Gaetani ML, Pinto IC, Li M, O'Connor P, Giorgi-Coll S, Tyreman M, Rumary KL, Schouten JA, Davis P, Dixon AM. Towards detection of structurally-diverse glycated epitopes in native proteins: Single-chain antibody directed to non-A1c epitope in human haemoglobin. Mol Immunol 2024; 166:16-28. [PMID: 38181455 DOI: 10.1016/j.molimm.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Over 500 million people worldwide are affected by diabetes mellitus, a chronic disease that leads to high blood glucose levels and causes severe side effects. The predominant biological marker for diagnosis of diabetes is glycated haemoglobin (GHb). In human blood the predominant reducing sugar, glucose, irreversibly conjugates onto accessible amine groups within Hb. Most methods for diagnosis and monitoring of diabetes selectively detect N-terminal glycation at Val-1 on the β-globin chain, but not glycation at other sites. Detection of other glycated epitopes of GHb has the potential to provide new information on the extent, duration and timing of elevated glucose, facilitating personalised diagnosis and intelligent diabetic control. In this work, a new anti-GHb Fab antibody (Fab-1) specific for haemoglobin A1c (HbA1c) with nanomolar affinity was discovered via epitope-directed immunisation and phage display. A single chain variable fragment (scFv) antibody derived from Fab-1 retained affinity and specificity for HbA1c, and affinity was enhanced tenfold upon addition of an enhanced green fluorescent protein tag. Both the scFv and Fab-1 recognised an epitope within HbA1c that was distinct from β-Val-1, and our data suggest that this epitope may include glycation at Lys-66 in the β-globin chain. To our knowledge, this is the first report of an scFv/Fab anti-glycated epitope antibody that recognises a non-A1c epitope in GHb, and confirms that fructosamine attached to different, discrete glycation sites within the same protein can be resolved from one another by immunoassay.
Collapse
Affiliation(s)
- Miss Lucia Gaetani
- Medical Research Council Doctoral Training Programme, Warwick Medical School, UK
| | - Isabel Campos Pinto
- iBET, Bayer Satellite Lab, Av. República, Quinta do Marquês, Edifício iBET/ITQB, Oeiras 2780-157, Portugal
| | - Meng Li
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter O'Connor
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Matthew Tyreman
- Global Access Diagnostics, Thurleigh, Bedfordshire MK44 2YA, UK
| | | | | | - Paul Davis
- Global Access Diagnostics, Thurleigh, Bedfordshire MK44 2YA, UK
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
6
|
Mossine VV, Mawhinney TP. 1-Amino-1-deoxy-d-fructose ("fructosamine") and its derivatives. Adv Carbohydr Chem Biochem 2023; 83:27-132. [PMID: 37968038 DOI: 10.1016/bs.accb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Fructosamine has long been considered as a key intermediate of the Maillard reaction, which to a large extent is responsible for specific aroma, taste, and color formation in thermally processed or dehydrated foods. Since the 1980s, however, as a product of the Amadori rearrangement reaction between glucose and biologically significant amines such as proteins, fructosamine has experienced a boom in biomedical research, mainly due to its relevance to pathologies in diabetes and aging. In this chapter, we assess the scope of the knowledge on and applications of fructosamine-related molecules in chemistry, food, and health sciences, as reflected mostly in publications within the past decade. Methods of fructosamine synthesis and analysis, its chemical, and biological properties, and degradation reactions, together with fructosamine-modifying and -recognizing proteins are surveyed.
Collapse
Affiliation(s)
- Valeri V Mossine
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
7
|
Lapolla A. Thirty years of fruitful collaborations between a physician and mass spectrometrists in diabetes field. MASS SPECTROMETRY REVIEWS 2023; 42:1086-1112. [PMID: 34747543 DOI: 10.1002/mas.21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/07/2023]
Abstract
The nonenzymatic protein glycation and the subsequent formation of advanced glycation end products is a process involved in the long-term complications of diabetes. In this context the collaboration, in the last 30 years, between my research group, operating in the DPT of Medicine of Padua University, and the mass spectrometric group, operating in CNR of Padua, are described and discussed. The development of new mass spectrometric techniques has allowed investigation more indepth, starting from the applications on small molecules responsible for the browning observed in the interactions between sugars and proteins, and growing up to intact proteins as albumin, immunoglobulin, hemoglobin, and so forth, with the determination of their glycation levels as well as their glycation sites. This study has helped to clarify the role of advanced glycation end products in the pathogenesis of the chronic complications of diabetes. In particular the results obtained in diabetic nephropathy, diabetic cardiovascular disease and in placenta samples of patients affected by gestational diabetes are described in this review.
Collapse
|
8
|
Eshghi A, Xie X, Hardie D, Chen MX, Izaguirre F, Newman R, Zhu Y, Kelly RT, Goodlett DR. Sample Preparation Methods for Targeted Single-Cell Proteomics. J Proteome Res 2023. [PMID: 37093777 DOI: 10.1021/acs.jproteome.2c00429] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
We compared three cell isolation and two proteomic sample preparation methods for single-cell and near-single-cell analysis. Whole blood was used to quantify hemoglobin (Hb) and glycated-Hb (gly-Hb) in erythrocytes using targeted mass spectrometry and stable isotope-labeled standard peptides. Each method differed in cell isolation and sample preparation as follows: 1) FACS and automated preparation in one-pot for trace samples (autoPOTS); 2) limited dilution via microscopy and a novel rapid one-pot sample preparation method that circumvented the need for the solid-phase extraction, low-volume liquid handling instrumentation and humidified incubation chamber; and 3) CellenONE-based cell isolation and the same one-pot sample preparation method used for limited dilution. Only the CellenONE device routinely isolated single-cells from which Hb was measured to be 540-660 amol per red blood cell (RBC), which was comparable to the calculated SI reference range for mean corpuscular hemoglobin (390-540 amol/RBC). FACSAria sorter and limited dilution could routinely isolate single-digit cell numbers, to reliably quantify CMV-Hb heterogeneity. Finally, we observed that repeated measures, using 5-25 RBCs obtained from N = 10 blood donors, could be used as an alternative and more efficient strategy than single RBC analysis to measure protein heterogeneity, which revealed multimodal distribution, unique for each individual.
Collapse
Affiliation(s)
- Azad Eshghi
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
| | - Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Darryl Hardie
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
| | - Michael X Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Laboratory Medicine, Pathology, and Medical Genetics, Vancouver Island Health Authority, Vancouver, British Columbia V9A 2P8, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Fabiana Izaguirre
- Cellenion SASU, 60 Avenue Rockefeller, Bâtiment BioSerra2, Lyon, Auvergne-Rhône-Alpes 69008, France
| | - Rachael Newman
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - David R Goodlett
- University of Victoria - Genome BC Proteomics Centre, Victoria, British Columbia V8Z 5N3, Canada
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Pomerania 80-309, Poland
| |
Collapse
|
9
|
Yadav N, Kumar Mandal A. Interference of hemoglobin variants in HbA 1c quantification. Clin Chim Acta 2023; 539:55-65. [PMID: 36476843 DOI: 10.1016/j.cca.2022.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Fasting blood glucose and glycated hemoglobin (HbA1c) are routine biomarkers to screen and monitor diabetes mellitus. HbA1c results from glycation at the N-terminus of the β globin chain of tetrameric human hemoglobin. Fasting blood glucose level varies with the nature and amount of food intake, physical exercise, etc., and, accordingly, is a short-term measure of glucose control. In contrast, HbA1c provides an average measure of glucose control for the long-term (8-12 weeks). Unfortunately, genetic variants of hemoglobin may interfere with HbA1c quantification using ion exchange chromatography, capillary electrophoresis, immunoassay and boronate affinity chromatography. Mass spectrometry, however, measures total glycation of hemoglobin across both α and β globin chains and correlates well with the ion exchange based method. Additionally, mass spectrometry based quantification is not impacted by the presence of genetic variants of hemoglobin and thus might be a better analytical choice for diabetes mellitus.
Collapse
Affiliation(s)
- Neha Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Amit Kumar Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| |
Collapse
|
10
|
Shao Z, Yuan H, Zhou Z, Wang Y, Hou P, Nan H, Wang W, Tan W, Li J. Visualization of Protein‐Specific Glycation in Living Cells via Bioorthogonal Chemical Reporter. Angew Chem Int Ed Engl 2022; 61:e202210069. [DOI: 10.1002/anie.202210069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhentao Shao
- Institute of Molecular Medicine, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Hui Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Zhilan Zhou
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Ya Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Peidong Hou
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Hexin Nan
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| | - Juan Li
- Institute of Molecular Medicine, Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200240 China
- The Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Zhejiang 310022 China
| |
Collapse
|
11
|
Rescalli A, Varoni EM, Cellesi F, Cerveri P. Analytical Challenges in Diabetes Management: Towards Glycated Albumin Point-of-Care Detection. BIOSENSORS 2022; 12:bios12090687. [PMID: 36140073 PMCID: PMC9496022 DOI: 10.3390/bios12090687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus is a worldwide-spread chronic metabolic disease that occurs when the pancreas fails to produce enough insulin levels or when the body fails to effectively use the secreted pancreatic insulin, eventually resulting in hyperglycemia. Systematic glycemic control is the only procedure at our disposal to prevent diabetes long-term complications such as cardiovascular disorders, kidney diseases, nephropathy, neuropathy, and retinopathy. Glycated albumin (GA) has recently gained more and more attention as a control biomarker thanks to its shorter lifespan and wider reliability compared to glycated hemoglobin (HbA1c), currently the “gold standard” for diabetes screening and monitoring in clinics. Various techniques such as ion exchange, liquid or affinity-based chromatography and immunoassay can be employed to accurately measure GA levels in serum samples; nevertheless, due to the cost of the lab equipment and complexity of the procedures, these methods are not commonly available at clinical sites and are not suitable to home monitoring. The present review describes the most up-to-date advances in the field of glycemic control biomarkers, exploring in particular the GA with a special focus on the recent experimental analysis techniques, using enzymatic and affinity methods. Finally, analysis steps and fundamental reading technologies are integrated into a processing pipeline, paving the way for future point-of-care testing (POCT). In this view, we highlight how this setup might be employed outside a laboratory environment to reduce the time from measurement to clinical decision, and to provide diabetic patients with a brand-new set of tools for glycemic self-monitoring.
Collapse
Affiliation(s)
- Andrea Rescalli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
- Correspondence: (A.R.); (E.M.V.)
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
- Correspondence: (A.R.); (E.M.V.)
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy
| | - Pietro Cerveri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
12
|
Shao Z, Yuan H, Zhou Z, Wang Y, Hou P, Nan H, Wang W, Tan W, Li J. Visualization of Protein‐Specific Glycation in Living Cells via Bioorthogonal Chemical Reporter. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhentao Shao
- Shanghai Jiaotong University: Shanghai Jiao Tong University Renji Hospital CHINA
| | - Hui Yuan
- Institue of Basic Medicine and Cancer No CHINA
| | - Zhilan Zhou
- Institute of Basic Medicine and Cancer No CHINA
| | - Ya Wang
- Institute of Basic Medicine and Cancer No CHINA
| | - Peidong Hou
- Institute of Basic Medicine and Cancer No CHINA
| | - Hexin Nan
- Institute of Basic Medicine and Cancer No CHINA
| | - Wei Wang
- Shanghai Jiao Tong University School of Medicine No CHINA
| | - Weihong Tan
- Institute of Basic Medicine and Cancer No CHINA
| | - Juan Li
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences No 150 Dongfang Street XiashaJianggan District Hangzhou 310000 Hangzhou CHINA
| |
Collapse
|
13
|
Zhang R, Song Y, Xu A, Wang M, Ji L, Wang Q, Shi J, Zhao R, Fu W. Comparability of different methods of glycated hemoglobin measurement for samples of patients with variant and non-variant hemoglobin. Clin Chim Acta 2022; 533:168-174. [PMID: 35780822 DOI: 10.1016/j.cca.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Glycated hemoglobin (e.g., HbA1c) is measured to monitor patients with diabetes. However, the measurement results can vary according to the analysis method and presence of variant hemoglobin. Thus, we compared HbA1c results between liquid chromatography-tandem mass spectrometry (LC-MS/MS) as the reference method and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). METHODS %HbA1c were measured using the 2 methods in 45 non-variant and 73 heterozygous variant samples. Precision was calculated; the results were compared using Passing-Bablok regression and the concordance correlation coefficient (CCC). The average bias between methods was compared with the lowest bias of 2.3% for biological variation. RESULTS The precision of the 2methods was <2%. The R2 for the non-variant samples were 0.986 and the CCC was 0.99. Based on α- and β-chain, the variant samples were divided into 4 groups: α-chain, α-chain negligible, β-chain, and β-chain negligible variants. The R2 between the 2 methods of the 4 groups were >0.95; However, the average biases of α-chain and β-chain variants were above the minimum bias. CONCLUSION LC-MS/MS and MALDI-TOF MS had good comparability in the measurement of HbA1c in non-variant samples, but the existence of variant hemoglobin caused discrepancies.
Collapse
Affiliation(s)
| | | | | | | | - Ling Ji
- Peking University Shenzhen Hospital
| | | | | | | | | |
Collapse
|
14
|
Xu X, O'Callaghan JA, Guarnero Z, Qiu H, Li N, Potocky T, Kamen DE, Graham KS, Shameem M, Yang TC. Low pK a of Lys promotes glycation at one complementarity-determining region of a bispecific antibody. Biophys J 2022; 121:1081-1093. [PMID: 35122736 PMCID: PMC8943760 DOI: 10.1016/j.bpj.2022.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
Protein glycation is a common, normally innocuous, post-translational modification in therapeutic monoclonal antibodies. However, when glycation occurs on complementarity-determining regions (CDRs) of a therapeutic monoclonal antibody, its biological activities (e.g., potency) may be impacted. Here, we present a comprehensive approach to understanding the mechanism of protein glycation using a bispecific antibody. Cation exchange chromatography and liquid chromatography-mass spectrometry were used to characterize glycation at a lysine residue within a heavy chain (HC) CDR (HC-CDR3-Lys98) of a bispecific antibody. Thermodynamic analysis revealed that this reaction is reversible and can occur under physiological conditions with an apparent affinity of 8-10 mM for a glucose binding to HC-CDR3-Lys98. Results from kinetic analysis demonstrated that this reaction follows Arrhenius behavior in the temperature range of 5°C-45°C and can be well predicted in vitro and in a non-human primate. In addition, this glycation reaction was found to be driven by an unusually low pKa on the ε-amino group of HC-CDR3-Lys98. Van't Hoff analysis and homology modeling suggested that this reaction is enthalpically driven, with this lysine residue surrounded by a microenvironment with low polarity. This study provides, to our knowledge, new insights toward a mechanistic understanding of protein glycation and strategies to mitigate the impact of protein glycation during pharmaceutical development.
Collapse
Affiliation(s)
- Xiaobin Xu
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York.
| | | | - Zachary Guarnero
- Formulation Development Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Haibo Qiu
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Terra Potocky
- Bioassay Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Douglas E Kamen
- Formulation Development Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Kenneth S Graham
- Formulation Development Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Mohammed Shameem
- Formulation Development Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York
| | - Teng-Chieh Yang
- Formulation Development Group, Regeneron Pharmaceuticals Inc., Tarrytown, New York.
| |
Collapse
|
15
|
Di Sanzo S, Spengler K, Leheis A, Kirkpatrick JM, Rändler TL, Baldensperger T, Dau T, Henning C, Parca L, Marx C, Wang ZQ, Glomb MA, Ori A, Heller R. Mapping protein carboxymethylation sites provides insights into their role in proteostasis and cell proliferation. Nat Commun 2021; 12:6743. [PMID: 34795246 PMCID: PMC8602705 DOI: 10.1038/s41467-021-26982-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Posttranslational mechanisms play a key role in modifying the abundance and function of cellular proteins. Among these, modification by advanced glycation end products has been shown to accumulate during aging and age-associated diseases but specific protein targets and functional consequences remain largely unexplored. Here, we devise a proteomic strategy to identify sites of carboxymethyllysine modification, one of the most abundant advanced glycation end products. We identify over 1000 sites of protein carboxymethylation in mouse and primary human cells treated with the glycating agent glyoxal. By using quantitative proteomics, we find that protein glycation triggers a proteotoxic response and indirectly affects the protein degradation machinery. In primary endothelial cells, we show that glyoxal induces cell cycle perturbation and that carboxymethyllysine modification reduces acetylation of tubulins and impairs microtubule dynamics. Our data demonstrate the relevance of carboxymethyllysine modification for cellular function and pinpoint specific protein networks that might become compromised during aging.
Collapse
Affiliation(s)
- Simone Di Sanzo
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Katrin Spengler
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Anja Leheis
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Joanna M. Kirkpatrick
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany ,grid.451388.30000 0004 1795 1830Present Address: Proteomics Science Technology Platform, The Francis Crick Institute, MW1 1AT London, UK
| | - Theresa L. Rändler
- grid.275559.90000 0000 8517 6224Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743 Jena, Germany
| | - Tim Baldensperger
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Therese Dau
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Christian Henning
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Luca Parca
- grid.413503.00000 0004 1757 9135Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Christian Marx
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Zhao-Qi Wang
- grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
| | - Marcus A. Glomb
- grid.9018.00000 0001 0679 2801Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, 07743, Jena, Germany.
| |
Collapse
|
16
|
Śmiga M, Smalley JW, Ślęzak P, Brown JL, Siemińska K, Jenkins RE, Yates EA, Olczak T. Glycation of Host Proteins Increases Pathogenic Potential of Porphyromonas gingivalis. Int J Mol Sci 2021; 22:12084. [PMID: 34769513 PMCID: PMC8585099 DOI: 10.3390/ijms222112084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 01/25/2023] Open
Abstract
The non-enzymatic addition of glucose (glycation) to circulatory and tissue proteins is a ubiquitous pathophysiological consequence of hyperglycemia in diabetes. Given the high incidence of periodontitis and diabetes and the emerging link between these conditions, it is of crucial importance to define the basic virulence mechanisms employed by periodontopathogens such as Porphyromonas gingivalis in mediating the disease process. The aim of this study was to determine whether glycated proteins are more easily utilized by P. gingivalis to stimulate growth and promote the pathogenic potential of this bacterium. We analyzed the properties of three commonly encountered proteins in the periodontal environment that are known to become glycated and that may serve as either protein substrates or easily accessible heme sources. In vitro glycated proteins were characterized using colorimetric assays, mass spectrometry, far- and near-UV circular dichroism and UV-visible spectroscopic analyses and SDS-PAGE. The interaction of glycated hemoglobin, serum albumin and type one collagen with P. gingivalis cells or HmuY protein was examined using spectroscopic methods, SDS-PAGE and co-culturing P. gingivalis with human keratinocytes. We found that glycation increases the ability of P. gingivalis to acquire heme from hemoglobin, mostly due to heme sequestration by the HmuY hemophore-like protein. We also found an increase in biofilm formation on glycated collagen-coated abiotic surfaces. We conclude that glycation might promote the virulence of P. gingivalis by making heme more available from hemoglobin and facilitating bacterial biofilm formation, thus increasing P. gingivalis pathogenic potential in vivo.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland; (M.Ś.); (P.Ś.); (K.S.)
| | - John W. Smalley
- Institute of Life Course and Medical Sciences, School of Dentistry, The University of Liverpool, Pembroke Place, Liverpool L3 5PS, UK; (J.W.S.); (J.L.B.)
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland; (M.Ś.); (P.Ś.); (K.S.)
| | - Jason L. Brown
- Institute of Life Course and Medical Sciences, School of Dentistry, The University of Liverpool, Pembroke Place, Liverpool L3 5PS, UK; (J.W.S.); (J.L.B.)
| | - Klaudia Siemińska
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland; (M.Ś.); (P.Ś.); (K.S.)
| | - Rosalind E. Jenkins
- CDSS Bioanalytical Facility, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Science, The University of Liverpool, Liverpool L69 3GE, UK;
| | - Edwin A. Yates
- Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Science, The University of Liverpool, Liverpool L69 7ZB, UK;
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland; (M.Ś.); (P.Ś.); (K.S.)
| |
Collapse
|
17
|
Heo CE, Kim M, Son MK, Hyun DG, Heo SW, Kim HI. Ion Mobility Mass Spectrometry Analysis of Oxygen Affinity-Associated Structural Changes in Hemoglobin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2528-2535. [PMID: 34463503 DOI: 10.1021/jasms.1c00161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hemoglobin (Hb) is a major oxygen-transporting protein with allosteric properties reflected in the structural changes that accompany binding of O2. Glycated hemoglobin (GHb), which is a minor component of human red cell hemolysate, is generated by a nonenzymatic reaction between glucose and hemoglobin. Due to the long lifetime of human erythrocytes (∼120 days), GHb is widely used as a reliable biomarker for monitoring long-term glucose control in diabetic patients. Although the structure of GHb differs from that of Hb, structural changes relating to the oxygen affinity of these proteins remain incompletely understood. In this study, the oxygen-binding kinetics of Hb and GHb are evaluated, and their structural dynamics are investigated using solution small-angle X-ray scattering (SAXS), electrospray ionization mass spectrometry equipped with ion mobility spectrometry (ESI-IM-MS), and molecular dynamic (MD) simulations to understand the impact of structural alteration on their oxygen-binding properties. Our results show that the oxygen-binding kinetics of GHb are diminished relative to those of Hb. ESI-IM-MS reveals structural differences between Hb and GHb, which indicate the preference of GHb for a more compact structure in the gas phase relative to Hb. MD simulations also reveal an enhancement of intramolecular interactions upon glycation of Hb. Therefore, the more rigid structure of GHb makes the conformational changes that facilitate oxygen capture more difficult creating a delay in the oxygen-binding process. Our multiple biophysical approaches provide a better understanding of the allosteric properties of hemoglobin that are reflected in the structural alterations accompanying oxygen binding.
Collapse
Affiliation(s)
- Chae Eun Heo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Minji Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Myung Kook Son
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Da Gyeong Hyun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Sung Woo Heo
- Inorganic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
18
|
Liu JJ, You Y, Gao SQ, Tang S, Chen L, Wen GB, Lin YW. Identification of the Protein Glycation Sites in Human Myoglobin as Rapidly Induced by d-Ribose. Molecules 2021; 26:molecules26195829. [PMID: 34641382 PMCID: PMC8512392 DOI: 10.3390/molecules26195829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Protein glycation is an important protein post-translational modification and is one of the main pathogenesis of diabetic angiopathy. Other than glycated hemoglobin, the protein glycation of other globins such as myoglobin (Mb) is less studied. The protein glycation of human Mb with ribose has not been reported, and the glycation sites in the Mb remain unknown. This article reports that d-ribose undergoes rapid protein glycation of human myoglobin (HMb) at lysine residues (K34, K87, K56, and K147) on the protein surface, as identified by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Moreover, glycation by d-ribose at these sites slightly decreased the rate of the met heme (FeIII) in reaction with H2O2 to form a ferryl heme (FeIV=O). This study provides valuable insight into the protein glycation by d-ribose and provides a foundation for studying the structure and function of glycated heme proteins.
Collapse
Affiliation(s)
- Jing-Jing Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (J.-J.L.); (S.T.); (L.C.)
| | - Yong You
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China; (Y.Y.); (S.-Q.G.); (G.-B.W.)
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China; (Y.Y.); (S.-Q.G.); (G.-B.W.)
| | - Shuai Tang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (J.-J.L.); (S.T.); (L.C.)
| | - Lei Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (J.-J.L.); (S.T.); (L.C.)
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China; (Y.Y.); (S.-Q.G.); (G.-B.W.)
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; (J.-J.L.); (S.T.); (L.C.)
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China; (Y.Y.); (S.-Q.G.); (G.-B.W.)
- Correspondence: ; Tel.: +86-734-8282375
| |
Collapse
|
19
|
Eggen MD, Glomb MA. Novel Amidine Protein Cross-Links Formed by the Reaction of Glyoxal with Lysine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7960-7968. [PMID: 34240860 DOI: 10.1021/acs.jafc.1c02792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One crucial aspect of the Maillard reaction is the formation of reactive α-dicarbonyl structures like glyoxal, which are prone toward further reactions with proteins, e.g., the N6-amino group of lysine. The initially formed labile glyoxal-imine was previously established as a key intermediate in the formation of the advanced glycation end products N6-carboxymethyl lysine (CML), glyoxal lysine amide (GOLA), glyoxal lysine dimer (GOLD), and N6-glycolyl lysine (GALA). Here, we introduce a novel amidine cross-link structure N1,N2-bis-(5-amino-5-carboxypentyl)-2-hydroxy-acetamidine (glyoxal lysine amidine, GLA), which is formed exclusively from glyoxal through the same isomerization cascade. After independent synthesis of the authentic reference standard, we were able to quantitate this cross-link in incubations of 40 mM N2-t-Boc-lysine with glyoxal and various sugars (40-100 mM) under mild conditions (pH 7.4, 37 °C) using an HPLC-MS/MS method. Furthermore, incubations of proteins (6 mg/mL) with 50 mM glyoxal confirmed the cross-linking by GLA, which was additionally identified in acidic hydrolyzed proteins of butter biscuits after HPLC enrichment.
Collapse
Affiliation(s)
- Michael D Eggen
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, Halle/Saale 06120, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, Halle/Saale 06120, Germany
| |
Collapse
|
20
|
Susilowati S, Arto KS, Lubis AD. The Relationship between Glycated Hemoglobin Levels and the Quality of Life among Type 1 Diabetes Mellitus in Children. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia that occurs due to impaired both in insulin secretion and insulin action. Children with type 1 diabetes mellitus should be targeted to achieve a glycated hemoglobin (HbA1C) level ≤7.0% to reduce the risk of complications and improve quality of life. The majority of children with type 1 diabetes mellitus exhibit poor self-care and Health-related Quality of life behavior.
AIM: The objective of the study was to determine the relationship between HbA1C level and the quality of life among type 1 diabetes mellitus in children.
METHODS: A cross-sectional study was conducted among 30 children with type 1 diabetes mellitus who attended at pediatric endocrine clinic Haji Adam Malik general hospital and Universitas Sumatera Utara hospital Medan. Sampling was carried out in April 2020–July 2020. HbA1C level and self-administered questionnaire were used to assess the quality of life. Spearman correlation test was conducted to assess the correlation between HbA1C levels and the quality of life.
RESULTS: The mean of HbA1C level was 10.35 ± 2.68. No significant correlation between HbA1C level and the quality of life of children with type 1 diabetes mellitus (r = 0.264, p > 0.05)
CONCLUSIONS: There was no significant correlation between HbA1C levels and the quality of life of children with type 1 diabetes mellitus.
Collapse
|
21
|
McEwen JM, Fraser S, Guir ALS, Dave J, Scheck RA. Synergistic sequence contributions bias glycation outcomes. Nat Commun 2021; 12:3316. [PMID: 34083524 PMCID: PMC8175500 DOI: 10.1038/s41467-021-23625-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
The methylglyoxal-derived hydroimidazolone isomer, MGH-1, is an abundant advanced glycation end-product (AGE) associated with disease and age-related disorders. As AGE formation occurs spontaneously and without an enzyme, it remains unknown why certain sites on distinct proteins become modified with specific AGEs. Here, we use a combinatorial peptide library to determine the chemical features that favor MGH-1. When properly positioned, tyrosine is found to play an active mechanistic role that facilitates MGH-1 formation. This work offers mechanistic insight connecting multiple AGEs, including MGH-1 and carboxyethylarginine (CEA), and reconciles the role of negative charge in influencing glycation outcomes. Further, this study provides clear evidence that glycation outcomes can be influenced through long- or medium-range cooperative interactions. This work demonstrates that these chemical features also predictably template selective glycation on full-length protein targets expressed in mammalian cells. This information is vital for developing methods that control glycation in living cells and will enable the study of glycation as a functional post-translational modification. Advanced glycation end-products (AGEs), such as methylglyoxal-derived hydroimidazolone isomer (MGH-1), are associated with disease and age-related disorders, and occur spontaneously, so it is unclear why specific protein sites become modified with specific AGEs. Here, the authors use a combinatorial peptide library to determine the chemical features that favour MGH-1 formation for short peptides and demonstrate a key role of tyrosine in this process.
Collapse
Affiliation(s)
| | - Sasha Fraser
- Department of Chemistry, Tufts University, Medford, MA, USA
| | | | - Jaydev Dave
- Department of Chemistry, Tufts University, Medford, MA, USA
| | | |
Collapse
|
22
|
Kumari N, Bandyopadhyay D, Kumar V, Venkatesh DB, Prasad S, Prakash S, Krishnaswamy PR, Balaram P, Bhat N. Glycation of albumin and its implication in Diabetes: A comprehensive analysis using mass spectrometry. Clin Chim Acta 2021; 520:108-117. [PMID: 34089724 DOI: 10.1016/j.cca.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022]
Abstract
AIM To understand the mechanism of glycation of albumin and effects on cysteinylation and methionine oxidation. METHODS The in vitro glycation of HSA and BSA was studied with varying concentrations of glucose. Clinical blood samples of diabetic subjects with varying HbA1c values, were analyzed to assess in vivo glycation. All samples and their tryptic digests were analyzed using liquid chromatography/mass spectrometry. Glycation sites were mapped on to the three-dimensional structure of the HSA and BSA. RESULTS A total thirty-one sites for glycation and eight sites of Nε-carboxymethyl-lysine (CML) modification were identified on albumin. The site selectivity of glycation was correlated with the environment of the reactive residue in the three-dimensional structure. CONCLUSIONS The maximum percentage glycation under extreme conditions was in the range of ~55 to 88% in four weeks. Two major glycation sites K-233 and K-525 were identified, which together accounted for 40-50% of total glycation. A correlation was observed between glycation and oxidation of methionine residues in samples glycated in vitro. The role of spatially proximate residues in facilitating the glycation process is evident. The tri- and tetra-glycated isoforms of albumin can serve as biomarkers for the severe uncontrolled diabetic state.
Collapse
Affiliation(s)
- Namita Kumari
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| | - Debarati Bandyopadhyay
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India; Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Vinay Kumar
- PathShodh Healthcare Pvt. Ltd, Bengaluru 560094, India
| | - D B Venkatesh
- Anand Diagnostic Laboratory, Bengaluru 560001, India
| | - Sujay Prasad
- Anand Diagnostic Laboratory, Bengaluru 560001, India
| | - Sunita Prakash
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - P R Krishnaswamy
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - P Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India; National Centre for Biological Sciences, Bengaluru 560065, India
| | - Navakanta Bhat
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
23
|
Rabbani N, Thornalley PJ. Protein glycation - biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biol 2021; 42:101920. [PMID: 33707127 PMCID: PMC8113047 DOI: 10.1016/j.redox.2021.101920] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Protein glycation provides a biomarker in widespread clinical use, glycated hemoglobin HbA1c (A1C). It is a biomarker for diagnosis of diabetes and prediabetes and of medium-term glycemic control in patients with established diabetes. A1C is an early-stage glycation adduct of hemoglobin with glucose; a fructosamine derivative. Glucose is an amino group-directed glycating agent, modifying N-terminal and lysine sidechain amino groups. A similar fructosamine derivative of serum albumin, glycated albumin (GA), finds use as a biomarker of glycemic control, particularly where there is interference in use of A1C. Later stage adducts, advanced glycation endproducts (AGEs), are formed by the degradation of fructosamines and by the reaction of reactive dicarbonyl metabolites, such as methylglyoxal. Dicarbonyls are arginine-directed glycating agents forming mainly hydroimidazolone AGEs. Glucosepane and pentosidine, an intense fluorophore, are AGE covalent crosslinks. Cellular proteolysis of glycated proteins forms glycated amino acids, which are released into plasma and excreted in urine. Development of diagnostic algorithms by artificial intelligence machine learning is enhancing the applications of glycation biomarkers. Investigational glycation biomarkers are in development for: (i) healthy aging; (ii) risk prediction of vascular complications of diabetes; (iii) diagnosis of autism; and (iv) diagnosis and classification of early-stage arthritis. Protein glycation biomarkers are influenced by heritability, aging, decline in metabolic, vascular, renal and skeletal health, and other factors. They are applicable to populations of differing ethnicities, bridging the gap between genotype and phenotype. They are thereby likely to find continued and expanding clinical use, including in the current era of developing precision medicine, reporting on multiple pathogenic processes and supporting a precision medicine approach.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical & Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
24
|
Turpin C, Catan A, Meilhac O, Bourdon E, Canonne-Hergaux F, Rondeau P. Erythrocytes: Central Actors in Multiple Scenes of Atherosclerosis. Int J Mol Sci 2021; 22:ijms22115843. [PMID: 34072544 PMCID: PMC8198892 DOI: 10.3390/ijms22115843] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
The development and progression of atherosclerosis (ATH) involves lipid accumulation, oxidative stress and both vascular and blood cell dysfunction. Erythrocytes, the main circulating cells in the body, exert determinant roles in the gas transport between tissues. Erythrocytes have long been considered as simple bystanders in cardiovascular diseases, including ATH. This review highlights recent knowledge concerning the role of erythrocytes being more than just passive gas carriers, as potent contributors to atherosclerotic plaque progression. Erythrocyte physiology and ATH pathology is first described. Then, a specific chapter delineates the numerous links between erythrocytes and atherogenesis. In particular, we discuss the impact of extravasated erythrocytes in plaque iron homeostasis with potential pathological consequences. Hyperglycaemia is recognised as a significant aggravating contributor to the development of ATH. Then, a special focus is made on glycoxidative modifications of erythrocytes and their role in ATH. This chapter includes recent data proposing glycoxidised erythrocytes as putative contributors to enhanced atherothrombosis in diabetic patients.
Collapse
Affiliation(s)
- Chloé Turpin
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Aurélie Catan
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | - Olivier Meilhac
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Centre Hospitalier Universitaire de La Réunion, 97400 Saint Denis, France
| | - Emmanuel Bourdon
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
| | | | - Philippe Rondeau
- Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), INSERM, UMR 1188, Université de La Réunion, 97400 Saint Denis, France; (C.T.); (A.C.); (O.M.); (E.B.)
- Correspondence: ; Tel.: +262(0)-2-62-93-88-43; Fax: +262-(0)-2-62-93-88-01
| |
Collapse
|
25
|
He D, Kuang W, Yang X, Xu M. Association of hemoglobin H (HbH) disease with hemoglobin A 1c and glycated albumin in diabetic and non-diabetic patients. Clin Chem Lab Med 2021; 59:1127-1132. [PMID: 33554549 DOI: 10.1515/cclm-2020-1563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Hemoglobin A1c (HbA1c) and glycated albumin (GA) are glycemic control status indicators in patients with diabetes mellitus. Hemoglobin H (HbH) disease is a moderately severe form of α-thalassemia. Here we examine the usefulness of HbA1c and GA in monitoring glycemic control in patients with HbH disease. METHODS HbA1c, GA, and an oral glucose tolerance test were performed in 85 patients with HbH disease and 130 healthy adults. HbA1c was measured using five methods, including two systems based on cation-exchange high-performance liquid chromatography (Variant II Turbo 2.0 and Bio-Rad D100), a capillary zone electrophoresis method (Capillarys 3 TERA), a boronate affinity HPLC method (Premier Hb9210), and an immunoassay (Cobas c501). RESULTS Significant lower levels of HbA1c were observed in patients with HbH disease than in healthy adults. In contrast, GA showed no statistically significant differences between participants with and without HbH disease. A considerable number of diabetic patients with HbH disease would be missed if using HbA1c as a diagnostic criterion for diabetes mellitus. CONCLUSIONS GA but not HbA1c is suitable for monitoring glycemic control in patients with HbH disease that can modify the discriminative ability of HbA1c for diagnosing diabetes.
Collapse
Affiliation(s)
- Dabao He
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, P.R. China
| | - Wenbin Kuang
- Department of Laboratory Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, P.R. China
| | - Xiaoling Yang
- Department of Laboratory Medicine, Shenzhen Baoan District Songgang People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Miao Xu
- Department of Laboratory Medicine, Weifang People's Hospital, Weifang, Shandong, P.R. China
| |
Collapse
|
26
|
Girlescu N, Stoica B, Timofte AD, Hunea I, Diac M, Knieling A, Damian SI, Iov T, Iliescu DB. Thanatochemical Study of Glycated Hemoglobin in Diabetic Status Assessment. ACTA ACUST UNITED AC 2021; 57:medicina57040342. [PMID: 33918183 PMCID: PMC8066580 DOI: 10.3390/medicina57040342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
Background and objectives. In forensic medicine, the postmortem determination of glycated hemoglobin (HbA1c) helps identify undiagnosed cases of diabetes or cases with uncontrolled glycemic status. In order to contribute to the solidification of thanatochemistry, both globally and especially nationally, we aimed to determine this biomarker postmortem, for the first time in our institution, in order to identify undiagnosed pre-mortem diabetics, as well as those with inadequate glycemic control. Materials and Methods. Our research consisted of analyzing a total number of 180 HbA1c values, 90 determinations from the peripheral blood and 90 from the central blood. The determination of HbA1c was performed by means of a fully automatic analyzer (HemoCue HbA1c 501), certified by the National Glycohemoglobin Standardization Program (NGSP)/Diabetes Control and Complications Trial (DCCT) and calibrated according to the standards developed by the International Federation of Clinical Chemistry (IFCC). According to ADA criteria, HbA1c values can provide us with the following information about the diagnosis of diabetes: normal 4.8-5.6%; prediabetes 5.7-6.4%; diabetes ≥ 6.5%. Results. A considerable number of cases with an altered glycemic status (cases that had HbA1c values equal to or greater than 5.7%) were identified-51% demonstrable by peripheral blood determinations and 41% by central blood determinations. Notably, 23 people with diabetes (25%) were identified by analyzing the peripheral blood; 18 other people with diabetes (20%) were identified by analyzing the central blood. Conclusions. Our study managed to confirm the antemortem diagnosis of DM using a simple point-of-care analyzer and applying standardized and certified criteria on HbA1c levels measured postmortem. We also identified a considerable number of cases with DM in patients with no antemortem history of glucose imbalance-at least 20% more cases. Although the two different sites used for blood collection showed a strong statistical correlation, it seems that the peripheral site could have a higher sensibility in detecting postmortem altered glycemic status.
Collapse
Affiliation(s)
- Nona Girlescu
- Morphofunctional Sciences 1 Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
- Institute of Forensic Medicine, 700455 Iasi, Romania; (B.S.); (I.H.); (M.D.); (A.K.); (S.I.D.); (T.I.); (D.B.I.)
| | - Bogdan Stoica
- Institute of Forensic Medicine, 700455 Iasi, Romania; (B.S.); (I.H.); (M.D.); (A.K.); (S.I.D.); (T.I.); (D.B.I.)
- Morphofunctional Sciences 2 Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Andrei Daniel Timofte
- Morphofunctional Sciences 1 Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania;
- Correspondence: ; Tel.: +40-757-990-622
| | - Iuliana Hunea
- Institute of Forensic Medicine, 700455 Iasi, Romania; (B.S.); (I.H.); (M.D.); (A.K.); (S.I.D.); (T.I.); (D.B.I.)
- Morphofunctional Sciences 2 Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Madalina Diac
- Institute of Forensic Medicine, 700455 Iasi, Romania; (B.S.); (I.H.); (M.D.); (A.K.); (S.I.D.); (T.I.); (D.B.I.)
- Forensic Science Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700115 Iași, Romania
| | - Anton Knieling
- Institute of Forensic Medicine, 700455 Iasi, Romania; (B.S.); (I.H.); (M.D.); (A.K.); (S.I.D.); (T.I.); (D.B.I.)
- Forensic Science Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700115 Iași, Romania
| | - Simona Irina Damian
- Institute of Forensic Medicine, 700455 Iasi, Romania; (B.S.); (I.H.); (M.D.); (A.K.); (S.I.D.); (T.I.); (D.B.I.)
- Forensic Science Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700115 Iași, Romania
| | - Tatiana Iov
- Institute of Forensic Medicine, 700455 Iasi, Romania; (B.S.); (I.H.); (M.D.); (A.K.); (S.I.D.); (T.I.); (D.B.I.)
| | - Diana Bulgaru Iliescu
- Institute of Forensic Medicine, 700455 Iasi, Romania; (B.S.); (I.H.); (M.D.); (A.K.); (S.I.D.); (T.I.); (D.B.I.)
- Forensic Science Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700115 Iași, Romania
| |
Collapse
|
27
|
Harris NS, Weaver KD, Beal SG, Winter WE. The Interaction between Hb A1C and Selected Genetic Factors in the African American Population in the USA. J Appl Lab Med 2020; 6:167-179. [PMID: 33367812 DOI: 10.1093/jalm/jfaa202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND The global prevalence of diabetes mellitus has been growing in recent decades and the complications of longstanding type 2 diabetes continue to place a burden on healthcare systems. The hemoglobin A1c (Hb A1c) content of the blood is used to assess an individual's degree of glycemic control averaged over 2 to 3 months. In the USA, diabetes is the seventh leading cause of death. Black, indigenous, people of color (BIPOC) are disproportionately affected by diabetes compared to non-Hispanic whites. There are many reports of interaction of Hb A1c and hematologic conditions that have a high prevalence in the Black population; some of these effects are contradictory and not easily explained. This review attempts to document and categorize these apparently disparate effects and to assess any clinical impact. METHODS Hb A1C can be determined by a variety of techniques including cation-exchange chromatography, electrophoresis, immunoassays, and affinity chromatography. The amount of Hb A1c present in a patient specimen depends not only on blood glucose but is strongly influenced by erythrocyte survival and by structural variations in the globin chains. Sickling hemoglobinopathies are well-represented in the USA in African Americans and the effects of these hemoglobin disorders as well as G6PD deficiency is examined. CONCLUSION Hb A1c measurement should always be performed with a cautious approach. The laboratory scientist should be aware of possible pitfalls in unquestioningly determining Hb A1c without a consideration of hematologic factors, both inherited and acquired. This presents a challenge as often times, the laboratory is not aware of the patient's race.
Collapse
Affiliation(s)
- Neil S Harris
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL
| | - Kaitlin D Weaver
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL
| | - Stacy G Beal
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL
| | - William E Winter
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
28
|
Favinha AG, Barreiro DS, Martins JN, O'Toole P, Pauleta SR. Acrylamide-hemoglobin adduct: A spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118644. [PMID: 32622051 DOI: 10.1016/j.saa.2020.118644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Acrylamide is a neurotoxic and carcinogenic organic compound that is able to bind to several biomolecules and form adducts, through nucleophilic addition and in vivo by the Maillard Reaction, interfering with the biological functions of these molecules. Hemoglobin is one of the most abundant intracellular blood proteins, and thus it is of high interest to understand whether the binding of acrylamide can alter its properties. The interaction of acrylamide with hemoglobin was assessed in a 20:1 ratio, and after a 72 h-incubation period, a decrease of ca. 50% in the absorbance of the hemoglobin's Soret band was observed at 37 °C. This together with the analysis of circular dichroism spectra indicate that acrylamide binds in close proximity to the heme group. These perturbations were confirmed to not correspond to the loss of the heme group and were mostly reverted after passing the protein through a size-exclusion chromatographic matrix, suggesting a dominant non-covalent interaction for the observed effect. The thermodynamic parameters of unfolding in the absence and presence of acrylamide, suggest an interaction based on H-bonds and van der Waals forces that slightly stabilizes hemoglobin. The oxygen binding capacity of hemoglobin does not seem to be hindered, as no differences in the Q bands were observed in the adduct.
Collapse
Affiliation(s)
- André G Favinha
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Daniela S Barreiro
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Joana N Martins
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Philip O'Toole
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
29
|
Xu A, Xie W, Wang Y, Ji L. Potential of MALDI-TOF mass spectrometry to overcome the interference of hemoglobin variants on HbA1c measurement. ACTA ACUST UNITED AC 2020; 59:233-239. [PMID: 32678801 DOI: 10.1515/cclm-2020-0724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/27/2020] [Indexed: 01/31/2023]
Abstract
Abstract
Objectives
Hemoglobin (Hb) variants remain an important cause of erroneous HbA1c results. We present an approach to overcome the interference of Hb variants on HbA1c measurements using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).
Methods
Samples containing or not containing Hb variants were analyzed for HbA1c using an MALDI-TOF MS system (QuanTOF) and a boronate affinity comparative method (Ultra2). For QuanTOF, two sets of HbA1c values were obtained through α- and β-chain glycation.
Results
A robust correlation between the glycation degrees of the α- and β-chains was found, and HbA1c values derived from α- and β-chain glycation correlated well with the Ultra2 results. Statistically significant differences (p<0.01) were found for all the Hb variants tested. When using the conventional β-chain glycation to determine HbA1c, clinically significant differences were only found among samples containing β-chain variants detected by QuanTOF (i.e., Hb J-Bangkok, Hb G-Coushatta, and Hb G-Taipei). In contrast, based on α-chain glycation, no clinically significant differences were found for these three variants.
Conclusions
In addition to conventional β-chain glycation, α-chain glycation can be used to calculate HbA1c values. The interference of Hb variants on HbA1c quantification can be overcome by employing the glycation of the globin chain without a genetic variant to estimate HbA1c values.
Collapse
Affiliation(s)
- Anping Xu
- Department of Laboratory Medicine , Peking University Shenzhen Hospital , Shenzhen , Guangdong , PR China
| | - Weijie Xie
- Department of Laboratory Medicine , Peking University Shenzhen Hospital , Shenzhen , Guangdong , PR China
| | - Yajun Wang
- Public Health Laboratory Centre , Kowloon , Hong Kong
| | - Ling Ji
- Department of Laboratory Medicine , Peking University Shenzhen Hospital , Shenzhen , Guangdong , PR China
| |
Collapse
|
30
|
Guadalupe Vargas M, Pazmiño Gomez BJ, Vera Lorenti FE, Álvarez Condo GM, Rodas Neira EI, Veron D, Fernández Veron M, Cercado AG, Bahar B, Tufro A, Veron D. Assessment of two glycated hemoglobin immunoassays. ACTA ACUST UNITED AC 2019; 67:297-303. [PMID: 31859182 DOI: 10.1016/j.endinu.2019.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Glycated hemoglobin (HbA1c) level reflects chronic glycemic status if reliable tests are used, however, in some regions worldwide high performing assays might not be readily available. This study aimed to asses two HbA1c immunoassays, comparing them with high-performance liquid chromatography (HPLC) assay, three methods available in Ecuador. MATERIAL AND METHODS HbA1c were measured in 114 fresh whole blood-samples by DCA-Vantage point-of-care analyzer, I-Chroma portable fluorescent scanner immunoassay and BioRad Variant II Turbo HPLC. Normal and pathological HbA1c ranges were included. Blood samples with variants of hemoglobin were excluded. HbA1c values were expressed in National Glycohemoglobin Standardization Program percentages and mmol/mol, as mean±standard deviation. RESULTS HbA1c results by HPLC and DCA-Vantage were similar: 6.3±1.7% (45±18.6mmol/mol) vs. 6.3±1.8% (45±19.7mmol/mol), respectively, P=0.057; while HbA1c values by I-Chroma were lower than HPLC, 5.8±1.9% (40±20.8mmol/mol), P<0.001. The coefficient of variation was below 2% for high and low HbA1c levels, in all methods studied. HbA1c values by HPLC and DCA-Vantage were highly correlated (Spearman's Rank Correlation [SRC]: 0.916), while the correlation among HPLC and I-Chroma was weak (SRC: 0.368). The mean bias between DCA-Vantage and HPLC was -0.02±0.29% (-0.2±3.2mmol/mol), while for I-Chroma and HPLC mean bias was -0.50±1.62% (-5.5±17.7mmol/mol). CONCLUSION HbA1c immunoassays DCA-Vantage was comparable to HPLC assay, showing good correlation, appropriate precision and low bias, whereas I-Chroma assay was precise but inaccurate. Therefore, DCA-Vantage has better performance than I-Chroma. These findings suggest that is convenient to assess the HbA1c immunoassays commercially available in our country, Ecuador.
Collapse
Affiliation(s)
- M Guadalupe Vargas
- Facultad de Ciencias de la Salud, Universidad Estatal de Milagro, Milagro, Guayas, Ecuador
| | - B J Pazmiño Gomez
- Facultad de Ciencias de la Salud, Universidad Estatal de Milagro, Milagro, Guayas, Ecuador
| | - F E Vera Lorenti
- Facultad de Ciencias de la Salud, Universidad Estatal de Milagro, Milagro, Guayas, Ecuador
| | - G M Álvarez Condo
- Facultad de Ciencias de la Salud, Universidad Estatal de Milagro, Milagro, Guayas, Ecuador
| | - E I Rodas Neira
- Laboratorio Clínico y Microbiológico Pazmiño, Milagro, Guayas, Ecuador
| | - D Veron
- Facultad de Ciencias Sociales, Escuela de Trabajo Social, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Fernández Veron
- Escuela de Diseño Industrial, Facultad de Arquitectura, Diseño y Urbanismo, Universidad de Buenos Aires, Argentina
| | - A G Cercado
- Facultad de Ciencias de la Salud, Universidad Estatal de Milagro, Milagro, Guayas, Ecuador
| | - B Bahar
- Department of Laboratory Medicine and Department of Pediatrics and Cell and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - A Tufro
- Department of Laboratory Medicine and Department of Pediatrics and Cell and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - D Veron
- Facultad de Ciencias de la Salud, Universidad Estatal de Milagro, Milagro, Guayas, Ecuador.
| |
Collapse
|
31
|
Pieroni L, Iavarone F, Olianas A, Greco V, Desiderio C, Martelli C, Manconi B, Sanna MT, Messana I, Castagnola M, Cabras T. Enrichments of post-translational modifications in proteomic studies. J Sep Sci 2019; 43:313-336. [PMID: 31631532 DOI: 10.1002/jssc.201900804] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
More than 300 different protein post-translational modifications are currently known, but only a few have been extensively investigated because modified proteoforms are commonly present in sub-stoichiometry amount. For this reason, improvement of specific enrichment techniques is particularly useful for the proteomic characterization of post-translationally modified proteins. Enrichment proteomic strategies could help the researcher in the challenging issue to decipher the complex molecular cross-talk existing between the different factors influencing the cellular pathways. In this review the state of art of the platforms applied for the enrichment of specific and most common post-translational modifications, such as glycosylation and glycation, phosphorylation, sulfation, redox modifications (i.e. sulfydration and nitrosylation), methylation, acetylation, and ubiquitinylation, are described. Enrichments strategies applied to characterize less studied post-translational modifications are also briefly discussed.
Collapse
Affiliation(s)
- Luisa Pieroni
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Viviana Greco
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Claudia Martelli
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Maria Teresa Sanna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Irene Messana
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabolomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| |
Collapse
|
32
|
Xu A, Wang Y, Li J, Liu G, Li X, Chen W, Ji L. Evaluation of MALDI-TOF MS for the measurement of glycated hemoglobin. Clin Chim Acta 2019; 498:154-160. [DOI: 10.1016/j.cca.2019.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/03/2019] [Accepted: 08/22/2019] [Indexed: 11/27/2022]
|
33
|
Muralidharan M, Bhat V, Mandal AK. Structural analysis of glycated human hemoglobin using native mass spectrometry. FEBS J 2019; 287:1247-1254. [PMID: 31599087 DOI: 10.1111/febs.15085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/15/2019] [Accepted: 10/06/2019] [Indexed: 11/30/2022]
Abstract
Glycated hemoglobin (GHb) is the indicator of the long-term glycemic index of an individual. GHb is formed by the irreversible modification of N-terminal α-amino group of β globin chain with glucose via Amadori rearrangement. Cation exchange chromatography exploits the difference in surface charges between GHb and native hemoglobin (HbA0 ) for their separation and quantification. However, glucose condensation is specific to primary amino groups. Therefore, structural characterization of GHb synthesized in vivo is essential as multiple glycation may interfere with GHb assessment. The stoichiometric composition of different glycated hemoglobin from a 19% GHb sample was deduced using native mass spectrometry. We observed a comparable population of α and β glycated tetramers for mono-glycated HbA0 . Surprisingly, doubly and triply glycated HbA0 also showed mono-glycated α and β globins. Thus, we propose that glycation of hemoglobin (HbA) occurs symmetrically across α and β globins with preference to unmodified globin first. Correlation between conventional and mass spectrometry-based quantification of GHb showed a reliable estimation of the glycemic index of individuals carrying HbA0 . Mutant HbAs have different retention time than HbA0 due to the differences in their surface charge. Thus, their glycated analog may elute at different retention time compared to GHb. Consequently, our method would be ideal for assessing the glycemic index of an individual carrying mutant HbA.
Collapse
Affiliation(s)
- Monita Muralidharan
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | | | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| |
Collapse
|
34
|
Sanghvi VR, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, Miele MM, Lailler N, Zhao C, de Stanchina E, Viale A, Akkari L, Lowe SW, Ciriello G, Hendrickson RC, Wendel HG. The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase. Cell 2019; 178:807-819.e21. [PMID: 31398338 PMCID: PMC6693658 DOI: 10.1016/j.cell.2019.07.031] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/23/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
The NRF2 transcription factor controls a cell stress program that is implicated in cancer and there is great interest in targeting NRF2 for therapy. We show that NRF2 activity depends on Fructosamine-3-kinase (FN3K)-a kinase that triggers protein de-glycation. In its absence, NRF2 is extensively glycated, unstable, and defective at binding to small MAF proteins and transcriptional activation. Moreover, the development of hepatocellular carcinoma triggered by MYC and Keap1 inactivation depends on FN3K in vivo. N-acetyl cysteine treatment partially rescues the effects of FN3K loss on NRF2 driven tumor phenotypes indicating a key role for NRF2-mediated redox balance. Mass spectrometry reveals that other proteins undergo FN3K-sensitive glycation, including translation factors, heat shock proteins, and histones. How glycation affects their functions remains to be defined. In summary, our study reveals a surprising role for the glycation of cellular proteins and implicates FN3K as targetable modulator of NRF2 activity in cancer.
Collapse
Affiliation(s)
- Viraj R Sanghvi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Josef Leibold
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marco Mina
- Department of Computational Biology, University of Lausanne, 1005 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), 1005 Lausanne, Switzerland
| | - Prathibha Mohan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marjan Berishaj
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhuoning Li
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew M Miele
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nathalie Lailler
- Integrated Genomics Operation, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chunying Zhao
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core and Molecular Pharmacology Department, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agnes Viale
- Integrated Genomics Operation, Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Leila Akkari
- Oncode Institute, Tumor Biology and Immunology division, the Netherlands Cancer Institute, 1006 BE, Amsterdam, the Netherlands
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, 1005 Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), 1005 Lausanne, Switzerland
| | - Ronald C Hendrickson
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
35
|
Abstract
The glycome describes the complete repertoire of glycoconjugates composed of carbohydrate chains, or glycans, that are covalently linked to lipid or protein molecules. Glycoconjugates are formed through a process called glycosylation and can differ in their glycan sequences, the connections between them and their length. Glycoconjugate synthesis is a dynamic process that depends on the local milieu of enzymes, sugar precursors and organelle structures as well as the cell types involved and cellular signals. Studies of rare genetic disorders that affect glycosylation first highlighted the biological importance of the glycome, and technological advances have improved our understanding of its heterogeneity and complexity. Researchers can now routinely assess how the secreted and cell-surface glycomes reflect overall cellular status in health and disease. In fact, changes in glycosylation can modulate inflammatory responses, enable viral immune escape, promote cancer cell metastasis or regulate apoptosis; the composition of the glycome also affects kidney function in health and disease. New insights into the structure and function of the glycome can now be applied to therapy development and could improve our ability to fine-tune immunological responses and inflammation, optimize the performance of therapeutic antibodies and boost immune responses to cancer. These examples illustrate the potential of the emerging field of 'glycomedicine'.
Collapse
Affiliation(s)
- Colin Reily
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
36
|
Shi Q, Teng Y, Hu Z, Zhang Y, Liu W. One‐step Electrodeposition of Tris(hydroxymethyl) Aminomethane – Prussian Blue on Screen‐printed electrode for Highly Efficient Detection of Glycosylated Hemoglobin. ELECTROANAL 2018. [DOI: 10.1002/elan.201800644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qianwei Shi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| | - Yuanjie Teng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| | - Zhenzhen Hu
- Department of Genetics and Metabolism, Children's HospitalZhejiang University School of Medicine Hangzhou 310052 China
| | - Yuchao Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| | - Wenhan Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| |
Collapse
|
37
|
Sjoblom NM, Kelsey MMG, Scheck RA. A Systematic Study of Selective Protein Glycation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nicole M. Sjoblom
- Graduate Program in Biochemistry Tufts University 145 Harrison Ave. Boston MA 02111 USA
| | | | - Rebecca A. Scheck
- Department of Chemistry Tufts University 62 Talbot Ave. Medford MA 02155 USA
- Graduate Program in Biochemistry Tufts University 145 Harrison Ave. Boston MA 02111 USA
| |
Collapse
|
38
|
Arsene CG, Kaiser P, Paleari R, Henrion A, Spannagl M, Mosca A. Determination of HbA2 by quantitative bottom-up proteomics and isotope dilution mass spectrometry. Clin Chim Acta 2018; 487:318-324. [DOI: 10.1016/j.cca.2018.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
|
39
|
Effects of erythropoietin on body composition and fat-glucose metabolism in patients with affective disorders. Acta Neuropsychiatr 2018; 30:342-349. [PMID: 29880069 DOI: 10.1017/neu.2018.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Erythropoietin (EPO) has been suggested to improve metabolism and also cognition, but human studies are scarce. This randomised controlled trial aimed to investigate whether EPO treatment influences body composition and fat and glycated haemoglobin (HbA1c) and fasting glucose, and whether these changes would be associated with previous observed cognitive benefits of EPO. METHOD In total, 84 non-obese patients with treatment-resistant unipolar depression or bipolar disorder in remission were randomised to 8 weekly EPO (40,000 IU) or saline (NaCl 0.9%) infusions in a double-blind, parallel-group design. Patients underwent dual X-ray absorptiometry scans at baseline and week 14 (6 weeks after treatment completion). Cognitive measures were assessed and fasting levels of cholesterol, lipoprotein fractions, triacylglycerides, glucose and HbA1c were obtained at baseline, week 9 and follow-up week 14. RESULTS In total, 79 patients had complete pre- and post-treatment data (EPO: N=40, saline: N=39). EPO had no cumulative effect on body composition and markers of fat metabolism. The EPO-treated group exhibited significantly lower HbA1c levels after 8 weeks treatment [F(1, 80)=8.51, p=0.005], however, 6 weeks after treatment termination a significantly higher fasting glucose levels [F(1, 79)=5.85, p=0.02] and HbA1c levels [F(1, 79)=5.85, p=0.02] were seen. The latter increase in HbA1c was further significantly correlated with a better cognitive outcome on verbal memory (r=0.25, p=0.03). CONCLUSION Repeated EPO infusions had no cumulative effect on body composition in this cohort of patients with affective disorders, however, EPO modulated HbA1c and fasting glucose and this was associated with patients' improvement of verbal memory.
Collapse
|
40
|
Sjoblom NM, Kelsey MMG, Scheck RA. A Systematic Study of Selective Protein Glycation. Angew Chem Int Ed Engl 2018; 57:16077-16082. [PMID: 30290036 DOI: 10.1002/anie.201810037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Indexed: 01/07/2023]
Abstract
Glycation is a non-enzymatic post-translational modification (PTM) that remains poorly understood, largely because it is unknown how it occurs selectively. Using mass spectrometry, it was possible to evaluate total glycation levels, identify distinct glycated products, assign unique glycation sites, and correlate these data with chemical and structural features for a panel of proteins glycated in vitro. It was determined that the extent of glycation does not correlate with pKa or surface exposure at reactive sites. Rather, the data reveal that primary sequence dictates the overall likelihood that a site will become glycated, while surrounding structure further sculpts the glycation outcome. Clustered acidic residues were found to prevent glycation, whereas a combination of tyrosine and polar residues appear to promote glycation. This work contributes important new knowledge about the molecular features that govern selective glycation.
Collapse
Affiliation(s)
- Nicole M Sjoblom
- Graduate Program in Biochemistry, Tufts University, 145 Harrison Ave., Boston, MA, 02111, USA
| | - Maxfield M G Kelsey
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Rebecca A Scheck
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA.,Graduate Program in Biochemistry, Tufts University, 145 Harrison Ave., Boston, MA, 02111, USA
| |
Collapse
|
41
|
Hudson DM, Archer M, King KB, Eyre DR. Glycation of type I collagen selectively targets the same helical domain lysine sites as lysyl oxidase-mediated cross-linking. J Biol Chem 2018; 293:15620-15627. [PMID: 30143533 PMCID: PMC6177574 DOI: 10.1074/jbc.ra118.004829] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Nonenzymatic glycation of collagen has long been associated with the progressive secondary complications of diabetes. How exactly such random glycations result in impaired tissues is still poorly understood. Because of the slow turnover rate of most fibrillar collagens, they are more susceptible to accumulate time-dependent glycations and subsequent advanced glycation end-products. The latter are believed to include cross-links that stiffen host tissues. However, diabetic animal models have also displayed weakened tendons with reduced stiffness. Strikingly, not a single experimentally identified specific molecular site of glycation in a collagen has been reported. Here, using targeted MS, we have identified partial fructosyl-hydroxylysine glycations at each of the helical domain cross-linking sites of type I collagen that are elevated in tissues from a diabetic mouse model. Glycation was not found at any other collagen lysine residues. Type I collagen in mouse tendons is cross-linked intermolecularly by acid-labile aldimine bonds formed by the addition of telopeptide lysine aldehydes to hydroxylysine residues at positions α1(I)Lys87, α1(I)Lys930, α2(I)Lys87, and α2(I)Lys933 of the triple helix. Our data reveal that site-specific glycations of these specific lysines may significantly impair normal lysyl oxidase-controlled cross-linking in diabetic tendons. We propose that such N-linked glycations can hinder the normal cross-linking process, thus altering the content and/or placement of mature cross-links with the potential to modify tissue material properties.
Collapse
Affiliation(s)
- David M Hudson
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195 and
| | - Marilyn Archer
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195 and
| | - Karen B King
- the Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - David R Eyre
- From the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington 98195 and
| |
Collapse
|
42
|
Ioannou A, Varotsis C. Modifications of hemoglobin and myoglobin by Maillard reaction products (MRPs). PLoS One 2017; 12:e0188095. [PMID: 29136023 PMCID: PMC5685578 DOI: 10.1371/journal.pone.0188095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
High performance liquid chromatography (HPLC) coupled with a Fraction Collector was employed to isolate Maillard reaction products (MRPs) formed in model systems comprising of asparagine and monosaccharides in the 60-180°C range. The primary MRP which is detected at 60°C is important for Acrylamide content and color/aroma development in foods and also in the field of food biotechnology for controlling the extent of the Maillard reaction with temperature. The discrete fractions of the reaction products were reacted with Hemoglobin (Hb) and Myoglobin (Mb) at physiological conditions and the reaction adducts were monitored by UV-vis and Attenuated Total Reflection-Fourier transform infrared (FTIR) spectrophotometry. The UV-vis kinetic profiles revealed the formation of a Soret transition characteristic of a low-spin six-coordinated species and the ATR-FTIR spectrum of the Hb-MRP and Mb-MRP fractions showed modifications in the protein Amide I and II vibrations. The UV-vis and the FTIR spectra of the Hb-MRPs indicate that the six-coordinated species is a hemichrome in which the distal E7 Histidine is coordinated to the heme Fe and blocks irreversibly the ligand binding site. Although the Mb-MRPs complex is a six-coordinated species, the 1608 cm-1 FTIR band characteristic of a hemichrome was not observed.
Collapse
Affiliation(s)
- Aristos Ioannou
- Department of Environmental Science and Technology, Cyprus University of Technology, Limassol, Cyprus
| | - Constantinos Varotsis
- Department of Environmental Science and Technology, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
43
|
Sahoo R, Ghosh P, Chorev M, Halperin JA. A distinctive histidine residue is essential for in vivo glycation-inactivation of human CD59 transgenically expressed in mice erythrocytes: Implications for human diabetes complications. Am J Hematol 2017; 92:1198-1203. [PMID: 28815695 DOI: 10.1002/ajh.24886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/15/2023]
Abstract
Clinical and experimental evidences support a link between the complement system and the pathogenesis of diabetes complications. CD59, an extracellular cell membrane-anchored protein, inhibits formation of the membrane attack complex (MAC), the main effector of complement-mediated tissue damage. This complement regulatory activity of human CD59 (hCD59) is inhibited by hyperglycemia-induced ɛ-amino glycation of Lys41 . Biochemical and structural analyses of glycated proteins with known three-dimensional structure revealed that glycation of ɛ-amino lysyl residues occurs predominantly at "glycation motives" that include lysyl/lysyl pairs or proximity of a histidyl residue, in which the imidazolyl moiety is ≈ 5Å from the ɛ-amino group. hCD59 contains a distinctive Lys41 /His44 putative glycation motif within its active site. In a model of transgenic diabetic mice expressing in erythrocytes either the wild type or a H44Q mutant form of hCD59, we demonstrate in vivo that the His44 is required for Lys41 glycation and consequent functional inactivation of hCD59, as evidenced using a mouse erythrocytes hemolytic assay. Since (1) the His44 residue is not present in CD59 from other animal species and (2) humans are particularly prone to develop complications of diabetes, our results indicate that the Lys41 /His44 glycation motif in human CD59 may confer humans a higher risk of developing vascular disease in response to hyperglycemia.
Collapse
Affiliation(s)
- Rupam Sahoo
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston Massachusetts
| | - Pamela Ghosh
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston Massachusetts
| | - Michael Chorev
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston Massachusetts
| | - Jose A. Halperin
- Division of Hematology, Department of Medicine; Brigham and Women's Hospital, Harvard Medical School; Boston Massachusetts
| |
Collapse
|
44
|
Haines D, Miranda HG, Flynn BC. The Role of Hemoglobin A1c as a Biomarker and Risk Assessment Tool in Patients Undergoing Non-cardiac and Cardiac Surgical Procedures. J Cardiothorac Vasc Anesth 2017; 32:488-494. [PMID: 29199050 DOI: 10.1053/j.jvca.2017.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Daniel Haines
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS
| | | | - Brigid C Flynn
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|
45
|
Wei B, Berning K, Quan C, Zhang YT. Glycation of antibodies: Modification, methods and potential effects on biological functions. MAbs 2017; 9:586-594. [PMID: 28272973 DOI: 10.1080/19420862.2017.1300214] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Glycation is an important protein modification that could potentially affect bioactivity and molecular stability, and glycation of therapeutic proteins such as monoclonal antibodies should be well characterized. Glycated protein could undergo further degradation into advance glycation end (AGE) products. Here, we review the root cause of glycation during the manufacturing, storage and in vivo circulation of therapeutic antibodies, and the current analytical methods used to detect and characterize glycation and AGEs, including boronate affinity chromatography, charge-based methods, liquid chromatography-mass spectrometry and colorimetric assay. The biological effects of therapeutic protein glycation and AGEs, which ranged from no affect to loss of activity, are also discussed.
Collapse
Affiliation(s)
- Bingchuan Wei
- a Protein Analytical Chemistry, Genentech , South San Francisco , CA , USA
| | - Kelsey Berning
- a Protein Analytical Chemistry, Genentech , South San Francisco , CA , USA
| | - Cynthia Quan
- a Protein Analytical Chemistry, Genentech , South San Francisco , CA , USA
| | | |
Collapse
|
46
|
Morrill GA, Kostellow AB. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement. Front Physiol 2016; 7:360. [PMID: 27656147 PMCID: PMC5011150 DOI: 10.3389/fphys.2016.00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/08/2016] [Indexed: 02/02/2023] Open
Abstract
Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb); neuroglobin (Ngb); myoglobin (Mb); hemoglobin (Hb) subunits Hba(α); and Hbb(β)] contain either a transmembrane (TM) helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol- binding (CRAC/CARC) domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba) and pore-lining region (Hbb). The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues, and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, "band 3," which contains a large internal cavity and 12 TM helices (5 being pore-lining regions). The Hba TM helix may be the erythrocyte membrane "band 3" attachment site. "Band 3" contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO) movement within the large internal cavities and channels of the globins.
Collapse
Affiliation(s)
- Gene A Morrill
- Department of Physiology and Biophysics, Albert Einstein College of Medicine Bronx, NY, USA
| | - Adele B Kostellow
- Department of Physiology and Biophysics, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
47
|
Welsh KJ, Kirkman MS, Sacks DB. Role of Glycated Proteins in the Diagnosis and Management of Diabetes: Research Gaps and Future Directions. Diabetes Care 2016; 39:1299-306. [PMID: 27457632 PMCID: PMC4955935 DOI: 10.2337/dc15-2727] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/13/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Kerry J Welsh
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - M Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| |
Collapse
|
48
|
An LC/ESI-SRM/MS method to screen chemically modified hemoglobin: simultaneous analysis for oxidized, nitrated, lipidated, and glycated sites. Anal Bioanal Chem 2016; 408:5379-92. [PMID: 27236314 DOI: 10.1007/s00216-016-9635-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/27/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023]
Abstract
Proteins are continuously exposed to various reactive chemical species (reactive oxygen/nitrogen species, endogenous/exogenous aldehydes/epoxides, etc.) due to physiological and chemical stresses, resulting in various chemical modifications such as oxidation, nitration, glycation/glycoxidation, lipidation/lipoxidation, and adduct formation with drugs/chemicals. Abundant proteins with a long half-life, such as hemoglobin (Hb, t 1/2 63 days, ∼150 mg/mL), are believed to be major targets of reactive chemical species that reflect biological events. Chemical modifications on Hb have been investigated mainly by mechanistic in vitro experiments or in vivo/clinical experiments focused on single target modifications. Here, we describe an optimized LC/ESI-SRM/MS method to screen oxidized, nitrated, lipidated, and glycated sites on Hb. In vivo preliminary results suggest that this method can detect simultaneously the presence of oxidation (+16 Da) of α-Met(32), α-Met(76), β-Met(55), and β-Trp(15) and adducts of malondialdehyde (+54 Da) and glycation (+162 Da) of β-Val(1) in a blood sample from a healthy volunteer. Graphical Abstract Screening chemical modifications on hemoglobin.
Collapse
|
49
|
Hattan SJ, Parker KC, Vestal ML, Yang JY, Herold DA, Duncan MW. Analysis and Quantitation of Glycated Hemoglobin by Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:532-541. [PMID: 26733405 DOI: 10.1007/s13361-015-1316-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Measurement of glycated hemoglobin is widely used for the diagnosis and monitoring of diabetes mellitus. Matrix assisted laser desorption/ionization (MALDI) time of flight (TOF) mass spectrometry (MS) analysis of patient samples is used to demonstrate a method for quantitation of total glycation on the β-subunit of hemoglobin. The approach is accurate and calibrated with commercially available reference materials. Measurements were linear (R(2) > 0.99) across the clinically relevant range of 4% to 20% glycation with coefficients of variation of ≤ 2.5%. Additional and independent measurements of glycation of the α-subunit of hemoglobin are used to validate β-subunit glycation measurements and distinguish hemoglobin variants. Results obtained by MALDI-TOF MS were compared with those obtained in a clinical laboratory using validated HPLC methodology. MALDI-TOF MS sample preparation was minimal and analysis times were rapid making the method an attractive alternative to methodologies currently in practice.
Collapse
Affiliation(s)
| | | | | | - Jane Y Yang
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093-0612, USA
| | - David A Herold
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093-0612, USA
- VA San Diego Healthcare System, PALMS, MS 113, San Diego, CA, 92161, USA
| | - Mark W Duncan
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, MS 8106, Aurora, CO, 80045, USA
| |
Collapse
|
50
|
Fang CM, Ku MC, Chang CK, Liang HC, Wang TF, Wu CH, Chen SH. Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicol Sci 2015; 148:433-42. [DOI: 10.1093/toxsci/kfv190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|