1
|
Acosta JA, Gabler NK, Patience JF. The effect of lactose and a prototype Lactobacillus acidophilus fermentation product on digestibility, nitrogen balance, and intestinal function of weaned pigs. Transl Anim Sci 2020; 4:txaa045. [PMID: 32705042 PMCID: PMC7254483 DOI: 10.1093/tas/txaa045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
The objective of this study was to determine the effects of lactose (LA) and a prototype Lactobacillus acidophilus fermentation product (FP) on growth performance, diet digestibility, nitrogen (N) balance, and intestinal function of weaned pigs. Twenty-eight newly weaned pigs [approximately 21 d of age; initial body weight (BW) = 5.20 ± 0.15 kg] were housed in metabolism crates and assigned to one of four treatments (n = seven pigs per treatment) corresponding to a 2 × 2 factorial design: with (LA+; 15% inclusion) or without (LA-) LA and with (FP+) or without (FP-) the prototype FP (1 g of FP per kilogram of diet; Diamond V, Cedar Rapids, IA). Feed and water were provided ad libitum. At day 5, pigs were orally given lactulose and mannitol to assess small intestinal permeability. Fecal samples were collected on days 5-9 to determine the apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), and N. Total urine output and fecal samples were collected on days 10-13 to determine N retention. On day 15, all pigs were euthanized to collect intestinal lumen and tissue samples. Data were analyzed for the main effects of LA and FP and their interaction using the MIXED procedure of SAS. Lactose improved average daily feed intake (ADFI; P = 0.017), the ATTD of DM (P = 0.014), the ATTD of GE (P = 0.028), and N retention (P = 0.043) and tended to increase the butyric acid concentration in the colon (P = 0.062). The FP tended to increase the digestibility of N (P = 0.090). Neither LA nor the FP affected intestinal barrier function or inflammation markers. The interaction between LA and FP affected intestinal morphology: in the jejunum, pigs fed LA+FP- had increased villus height compared with those fed LA+FP+ and LA-FP-, whereas LA+FP+ was intermediate (interaction P = 0.034). At the terminal ileum, pigs fed LA-FP+ and LA+FP- had increased villus height and villus: crypt compared with those fed LA-FP-, whereas LA+FP+ was intermediate (interaction P = 0.007 and P = 0.007, respectively). In conclusion, the addition of LA brings important nutritional attributes to nursery diets by improving feed intake, digestibility of DM and GE, and the N retention of weaned pigs; however, the functional capacity of LA to improve markers of intestinal function is limited. On the other hand, the FP showed only a mild increase in the digestibility of N but a limited capacity to improve markers of intestinal function.
Collapse
Affiliation(s)
- Jesus A Acosta
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
2
|
Du HT, Zhu HY, Wang JM, Zhao W, Tao XL, Ba CF, Tian YM, Su YH. Single-nucleotide polymorphisms and activity analysis of the promoter and enhancer of the pig lactase gene. Gene 2014; 545:56-60. [PMID: 24809963 DOI: 10.1016/j.gene.2014.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
Lactose intolerance in northern Europeans is strongly associated with a single-nucleotide polymorphism (SNP) located 14 kb upstream of the human lactase gene: -13,910 C/T. We examined whether SNPs in the 5' flanking region of the pig lactase gene are similar to those in the human gene and whether these polymorphisms play a functional role in regulating pig lactase gene expression. The 5' flanking region of the lactase gene from several different breeds of pigs was cloned and analyzed for gene regulatory activity of a luciferase reporter gene. One SNP was found in the enhancer region (-797 G/A) and two were found in the promoter region (-308G/C and -301 A/G). The promoter C-308,G-301(Pro-CG) strongly promotes the expression of the lactase gene, but the promoter G-308,A-301(Pro-GA) does not. The enhancer A-797(Enh-A) genotype for Pro-GA can significantly enhance promoter activity, but has an inhibitory effect on Pro-CG. The Enhancer G-797(Enh-G) has a significant inhibitory effect on both promoters. In conclusion, the order of effectiveness on the pig lactase gene is Enh-A+Pro-GA>Enh-A/G+Pro-CG>Enh-G+Pro-GA.
Collapse
Affiliation(s)
- Hai-Ting Du
- Basic Medical College of Liaoning Medical University, Liaoning, China.
| | - Hong-Yan Zhu
- Animal Science and Veterinary Medicine College of Liaoning Medical University, Liaoning, China
| | - Jia-Mei Wang
- Basic Medical College of Liaoning Medical University, Liaoning, China
| | - Wei Zhao
- Basic Medical College of Liaoning Medical University, Liaoning, China
| | - Xiao-Li Tao
- Animal Science and Veterinary Medicine College of Liaoning Medical University, Liaoning, China
| | - Cai-Feng Ba
- Basic Medical College of Liaoning Medical University, Liaoning, China
| | - Yu-Min Tian
- Animal Science and Veterinary Medicine College of Liaoning Medical University, Liaoning, China
| | - Yu-Hong Su
- Animal Science and Veterinary Medicine College of Liaoning Medical University, Liaoning, China.
| |
Collapse
|
3
|
The -14010*C variant associated with lactase persistence is located between an Oct-1 and HNF1α binding site and increases lactase promoter activity. Hum Genet 2011; 130:483-93. [PMID: 21327791 DOI: 10.1007/s00439-011-0966-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
In most people worldwide intestinal lactase expression declines in childhood. In many others, particularly in Europeans, lactase expression persists into adult life. The lactase persistence phenotype is in Europe associated with the -13910*T single nucleotide variant located 13,910 bp upstream the lactase gene in an enhancer region that affects lactase promoter activity. This variant falls in an Oct-1 binding site and shows greater Oct-1 binding than the ancestral variant and increases enhancer activity. Several other variants have been identified very close to the -13910 position, which are associated with lactase persistence in the Middle East and Africa. One of them, the -14010*C, is associated with lactase persistence in Africa. Here we show by deletion analysis that the -14010 position is located in a 144 bp region that reduces the enhancer activity. In transfections the -14010*C allele shows a stronger enhancer effect than the ancestral -4010*G allele. Binding sites for Oct-1 and HNF1α surrounding the -14010 position were identified by gel shift assays, which indicated that -14010*C has greater binding affinity to Oct-1 than -14010*G.
Collapse
|
4
|
Tanaka T, Suzuki A, Kuranuki S, Mochizuki K, Suruga K, Takase S, Goda T. Higher expression of jejunal LPH gene in rats fed the high-carbohydrate/low-fat diet compared with those fed the low-carbohydrate/high-fat diet is associated with in vitro binding of Cdx-2 in nuclear proteins to its promoter regions. Life Sci 2008; 83:122-7. [PMID: 18573506 DOI: 10.1016/j.lfs.2008.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/06/2008] [Accepted: 05/15/2008] [Indexed: 11/25/2022]
Abstract
It has been previously demonstrated that the expression of lactase-phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) genes are higher in rats fed a high-carbohydrate/low-fat (HCT) diet than in those fed a low-carbohydrate/high-fat (LCT) diet. In the present study, using a nuclear run-on assay we clearly show that higher expression of LPH and SI genes in jejunum of rats fed the HCT diet compared with those fed a LCT diet was regulated at the transcription levels. DNase I foot printing analysis of the 5' flanking region of the rat LPH gene demonstrated that by incubating the jejunal nuclear extract the protected region was conserved as the same sequence as the homeodomain protein-binding element designated as CE-LPH1. UV-cross linking and electromobility shift assay in vitro clearly showed that Cdx-2 was including proteins bound to CE-LPH1. Moreover, in vitro binding of Cdx-2 to CE-LPH1 as well as SIF1, a cis-element identified as the binding element of Cdx-2 on the SI gene, in jejunal nuclear extracts of rats fed a HCT diet were greater than those fed a LCT diet. These results suggest that in vitro binding of Cdx-2 to CE-LPH1 as well as SIF1 in jejunal nuclear extracts is associated with the higher expression of the LPH and SI genes in rats fed the HCT diet compared with those fed a LCT diet.
Collapse
Affiliation(s)
- Takemi Tanaka
- Laboratory of Nutritional Physiology and global COE, University of Shizuoka School of Food and Nutritional Sciences, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Robayo-Torres CC, Quezada-Calvillo R, Nichols BL. Disaccharide digestion: clinical and molecular aspects. Clin Gastroenterol Hepatol 2006; 4:276-87. [PMID: 16527688 DOI: 10.1016/j.cgh.2005.12.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sugars normally are absorbed in the small intestine. When carbohydrates are malabsorbed, the osmotic load produced by the high amount of low molecular weight sugars and partially digested starches in the small intestine can cause symptoms of intestinal distention, rapid peristalsis, and diarrhea. Colonic bacteria normally metabolize proximally malabsorbed dietary carbohydrate through fermentation to small fatty acids and gases (ie, hydrogen, methane, and carbon dioxide). When present in large amounts, the malabsorbed sugars and starches can be excreted in the stool. Sugar intolerance is the presence of abdominal symptoms related to the proximal or distal malabsorption of dietary carbohydrates. The symptoms consist of meal-related abdominal cramps and distention, increased flatulence, borborygmus, and diarrhea. Infants and young children with carbohydrate malabsorption show more intense symptoms than adults; the passage of undigested carbohydrates through the colon is more rapid and is associated with detectable carbohydrates in copious watery acid stools. Dehydration often follows feeding of the offending sugar. In this review we present the clinical and current molecular aspects of disaccharidase digestion.
Collapse
Affiliation(s)
- Claudia C Robayo-Torres
- Department of Pediatrics, USDA/ARS, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
6
|
Lewinsky RH, Jensen TGK, Møller J, Stensballe A, Olsen J, Troelsen JT. T-13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro. Hum Mol Genet 2005; 14:3945-53. [PMID: 16301215 DOI: 10.1093/hmg/ddi418] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Two phenotypes exist in the human population with regard to expression of lactase in adults. Lactase non-persistence (adult-type hypolactasia and lactose intolerance) is characterized by a decline in the expression of lactase-phlorizin hydrolase (LPH) after weaning. In contrast, lactase-persistent individuals have a high LPH throughout their lifespan. Lactase persistence and non-persistence are associated with a T/C polymorphism at position -13,910 upstream the lactase gene. A nuclear factor binds more strongly to the T-13,910 variant associated with lactase persistence than the C-13,910 variant associated with lactase non-persistence. Oct-1 and glyceraldehyde-3-phosphate dehydrogenase were co-purified by DNA affinity purification using the sequence of the T-13,910 variant. Supershift analyses show that Oct-1 binds directly to the T-13,910 variant, and we suggest that GAPDH is co-purified due to interactions with Oct-1. Expression of Oct-1 stimulates reporter gene expression from the T and the C-13,910 variant/LPH promoter constructs only when it is co-expressed with HNF1alpha. Binding sites for other intestinal transcription factors (GATA-6, HNF4alpha, Fox and Cdx-2) were identified in the region of the -13,910 T/C polymorphism. Three of these sites are required for the enhancer activity of the -13,910 region. The data suggest that the binding of Oct-1 to the T-13,910 variant directs increased lactase promoter activity and this might provide an explanation for the lactase persistence phenotype in the human population.
Collapse
Affiliation(s)
- Rikke H Lewinsky
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
7
|
Troelsen JT. Adult-type hypolactasia and regulation of lactase expression. Biochim Biophys Acta Gen Subj 2005; 1723:19-32. [PMID: 15777735 DOI: 10.1016/j.bbagen.2005.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 02/08/2005] [Accepted: 02/09/2005] [Indexed: 11/25/2022]
Abstract
A common genetically determined polymorphism in the human population leads to two distinct phenotypes in adults, lactase persistence and adult-type hypolactasia (lactase non-persistence). All healthy newborn children express high levels of lactase and are able to digest large quantities of lactose, the main carbohydrate in milk. Individuals with adult-type hypolactasia lose their lactase expression before adulthood and consequently often become lactose intolerant with associated digestive problems (e.g. diarrhoea). In contrast, lactase persistent individuals have a lifelong lactase expression and are able to digest lactose as adults. Lactase persistence can be regarded as the mutant phenotype since other mammals down-regulate their lactase expression after weaning (the postweaning decline). This phenomenon does not occur in lactase persistent individuals. The regulation of lactase expression is mainly transcriptional and it is well established that adult-type hypolactasia is inherited in an autosomal recessive manner, whereas persistence is dominant. The recent findings of single nucleotide polymorphisms associated with lactase persistence have made it possible to study the potential mechanisms underlying adult-type hypolactasia. This work has led to the identification of gene-regulatory sequences located far from the lactase gene (LCT). The present review describes the recent advances in the understanding of the regulation of lactase expression and the possible mechanisms behind adult-type hypolactasia.
Collapse
Affiliation(s)
- Jesper T Troelsen
- Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
8
|
Sibley E. Genetic variation and lactose intolerance: detection methods and clinical implications. ACTA ACUST UNITED AC 2004; 4:239-45. [PMID: 15287817 DOI: 10.2165/00129785-200404040-00003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The maturational decline in lactase activity renders most of the world's adult human population intolerant of excessive consumption of milk and other dairy products. In conditions of primary or secondary lactase deficiency, the lactose sugars in milk pass through the gastrointestinal tract undigested or are partially digested by enzymes produced by intestinal bacterial flora to yield short chain fatty acids, hydrogen, carbon dioxide, and methane. The undigested lactose molecules and products of bacterial digestion can result in symptoms of lactose intolerance, diarrhea, gas bloat, flatulence, and abdominal pain. Diagnosis of lactose intolerance is often made on clinical grounds and response to an empiric trail of dietary lactose avoidance. Biochemical methods for assessing lactose malabsorption in the form of the lactose breath hydrogen test and direct lactase enzyme activity performed on small intestinal tissue biopsy samples may also be utilized. In some adults, however, high levels of lactase activity persist into adulthood. This hereditary persistence of lactase is common primarily in people of northern European descent and is attributed to inheritance of an autosomal-dominant mutation that prevents the maturational decline in lactase expression. Recent reports have identified genetic polymorphisms that are closely associated with lactase persistence and nonpersistence phenotypes. The identification of genetic variants associated with lactase persistence or nonpersistence allows for molecular detection of the genetic predisposition towards adult-onset hypolactasia by DNA sequencing or restriction fragment length polymorphism analysis. The role for such genetic detection in clinical practice seems limited to ruling out adult-onset hypolactasia as a cause of intolerance symptoms but remains to be fully defined. Attention should be paid to appropriate interpretation of genetic detection in order to avoid potentially harmful reduction in dairy intake or misdiagnosis of secondary lactase deficiency.
Collapse
Affiliation(s)
- Eric Sibley
- Division of Pediatric Gastroenterology, Stanford University School of Medicine, Stanford, California 94304, USA.
| |
Collapse
|
9
|
van Wering HM, Bosse T, Musters A, de Jong E, de Jong N, Hogen Esch CE, Boudreau F, Swain GP, Dowling LN, Montgomery RK, Grand RJ, Krasinski SD. Complex regulation of the lactase-phlorizin hydrolase promoter by GATA-4. Am J Physiol Gastrointest Liver Physiol 2004; 287:G899-909. [PMID: 15178553 DOI: 10.1152/ajpgi.00150.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lactase-phlorizin hydrolase (LPH), a marker of intestinal differentiation, is expressed in absorptive enterocytes on small intestinal villi in a tightly regulated pattern along the proximal-distal axis. The LPH promoter contains binding sites that mediate activation by members of the GATA-4, -5, and -6 subfamily, but little is known about their individual contribution to LPH regulation in vivo. Here, we show that GATA-4 is the principal GATA factor from adult mouse intestinal epithelial cells that binds to the mouse LPH promoter, and its expression is highly correlated with that of LPH mRNA in jejunum and ileum. GATA-4 cooperates with hepatocyte nuclear factor (HNF)-1alpha to synergistically activate the LPH promoter by a mechanism identical to that previously characterized for GATA-5/HNF-1alpha, requiring physical association between GATA-4 and HNF-1alpha and intact HNF-1 binding sites on the LPH promoter. GATA-4 also activates the LPH promoter independently of HNF-1alpha, in contrast to GATA-5, which is unable to activate the LPH promoter in the absence of HNF-1alpha. GATA-4-specific activation requires intact GATA binding sites on the LPH promoter and was mapped by domain-swapping experiments to the zinc finger and basic regions. However, the difference in the capacity between GATA-4 and GATA-5 to activate the LPH promoter was not due to a difference in affinity for binding to GATA binding sites on the LPH promoter. These data indicate that GATA-4 is a key regulator of LPH gene expression that may function through an evolutionarily conserved mechanism involving cooperativity with an HNF-1alpha and/or a GATA-specific pathway independent of HNF-1alpha.
Collapse
|
10
|
Troelsen JT, Olsen J, Møller J, Sjöström H. An upstream polymorphism associated with lactase persistence has increased enhancer activity. Gastroenterology 2003; 125:1686-94. [PMID: 14724821 DOI: 10.1053/j.gastro.2003.09.031] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Intestinal lactase activity declines during childhood in some humans. This phenotypic polymorphism of lactase persistence or nonpersistence into adult life has been shown in a recent study to be 100% associated with a T/C nucleotide polymorphism at position -13910 and approximately 97% with an A/G nucleotide polymorphism at position -22018. The aim of this study was to investigate the role of these nucleotide polymorphisms for lactase-phlorizin hydrolase (LPH) gene expression. METHODS The -13910 and -22018 regions were cloned from lactase-persistent and -nonpersistent individuals, and the regions were analyzed for gene regulatory activity of a luciferase reporter gene by transfection experiments using the intestinal cell line Caco-2. Electrophoretic mobility shift assays (EMSAs) were used to investigate protein/DNA interactions with the -13910 sequence. RESULTS We show that the -13910 region contains a strong enhancer. The -13910 regions from both lactase persistent (-13910T variant) and lactase nonpersistent (-13910C variant) have enhancer activity. However, the -13910T variant enhances the LPH promoter approximately 4 times more than the -13910C variant when analyzed in differentiated Caco-2 cells. A nuclear factor from both an intestinal and a nonintestinal extract binds strongly to the -13910T variant whereas the binding to the -13910C variant is much weaker. CONCLUSIONS The discovery of a functional difference between the 2 alleles at position -13910 supports the notion that the molecular difference between lactase persistence and nonpersistence is caused by the mutation at position -13910.
Collapse
Affiliation(s)
- Jesper T Troelsen
- Department of Medical Biochemistry and Genetics, Biochemical Laboratory C, The Panum Institute, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
11
|
Troelsen JT, Mitchelmore C, Olsen J. An enhancer activates the pig lactase phlorizin hydrolase promoter in intestinal cells. Gene 2003; 305:101-11. [PMID: 12594046 DOI: 10.1016/s0378-1119(02)01232-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lactase phlorizin hydrolase is a small intestinal-specific brush border protein commonly used as a specific marker of differentiated enterocytes. A number of transcription factors involved in the enterocyte-specific expression of lactase phlorizin hydrolase have been identified. An upstream regulatory region, which we have named the "LPH enhancer", located at position -894 to -798 in the porcine lactase phlorizin hydrolase gene, is necessary for high differentiation-dependent LPH expression in intestinal cells. The LPH enhancer was studied by mutation analysis, transfection experiments and electrophoretical mobility shift assays. The LPH enhancer is active in intestinal cells (Caco-2) and not in non-intestinal cells (HeLa). The LPH enhancer is only able to enhance expression when it is located in front of an intestinal-specific promoter such as the lactase phlorizin hydrolase promoter or the sucrase-isomaltase promoter. In front of an SV40-derived promoter the LPH enhancer has no stimulatory effect. In addition to the lack of promoter-promiscuity, the LPH enhancer is not a classical enhancer in the sense that it is not orientation-independent and it cannot function when located 3' of a reporter gene. The LPH enhancer contains at least three cis-elements (at -894 to -880, -880 to -875 and -833 to -814) with functional importance for the LPH enhancer activity.
Collapse
Affiliation(s)
- Jesper T Troelsen
- Department of Medical Biochemistry and Genetics, Biochemical Laboratory C, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 N Copenhagen, Denmark.
| | | | | |
Collapse
|
12
|
van Wering HM, Moyer L, Grand RJ, Krasinski SD. Novel interaction at the Cdx-2 binding sites of the lactase-phlorizin hydrolase promoter. Biochem Biophys Res Commun 2002; 299:587-93. [PMID: 12459179 DOI: 10.1016/s0006-291x(02)02697-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cdx-2 is an intestine-specific homeodomain-containing transcription factor that activates the promoters of intestinal genes through specific interactions with the consensus, TTTAT/C. Here, we demonstrate that Cdx-2 interacts with the lactase-phlorizin hydrolase (LPH) promoter at cis-element (CE)-LPH1a (-54 to -40 bp) as well as the LPH TATA-box. Affinity comparisons between SIF-1, CE-LPH1a, and the LPH TATA-box revealed that the TATA-box has the lowest affinity for Cdx-2. Characterization of CE-LPH1a using EMSAs revealed binding of a novel, non-Cdx-2 complex in multiple cell lines that bind to sequence that is different from that of the Cdx-2 binding site. Heterologous promoter analysis in transient transfection assays revealed a repressor function for this protein, and thus, it was designated as nuclear factor-LPH1/repressor (NF-LPH1/R). These data are consistent with the hypothesis that NF-LPH1/R represses LPH gene expression in non-Cdx-2-producing cells, and that this repression is released in cells that synthesize Cdx-2, such as those in the intestinal epithelium.
Collapse
Affiliation(s)
- Herbert M van Wering
- Division of Gastroenterology and Nutrition, Department of Medicine, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
13
|
Lee SY, Wang Z, Lin CK, Contag CH, Olds LC, Cooper AD, Sibley E. Regulation of intestine-specific spatiotemporal expression by the rat lactase promoter. J Biol Chem 2002; 277:13099-105. [PMID: 11812796 DOI: 10.1074/jbc.m112152200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lactase gene transcription is spatially restricted to the proximal and middle small intestine of the developing mouse. To identify regions of the lactase gene involved in mediating the spatiotemporal expression pattern, transgenic mice harboring 0.8-, 1.3-, and 2.0-kb fragments of the 5'-flanking region cloned upstream of a firefly-luciferase reporter were generated. Transgene expression was assessed noninvasively in living mice using a sensitive low light imaging system. Two independent, 1.3- and 2.0-kb, lactase promoter-reporter transgenic lines expressed appropriate high levels of luciferase activity in the small intestine (300-3,000 relative light units/microg) with maximal expression in the middle segments. Post-weaned 30-day transgenic offspring also demonstrated an appropriate 4-fold maturational decline in luciferase expression in the small intestine. The pattern of the 2.0-kb promoter transgene mRNA abundance most closely mimicked that of the endogenous lactase gene with respect to spatiotemporal restriction. In contrast, a 0.8-kb promoter-reporter construct expressed low level luciferase activity (<25 relative light units/microg) in multiple organs and throughout the gastrointestinal tract in transgenic mice. Thus, a distinct 5'-region of the lactase promoter directs intestine-specific expression in the small intestine of transgenic mice, and regulatory sequences have been localized to a 1.2-kb region upstream of the lactase transcription start site. In addition, we have demonstrated that in vivo bioluminescence imaging can be utilized for assessment of intestinal expression patterns of a luciferase reporter gene driven by lactase promoter regions in transgenic mice.
Collapse
Affiliation(s)
- So Young Lee
- Department of Pediatrics, Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Park YK, Dudley MA, Burrin DG, Donovan SM. Intestinal protein and LPH synthesis in parenterally fed piglets receiving partial enteral nutrition and enteral insulinlike growth factor 1. J Pediatr Gastroenterol Nutr 2001; 33:189-95. [PMID: 11568522 DOI: 10.1097/00005176-200108000-00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Providing partial enteral nutrition (PEN) supplemented with insulinlike growth factor-1 (IGF-1) to parenterally fed piglets increases lactase-phlorizin hydrolase (LPH) activity, but not LPH mRNA. The current aim was to investigate potential mechanisms by which IGF-1 up-regulates LPH activity. METHODS Newborn piglets (n = 15) received 100% parenteral nutrition (TPN), 80% parenteral nutrition + 20% parenteral nutrition (PEN), or PEN + IGF-1 (1.0 mg. kg-1. d-1) for 7 days. On day 7, [2H3]-leucine was intravenously administered to measure mucosal protein and brush border LPH (BB LPH) synthesis. RESULTS Weight gain, nutrient intake, and jejunal weight and length were similar among the treatment groups. Partial enteral nutrition alone increased mucosal weight, villus width and cross-sectional area, LPH activity, mRNA expression, and high mannose LPH precursor (proLPHh) abundance compared with TPN (P<0.05). Insulinlike growth factor-1 further increased mucosal weight, LPH activity, and LPH activity per unit BB LPH approximately twofold over PEN alone (P < 0.05) but did not affect LPH mRNA or the abundance of proLPHh (one of the LPH isoforms) or mature LPH. Isotopic enrichment of [2H3]-leucine in plasma, mucosal protein, and LPH precursors, and the fractional and absolute synthesis rates of mucosal protein and LPH were similar among the treatment groups. Insulinlike growth factor-1 treatment increased total mucosal protein synthesis (60%, P < 0.05) but not LPH synthesis compared with the other two groups. CONCLUSIONS Because IGF-1 did not affect the fractional synthesis rate of either mucosal protein or LPH, the authors suggest that enteral IGF-1 increases mucosal protein mass and LPH activity by suppressing mucosal proteolytic degradation.
Collapse
Affiliation(s)
- Y K Park
- Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA
| | | | | | | |
Collapse
|
15
|
Dudley MA, Schoknecht PA, Dudley AW, Jiang L, Ferraris RP, Rosenberger JN, Henry JF, Reeds PJ. Lactase synthesis is pretranslationally regulated in protein-deficient pigs fed a protein-sufficient diet. Am J Physiol Gastrointest Liver Physiol 2001; 280:G621-8. [PMID: 11254488 DOI: 10.1152/ajpgi.2001.280.4.g621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The in vivo effects of protein malnutrition and protein rehabilitation on lactase phlorizin hydrolase (LPH) synthesis were examined. Five-day-old pigs were fed isocaloric diets containing 10% (deficient, n = 12) or 24% (sufficient, n = 12) protein. After 4 wk, one-half of the animals in each dietary group were infused intravenously with [(13)C(1)]leucine for 6 h, and the jejunum was analyzed for enzyme activity, mRNA abundance, and LPH polypeptide isotopic enrichment. The remaining animals were fed the protein-sufficient diet for 1 wk, and the jejunum was analyzed. Jejunal mass and lactase enzyme activity per jejunum were significantly lower in protein-deficient vs. control animals but returned to normal with rehabilitation. Protein malnutrition did not affect LPH mRNA abundance relative to elongation factor-1alpha, but rehabilitation resulted in a significant increase in LPH mRNA relative abundance. Protein malnutrition significantly lowered the LPH fractional synthesis rate (FSR; %/day), whereas the FSR of LPH in rehabilitated and control animals was similar. These results suggest that protein malnutrition decreases LPH synthesis by altering posttranslational events, whereas the jejunum responds to rehabilitation by increasing LPH mRNA relative abundance, suggesting pretranslational regulation.
Collapse
Affiliation(s)
- M A Dudley
- Department of Pharmacology and Physiology, New Jersey School of Medicine and Dentistry, Newark 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Fang R, Olds LC, Santiago NA, Sibley E. GATA family transcription factors activate lactase gene promoter in intestinal Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 2001; 280:G58-67. [PMID: 11123198 DOI: 10.1152/ajpgi.2001.280.1.g58] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The GATA family of transcription factors regulate tissue-specific patterns of gene expression during development. We have characterized the interaction between GATA proteins and the lactase gene promoter. Nuclear protein bound to the lactase gene GATA region cis element (-97 to -73) was analyzed by electrophoretic mobility shift assays (EMSA) and supershift assays with GATA antibodies. Lactase promoter activities were assayed in Caco-2 cells transfected with wild-type and mutated luciferase promoter-reporter constructs and GATA-4/5/6 expression constructs. EMSA with the GATA region probe yields a specific DNA-protein complex that requires the GATA factor binding site WGATAR. The complex is recognized by GATA-4- and GATA-6-specific antibodies. GATA-4/5/6 expression constructs are able to activate transcription driven by the wild-type promoter, but not by a promoter in which the GATA binding site is mutated, in Caco-2 and nonintestinal QT6 cells. GATA factor binding to the lactase cis element correlates with functional promoter activation. We conclude that each of the GATA family zinc finger proteins expressed in the intestine, GATA-4, -5, and -6, can interact with the lactase promoter GATA element and can function to activate the promoter in Caco-2 cells.
Collapse
Affiliation(s)
- R Fang
- Department of Pediatrics, Stanford University Medical Center, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
17
|
Kelner MJ, Bagnell RD, Montoya MA, Lanham KA. Structural organization of the human gastrointestinal glutathione peroxidase (GPX2) promoter and 3'-nontranscribed region: transcriptional response to exogenous redox agents. Gene 2000; 248:109-16. [PMID: 10806356 DOI: 10.1016/s0378-1119(00)00137-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The flanking upstream and downstream regions of the human GPX270%). The human GPX2 promoter region was not G-C rich (<50% G+C) and classical TATA/CCAAT elements were not present. The ubiquitous SP1 and AP elements were present. Several GATA elements as well as liver-specific sites (HNF series) were present. Despite the unique intestinal specific expression of GPX2, classical intestine-specific sites were not detected in the flanking 5' or 3' regions. The ability of the GPX2 promoter to direct transcription was confirmed. Exogenous agents capable of producing oxidative stress, such as paraquat, could induce the transcriptional activity of the GPX2 promoter. Analysis of three previously reported polymorphism sites revealed that they represented the most common polymorphisms. Surprisingly, the human GPX2 promoter could direct transcription and respond to oxidative stress in the murine NIH3T3 fibroblast cell line, which is devoid of the ability to bind to a variety of intestinal specific elements. This finding suggests that the unique intestinal specific expression of GPX2 may be due to elements in the intron, the flanking 3'-nontranslated region, or to elements existing even farther upstream. The ability of GPX2 to respond transcriptionally to redox stress is likely to be more physiologically relevant than post-transcriptional regulation which is dependent upon selenium availability.
Collapse
Affiliation(s)
- M J Kelner
- Department of Pathology, University of California, 200 West Arbor Drive, San Diego, CA 92103-8320, USA.
| | | | | | | |
Collapse
|
18
|
Lynch J, Suh ER, Silberg DG, Rulyak S, Blanchard N, Traber PG. The caudal-related homeodomain protein Cdx1 inhibits proliferation of intestinal epithelial cells by down-regulation of D-type cyclins. J Biol Chem 2000; 275:4499-506. [PMID: 10660624 DOI: 10.1074/jbc.275.6.4499] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdx1 is a homeodomain transcription factor that regulates intestine-specific gene expression. Experimental evidence suggests that Cdx1 may be involved in cell cycle regulation, but its role is ill defined and the mechanisms have not been explored. We used stable transfection of inducible constructs and transient expression with a replication-deficient adenovirus to induce Cdx1 expression in rat IEC6 cells, a non-transformed intestinal epithelial cell line that does not express Cdx1 protein. Expression of Cdx1 markedly reduced proliferation of IEC6 cells with accumulation of cells in the G(0)/G(1) phase of the cell cycle. Cell cycle arrest was accompanied by an increase in the hypophosphorylated forms of the retinoblastoma protein (pRb) and the pRb-related p130 protein. Protein levels of multiple cyclin-dependent kinase inhibitors were either unchanged (p16, p18, p21, p27, and p57) or were not detected (p15 and p19). Most significantly, levels of cyclins D1 and D2 were markedly diminished with Cdx1 expression, but not cyclins D3, E, or the G(1) kinases. Additionally, cyclin-dependent kinase-4 activity was decreased in association with decreased cyclin D protein. We conclude that Cdx1 regulates intestinal epithelial cell proliferation by inhibiting progression through G(0)/G(1), most likely via modulation of cyclin D1 and D2 protein levels.
Collapse
Affiliation(s)
- J Lynch
- Division of Gastroenterology, Department of Medicine and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
19
|
Fang R, Santiago NA, Olds LC, Sibley E. The homeodomain protein Cdx2 regulates lactase gene promoter activity during enterocyte differentiation. Gastroenterology 2000; 118:115-27. [PMID: 10611160 DOI: 10.1016/s0016-5085(00)70420-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Lactase is the intestinal disaccharidase responsible for digestion of lactose, the predominant carbohydrate in milk. Transcription of the lactase gene is activated during enterocyte differentiation. We have characterized the interaction between the lactase promoter and Cdx2, a homeodomain protein involved in regulating intestinal development and differentiation. METHODS Nuclear protein bound to the lactase gene cis element, CE-LPH1, was analyzed by electrophoretic mobility shift assays and supershifts with Cdx2 antibody. Lactase promoter activities were assayed in cells transfected with luciferase reporter constructs and a Cdx2 expression construct. RESULTS Electrophoretic mobility shift assay with CE-LPH1 yields a specific DNA/protein complex that requires the caudal-related protein binding site, TTTAC. The complex is recognized by Cdx2 antibody and is more abundant in differentiated enterocytes. A Cdx2 expression construct is able to activate transcription driven by the wild-type, but not a mutated, promoter and results in increased endogenous lactase messenger RNA. CONCLUSIONS The homeodomain protein Cdx2 interacts with the lactase promoter and is capable of activating transcription of the endogenous gene. In contrast to a previous report, Cdx2 interaction with the lactase promoter correlates with enterocyte differentiation. These conclusions are consistent with the role of Cdx2 in regulating intestinal cell differentiation.
Collapse
Affiliation(s)
- R Fang
- Department of Pediatrics, Stanford University Medical Center, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
20
|
Park YK, Monaco MH, Donovan SM. Enteral insulin-like growth factor-I augments intestinal disaccharidase activity in piglets receiving total parenteral nutrition. J Pediatr Gastroenterol Nutr 1999; 29:198-206. [PMID: 10435659 DOI: 10.1097/00005176-199908000-00018] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Partial enteral nutrition is administered to infants on parenteral nutrition to stimulate intestinal function. Herein, the hypothesis that supplementation of partial enteral nutrition with insulin-like growth factor-I would augment intestinal development was investigated. METHODS One-day-old piglets (n = 29) were randomly assigned to five dietary treatment groups: 100% of energy as enteral formula, 100% of energy as total parenteral nutrition, or 80% parenteral nutrition/20% enteral formula supplemented with either 0, 0.2, or 1 mg/kg insulin-like growth factor-I for 7 days. Weight gain, intestinal weight, morphology, protein, and DNA content and disaccharidase activity and mRNA expression were assessed. RESULTS Parenterally fed piglets had similar whole body weight gain and serum hormone concentrations but reduced intestinal mucosal weight, villus height, and sucrase and lactase activity compared with 100% enterally fed pigs. Partial enteral nutrition alone increased mucosal weight and protein content, villus height, and disaccharidase activity compared with 100% parenterally fed piglets. No effect of the lower dose of insulin-like growth factor-I (0.2 mg/kg per day) was observed, but supplementing partial enteral nutrition with 1 mg insulin-like growth factor-I/kg further increased villus width and cross-sectional area and disaccharidase activity compared with partial enteral nutrition alone. Lactase mRNA expression was not affected by insulin-like growth factor-I, suggesting that the primary site of regulation of lactase by insulin-like growth factor-I occurs after transcription. CONCLUSIONS Enteral insulin-like growth factor-I augmented intestinal morphology and disaccharidase activity in parenterally fed piglets over that observed with partial enteral nutrition alone. Thus enteral insulin-like growth factor-I may represent an efficacious clinical adjunct to promote intestinal development of parenterally fed neonates.
Collapse
Affiliation(s)
- Y K Park
- Division of Nutritional Sciences, University of Illinois, Urbana, USA
| | | | | |
Collapse
|
21
|
Goda T, Yasutake H, Tanaka T, Takase S. Lactase-phlorizin hydrolase and sucrase-isomaltase genes are expressed differently along the villus-crypt axis of rat jejunum. J Nutr 1999; 129:1107-13. [PMID: 10356073 DOI: 10.1093/jn/129.6.1107] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lactase-phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) are two disaccharidases specifically expressed in small intestinal absorptive cells. We previously showed that the transcripts of both genes are elevated within 12 h of carbohydrate intake. To examine at which locus of villus-crypt axis this response to dietary carbohydrate occurs, 6-wk-old rats were fed a low-carbohydrate diet (5% energy) for 7 d, and then force-fed either the low-carbohydrate diet or a sucrose (40% energy) diet during the last 6 h. Cryostat sectioning of jejunal segments followed by RNA blot hybridizations of the transcripts revealed that, unlike SI mRNA which was expressed maximally in the lower villus, maximal LPH mRNA level was attained at the upper villus. The distribution of the respective immunoreactive protein and the enzymatic activity was shifted more toward the villus tips for LPH than for SI. Force-feeding the sucrose diet caused an abrupt increase in SI mRNA level in the lower villus within 3 h, while the rise in LPH mRNA level occurred in the mid- and upper-villus. The diet-induced increases in the LPH mRNA and SI mRNA levels were abolished along the entire villus by the administration of actinomycin D. These results suggest that LPH gene is maximally expressed in more apical villus cells than SI gene, and that dietary sucrose elicits enhancement of the gene expressions in the villus cells which are accumulating the respective transcripts.
Collapse
Affiliation(s)
- T Goda
- Department of Nutrition, School of Food and Nutritional Sciences, The University of Shizuoka, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
22
|
Kim JH, Meng S, Shei A, Hodin RA. A novel Sp1-related cis element involved in intestinal alkaline phosphatase gene transcription. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G800-7. [PMID: 10198321 DOI: 10.1152/ajpgi.1999.276.4.g800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We have used sodium butyrate-treated HT-29 cells as an in vitro model system to study the molecular mechanisms underlying intestinal alkaline phosphatase (IAP) gene activation. Transient transfection assays using human IAP-CAT reporter genes along with DNase I footprinting were used to localize a critical cis element (IF-III) corresponding to the sequence 5'-GACTGGGCGGGGTCAAGATGGA-3'. Deletion of the IF-III element resulted in a dramatic reduction in reporter gene activity, and IF-III was shown to function in the context of a heterologous (SV40) promoter in a cell type-specific manner, further supporting its functional role in IAP transactivation. Electrophoretic mobility shift assays revealed that IF-III binds Sp1 and Sp3, but these factors comprise only a portion of the total nuclear binding and appear to mediate only a small portion of its transcriptional activity. IF-III does not correspond to any previously characterized regulatory region from other intestine-specific genes. We have thus identified a novel, Sp1-related cis-regulatory element in the human IAP gene that appears to play a role in its transcriptional activation during differentiation in vitro.
Collapse
Affiliation(s)
- J H Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School and Harvard Digestive Diseases Center, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
23
|
Spodsberg N, Troelsen JT, Carlsson P, Enerbäck S, Sjöström H, Norén O. Transcriptional regulation of pig lactase-phlorizin hydrolase: involvement of HNF-1 and FREACs. Gastroenterology 1999; 116:842-54. [PMID: 10092306 DOI: 10.1016/s0016-5085(99)70067-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS One-kilobase sequence of the upstream fragment of the pig lactase-phlorizin hydrolase gene has been shown to control small intestinal-specific expression and postweaning decline of lactase-phlorizin hydrolase in transgenic mice. The aim of this study was to identify the regulatory DNA elements and transcription factors controlling lactase-phlorizin hydrolase expression. METHODS The activity of different lactase-phlorizin hydrolase promoter fragments was investigated by transfection experiments using Caco-2 cells. Electrophoretic mobility shift assays and supershift analyses were used to characterize the interaction between intestinal transcription factors and the identified regulatory elements. RESULTS Functional analysis revealed three previously undescribed regulatory regions in the lactase-phlorizin hydrolase promoter: a putative enhancer between -894 and -798 binding hepatocyte nuclear factor (HNF)-1 at position -894 to -880; a repressor-binding element between -278 to -264 to which an HNF-3-like factor is able to bind; and an element between -178 to -164 that binds an activating transcription factor. CONCLUSIONS Identification of three new regulatory regions and HNF-1 and HNF-3-like transcription factor as players in the regulation of lactase-phlorizin hydrolase gene transcription has an impact on the understanding of the molecular mechanisms behind age-dependent, tissue-specific, differentiation-dependent, and regional regulation of expression in the intestine.
Collapse
Affiliation(s)
- N Spodsberg
- Department of Medical Biochemistry and Genetics, Biochemical Laboratory C, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
A combination of approaches has begun to elucidate the mechanisms of gastrointestinal development. This review describes progress over the last 20 years in understanding human gastrointestinal development, including data from both human and experimental animal studies that address molecular mechanisms. Rapid progress is being made in the identification of genes regulating gastrointestinal development. Genes directing initial formation of the endoderm as well as organ-specific patterning are beginning to be identified. Signaling pathways regulating the overall right-left asymmetry of the gastrointestinal tract and epithelial-mesenchymal interactions are being clarified. In searching for extrinsic developmental regulators, numerous candidate trophic factors have been proposed, but compelling evidence remains elusive. A critical gene that initiates pancreas development has been identified, as well as a number of genes regulating liver, stomach, and intestinal development. Mutations in genes affecting neural crest cell migration have been shown to give rise to Hirschsprung's disease. Considerable progress has been achieved in understanding specific phenomena, such as the transcription factors regulating expression of sucrase-isomaltase and fatty acid-binding protein. The challenge for the future is to integrate these data into a more complete understanding of the physiology of gastrointestinal development.
Collapse
Affiliation(s)
- R K Montgomery
- Division of Pediatric Gastroenterology and Nutrition, The Floating Hospital for Children at New England Medical Center, Boston, MA 02111-1533, USA
| | | | | |
Collapse
|
25
|
Yeh KY, Yeh M, Glass J. Expression of intestinal brush-border membrane hydrolases and ferritin after segmental ischemia-reperfusion in rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G572-83. [PMID: 9724271 DOI: 10.1152/ajpgi.1998.275.3.g572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Jejunal expression of three brush-border membrane (BBM) enzymes, intestinal alkaline phosphatase (IAP), lactose-phlorizin hydrolase (LPH), and sucrase-isomaltase (SI), and a cytosolic protein, ferritin (Ft), was investigated after transient segmental ischemia-reperfusion (I/R). I/R reduced mucosal IAP, LPH, and SI mRNAs to 36%, 11%, and 38% of normal jejunal levels after 3 h of reperfusion and to 22%, 8%, and 51% of normal jejunal levels after 6 h of reperfusion, respectively. Intriguingly, in the internal control jejunum IAP and LPH mRNAs also decreased significantly. LPH and SI mRNA rapidly recovered to levels significantly higher than those of normal jejunum at 12 h, whereas IAP mRNA levels did not recover until 48 h. Enzyme activity paralleled changes in mRNA levels in the ischemic reperfused jejunum. Electrophoretic mobility shift assays showed that I/R significantly increased SI footprinting 1 (SIF1) binding activity. The mobility of one of the DNA-protein complexes was further retarded in the presence of anti-Cdx-2 antibody, suggesting that either Cdx-2 or a related protein was interacting with the SIF1 sequences. Similar to BBM enzymes, cytosolic Ft mRNA and protein were significantly decreased at 3 and 6 h after I/R. By 12 h, Ft mRNA, but not Ft protein, had increased to higher than normal levels. We conclude that a rapid recovery of BBM mRNAs and enzymes occurs in regenerating mucosa after upper villus damage. The increase of SIF1 binding protein activity after I/R may enhance SI, and perhaps LPH, gene transcription. The expression of Ft is regulated at both pretranslational and translational levels.
Collapse
Affiliation(s)
- K Y Yeh
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
26
|
Mitchelmore C, Troelsen JT, Sjöström H, Norén O. The HOXC11 homeodomain protein interacts with the lactase-phlorizin hydrolase promoter and stimulates HNF1alpha-dependent transcription. J Biol Chem 1998; 273:13297-306. [PMID: 9582375 DOI: 10.1074/jbc.273.21.13297] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lactase-phlorizin hydrolase (LPH) gene is expressed specifically in the enterocytes of the small intestine. LPH levels are high in newborn mammals, but decrease after weaning. We have previously suggested that the promoter element CE-LPH1, located at -40 to -54, plays an important role in this down-regulation, because the DNA binding activity of a nuclear factor that binds to this site is present specifically in small intestinal extracts and is down-regulated after weaning. In an effort to clone CE-LPH1-binding factors, a yeast one-hybrid genetic selection was used, resulting in the isolation of a partial cDNA encoding the human homeodomain protein HOXC11. The full-length HOXC11 sequence was obtained by rapid amplification of cDNA ends. It was shown in a yeast assay and by electrophoretic mobility shift assay that HOXC11 binds to the CE-LPH1 element with similar specificity to the endogenous intestinal factor. Two HOXC11 transcript sizes were identified by Northern blot analysis. The larger transcript (2.1 kilobase pairs) is likely to contain a translational start site in good context and is present in HeLa cells. The shorter 1.7-kilobase pair transcript, present in HeLa and Caco-2 cells, probably encodes a protein lacking 114 amino acids at the N-terminal end. Both forms of HOXC11 potentiate transcriptional activation of the LPH promoter by HNF1alpha. The expression of HOXC11 mRNA in human fetal intestine suggests a role in early intestinal development.
Collapse
Affiliation(s)
- C Mitchelmore
- Department of Medical Biochemistry and Genetics, Biochemical Laboratory C, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
27
|
Fitzgerald K, Bazar L, Avigan MI. GATA-6 stimulates a cell line-specific activation element in the human lactase promoter. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:G314-24. [PMID: 9486185 DOI: 10.1152/ajpgi.1998.274.2.g314] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactase-phlorizin hydrolase (LPH) synthesis is restricted to differentiated small intestinal enterocytes and is highly regulated during development. Analysis of expression of LPH promoter segments fused with luciferase transfected in Caco-2 cells, a line that uniquely expresses LPH mRNA, mapped an 18-base pair (bp) segment 100 bp upstream of the transcription start site that is required for transactivation. Remarkably, the LPH upstream element (LUE) has no stimulatory activity in both human intestinal and nonintestinal lines in which LPH mRNA is absent. Electrophoretic analysis of sequence-specific DNA-nuclear protein complexes demonstrated the presence of a Caco-2 cell-specific protein(s) (CCP), which is uniformly absent in LPH nonproducer cell lines. Mutational analysis of the LUE demonstrated that bases contained within a GATA consensus motif are critical for both CCP binding and transcription from the LPH promoter. Caco-2 cells express high levels of GATA-6 mRNA in a cell line-specific manner, suggesting that GATA-6 is a CCP that complexes with the LUE. When expressed by a plasmid, GATA-6 transactivated the LPH promoter. The stimulation was abrogated with mutations in the GATA consensus motif as well as mutations in a flanking downstream element. These studies are consistent with an important role of an intestinal GATA binding protein in cell type-specific transactivation of the LPH promoter.
Collapse
Affiliation(s)
- K Fitzgerald
- Department of Pathology, Georgetown University School of Medicine, Washington, District of Columbia 20007, USA
| | | | | |
Collapse
|
28
|
Demangel C, Rouyre S, Alzari PM, Nato F, Longacre S, Lafaye P, Mazie JC. Phage-displayed mimotopes elicit monoclonal antibodies specific for a malaria vaccine candidate. Biol Chem 1998; 379:65-70. [PMID: 9504719 DOI: 10.1515/bchm.1998.379.1.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phage-displayed peptide CGRVCLRC (C15) has been isolated from a random library by affinity screening with the D14-3 monoclonal antibody, which was raised to the 42 kDa C-terminal fragment of the major merozoite surface protein 1 of Plasmodium vivax (Pv42). In order to investigate the use of such mimotopes as possible vaccine components, we studied the antibody response in Biozzi mice immunized with C15. High titers of antibodies cross-reacting with Pv42 were generated and the IC50 of all immune sera were in the 5 x 10(-9) M range. Two monoclonal antibodies that specifically bind the Pv42 fragment were isolated. Although these mAbs had a lower affinity for Pv42 when compared to D14-3, they reproduced the cross-reactivity of D14-3 with the equivalent protein in P. cynomolgi, a close relative of P. vivax. DNA sequence analysis showed similarities between the germline genes and the canonical CDR conformations of all three antibodies, but molecular modeling failed to reveal common structural features of their paratopes that could account for their cross-reacting patterns. These data demonstrate that mimotopes selected from random repertoires do not necessarily represent structural equivalents of the original antigen but provide functional images that could replace it for vaccine development.
Collapse
Affiliation(s)
- C Demangel
- Hybridolab, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Human adult-onset lactase decline is a biologic feature characteristic of the maturing intestine in the majority of the world's population. The digestion and absorption of lactose, the major carbohydrate in milk and also the main substrate for lactase, is often variable, a consequence of lactase levels, gastric emptying rate, and colonic salvage. Although commercially available "lactase" products alleviate symptoms in many lactose-intolerant people, a greater understanding of this variability in lactose tolerance could lead to interventions that reduce the rate of gastric emptying and/or increase the proliferation of lactose-metabolizing bacteria in the colon, leading to more efficient lactose utilization. Adult-onset lactase decline appears to be a risk factor for developing osteoporosis, owing to avoidance of dairy products or interference of undigested lactose with calcium absorption. Elderly with both adult-onset lactase decline and atrophic gastritis or those undergoing anti-ulcer treatment may have an increased risk of low calcium absorption owing to the lack of gastric acid that facilitates calcium uptake. Thus, lactose-intolerant elders should monitor their calcium nutrition status carefully.
Collapse
Affiliation(s)
- M F Lee
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, USA
| | | |
Collapse
|
30
|
Motohashi Y, Fukushima A, Kondo T, Sakuma K. Lactase decline in weaning rats is regulated at the transcriptional level and not caused by termination of milk ingestion. J Nutr 1997; 127:1737-43. [PMID: 9278553 DOI: 10.1093/jn/127.9.1737] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lactase activity declines during postnatal development in rats, but little is known about the underlying molecular mechanism of this phenomenon. We attempted to clarify whether the regulation was at the transcriptional or post-transcriptional level and to examine the effects of dietary factors on that regulation. Newborn rats were divided into two groups, prolonged nursing and weaning, at d 21. The prolonged nursing rats were nursed for a further 6 d, whereas weaning rats were separated from their dams and fed nonpurified diet for the same period. The patterns of declining lactase protein and mRNA concentrations during weaning were determined by Western blot and Northern blot analyses, respectively, and compared with lactase activity. There were significant (P < 0.001) correlations between them: r = 0.97 for specific activity vs. protein, r = 0.99 for specific activity vs. mRNA and r = 0.96 for protein vs. mRNA. The lactase activity per milligram DNA showed a pattern similar to that of the specific activity. This result argues against the decline in lactase activity being due to the dilution caused by newly synthesized materials during the weaning period and suggests transcriptional regulation. Furthermore, the prolonged nursing rats showed the same results as weanlings for lactase protein, mRNA, specific activity and activity per milligram DNA. These observations indicate that the regulation of lactase expression is at the transcriptional level and that it is not affected by the termination of milk ingestion.
Collapse
Affiliation(s)
- Y Motohashi
- Molecular Nutrition, Kagawa Nutrition University, Sakado, Saitama 350-02, Japan
| | | | | | | |
Collapse
|
31
|
Serra D, Bellido D, Asins G, Arias G, Vilaró S, Hegardt FG. The expression of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme-A synthase in neonatal rat intestine and liver is under transcriptional control. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:16-24. [PMID: 8620869 DOI: 10.1111/j.1432-1033.1996.0016n.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HOMeGlt-CoA) synthase regulates ketogenesis in the liver of adult rat and in the intestine and liver of neonatal animals but whose mechanisms of regulation have not been fully defined. To investigate transcriptional control of this gene in intestine and liver of suckling rats a quantitative PCR amplification of the pre-mRNA (heteronuclear RNA), compose of part of the first exon and of the first intron, was carried out. Results show that the intestinal pre-mRNA for mitochondrial HOMeGlt-CoA synthase from suckling rats follows a pattern that is nearly identical to that of mature mRNA, with maximum levels on the ninth postnatal day then decreasing smoothly so that at weaning there is no transcriptional activity. Mitochondrial HOMeGlt-CoA synthase protein follows a pattern that is identical to the pre-mRNA and mature mRNA, suggesting no translational regulation. The changes in transcriptional activity are not produced by the presence of an alternative promoter, since the transcription-initiation site is identical in several tissues assayed, including intestine and liver. Enterocytes are the only intestinal cells that express this ketogenic enzyme, as deduced from immunolocalization experiments. The mature intestinal protein is located in mitochondria and not in the cytosol, which coincides with what is found in liver. By using analogous techniques we conclude that hepatic pre-mRNA of mitochondrial HOMeGlt-CoA synthase from suckling rats follows a pattern of expression identical to that of mature hepatic mRNA, which also suggests a transcriptional modulation of this gene in the liver of neonatal rats.
Collapse
Affiliation(s)
- D Serra
- Unit of Biochemistry, School of Pharmacy, University of Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Lambert M, Colnot S, Suh E, L'Horset F, Blin C, Calliot ME, Raymondjean M, Thomasset M, Traber PG, Perret C. cis-Acting elements and transcription factors involved in the intestinal specific expression of the rat calbindin-D9K gene: binding of the intestine-specific transcription factor Cdx-2 to the TATA box. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:778-88. [PMID: 8665895 DOI: 10.1111/j.1432-1033.1996.00778.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The calbindin-D9K (CaBP9k) gene is mainly expressed in differentiated duodenal epithelial cells and is used as a model for studying the molecular mechanisms of intestine-specific transcription. The gene has been cloned, two major DNase-I-hypersensitive sites in the duodenum have been described, and a vitamin-D-response element has been identified. We have now analysed the transcription factors and regulatory sequences involved in the transcription of the CaBP9k gene in the intestine in ex vivo and in vitro experiments. Transfection experiments in intestinal (CaCo-2) and non-intestinal (HeLa) cell lines defined two regions in the 5'-flanking sequences of the rat CaBP9k gene. A minimal proximal region (-117 to +20) promoted transcription in both intestinal expressing and non-expressing cell lines. Tissue specificity was conferred by the sequences situated further upstream, which are responsible for complete repression in the non-intestinal cells. Intestinal transcription was specified by the proximal region, containing a specialized TATA box, and a distal region, which contains a previously described intestinal DNase-I-hypersensitive site. In vitro DNase I footprinting, electrophoretic mobility shift assays and antibody supershift assays were used to examine the factors bound to the proximal promoter region (-800 to +80 bp). Rat duodenal nuclear extracts protected 12 sites. Some of them appear to be binding sites for ubiquitous (nuclear factor 1) or hepatic-enriched sites (hepatocyte nuclear factors 1 and 4, enhancer binding protein alpha and beta factors. DNA binding studies and transfection experiments indicated that an intestine-specific transcription factor, caudal homeobox-2, binds to the TATA box of the rat CaBP9k gene. These data contribute to our understanding of the control of the intestinal transcription of the CaBP9k gene and demonstrate that several trans-acting factors, other than the vitamin D receptor, may be factors for intestine-specific CaBP9k gene expression.
Collapse
Affiliation(s)
- M Lambert
- INSERM U120, Hôpital Robert Debré, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jacob R, Radebach I, Wüthrich M, Grünberg J, Sterchi EE, Naim HY. Maturation of human intestinal lactase-phlorizin hydrolase: generation of the brush border form of the enzyme involves at least two proteolytic cleavage steps. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:789-95. [PMID: 8665896 DOI: 10.1111/j.1432-1033.1996.t01-1-00789.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Human lactase-phlorizin hydrolase (LPH), a brush border membrane hydrolase of the small intestine, is synthesized as a precursor molecule that undergoes proteolytic cleavage to yield mature LPH (LPHbeta) by a trypsin-like protease (Naim et al., 1987, 1991). Arg868-Ala869 has been previously proposed to be the putative cleavage site for this processing step. Site-directed mutagenesis of this monobasic site does not lead to the generation of an uncleaved proLPH species, which strongly suggests the existence of an additional cleavage site. Further analyses of LPH synthesized in different cell lines lend support to this hypothesis. Biosynthetic labeling of human intestinal biopsy samples in the presence of trypsin reveals an LPHbeta species that is slightly smaller than the intracellularly cleaved molecule. When the proLPH molecule is screened for potential cleavage sites, two dibasic pairs are revealed upstream of the N-terminal end of brush border LPH at Lys851-Arg852 and Arg830-Lys831. Treatment of proLPH with trypsin for different periods of time supports the idea of at least two cleavage steps, whereby Arg868-Ala869 represents the final cleavage site that generates LPHbeta. We propose that the initial cleavage of proLPH takes place intracellularly at a site further away from Arg868-Ala869, to generate LPHbeta initial; LPHbeta is subsequently cleaved extracellularly in the gut lumen, presumably by trypsin, at Arg868-Ala869 to mature brush border LPH (LPHbeta initial).
Collapse
Affiliation(s)
- R Jacob
- Protein Secretion Group, Institute of Microbiology, Heinrich Heine University of Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Thomsen PD, Johansson M, Troelsen JT, Andersson L. The lactase phlorizin hydrolase (LCT) gene maps to pig chromosome 15q13. Anim Genet 1995; 26:49-52. [PMID: 7702213 DOI: 10.1111/j.1365-2052.1995.tb02621.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A porcine 17kb genomic fragment was used as probe to map the lactase phlorizin hydrolase (LCT) gene to pig chromosome 15q13 by fluorescence in situ hybridization. Further, a three-allele TaqI RFLP was used to add the LCT gene to the proximal end of the chromosome 15 linkage map. Comparison of the human chromosome 2 gene map and the gene map of pig chromosome 15 indicates that the part of human chromosome 2 distal to the q13 band is homologous to pig chromosome 15.
Collapse
Affiliation(s)
- P D Thomsen
- Department of Anatomy and Physiology, Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | | | |
Collapse
|
35
|
Van Beers EH, Büller HA, Grand RJ, Einerhand AW, Dekker J. Intestinal brush border glycohydrolases: structure, function, and development. Crit Rev Biochem Mol Biol 1995; 30:197-262. [PMID: 7555019 DOI: 10.3109/10409239509085143] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hydrolytic enzymes of the intestinal brush border membrane are essential for the degradation of nutrients to absorbable units. Particularly, the brush border glycohydrolases are responsible for the degradation of di- and oligosaccharides into monosaccharides, and are thus crucial for the energy-intake of humans and other mammals. This review will critically discuss all that is known in the literature about intestinal brush border glycohydrolases. First, we will assess the importance of these enzymes in degradation of dietary carbohydrates. Then, we will closely examine the relevant features of the intestinal epithelium which harbors these glycohydrolases. Each of the glycohydrolytic brush border enzymes will be reviewed with respect to structure, biosynthesis, substrate specificity, hydrolytic mechanism, gene regulation and developmental expression. Finally, intestinal disorders will be discussed that affect the expression of the brush border glycohydrolases. The clinical consequences of these enzyme deficiency disorders will be discussed. Concomitantly, these disorders may provide us with important details regarding the functions and gene expression of these enzymes under specific (pathogenic) circumstances.
Collapse
|
36
|
Boukamel R, Freund JN. The cis-element CE-LPH1 of the rat intestinal lactase gene promoter interacts in vitro with several nuclear factors present in endodermal tissues. FEBS Lett 1994; 353:108-12. [PMID: 7926010 DOI: 10.1016/0014-5793(94)01026-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have shown by electrophoretic mobility shift assays that the nucleotide sequence CE-LPH1, centred at position -49 with respect to the transcription start site of the rat gene encoding intestinal lactase-phlorizin hydrolase, interacts in vitro with nuclear proteins present in the jejunum of suckling animals. Proteins binding to this element were also found in organs of endodermal origin that do not (or no longer) express lactase-phlorizin hydrolase, i.e. the colon, lung and the liver, but not in the brain. However, a DNA-protein interaction was hardly detected with nuclear extracts prepared from adult tissues, although typical factors binding to the Sp1 binding site were detected at the adult stage as in the sucklings. Southwestern blotting experiments conducted with nuclear extracts prepared from the tissues of suckling rats indicated that CE-LPH1 interacts with several factors in the jejunum, colon, lung and the liver. Some of these DNA-binding proteins are specifically expressed in the jejunum or in the liver, whereas others seem to be shared with the colon and the lung. Hence, the cis-element CE-LPH1 located in close vicinity to the pseudo-TATA-box of the intestinal lactase-phlorizin hydrolase gene promoter interacts in vitro with a family of nuclear proteins which may represent markers of the endodermal lineage predominantly expressed prior to weaning.
Collapse
Affiliation(s)
- R Boukamel
- Institut National de la Santé et de la Recherche Médicale, Unité 381, Strasbourg, France
| | | |
Collapse
|
37
|
Savidge TC, Smith MW, Mayel-Afshar S, Collins AJ, Freeman TC. Selective regulation of epithelial gene expression in rabbit Peyer's patch tissue. Pflugers Arch 1994; 428:391-9. [PMID: 7816561 DOI: 10.1007/bf00724523] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The physiological mechanisms that regulate epithelial gene expression during enterocyte migration and differentiation are still poorly understood. The present study has used a combination of quantitative in situ hybridisation, immunohistochemistry and enzyme cytochemistry to examine epithelial cell differentiation in rabbit small intestine. We have measured and compared the levels of mRNA and enzyme activity of the enterocyte brush border markers alkaline phosphatase, amino-peptidase N and lactase in normal villus epithelia and in epithelial cells exposed directly to the Peyer's patch immune environment. All three genes appeared to be expressed in parallel, but in each epithelial population examined, the pattern of gene expression was different. The level of these mRNAs was markedly reduced in Peyer's patch-associated epithelia, this being most pronounced in the follicle-associated epithelium, compared with normal villi. The activities of alkaline phosphatase and aminopeptidase N approximated the expression of their genes, whereas additional post-transcriptional events were shown to clearly contribute to the level of lactase activity in these tissues. These findings demonstrate that the reduced brush border hydrolase activity in Peyer's patch tissue that has been observed previously, is due to a down-regulation of epithelial gene expression in this location. These observations have been used to discuss epithelial differentiation in Peyer's patch tissue and the possible role of local immune factors in regulating such events.
Collapse
Affiliation(s)
- T C Savidge
- Department of Cellular Physiology, Babraham Institute, Cambridge, UK
| | | | | | | | | |
Collapse
|
38
|
Rings EH, Krasinski SD, van Beers EH, Moorman AF, Dekker J, Montgomery RK, Grand RJ, Büller HA. Restriction of lactase gene expression along the proximal-to-distal axis of rat small intestine occurs during postnatal development. Gastroenterology 1994; 106:1223-32. [PMID: 8174884 DOI: 10.1016/0016-5085(94)90013-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIMS Developmental changes of lactase activity along the proximal-to-distal axis of the small intestine are poorly understood. A study of delineate lactase gene expression at the cellular level was undertaken. METHODS The topographical regulation of lactase was studied in conjunction with sucrase-isomaltase in proximal, middle, and distal segments of 0-, 7-, 14-, 16-, 18-, 21-, and 28-day-old and adult rats using in sity hybridization, immunohistochemistry, and ribonuclease protection assays. RESULTS From 0 to 16 days, lactase messenger RNA (mRNA) and protein were abundant along the total length of the small intestine. However, at weaning, lactase mRNA and protein were no longer detectable in the terminal ileum. After 28 days, zones of reduced lactase expression were found in the duodenum and terminal ileum. These zones demonstrated expression of lactase protein in scattered enterocytes along the villus (patchy expression). In contrast, sucrase-isomaltase was first detected at 16 days, with patchy expression along the total small intestine; at 21 days it was abundant. CONCLUSIONS Concordant changes in both lactase mRNA and protein detection during development suggest that the horizontal gradient of lactase enzyme expression is dependent on lactase mRNA abundance. Furthermore, zones of patchy lactase expression appear around weaning and flank the area of high lactase expression in the midintestine. Patchy expression is also found for sucrase-isomaltase before weaning.
Collapse
Affiliation(s)
- E H Rings
- Department of Pediatrics, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Rings EH, van Beers EH, Krasinski SD, Verhave M, Montgomery RK, Grand RJ, Dekker J, Büller HA. Lactase; Origin, gene expression, localization, and function. Nutr Res 1994. [DOI: 10.1016/s0271-5317(05)80212-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Fajardo O, Naim HY, Lacey SW. The polymorphic expression of lactase in adults is regulated at the messenger RNA level. Gastroenterology 1994; 106:1233-41. [PMID: 8174885 DOI: 10.1016/0016-5085(94)90014-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIMS Lactase phlorizin hydrolase (LPH) activity is high in infants but declines 80%-90% before adulthood in most mammals, including humans. However, 95% of whites show autosomal dominant inheritance of a lifelong high lactose digesting capacity (LDC). This study attempted to clarify the molecular mechanism(s) of this phenomenon (posttranslational vs. pretranslational). METHODS A race- and sex-balanced cohort (n = 20) was studied, and lactose tolerance and levels of jejunal lactase protein, activity, and messenger RNA (mRNA) were measured. RESULTS These data confirm that black heritage predicts low LDC, and white heritage predicts high LDC. Lactase breath hydrogen and determination of lactase/sucrase ratio (L/S) from jejunal biopsy specimens divide the group by high and low LDC phenotypes concordantly. All subjects with an L/S ratio > 0.5 had immunodetectable LPH protein and measurably higher LPH mRNA levels than the remaining subjects. LPH mRNA levels are highly correlated with lactase specific activity (r = 0.80) and L/S ratio (r = 0.88). CONCLUSIONS The direct correlation between LPH mRNA levels and lactase expression argues that the gene responsible for the human lactase polymorphism regulates the level of LPH mRNA.
Collapse
Affiliation(s)
- O Fajardo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | | | | |
Collapse
|
42
|
Troelsen JT, Olsen J, Mitchelmore C, Hansen GH, Sjöström H, Norén O. Two intestinal specific nuclear factors binding to the lactase-phlorizin hydrolase and sucrase-isomaltase promoters are functionally related oligomeric molecules. FEBS Lett 1994; 342:297-301. [PMID: 8150088 DOI: 10.1016/0014-5793(94)80520-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lactase-phlorizin hydrolase (LPH) and sucrase-isomaltase (SI) are enterocyte-specific gene products. The identification of regulatory cis-elements in the promoter of these two genes has enabled us to carry out comparative studies of the corresponding intestinal-specific nuclear factors (NF-LPH1 and SIF1-BP). Electrophoretic mobility shift assays demonstrated that the two nuclear factors compete for binding on the same cis-elements. The molecular size of the DNA binding polypeptide is estimated to be approximately 50 kDa for both factors. In the native form the factors are found as 250 kDa oligomeric complexes. Based on these results NF-LPH1 and SIF1-BP are suggested to be either identical or closely related molecules.
Collapse
Affiliation(s)
- J T Troelsen
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Troelsen JT, Mehlum A, Olsen J, Spodsberg N, Hansen GH, Prydz H, Norén O, Sjöström H. 1 kb of the lactase-phlorizin hydrolase promoter directs post-weaning decline and small intestinal-specific expression in transgenic mice. FEBS Lett 1994; 342:291-6. [PMID: 8150087 DOI: 10.1016/0014-5793(94)80519-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adult-type hypolactasia is a genetic condition making approximately one half of the human population intolerant to milk because of abdominal symptoms. The cause is a post-weaning down-regulation of the intestinal-specific enzyme lactase-phlorizin hydrolase (LPH) reducing the intestinal capacity to hydrolyze lactose. We here demonstrate that the stretch -17 to -994 in the pig LPH-promoter carries cis-elements which direct a small intestinal-specific expression and a post-weaning decline of a linked rabbit beta-globin gene. These data demonstrate that the post-weaning decline of LPH is mainly due to a transcriptional down-regulation.
Collapse
Affiliation(s)
- J T Troelsen
- Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Simon T, Roth K, Gordon J. Use of transgenic mice to map cis-acting elements in the liver fatty acid-binding protein gene (Fabpl) that regulate its cell lineage-specific, differentiation-dependent, and spatial patterns of expression in the gut epithelium and in the liver acinus. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46851-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Keller P, Zwicker E, Mantei N, Semenza G. The levels of lactase and of sucrase-isomaltase along the rabbit small intestine are regulated both at the mRNA level and post-translationally. FEBS Lett 1992; 313:265-9. [PMID: 1446747 DOI: 10.1016/0014-5793(92)81206-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We determined along the small intestine of young and adult rabbits the activities of lactase (LPH) and sucrase (SI), the levels of their cognate mRNAs, and examined the in vitro biosynthesis of LPH and pro-SI. Lactase activity is low in the proximal 1/3 of the intestine, whereas the mRNA levels are high. However, the rates of biosynthesis of the LPH forms correlated well with the steady-state levels of LPH mRNA in all segments, indicating that factor(s) acting post-translationally produce a decline in brush border LPH in the proximal small intestine. These factor(s) are not involved in the processing of pro-LPH to mature LPH, since the relative amounts of the various forms of LPH are almost the same along the small intestine. Unexpectedly, we find that also for SI the ratio of activity to mRNA is low in proximal intestine. The biosynthesis of pro-SI correlates with the steady-state levels of its mRNA. Hence, the steady-state levels of LPH and SI along the small intestine are regulated both by mRNA levels and by posttranslational factor(s).
Collapse
Affiliation(s)
- P Keller
- Department of Biochemistry, Swiss Federal Institute of Technology, ETH-Zentrum, Zürich
| | | | | | | |
Collapse
|