1
|
Deery HA, Liang E, Di Paolo R, Voigt K, Murray G, Siddiqui MN, Egan GF, Moran C, Jamadar SD. The association of regional cerebral blood flow and glucose metabolism in normative ageing and insulin resistance. Sci Rep 2024; 14:14574. [PMID: 38914735 PMCID: PMC11196590 DOI: 10.1038/s41598-024-65396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Rising rates of insulin resistance and an ageing population are set to exact an increasing toll on individuals and society. Here we examine the contribution of age and insulin resistance to the association of cerebral blood flow and glucose metabolism; both critical process in the supply of energy for the brain. Thirty-four younger (20-42 years) and 41 older (66-86 years) healthy adults underwent a simultaneous resting state MR/PET scan, including arterial spin labelling. Rates of cerebral blood flow and glucose metabolism were derived using a functional atlas of 100 brain regions. Older adults had lower cerebral blood flow than younger adults in 95 regions, reducing to 36 regions after controlling for cortical atrophy and blood pressure. Lower cerebral blood flow was also associated with worse working memory and slower reaction time in tasks requiring cognitive flexibility and response inhibition. Younger and older insulin sensitive adults showed small, negative correlations between relatively high rates of regional cerebral blood flow and glucose metabolism. This pattern was inverted in insulin resistant older adults, who showed hypoperfusion and hypometabolism across the cortex, and a positive correlation. In insulin resistant younger adults, the association showed inversion to positive correlations, although not to the extent seen in older adults. Our findings suggest that the normal course of ageing and insulin resistance alter the rates of and associations between cerebral blood flow and glucose metabolism. They underscore the criticality of insulin sensitivity to brain health across the adult lifespan.
Collapse
Affiliation(s)
- Hamish A Deery
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| | - Emma Liang
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Robert Di Paolo
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Katharina Voigt
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gerard Murray
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - M Navyaan Siddiqui
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Chris Moran
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne, VIC, 3004, Australia
| | - Sharna D Jamadar
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| |
Collapse
|
2
|
Peterson BS, Li J, Trujillo M, Sawardekar S, Balyozian D, Bansal S, Sun BF, Marcelino C, Nanda A, Xu T, Amen D, Bansal R. A multi-site 99mTc-HMPAO SPECT study of cerebral blood flow in a community sample of patients with major depression. Transl Psychiatry 2024; 14:234. [PMID: 38830866 PMCID: PMC11148018 DOI: 10.1038/s41398-024-02961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Prior regional Cerebral Blood Flow (rCBF) studies in Major Depressive Disorder (MDD) have been limited by small, highly selective, non-representative samples that have yielded variable and poorly replicated findings. The aim of this study was to compare rCBF measures in a large, more representative community sample of adults with MDD and healthy control participants. This is a cross-sectional, retrospective multi-site cohort study in which clinical data from 338 patients 18-65 years of age with a primary diagnosis of MDD were retrieved from a central database for 8 privately owned, private-pay outpatient psychiatric centers across the United States. Two 99mTc-HMPAO SPECT brain scans, one at rest and one during performance of a continuous performance task, were acquired as a routine component of their initial clinical evaluation. In total, 103 healthy controls, 18-65 years old and recruited from the community were also assessed and scanned. Depressed patients had significantly higher rCBF in frontal, anterior cingulate, and association cortices, and in basal ganglia, thalamus, and cerebellum, after accounting for significantly higher overall CBF. Depression severity associated positively with rCBF in the basal ganglia, hippocampus, cerebellum, and posterior white matter. Elevated rCBF was especially prominent in women and older patients. Elevated rCBF likely represents pathogenic hypermetabolism in MDD, with its magnitude in direct proportion to depression severity. It is brain-wide, with disproportionate increases in cortical and subcortical attentional networks. Hypermetabolism may be a reasonable target for novel therapeutics in MDD.
Collapse
Affiliation(s)
- Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA.
| | - Jennifer Li
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Manuel Trujillo
- Department of Psychiatry at NYU Grossman School of Medicine, New York, NY, USA
- Amen Clinics Inc., Costa Mesa, CA, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - David Balyozian
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Siddharth Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Bernice F Sun
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Courtney Marcelino
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Anoop Nanda
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Tracy Xu
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Gulej R, Csik B, Faakye J, Tarantini S, Shanmugarama S, Chandragiri SS, Mukli P, Conley S, Csiszar A, Ungvari Z, Yabluchanskiy A, Nyúl-Tóth Á. Endothelial deficiency of insulin-like growth factor-1 receptor leads to blood-brain barrier disruption and accelerated endothelial senescence in mice, mimicking aspects of the brain aging phenotype. Microcirculation 2024; 31:e12840. [PMID: 38082450 PMCID: PMC10922445 DOI: 10.1111/micc.12840] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Age-related blood-brain barrier (BBB) disruption, cerebromicrovascular senescence, and microvascular rarefaction substantially contribute to the pathogenesis of vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Previous studies established a causal link between age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), cerebromicrovascular dysfunction, and cognitive decline. The aim of our study was to determine the effect of IGF-1 signaling on senescence, BBB permeability, and vascular density in middle-age and old brains. METHODS Accelerated endothelial senescence was assessed in senescence reporter mice (VE-Cadherin-CreERT2 /Igf1rfl/fl × p16-3MR) using flow cytometry. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, BBB integrity and capillary density were studied in mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2 /Igf1rfl/fl ) using intravital two-photon microscopy. RESULTS In VE-Cadherin-CreERT2 /Igf1rfl/fl mice: (1) there was an increased presence of senescent endothelial cells; (2) cumulative permeability of the microvessels to fluorescent tracers of different molecular weights (0.3-40 kDa) is significantly increased, as compared to that of control mice, whereas decline in cortical capillary density does not reach statistical significance. CONCLUSIONS These findings support the notion that IGF-1 signaling plays a crucial role in preserving a youthful cerebromicrovascular endothelial phenotype and maintaining the integrity of the BBB.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Jin SO, Mérida I, Stavropoulos I, Elwes RDC, Lam T, Guedj E, Girard N, Costes N, Hammers A. Characterisation of a novel [ 18F]FDG brain PET database and combination with a second database for optimising detection of focal abnormalities, using focal cortical dysplasia as an example. EJNMMI Res 2023; 13:98. [PMID: 37964137 PMCID: PMC10645721 DOI: 10.1186/s13550-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/26/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Brain [18F]FDG PET is used clinically mainly in the presurgical evaluation for epilepsy surgery and in the differential diagnosis of neurodegenerative disorders. While scans are usually interpreted visually on an individual basis, comparison against normative cohorts allows statistical assessment of abnormalities and potentially higher sensitivity for detecting abnormalities. Little work has been done on out-of-sample databases (acquired differently to the patient data). Combination of different databases would potentially allow better power and discrimination. We fully characterised an unpublished healthy control brain [18F]FDG PET database (Marseille, n = 60, ages 21-78 years) and compared it to another publicly available database (MRXFDG, n = 37, ages 23-65 years). We measured and then harmonised spatial resolution and global values. A collection of patient scans (n = 34, 13-48 years) with histologically confirmed focal cortical dysplasias (FCDs) obtained on three generations of scanners was used to estimate abnormality detection rates using standard software (statistical parametric mapping, SPM12). RESULTS Regional SUVs showed similar patterns, but global values and resolutions were different as expected. Detection rates for the FCDs were 50% for comparison with the Marseille database and 53% for MRXFDG. Simply combining both databases worsened the detection rate to 41%. After harmonisation of spatial resolution, using a full factorial design matrix to accommodate global differences, and leaving out controls older than 60 years, we achieved detection rates of up to 71% for both databases combined. Detection rates were similar across the three scanner types used for patients, and high for patients whose MRI had been normal (n = 10/11). CONCLUSIONS As expected, global and regional data characteristics are database specific. However, our work shows the value of increasing database size and suggests ways in which database differences can be overcome. This may inform analysis via traditional statistics or machine learning, and clinical implementation.
Collapse
Affiliation(s)
- Sameer Omer Jin
- Faculty of Life Sciences and Medicine, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- King's College London & Guy's and St Thomas' PET Centre, London, UK
| | - Inés Mérida
- Centre d'Etude et de Recherche Multimodale et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Lyon, France
| | - Ioannis Stavropoulos
- Department of Clinical Neurophysiology, King's College Hospital, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Robert D C Elwes
- Department of Clinical Neurophysiology, King's College Hospital, London, UK
| | - Tanya Lam
- Children's Neuroscience Centre, Evelina London Children's Hospital, Guy's and St Thomas' NHS Trust, London, UK
| | - Eric Guedj
- Nuclear Medicine Department, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Aix Marseille University, Marseille, France
| | - Nadine Girard
- Department of Neuroradiology, APHM, CRMBM, UMR CNRS 7339, Timone Hospital, Aix Marseille University, Marseille, France
| | - Nicolas Costes
- Centre d'Etude et de Recherche Multimodale et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Lyon, France
| | - Alexander Hammers
- Faculty of Life Sciences and Medicine, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- King's College London & Guy's and St Thomas' PET Centre, London, UK.
| |
Collapse
|
5
|
Kwok CHR, Park JC, Joseph SZ, Foster JK, Green DJ, Jansen SJ. Cognition and Cerebral Blood Flow After Extracranial Carotid Revascularization for Carotid Atherosclerosis: A Systematic Review. Clin Ther 2023; 45:1069-1076. [PMID: 37770311 DOI: 10.1016/j.clinthera.2023.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE Extracranial atherosclerotic carotid stenosis is associated with inadequate cerebral blood flow (CBF) and cognitive dysfunction. The impact of extracranial carotid revascularization on cognition and how any cognitive change relates to changes in CBF are less clear. This review examines the effects of revascularization of extracranial carotid disease by carotid endarterectomy (CEA) or carotid stenting (CAS) on cognition, and how this relates to changes in CBF. METHODS A systematic review of existing reports in the Medline, Embase, and Cochrane databases was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis statement recommendations. All original retrospective or prospective studies and clinical trials that compared pre- and postoperative cognitive function and CBF in patients with extracranial carotid stenosis who underwent CEA or CAS versus a control group, published between January 1985 and December 2022, were identified and considered eligible for inclusion in this study. FINDINGS Seven studies (661 participants; 460 CEA or CAS) were identified. All were observational studies and of moderate to good methodologic quality. Six studies (619 participants; follow-up range 1 month to 2 years) demonstrated improvement in some cognitive domains following CEA or CAS, improvement in CBF following revascularization, and correlated some of these cognitive changes with changes in CBF. One study (42 participants; 3 months follow-up) found cognitive improvement following CEA, but found no improvement in CBF or any correlation between cognitive and CBF change. The literature however represented heterogenous study populations examining asymptomatic and/or symptomatic carotid stenosis, differing in treatment modality and criteria for control groups ranging from healthy volunteers to those with stenosis but not who underwent surgical revascularization, and finally, differing reporting methods. This heterogeneity precluded meta-analysis. IMPLICATIONS Definitive conclusions are limited by variation in cognitive function assessment, timing of testing, and how these are correlated to CBF. However, research suggests a potential improvement in cognition which may be associated with improvement in CBF, particularly in those patients who have more significant CBF deficit at baseline. Further studies are required to better understand this association and provide a clearer picture of the cognitive effects of carotid revascularization.
Collapse
Affiliation(s)
- C H Ricky Kwok
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth; School of Human Sciences (Exercise and Sports Sciences).
| | - Jun Cheul Park
- Department of Vascular Surgery, Waikato Hospital, Hamilton, New Zealand
| | - Simon Z Joseph
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth; School of Human Sciences (Exercise and Sports Sciences)
| | - Jonathan K Foster
- Synapse Neuropsychology, Perth; Faculty of Health Sciences; School of Paediatrics and Child Health, Faculty of Health and Medical Science
| | | | - Shirley J Jansen
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth; Heart and Vascular Research Institute, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth; School of Medicine, The University of Western Australia, Perth
| |
Collapse
|
6
|
Keijzer K, Niezink AG, de Boer JW, van Doesum JA, Noordzij W, van Meerten T, van Dijk LV. Semi-automated 18F-FDG PET segmentation methods for tumor volume determination in Non-Hodgkin lymphoma patients: a literature review, implementation and multi-threshold evaluation. Comput Struct Biotechnol J 2023; 21:1102-1114. [PMID: 36789266 PMCID: PMC9900370 DOI: 10.1016/j.csbj.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
In the treatment of Non-Hodgkin lymphoma (NHL), multiple therapeutic options are available. Improving outcome predictions are essential to optimize treatment. The metabolic active tumor volume (MATV) has shown to be a prognostic factor in NHL. It is usually retrieved using semi-automated thresholding methods based on standardized uptake values (SUV), calculated from 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG PET) images. However, there is currently no consensus method for NHL. The aim of this study was to review literature on different segmentation methods used, and to evaluate selected methods by using an in house created software tool. A software tool, MUltiple SUV Threshold (MUST)-segmenter was developed where tumor locations are identified by placing seed-points on the PET images, followed by subsequent region growing. Based on a literature review, 9 SUV thresholding methods were selected and MATVs were extracted. The MUST-segmenter was utilized in a cohort of 68 patients with NHL. Differences in MATVs were assessed with paired t-tests, and correlations and distributions figures. High variability and significant differences between the MATVs based on different segmentation methods (p < 0.05) were observed in the NHL patients. Median MATVs ranged from 35 to 211 cc. No consensus for determining MATV is available based on the literature. Using the MUST-segmenter with 9 selected SUV thresholding methods, we demonstrated a large and significant variation in MATVs. Identifying the most optimal segmentation method for patients with NHL is essential to further improve predictions of toxicity, response, and treatment outcomes, which can be facilitated by the MUST-segmenter.
Collapse
Key Words
- 18F-FDG PET
- AT, adaptive thresholding methods
- CAR, chimeric antigen receptor
- CT, computed tomography
- DICOM, Digital Imaging and Communications in Medicine
- DLBCL, Diffuse large B-cell lymphoma
- EANM, European Association of Nuclear Medicine
- EARL, EANM Research Ltd.
- FDG, fluorodeoxyglucose
- HL, Hodgkin lymphoma
- IMG, robustness across image reconstruction methods
- IQR, interquartile range
- LBCL, Large B-cell lymphoma
- LDH, lactate dehydrogenase
- MAN, clinician based evaluation using manual segmentations
- MATV, Metabolic active tumor volume
- MIP, Maximum Intensity Projection
- MUST, Multiple SUV Thresholding
- Metabolic tumor volume
- NHL, Non-Hodgkin lymphoma
- Non-Hodgkin lymphoma
- OBS, robustness across observers
- OS, overall survival
- PD-L1, programmed cell death ligand-1
- PET segmentation
- PET, positron emission tomography
- PFS, progression free survival
- PROG, progression vs non-progression
- PTCL, Peripheral T-cell lymphoma
- PTLD, Post-transplant lymphoproliferative disorder
- QS, quality scores
- SOFT, robustness across software
- SUV thresholding
- SUV, standardized uptake value
- Segmentation software
- TCL, T-cell lymphoma
- UMCG, University Medical Center Groningen
- VOI, volume of interest
- cc, cubic centimeter
Collapse
Affiliation(s)
- Kylie Keijzer
- Department of Hematology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands,Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Anne G.H. Niezink
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Janneke W. de Boer
- Department of Hematology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Jaap A. van Doesum
- Department of Hematology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Tom van Meerten
- Department of Hematology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Lisanne V. van Dijk
- Department of Radiation Oncology, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands,Corresponding author.
| |
Collapse
|
7
|
Cheung MC, Lee TL, Sze SL, Chan AS. Photobiomodulation improves frontal lobe cognitive functions and mental health of older adults with non-amnestic mild cognitive impairment: Case studies. Front Psychol 2023; 13:1095111. [PMID: 36704674 PMCID: PMC9871821 DOI: 10.3389/fpsyg.2022.1095111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction This study investigated the effects of transcranial photobiomodulation (tPBM) on improving the frontal lobe cognitive functions and mental health of older adults. Methods Three older adults with mild cognitive impairment (MCI) of the non-amnestic type received 18-session tPBM stimulation for 9 weeks and were assessed with neuropsychological tests of memory and executive functions and standardized questionnaires on depressive and anxiety symptoms, global cognitive functions, and daily functioning abilities before and after tPBM stimulation. Results At baseline, their intrusion and/or perseveration errors in a verbal memory test and a fluency test, as measures of the frontal lobe cognitive functions, were in the borderline to severely impaired range at baseline. After tPBM stimulation, the three older adults showed various levels of improvement in their frontal lobe cognitive functions. One older adult's intrusion and perseveration errors improved from the <1st-2nd percentile (moderately to severely impaired range) to the 41st-69th percentile (average range), another older adult's intrusion errors improved from the 11th percentile to the 83rd percentile, and the third older adult's intrusion errors improved from the 5th percentile to the 56th percentile. Moreover, improvements in their anxiety and/or depressive symptoms were also observed. One older adult's depressive and anxiety symptoms improved from the severe range at baseline to the mild range after the intervention. The other two older adults' depressive symptoms improved from the mild range at baseline to the normal range after the intervention. Discussion These findings provide preliminary support for the potential of tPBM to improve the frontal lobe cognitive functions and mental health of older adults with MCI. Given the small sample size of only three older adults and the absence of a placebo control group, larger randomized controlled studies are needed to confirm its potential.
Collapse
Affiliation(s)
- Mei-Chun Cheung
- Department of Social Work, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tsz-Lok Lee
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Sophia L. Sze
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Agnes S. Chan
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,*Correspondence: Agnes S. Chan, ✉
| |
Collapse
|
8
|
Yanai S, Tago T, Toyohara J, Arasaki T, Endo S. Reversal of spatial memory impairment by phosphodiesterase 3 inhibitor cilostazol is associated with reduced neuroinflammation and increased cerebral glucose uptake in aged male mice. Front Pharmacol 2022; 13:1031637. [PMID: 36618932 PMCID: PMC9810637 DOI: 10.3389/fphar.2022.1031637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
The nucleotide second messenger 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP) mediate fundamental functions of the brain, including learning and memory. Phosphodiesterase 3 (PDE3) can hydrolyze both cAMP and cGMP and appears to be involved in the regulation of their contents in cells. We previously demonstrated that long-term administration of cilostazol, a PDE3 inhibitor, maintained good memory performance in aging mice. Here, we report on studies aimed at determining whether cilostazol also reverses already-impaired memory in aged male mice. One month of oral 1.5% cilostazol administration in 22-month-old mice reversed age-related declines in hippocampus-dependent memory tasks, including the object recognition and the Morris water maze. Furthermore, cilostazol reduced neuroinflammation, as evidenced by immunohistochemical staining, and increased glucose uptake in the brain, as evidence by positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). These results suggest that already-expressed memory impairment in aged male mice that depend on cyclic nucleotide signaling can be reversed by inhibition of PDE3. The reversal of age-related memory impairments may occur in the central nervous system, either through cilostazol-enhanced recall or strengthening of weak memories that otherwise may be resistant to recall.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tomoko Arasaki
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan,*Correspondence: Shogo Endo,
| |
Collapse
|
9
|
Wang L, Chaudhari K, Winters A, Sun Y, Liu R, Yang SH. Characterizing region-specific glucose metabolic profile of the rodent brain using Seahorse XFe96 analyzer. J Cereb Blood Flow Metab 2022; 42:1259-1271. [PMID: 35078350 PMCID: PMC9207488 DOI: 10.1177/0271678x221077341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The brain is highly complex with diverse structural characteristics in accordance with specific functions. Accordingly, differences in regional function, cellular compositions, and active metabolic pathways may link to differences in glucose metabolism at different brain regions. In the current study, we optimized an acute biopsy punching method and characterized region-specific glucose metabolism of rat and mouse brain by a Seahorse XFe96 analyzer. We demonstrated that 0.5 mm diameter tissue punches from 180-µm thick brain sections allow metabolic measurements of anatomically defined brain structures using Seahorse XFe96 analyzer. Our result indicated that the cerebellum displays a more quiescent phenotype of glucose metabolism than cerebral cortex, basal ganglia, and hippocampus. In addition, the cerebellum has higher AMPK activation than other brain regions evidenced by the expression of pAMPK, upstream pLKB1, and downstream pACC. Furthermore, rodent brain has relatively low mitochondrial oxidative phosphorylation efficiency with up to 30% of respiration linked to proton leak. In summary, our study discovered region-specific glucose metabolic profile and relative high proton leak coupled respiration in the brain. Our study warrants future research on spatial mapping of the brain glucose metabolism in physiological and pathological conditions and exploring the mechanisms and significance of mitochondrial uncoupling in the brain.
Collapse
Affiliation(s)
- Linshu Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Kiran Chaudhari
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ali Winters
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ran Liu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
10
|
Peretti DE, Vállez García D, Renken RJ, Reesink FE, Doorduin J, de Jong BM, De Deyn PP, Dierckx RAJO, Boellaard R. Alzheimer's disease pattern derived from relative cerebral flow as an alternative for the metabolic pattern using SSM/PCA. EJNMMI Res 2022; 12:37. [PMID: 35737201 PMCID: PMC9226207 DOI: 10.1186/s13550-022-00909-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 2-Deoxy-2-[18F]fluoroglucose (FDG) PET is an important tool for the identification of Alzheimer's disease (AD) patients through the characteristic neurodegeneration pattern that these patients present. Regional cerebral blood flow (rCBF) images derived from dynamic 11C-labelled Pittsburgh Compound B (PIB) have been shown to present a similar pattern as FDG. Moreover, multivariate analysis techniques, such as scaled subprofile modelling using principal component analysis (SSM/PCA), can be used to generate disease-specific patterns (DP) that may aid in the classification of subjects. Therefore, the aim of this study was to compare rCBF AD-DPs with FDG AD-DP and their respective performances. Therefore, 52 subjects were included in this study. Fifteen AD and 16 healthy control subjects were used to generate four AD-DP: one based on relative cerebral trace blood (R1), two based on time-weighted average of initial frame intervals (ePIB), and one based on FDG images. Furthermore, 21 subjects diagnosed with mild cognitive impairment were tested against these AD-DPs. RESULTS In general, the rCBF and FDG AD-DPs were characterized by a reduction in cortical frontal, temporal, and parietal lobes. FDG and rCBF methods presented similar score distribution. CONCLUSION rCBF images may provide an alternative for FDG PET scans for the identification of AD patients through SSM/PCA.
Collapse
Affiliation(s)
- Débora E Peretti
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Remco J Renken
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fransje E Reesink
- Department of Neurology, Alzheimer Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bauke M de Jong
- Department of Neurology, Alzheimer Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter P De Deyn
- Department of Neurology, Alzheimer Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. .,Department of Radiology and Nuclear Medicine, Location VU Medical Center, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Differences in Inhibitory Control and Resting Brain Metabolism between Older Chronic Users of Tetrahydrocannabinol (THC) or Cannabidiol (CBD)—A Pilot Study. Brain Sci 2022; 12:brainsci12070819. [PMID: 35884627 PMCID: PMC9312972 DOI: 10.3390/brainsci12070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Δ9-Tetrahydrocannabinol is the main psychoactive component of cannabis and cannabidiol is purportedly responsible for many of the medicinal benefits. The effects of Δ9-tetrahydrocannabinol and cannabidiol in younger populations have been well studied; however, motor function, cognitive function, and cerebral glucose metabolism in older adults have not been extensively researched. The purpose of this study was to assess differences in cognitive function, motor function, and cerebral glucose metabolism (assessed via [18F]-fluorodeoxyglucose positron emission tomography) in older adults chronically using Δ9-tetrahydrocannabinol, cannabidiol, and non-using controls. Eight Δ9-tetrahydrocannabinol users (59.3 ± 5.7 years), five cannabidiol users (54.6 ± 2.1 years), and 16 non-users (58.2 ± 16.9 years) participated. Subjects underwent resting scans and performed cognitive testing (reaction time, Flanker Inhibitory Control and Attention Test), motor testing (hand/arm function, gait), and balance testing. Δ9-tetrahydrocannabinol users performed worse than both cannabidiol users and non-users on the Flanker Test but were similar on all other cognitive and motor tasks. Δ9-tetrahydrocannabinol users also had lower global metabolism and relative hypermetabolism in the bilateral amygdala, cerebellum, and brainstem. Chronic use of Δ9-tetrahydrocannabinol in older adults might negatively influence inhibitory control and alter brain activity. Future longitudinal studies with larger sample sizes investigating multiple Δ9-tetrahydrocannabinol:cannabidiol ratios on functional outcomes and cerebral glucose metabolism in older adults are necessary.
Collapse
|
12
|
Drehmer E, Navarro-Moreno MÁ, Carrera-Juliá S, Moreno ML. A comparative study between olive oil and corn oil on oxidative metabolism. Food Funct 2022; 13:7157-7167. [PMID: 35699154 DOI: 10.1039/d2fo00919f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fats are an important part of diet, but not all lipids have the same structure and chemical properties. Unsaturated fatty acids have one or more double bonds in their structure and can be monounsaturated or polyunsaturated, respectively. Most vegetable oils, such as olive oil and corn oil, contain significant amounts of these fatty acids. The presence of double bonds in the molecule of a fatty acid constitutes vulnerable sites for oxidation reactions generating lipid peroxides, potentially toxic compounds that can cause cellular damage. In response to this oxidative damage, aerobic organisms have intracellular enzymatic antioxidant defense mechanisms. The aim of the present investigation was to study comparatively the effects of control liquid diets, of a defined composition, containing olive oil or corn oil as a lipid source respectively of monounsaturated and polyunsaturated fatty acids, on the oxidative metabolism of rats. Rats were divided into three groups which received a control animal feed diet (A.F.), olive oil liquid diet (O.O) and corn oil liquid diet (C.O) for 30 days. It was observed that the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), increased in the liver and white fat tissue of rats fed with olive oil when compared to the corn oil group. However, in brown fat tissue and blood cells, the enzyme activities showed a tendency to decrease in the olive oil group. In addition, the effect of olive oil and corn oil on several glucose metabolism parameters (pyruvate, lactate, LDH, acetoacetate and beta-hydroxybutyrate) showed that corn oil impairs to a greater extent the cellular metabolism. All these results helped in concluding that some body tissues are more adversely affected than others by the administration of corn oil or olive oil, and their antioxidant defenses and cellular metabolism respond differently too.
Collapse
Affiliation(s)
- Eraci Drehmer
- Department of Health Sciences, Universidad Católica de Valencia "San Vicente Mártir", Valencia, Spain
| | | | - Sandra Carrera-Juliá
- Department of Nutrition and Dietetics, Universidad Católica de Valencia "San Vicente Mártir", Valencia, Spain
| | - Mari Luz Moreno
- Department of Human Physiology and Anatomy, Universidad Católica de Valencia "San Vicente Mártir", C/Ramiro de Maeztu, 14., 46900 Torrente, Valencia, Spain.
| |
Collapse
|
13
|
Tiwari AK, Adhikari A, Mishra LC, Srivastava A. Current Status of Our Understanding for Brain Integrated Functions and its Energetics. Neurochem Res 2022; 47:2499-2512. [PMID: 35689788 DOI: 10.1007/s11064-022-03633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Human/animal brain is a unique organ with substantially high metabolism but it contains no energy reserve that is the reason it requires continuous supply of O2 and energy fluxes through CBF. The main source of energy remains glucose as the other biomolecules do not able to cross the blood-brain barrier. The speed of glucose metabolism is heterogeneous throughout the brain. One of the major flux consumption is Neuron-astrocyte cycling of glutamate and glutamine in glutamatergic neurons (approximately 80% of glucose metabolism in brain). The quantification of cellular glucose and other related substrate in resting, activated state can be analyzed through [18 F]FDG -positron-emission tomography (studying CMRglc) and [13 C/31P -MRS: for neuroenergetics & neurotransmitter cycling &31P-MRS: for energy induction & redox state). Merging basic in vitro studies with these techniques will help to develop new treatment paradigms for human brain diseased conditions.
Collapse
Affiliation(s)
- Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), 226025, Lucknow, Uttar Pradesh, India.
| | - Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), 226025, Lucknow, Uttar Pradesh, India
| | - Lokesh Chandra Mishra
- Department of Zoology, Hansraj College, University of Delhi, North Campus, 110007, Delhi, India
| | | |
Collapse
|
14
|
Liu H, Song Y, Zhao D, Zhan M. Effect of exercise on cognitive impairment in patients undergoing haemodialyses: A systematic review and meta-analysis of randomised controlled trials. J Ren Care 2022; 48:243-252. [PMID: 35338760 DOI: 10.1111/jorc.12420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The influence of exercise on cognition in patients undergoing haemodialysis has been examined. However, evidence elucidating the effects in this patient group is scarce. OBJECTIVE To examine the effect of exercise on cognitive impairment in patients undergoing haemodialysis and provide insight into the effects of various characteristics of exercise on cognitive impairment in this population. DESIGN A systematic review and meta-analysis, following the guidance of PRISMA was undertaken. PARTICIPANTS Adult patients undergoing haemodialysis. RESULTS This review found that exercise significantly improved cognitive impairment in patients undergoing haemodialysis (SMD = 0.37, 95% CI: 0.13, 0.60, p = 0.002). Subgroup analyses demonstrated that both intradialytic exercise (SMD = 0.82, 95% CI: 0.37, 1.26, p < 0.001) and interdialytic exercise (SMD = 0.24, 95% CI: 0.01, 0.47, p = 0.038), exercise for 16 weeks or over (SMD = 0.33, 95% CI: 0.07, 0.58, p = 0.012), and lasting for more than 30 minutes (SMD = 0.52, 95% CI: 0.17, 0.86, p = 0.004) significantly alleviated cognitive impairment. The effect of exercise on cognitive impairment in patients less than 65 years of age (SMD = 0.39, 95% CI: 0.10, 0.68, p = 0.009) was significantly better than those over 65. CONCLUSION Exercise significantly improves cognitive impairment in patients undergoing haemodialysis. Both Intradialytic and interdialytic exercise of at least 30 minutes duration, 3 times weekly, and at least for 16 weeks may play a significant role in alleviating cognitive impairment in patients under 65 years of age.
Collapse
Affiliation(s)
- Huan Liu
- Medical School, Nantong University, Nantong, China
| | - Yan Song
- Medical School, Nantong University, Nantong, China
| | - Danyan Zhao
- Medical School, Nantong University, Nantong, China
| | - Minqi Zhan
- Medical School, Nantong University, Nantong, China
| |
Collapse
|
15
|
Nutrients, Cognitive Function, and Brain Aging: What We Have Learned from Dogs. Med Sci (Basel) 2021; 9:medsci9040072. [PMID: 34842769 PMCID: PMC8628994 DOI: 10.3390/medsci9040072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/13/2021] [Indexed: 12/29/2022] Open
Abstract
Due to a difference in genetics, environmental factors, and nutrition, just like in people, dogs age at different rates. Brain aging in people and dogs share similar morphological changes including irreversible cortical atrophy, cerebral amyloid angiopathy, and ventricular enlargement. Due to severe and irreversible brain atrophy, some aging dogs develop cognitive dysfunction syndrome (CDS), which is equivalent to dementia or Alzheimer’s disease (AD) in people. The risk factors and causes of CDS in dogs have not been fully investigated, but age, gender, oxidative stress, and deficiency of sex hormones appears to be associated with increased risk of accelerated brain aging and CDS in dogs. Both AD and CDS are incurable diseases at this moment, therefore more efforts should be focused on preventing or reducing brain atrophy and minimizing the risk of AD in people and CDS in dogs. Since brain atrophy leads to irreversible cognitive decline and dementia, an optimal nutritional solution should be able to not only enhance cognitive function during aging but also reduce irreversible brain atrophy. Up to now, only one nutritional intervention has demonstrated both cognition-enhancing benefits and atrophy-reducing benefits.
Collapse
|
16
|
Boice JD, Quinn B, Al-Nabulsi I, Ansari A, Blake PK, Blattnig SR, Caffrey EA, Cohen SS, Golden AP, Held KD, Jokisch DW, Leggett RW, Mumma MT, Samuels C, Till JE, Tolmachev SY, Yoder RC, Zhou JY, Dauer LT. A million persons, a million dreams: a vision for a national center of radiation epidemiology and biology. Int J Radiat Biol 2021; 98:795-821. [PMID: 34669549 PMCID: PMC10594603 DOI: 10.1080/09553002.2021.1988183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epidemiologic studies of radiation-exposed populations form the basis for human safety standards. They also help shape public health policy and evidence-based health practices by identifying and quantifying health risks of exposure in defined populations. For more than a century, epidemiologists have studied the consequences of radiation exposures, yet the health effects of low levels delivered at a low-dose rate remain equivocal. MATERIALS AND METHODS The Million Person Study (MPS) of U.S. Radiation Workers and Veterans was designed to examine health effects following chronic exposures in contrast with brief exposures as experienced by the Japanese atomic bomb survivors. Radiation associations for rare cancers, intakes of radionuclides, and differences between men and women are being evaluated, as well as noncancers such as cardiovascular disease and conditions such as dementia and cognitive function. The first international symposium, held November 6, 2020, provided a broad overview of the MPS. Representatives from four U.S. government agencies addressed the importance of this research for their respective missions: U.S. Department of Energy (DOE), the Centers for Disease Control and Prevention (CDC), the U.S. Department of Defense (DOD), and the National Aeronautics and Space Administration (NASA). The major components of the MPS were discussed and recent findings summarized. The importance of radiation dosimetry, an essential feature of each MPS investigation, was emphasized. RESULTS The seven components of the MPS are DOE workers, nuclear weapons test participants, nuclear power plant workers, industrial radiographers, medical radiation workers, nuclear submariners, other U.S. Navy personnel, and radium dial painters. The MPS cohorts include tens of thousands of workers with elevated intakes of alpha particle emitters for which organ-specific doses are determined. Findings to date for chronic radiation exposure suggest that leukemia risk is lower than after acute exposure; lung cancer risk is much lower and there is little difference in risks between men and women; an increase in ischemic heart disease is yet to be seen; esophageal cancer is frequently elevated but not myelodysplastic syndrome; and Parkinson's disease may be associated with radiation exposure. CONCLUSIONS The MPS has provided provocative insights into the possible range of health effects following low-level chronic radiation exposure. When the 34 MPS cohorts are completed and combined, a powerful evaluation of radiation-effects will be possible. This final article in the MPS special issue summarizes the findings to date and the possibilities for the future. A National Center for Radiation Epidemiology and Biology is envisioned.
Collapse
Affiliation(s)
- John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian Quinn
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Armin Ansari
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Steve R. Blattnig
- National Aeronautics and Space Administration Langley Research Center, Hampton, VA, USA
| | - Emily A. Caffrey
- Radian Scientific, LLC, Huntsville, AL, and Risk Assessment Corporation, Neeses, SC, USA
| | - Sarah S. Cohen
- EpidStrategies, a division of ToxStrategies, Inc, Cary, NC, USA
| | | | - Kathryn D. Held
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Derek W. Jokisch
- Francis Marion University, Florence, SC, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Michael T. Mumma
- Vanderbilt University School of Medicine, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | | | | | | | | | - Joey Y. Zhou
- United States Department of Energy, Gaithersburg, MD, USA
| | | |
Collapse
|
17
|
Evaluation of Age and Sex-Related Metabolic Changes in Healthy Subjects: An Italian Brain 18F-FDG PET Study. J Clin Med 2021; 10:jcm10214932. [PMID: 34768454 PMCID: PMC8584846 DOI: 10.3390/jcm10214932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Background: 18F-fluorodeoxyglucose (18F-FDG) positron-emission-tomography (PET) allows detection of cerebral metabolic alterations in neurological diseases vs. normal aging. We assess age- and sex-related brain metabolic changes in healthy subjects, exploring impact of activity normalization methods. Methods: brain scans of Italian Association of Nuclear Medicine normative database (151 subjects, 67 Males, 84 Females, aged 20–84) were selected. Global mean, white matter, and pons activity were explored as normalization reference. We performed voxel-based and ROI analyses using SPM12 and IBM-SPSS software. Results: SPM proved a negative correlation between age and brain glucose metabolism involving frontal lobes, anterior-cingulate and insular cortices bilaterally. Narrower clusters were detected in lateral parietal lobes, precuneus, temporal pole and medial areas bilaterally. Normalizing on pons activity, we found a more significant negative correlation and no positive one. ROIs analysis confirmed SPM results. Moreover, a significant age × sex interaction effect was revealed, with worse metabolic reduction in posterior-cingulate cortices in females than males, especially in post-menopausal age. Conclusions: this study demonstrated an age-related metabolic reduction in frontal lobes and in some parieto-temporal areas more evident in females. Results suggested pons as the most appropriate normalization reference. Knowledge of age- and sex-related cerebral metabolic changes is critical to correctly interpreting brain 18F-FDG PET imaging.
Collapse
|
18
|
Grimm A. Impairments in Brain Bioenergetics in Aging and Tau Pathology: A Chicken and Egg Situation? Cells 2021; 10:2531. [PMID: 34685510 PMCID: PMC8533761 DOI: 10.3390/cells10102531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
The brain is the most energy-consuming organ of the body and impairments in brain energy metabolism will affect neuronal functionality and viability. Brain aging is marked by defects in energetic metabolism. Abnormal tau protein is a hallmark of tauopathies, including Alzheimer's disease (AD). Pathological tau was shown to induce bioenergetic impairments by affecting mitochondrial function. Although it is now clear that mutations in the tau-coding gene lead to tau pathology, the causes of abnormal tau phosphorylation and aggregation in non-familial tauopathies, such as sporadic AD, remain elusive. Strikingly, both tau pathology and brain hypometabolism correlate with cognitive impairments in AD. The aim of this review is to discuss the link between age-related decrease in brain metabolism and tau pathology. In particular, the following points will be discussed: (i) the common bioenergetic features observed during brain aging and tauopathies; (ii) how age-related bioenergetic defects affect tau pathology; (iii) the influence of lifestyle factors known to modulate brain bioenergetics on tau pathology. The findings compiled here suggest that age-related bioenergetic defects may trigger abnormal tau phosphorylation/aggregation and cognitive impairments after passing a pathological threshold. Understanding the effects of aging on brain metabolism may therefore help to identify disease-modifying strategies against tau-induced neurodegeneration.
Collapse
Affiliation(s)
- Amandine Grimm
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, 4002 Basel, Switzerland;
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, 4002 Basel, Switzerland
- Life Sciences Training Facility, University of Basel, 4055 Basel, Switzerland
| |
Collapse
|
19
|
Ennis GE, Kohli A, Jonaitis EM, Betthauser TJ, Oh JM, Taylor CE, Chin N, Koscik RL, Christian BT, Asthana S, Johnson SC, Bendlin BB. The relationship of glucose-stimulated insulin secretion to cerebral glucose metabolism and cognition in healthy middle-aged and older adults. Neurobiol Aging 2021; 105:174-185. [PMID: 34091125 PMCID: PMC8338794 DOI: 10.1016/j.neurobiolaging.2021.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/04/2020] [Accepted: 04/27/2021] [Indexed: 01/04/2023]
Abstract
Insulin resistance (IR) has been related to reduced cerebral glucose metabolism in regions identified as hypometabolic in Alzheimer's clinical syndrome. Insulin secretion (IS) has been less studied than IR despite findings that decreased IS is an early indicator of future type 2 diabetes and a potential predictor of Alzheimer's clinical syndrome. We investigated whether higher IR and lower IS would be associated with greater age-related reductions in regional cerebral glucose metabolism and worse cognitive performance. Two-hour oral glucose tolerance testing and 18F-fluorodeoxyglucose positron emission tomography were performed on 1-2 occasions on a sample of healthy middle-aged and older adults from the Wisconsin Alzheimer's Disease Research Center. Neuropsychological tests were completed during Alzheimer's Disease Research Center Clinical Core visits. Pattern of findings suggested that lower (not higher) IS was related to higher regional cerebral glucose metabolism in middle aged but not older adults, and lower (not higher) IS was also related to better immediate recall. In the context of healthy insulin sensitivity, lower IS may be beneficial to brain health.
Collapse
Affiliation(s)
- Gilda E Ennis
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Akshay Kohli
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin M Jonaitis
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jennifer M Oh
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Chase E Taylor
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nathaniel Chin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca L Koscik
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bradley T Christian
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Hospital Department of Veterans Affairs, Madison, WI, USA
| |
Collapse
|
20
|
Han FY, Conboy‐Schmidt L, Rybachuk G, Volk HA, Zanghi B, Pan Y, Borges K. Dietary medium chain triglycerides for management of epilepsy: New data from human, dog, and rodent studies. Epilepsia 2021; 62:1790-1806. [PMID: 34169513 PMCID: PMC8453917 DOI: 10.1111/epi.16972] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Many studies show that glucose metabolism in epileptic brain areas can be impaired. Energy is crucial to maintain normal brain function, including ion and neurotransmitter balances. Energy deficits can lead to disruption of ion gradients, which can trigger neuronal depolarization and generation of seizures. Thus, perturbed metabolic processing of glucose in epileptogenic brain areas indicates a specific nutritional need for people and animals with epilepsy, as they are likely to benefit from auxiliary brain fuels other than glucose. Ketogenic diets provide the ketone bodies acetoacetate and β-hydroxybutyrate, which can be used as auxiliary fuel by the brain. In approximately 50% children and adults with certain types of epilepsy, who can tolerate and maintain these dietary regimens, seizure frequency can be effectively reduced. More recent data demonstrate that addition of medium chain triglycerides (MCTs), which provide the medium chain fatty acids octanoic and decanoic acid, as well as ketone bodies as auxiliary brain energy, can be beneficial in rodent seizure models, and dogs and humans with epilepsy. Here, this evidence is reviewed, including tolerance in 65% of humans, efficacy studies in dogs, possible anticonvulsant mechanisms of actions of MCTs, and specifically decanoic acid as well as metabolic and antioxidant mechanisms. In conclusion, MCTs are a promising adjunct to standard pharmacological treatment for both humans and dogs with epilepsy, as they lack central nervous system side effects found with current antiepileptic drugs. There is now a need for larger clinical trials in children, adults, and dogs to find the ideal composition and doses of MCTs and the types of epilepsy that respond best.
Collapse
Affiliation(s)
- Felicity Y. Han
- Faculty of MedicineSchool of Biomedical SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
| | | | - Galena Rybachuk
- Technical CommunicationsNestlé Purina PetCare EMENABarcelonaSpain
| | - Holger A. Volk
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary MedicineHanoverGermany
| | - Brian Zanghi
- Research and DevelopmentNestlé Purina PetCareSt. LouisMissouriUSA
| | - Yuanlong Pan
- Research and DevelopmentNestlé Purina PetCareSt. LouisMissouriUSA
| | - Karin Borges
- Faculty of MedicineSchool of Biomedical SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
21
|
Memel M, Staffaroni AM, Cobigo Y, Casaletto KB, Fonseca C, Bettcher BM, Yassa MA, Elahi FM, Wolf A, Rosen HJ, Kramer JH. APOE moderates the effect of hippocampal blood flow on memory pattern separation in clinically normal older adults. Hippocampus 2021; 31:845-857. [PMID: 33835624 PMCID: PMC8295213 DOI: 10.1002/hipo.23327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 03/07/2021] [Indexed: 11/10/2022]
Abstract
Pattern separation, the ability to differentiate new information from previously experienced similar information, is highly sensitive to hippocampal structure and function and declines with age. Functional MRI studies have demonstrated hippocampal hyperactivation in older adults compared to young, with greater task-related activation associated with worse pattern separation performance. The current study was designed to determine whether pattern separation was sensitive to differences in task-free hippocampal cerebral blood flow (CBF) in 130 functionally intact older adults. Given prior evidence that apolipoprotein E e4 (APOE e4) status moderates the relationship between CBF and episodic memory, we predicted a stronger negative relationship between hippocampal CBF and pattern separation in APOE e4 carriers. An interaction between APOE group and right hippocampal CBF was present, such that greater right hippocampal CBF was related to better lure discrimination in noncarriers, whereas the effect reversed directionality in e4 carriers. These findings suggest that neurovascular changes in the medial temporal lobe may underlie memory deficits in cognitively normal older adults who are APOE e4 carriers.
Collapse
Affiliation(s)
- Molly Memel
- San Francisco VA Medical Center, San Francisco, California
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Kaitlin B. Casaletto
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Corrina Fonseca
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Brianne M. Bettcher
- Department of Neurology, University of Colorado Anschutz Medical Campus, CU Alzheimer’s and Cognition Center, Aurora, Colorado
| | - Michael A. Yassa
- Department of Neurobiology and Behavior and Center for the Neurobiology of Learning and Memory, University of California, Irvine, California
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Amy Wolf
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| |
Collapse
|
22
|
Cooper E, Choi PJ, Denny WA, Jose J, Dragunow M, Park TIH. The Use of Heptamethine Cyanine Dyes as Drug-Conjugate Systems in the Treatment of Primary and Metastatic Brain Tumors. Front Oncol 2021; 11:654921. [PMID: 34141613 PMCID: PMC8204086 DOI: 10.3389/fonc.2021.654921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Effective cancer therapeutics for brain tumors must be able to cross the blood-brain barrier (BBB) to reach the tumor in adequate quantities and overcome the resistance conferred by the local tumor microenvironment. Clinically approved chemotherapeutic agents have been investigated for brain neoplasms, but despite their effectiveness in peripheral cancers, failed to show therapeutic success in brain tumors. This is largely due to their poor bioavailability and specificity towards brain tumors. A targeted delivery system might improve the efficacy of the candidate compounds by increasing the retention time in the tumor tissue, and minimizing the numerous side effects associated with the non-specific distribution of the chemotherapy agent. Heptamethine cyanine dyes (HMCDs) are a class of near-infrared fluorescence (NIRF) compounds that have recently emerged as promising agents for drug delivery. Initially explored for their use in imaging and monitoring neoplasms, their tumor-targeting properties have recently been investigated for their use as drug carrier systems. This review will explore the recent developments in the tumour-targeting properties of a specific group of NIRF cyanine dyes and the preclinical evidence for their potential as drug-delivery systems in the treatment of primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Elizabeth Cooper
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Hugh Green Biobank, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thomas I.-H. Park
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Bayliak MM, Mosiichuk NM, Sorochynska OM, Kuzniak OV, Sishchuk LO, Hrushchenko AO, Semchuk AO, Pryimak TV, Vasylyk YV, Gospodaryov DV, Storey KB, Garaschuk O, Lushchak VI. Middle aged turn point in parameters of oxidative stress and glucose catabolism in mouse cerebellum during lifespan: minor effects of every-other-day fasting. Biogerontology 2021; 22:315-328. [PMID: 33786674 DOI: 10.1007/s10522-021-09918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
The cerebellum is considered to develop aging markers more slowly than other parts of the brain. Intensification of free radical processes and compromised bioenergetics, critical hallmarks of normal brain aging, may be slowed down by caloric restriction. This study aimed to evaluate the intensity of oxidative stress and the enzymatic potential to utilize glucose via glycolysis or the pentose phosphate pathway (PPP) in the cerebellum of mice under ad libitum versus every-other-day fasting (EODF) feeding regimens. Levels of lipid peroxides, activities of antioxidant and key glycolytic and PPP enzymes were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice. The cerebellum showed the most dramatic increase in lipid peroxide levels, antioxidant capacity and PPP key enzyme activities and the sharpest decline in the activities of key glycolytic enzymes under transition from young to middle age but these changes slowed when transiting from middle to old age. A decrease in the activity of the key glycolytic enzyme phosphofructokinase was accompanied by a concomitant increase in the activities of hexokinase and glucose-6-phosphate dehydrogenase (G6PDH), which may suggest that during normal cerebellar aging glucose metabolism shifts from glycolysis to the pentose phosphate pathway. The data indicate that intensification of free radical processes in the cerebellum occurred by middle age and that activation of the PPP together with increased antioxidant capacity can help to resist these changes into old age. However, the EODF regime did not significantly modulate or alleviate any of the metabolic processes studied in this analysis of the aging cerebellum.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana M Sorochynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana V Kuzniak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Lesia O Sishchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Anastasiia O Hrushchenko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Alina O Semchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Taras V Pryimak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Yulia V Vasylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074, Tübingen, Germany
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
24
|
Kavroulakis E, Simos NJ, Maris TG, Zaganas I, Panagiotakis S, Papadaki E. Evidence of Age-Related Hemodynamic and Functional Connectivity Impairment: A Resting State fMRI Study. Front Neurol 2021; 12:633500. [PMID: 33833727 PMCID: PMC8021915 DOI: 10.3389/fneur.2021.633500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To assess age-related changes in intrinsic functional brain connectivity and hemodynamics during adulthood in the context of the retrogenesis hypothesis, which states that the rate of age-related changes is higher in late-myelinating (prefrontal, lateral-posterior temporal) cerebrocortical areas as compared to early myelinating (parietal, occipital) regions. In addition, to examine the dependence of age-related changes upon concurrent subclinical depression symptoms which are common even in healthy aging. Methods: Sixty-four healthy adults (28 men) aged 23-79 years (mean 45.0, SD = 18.8 years) were examined. Resting-state functional MRI (rs-fMRI) time series were used to compute voxel-wise intrinsic connectivity contrast (ICC) maps reflecting the strength of functional connectivity between each voxel and the rest of the brain. We further used Time Shift Analysis (TSA) to estimate voxel-wise hemodynamic lead or lag for each of 22 ROIs from the automated anatomical atlas (AAL). Results: Adjusted for depression symptoms, gender and education level, reduced ICC with age was found primarily in frontal, temporal regions, and putamen, whereas the opposite trend was noted in inferior occipital cortices (p < 0.002). With the same covariates, increased hemodynamic lead with advancing age was found in superior frontal cortex and thalamus, with the opposite trend in inferior occipital cortex (p < 0.002). There was also evidence of reduced coupling between voxel-wise intrinsic connectivity and hemodynamics in the inferior parietal cortex. Conclusion: Age-related intrinsic connectivity reductions and hemodynamic changes were demonstrated in several regions-most of them part of DMN and salience networks-while impaired neurovascular coupling was, also, found in parietal regions. Age-related reductions in intrinsic connectivity were greater in anterior as compared to posterior cortices, in line with implications derived from the retrogenesis hypothesis. These effects were affected by self-reported depression symptoms, which also increased with age.
Collapse
Affiliation(s)
- Eleftherios Kavroulakis
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Nicholas J Simos
- Department of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Thomas G Maris
- Department of Medical Physics, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Ioannis Zaganas
- Department of Neurology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece
| | - Simeon Panagiotakis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Greece
| | - Efrosini Papadaki
- Department of Radiology, School of Medicine, University of Crete, University Hospital of Heraklion, Heraklion, Greece.,Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
25
|
Pataky MW, Young WF, Nair KS. Hormonal and Metabolic Changes of Aging and the Influence of Lifestyle Modifications. Mayo Clin Proc 2021; 96:788-814. [PMID: 33673927 PMCID: PMC8020896 DOI: 10.1016/j.mayocp.2020.07.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Increased life expectancy combined with the aging baby boomer generation has resulted in an unprecedented global expansion of the elderly population. The growing population of older adults and increased rate of age-related chronic illness has caused a substantial socioeconomic burden. The gradual and progressive age-related decline in hormone production and action has a detrimental impact on human health by increasing risk for chronic disease and reducing life span. This article reviews the age-related decline in hormone production, as well as age-related biochemical and body composition changes that reduce the bioavailability and actions of some hormones. The impact of hormonal changes on various chronic conditions including frailty, diabetes, cardiovascular disease, and dementia are also discussed. Hormone replacement therapy has been attempted in many clinical trials to reverse and/or prevent the hormonal decline in aging to combat the progression of age-related diseases. Unfortunately, hormone replacement therapy is not a panacea, as it often results in various adverse events that outweigh its potential health benefits. Therefore, except in some specific individual cases, hormone replacement is not recommended. Rather, positive lifestyle modifications such as regular aerobic and resistance exercise programs and/or healthy calorically restricted diet can favorably affect endocrine and metabolic functions and act as countermeasures to various age-related diseases. We provide a critical review of the available data and offer recommendations that hopefully will form the groundwork for physicians/scientists to develop and optimize new endocrine-targeted therapies and lifestyle modifications that can better address age-related decline in heath.
Collapse
Affiliation(s)
- Mark W Pataky
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN
| | - William F Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN
| | - K Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN.
| |
Collapse
|
26
|
Transcranial laser stimulation: Mitochondrial and cerebrovascular effects in younger and older healthy adults. Brain Stimul 2021; 14:440-449. [PMID: 33636401 DOI: 10.1016/j.brs.2021.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Transcranial laser stimulation is a novel method of noninvasive brain stimulation found safe and effective for improving prefrontal cortex neurocognitive functions in healthy young adults. This method is different from electric and magnetic stimulation because it causes the photonic oxidation of cytochrome-c-oxidase, the rate-limiting enzyme for oxygen consumption and the major intracellular acceptor of photons from near-infrared light. This photobiomodulation effect promotes mitochondrial respiration, cerebrovascular oxygenation and neurocognitive function. Pilot studies suggest that transcranial photobiomodulation may also induce beneficial effects in aging individuals. OBJECTIVES Randomized, sham-controlled study to test photobiomodulation effects caused by laser stimulation on cytochrome-c-oxidase oxidation and hemoglobin oxygenation in the prefrontal cortex of 68 healthy younger and older adults, ages 18-85. METHODS Broadband near-infrared spectroscopy was used for the noninvasive quantification of bilateral cortical changes in oxidized cytochrome-c-oxidase and hemoglobin oxygenation before, during and after 1064-nm wavelength laser (IR-A laser, area: 13.6 cm2, power density: 250 mW/cm2) or sham stimulation of the right anterior prefrontal cortex (Brodmann Area 10). RESULTS As compared to sham control, there was a significant laser-induced increase in oxidized cytochrome-c-oxidase during laser stimulation, followed by a significant post-stimulation increase in oxygenated hemoglobin and a decrease in deoxygenated hemoglobin. Furthermore, there was a greater laser-induced effect on cytochrome-c-oxidase with increasing age, while laser-induced effects on cerebral hemodynamics decreased with increasing age. No adverse laser effects were found. CONCLUSION The findings support the use of transcranial photobiomodulation for cerebral oxygenation and alleviation of age-related decline in mitochondrial respiration. They justify further research on its therapeutic potential in neurologic and psychiatric diseases.
Collapse
|
27
|
Eagleman S, MacIver MB. Molecular Diversity of Anesthetic Actions Is Evident in Electroencephalogram Effects in Humans and Animals. Int J Mol Sci 2021; 22:ijms22020495. [PMID: 33419036 PMCID: PMC7839978 DOI: 10.3390/ijms22020495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Anesthetic agents cause unique electroencephalogram (EEG) activity resulting from actions on their diverse molecular targets. Typically to produce balanced anesthesia in the clinical setting, several anesthetic and adjuvant agents are combined. This creates challenges for the clinical use of intraoperative EEG monitoring, because computational approaches are mostly limited to spectral analyses and different agents and combinations produce different EEG responses. Thus, testing of many combinations of agents is needed to generate accurate, protocol independent analyses. Additionally, most studies to develop new computational approaches take place in young, healthy adults and electrophysiological responses to anesthetics vary widely at the extremes of age, due to physiological brain differences. Below, we discuss the challenges associated with EEG biomarker identification for anesthetic depth based on the diversity of molecular targets. We suggest that by focusing on the generalized effects of anesthetic agents on network activity, we can create paths for improved universal analyses.
Collapse
|
28
|
Coupling of cerebral blood flow and functional connectivity is decreased in healthy aging. Brain Imaging Behav 2021; 14:436-450. [PMID: 31250268 DOI: 10.1007/s11682-019-00157-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging leads to cerebral perfusion and functional connectivity changes that have been assessed using various neuroimaging techniques. In addition, a link between these two parameters has been demonstrated in healthy young adults. In this work, we employed arterial spin labeling (ASL) fMRI to measure global and voxel-wise differences in cerebral blood flow (CBF) and intrinsic connectivity contrast (ICC) in the resting state in a group of cognitively normal elderly subjects and a group of cognitively normal young subjects, in order to assess the effects of aging on CBF-ICC coupling, which had not been previously evaluated. Our results showed age-related global and regional CBF decreases in prefrontal mesial areas, lateral frontal regions, insular cortex, lateral parietal areas, precuneus and occipital regions. Subcortically, perfusion was reduced in the medial thalamus and caudate nucleus. ICC was also found reduced with age in prefrontal cortical areas and insular cortex, affecting key nodes of the default mode and salience networks. Areas of ICC and CBF decrease partially overlapped, however, the CBF reduction was more extensive and encompassed more areas. This dissociation was accompanied by a decrease in CBF-ICC coupling. These results suggest that aging leads to a disruption in the relationship between CBF and intrinsic functional connectivity that could be due to neurovascular dysregulation.
Collapse
|
29
|
Olivo G, Nilsson J, Garzón B, Lebedev A, Wåhlin A, Tarassova O, Ekblom M, Lövdén M. Immediate effects of a single session of physical exercise on cognition and cerebral blood flow: A randomized controlled study of older adults. Neuroimage 2020; 225:117500. [PMID: 33169699 DOI: 10.1016/j.neuroimage.2020.117500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Regular physical activity is beneficial for cognitive performance in older age. A single bout of aerobic physical exercise can transiently improve cognitive performance. Researchers have advanced improvements in cerebral circulation as a mediator of long-term effects of aerobic physical exercise on cognition, but the immediate effects of exercise on cognition and cerebral perfusion are not well characterized and the effects in older adults are largely unknown. METHODS Forty-nine older adults were randomized to a 30-min aerobic exercise at moderate intensity or relaxation. Groups were matched on age and cardiovascular fitness (VO2 max). Average Grey Matter Blood Flow (GMBF), measured by a pulsed arterial-spin labeling (pASL) magnetic resonance imaging (MRI) acquisition, and working memory performance, measured by figurative n-back tasks with increasing loads were assessed before and 7 min after exercising/resting. RESULTS Accuracy on the n-back task increased from before to after exercising/resting regardless of the type of activity. GMBF decreased after exercise, relative to the control (resting) group. In the exercise group, higher n-back performance after exercise was associated with lower GMBF in the right hippocampus, left medial frontal cortex and right orbitofrontal cortex, and higher cardiovascular fitness was associated with lower GMBF. CONCLUSION The decrease of GMBF reported in younger adults shortly after exercise also occurs in older adults and relates to cardiovascular fitness, potentially supporting the link between cardiovascular fitness and cerebrovascular reactivity in older age.
Collapse
Affiliation(s)
- Gaia Olivo
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Tomtebodavägen 18A, 171 65 Stockholm, Sweden.
| | - Jonna Nilsson
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Tomtebodavägen 18A, 171 65 Stockholm, Sweden; The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Benjamín Garzón
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Tomtebodavägen 18A, 171 65 Stockholm, Sweden; Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | - Alexander Lebedev
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Tomtebodavägen 18A, 171 65 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Olga Tarassova
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Maria Ekblom
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden; Department of Neuroscience, Karolinska Institute, Stockhom, Sweden
| | - Martin Lövdén
- Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Tomtebodavägen 18A, 171 65 Stockholm, Sweden; Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Yeung MK, Chan AS. A Systematic Review of the Application of Functional Near-Infrared Spectroscopy to the Study of Cerebral Hemodynamics in Healthy Aging. Neuropsychol Rev 2020; 31:139-166. [PMID: 32959167 DOI: 10.1007/s11065-020-09455-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have shown that healthy aging is associated with functional brain deterioration that preferentially affects the prefrontal cortex. This article reviews the application of an alternative method, functional near-infrared spectroscopy (fNIRS), to the study of age-related changes in cerebral hemodynamics and factors that influence cerebral hemodynamics in the elderly population. We conducted literature searches in PudMed and PsycINFO, and selected only English original research articles that used fNIRS to study healthy individuals with a mean age of ≥ 55 years. All articles were published in peer-reviewed journals between 1977 and May 2019. We synthesized 114 fNIRS studies examining hemodynamic changes that occurred in the resting state and during the tasks of sensation and perception, motor control, semantic processing, word retrieval, attentional shifting, inhibitory control, memory, and emotion and motivation in healthy older adults. This review, which was not registered in a registry, reveals an age-related reduction in resting-state cerebral oxygenation and connectivity in the prefrontal cortex. It also shows that aging is associated with a reduction in functional hemispheric asymmetry and increased compensatory activity in the frontal lobe across multiple task domains. In addition, this article describes the beneficial effects of healthy lifestyles and the detrimental effects of cardiovascular disease risk factors on brain functioning among nondemented older adults. Limitations of this review include exclusion of gray and non-English literature and lack of meta-analysis. Altogether, the fNIRS literature provides some support for various neurocognitive aging theories derived from task-based PET and fMRI studies. Because fNIRS is relatively motion-tolerant and environmentally unconstrained, it is a promising tool for fostering the development of aging biomarkers and antiaging interventions.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China.
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, China. .,Chanwuyi Research Center for Neuropsychological Well-being, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
31
|
β-amyloid and tau drive early Alzheimer's disease decline while glucose hypometabolism drives late decline. Commun Biol 2020; 3:352. [PMID: 32632135 PMCID: PMC7338410 DOI: 10.1038/s42003-020-1079-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
Clinical trials focusing on therapeutic candidates that modify β-amyloid (Aβ) have repeatedly failed to treat Alzheimer’s disease (AD), suggesting that Aβ may not be the optimal target for treating AD. The evaluation of Aβ, tau, and neurodegenerative (A/T/N) biomarkers has been proposed for classifying AD. However, it remains unclear whether disturbances in each arm of the A/T/N framework contribute equally throughout the progression of AD. Here, using the random forest machine learning method to analyze participants in the Alzheimer’s Disease Neuroimaging Initiative dataset, we show that A/T/N biomarkers show varying importance in predicting AD development, with elevated biomarkers of Aβ and tau better predicting early dementia status, and biomarkers of neurodegeneration, especially glucose hypometabolism, better predicting later dementia status. Our results suggest that AD treatments may also need to be disease stage-oriented with Aβ and tau as targets in early AD and glucose metabolism as a target in later AD. Here the authors analyze the Alzheimer’s Disease Neuroimaging Initiative dataset using random forest machine learning methods and determine that Aβ and tau biomarkers are better predictors of early dementia status, while glucose hypometabolism is a better predictor of later dementia status. These results suggest the need for stage-oriented Alzheimer’s disease treatments.
Collapse
|
32
|
Devi SA, Chamoli A. Polyphenols as an Effective Therapeutic Intervention Against Cognitive Decline During Normal and Pathological Brain Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:159-174. [PMID: 32304034 DOI: 10.1007/978-3-030-42667-5_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Research in animals and humans has indicated that polyphenols can delay the age-related decline in learning, memory and neurodegenerative diseases. Among the polyphenols, berry phenolics have extensive beneficial effects because of their antioxidant and anti-inflammatory properties. Long-term consumption of grapes results in accumulation of polyphenols in the brain, which modulates cell-signalling pathways and neutralises the redox imbalance in the aging brain. Here we review the in vivo and in vitro evidence for considering grape-derived polyphenolics, the flavonoids- catechins, epicatechin, anthocyanidin, and quercetin, and non-flavonoids-gallic acid and resveratrol, as effective dietary sources to facilitate cognition in adults and lessen the decline in the old and pathogenic states, Alzheimer's and Parkinson's disease. Furthermore, a combined intervention of polyphenols along with regular physical exercise provides cognitive benefits for the aging brain and holds promising venues for preclinical and clinical studies in formulating neuro-nutraceuticals as functional foods for a healthy brain.
Collapse
Affiliation(s)
- S Asha Devi
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore, India.
| | - Anudita Chamoli
- Laboratory of Gerontology, Department of Zoology, Bangalore University, Bangalore, India
| |
Collapse
|
33
|
Gardner RS, Newman LA, Mohler EG, Tunur T, Gold PE, Korol DL. Aging is not equal across memory systems. Neurobiol Learn Mem 2020; 172:107232. [PMID: 32315762 DOI: 10.1016/j.nlm.2020.107232] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
The present experiments compared the effects of aging on learning several hippocampus- and striatum-sensitive tasks in young (3-4 month) and old (24-28 month) male Fischer-344 rats. Across three sets of tasks, aging was accompanied not only by deficits on hippocampal tasks but also by maintained or even enhanced abilities on striatal tasks. On two novel object recognition tasks, rats showed impaired performance on a hippocampal object location task but enhanced performance on a striatal object replacement task. On a dual solution task, young rats predominately used hippocampal solutions and old rats used striatal solutions. In addition, on two maze tasks optimally solved using either hippocampus-sensitive place or striatum-sensitive response strategies, relative to young rats, old rats had impaired learning on the place version but equivalent learning on the response version. Because glucose treatments can reverse deficits in learning and memory across many tasks and contexts, levels of available glucose in the brain may have particular importance in cognitive aging observed across tasks and memory systems. During place learning, training-related rises in extracellular glucose levels were attenuated in the hippocampus of old rats compared to young rats. In contrast, glucose levels in the striatum increased comparably in young and old rats trained on either the place or response task. These extracellular brain glucose responses to training paralleled the impairment in hippocampus-sensitive learning and the sparing of striatum-sensitive learning seen as rats age, suggesting a link between age-related changes in learning and metabolic substrate availability in these brain regions.
Collapse
Affiliation(s)
- R S Gardner
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| | - L A Newman
- Department of Psychological Science, Vassar College, Poughkeepsie, NY 12604, United States
| | - E G Mohler
- Research and Development, AbbVie, North Chicago, IL 60064, United States
| | - T Tunur
- Department of Kinesiology, California State University San Marcos, San Marcos, CA 92096, United States
| | - P E Gold
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States
| | - D L Korol
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
34
|
Liang KJ, Carlson ES. Resistance, vulnerability and resilience: A review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem 2020; 170:106981. [PMID: 30630042 PMCID: PMC6612482 DOI: 10.1016/j.nlm.2019.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
In the context of neurodegeneration and aging, the cerebellum is an enigma. Genetic markers of cellular aging in cerebellum accumulate more slowly than in the rest of the brain, and it generates unknown factors that may slow or even reverse neurodegenerative pathology in animal models of Alzheimer's Disease (AD). Cerebellum shows increased activity in early AD and Parkinson's disease (PD), suggesting a compensatory function that may mitigate early symptoms of neurodegenerative pathophysiology. Perhaps most notably, different parts of the brain accumulate neuropathological markers of AD in a recognized progression and generally, cerebellum is the last brain region to do so. Taken together, these data suggest that cerebellum may be resistant to certain neurodegenerative mechanisms. On the other hand, in some contexts of accelerated neurodegeneration, such as that seen in chronic traumatic encephalopathy (CTE) following repeated traumatic brain injury (TBI), the cerebellum appears to be one of the most susceptible brain regions to injury and one of the first to exhibit signs of pathology. Cerebellar pathology in neurodegenerative disorders is strongly associated with cognitive dysfunction. In neurodegenerative or neurological disorders associated with cerebellar pathology, such as spinocerebellar ataxia, cerebellar cortical atrophy, and essential tremor, rates of cognitive dysfunction, dementia and neuropsychiatric symptoms increase. When the cerebellum shows AD pathology, such as in familial AD, it is associated with earlier onset and greater severity of disease. These data suggest that when neurodegenerative processes are active in the cerebellum, it may contribute to pathological behavioral outcomes. The cerebellum is well known for comparing internal representations of information with observed outcomes and providing real-time feedback to cortical regions, a critical function that is disturbed in neuropsychiatric disorders such as intellectual disability, schizophrenia, dementia, and autism, and required for cognitive domains such as working memory. While cerebellum has reciprocal connections with non-motor brain regions and likely plays a role in complex, goal-directed behaviors, it has proven difficult to establish what it does mechanistically to modulate these behaviors. Due to this lack of understanding, it's not surprising to see the cerebellum reflexively dismissed or even ignored in basic and translational neuropsychiatric literature. The overarching goals of this review are to answer the following questions from primary literature: When the cerebellum is affected by pathology, is it associated with decreased cognitive function? When it is intact, does it play a compensatory or protective role in maintaining cognitive function? Are there theoretical frameworks for understanding the role of cerebellum in cognition, and perhaps, illnesses characterized by cognitive dysfunction? Understanding the role of the cognitive cerebellum in neurodegenerative diseases has the potential to offer insight into origins of cognitive deficits in other neuropsychiatric disorders, which are often underappreciated, poorly understood, and not often treated.
Collapse
Affiliation(s)
- Katharine J Liang
- University of Washington School of Medicine, Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Erik S Carlson
- University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
35
|
Lee JS, Hong JM, Yoon BS, Son KS, Lee KE, Im DS, Park BN, An YS, Hwang DH, Park CB, Kim BG, Joe EH. Expression of Cellular Receptors in the Ischemic Hemisphere of Mice with Increased Glucose Uptake. Exp Neurobiol 2020; 29:70-79. [PMID: 32122109 PMCID: PMC7075656 DOI: 10.5607/en.2020.29.1.70] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 02/06/2020] [Indexed: 11/19/2022] Open
Abstract
Many previous studies have shown reduced glucose uptake in the ischemic brain. In contrast, in a permanent unilateral common carotid artery occlusion (UCCAO) mouse model, our pilot experiments using 18F-fluorodeoxyglucose positron emission tomography (FDG PET) revealed that a subset of mice exhibited conspicuously high uptake of glucose in the ipsilateral hemisphere at 1 week post-occlusion (asymmetric group), whereas other mice showed symmetric uptake in both hemispheres (symmetric group). Thus, we aimed to understand the discrepancy between the two groups. Cerebral blood flow and histological/metabolic changes were analyzed using laser Doppler flowmetry and immunohistochemistry/Western blotting, respectively. Contrary to the increased glucose uptake observed in the ischemic cerebral hemisphere on FDG PET (p<0.001), cerebral blood flow tended to be lower in the asymmetric group than in the symmetric group (right to left ratio [%], 36.4±21.8 vs. 58.0±24.8, p=0.059). Neuronal death was observed only in the ischemic hemisphere of the asymmetric group. In contrast, astrocytes were more activated in the asymmetric group than in the symmetric group (p<0.05). Glucose transporter-1, and monocarboxylate transporter-1 were also upregulated in the asymmetric group, compared with the symmetric group (p<0.05, respectively). These results suggest that the increased FDG uptake was associated with relatively severe ischemia, and glucose transporter-1 upregulation and astrocyte activation. Glucose metabolism may thus be a compensatory mechanism in the moderately severe ischemic brain.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Neurology, Ajou University School of Medicine, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Bok Seon Yoon
- Department of Neurology, Ajou University School of Medicine, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Keoung Sun Son
- Department of Neurology, Ajou University School of Medicine, Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Kyung Eon Lee
- School of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Doo Soon Im
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bok-Nam Park
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Korea
| | - Young-Sil An
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Korea
| | - Dong Hoon Hwang
- Department of Brain Science, Ajou University School of Medicine, Korea
| | - Chan Bae Park
- Department of Biology, Ajou University School of Medicine, Korea
| | - Byung Gon Kim
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Brain Science, Ajou University School of Medicine, Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Brain Science, Ajou University School of Medicine, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
36
|
Göttler J, Kaczmarz S, Nuttall R, Griese V, Napiórkowski N, Kallmayer M, Wustrow I, Eckstein HH, Zimmer C, Preibisch C, Finke K, Sorg C. The stronger one-sided relative hypoperfusion, the more pronounced ipsilateral spatial attentional bias in patients with asymptomatic carotid stenosis. J Cereb Blood Flow Metab 2020; 40:314-327. [PMID: 30480463 PMCID: PMC7370612 DOI: 10.1177/0271678x18815790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/05/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
Abstract
Patients with asymptomatic, high-grade internal carotid artery stenosis often suffer from subtle cognitive impairments with unclear underlying neuro-cognitive mechanisms. Thus, we hypothesized that stenosis-related unilateral cerebral hypoperfusion leads to an ipsilateral attentional bias; 22 patients with asymptomatic, one-sided high-grade carotid stenosis and 24 age-matched healthy controls underwent pseudo-continuous arterial spin labeling to assess brain perfusion in the territory of the carotid arteries. Furthermore, a parametric assessment of attention functions was carried out on the basis of the computational Theory of Visual Attention. Both patients' perfusion and spatial attention were significantly more lateralized than those of healthy controls. Critically, both asymmetry indices were significantly correlated in patients, i.e. the stronger one-sided relative hypoperfusion, the stronger ipsilateral bias of attention. This association was specifically pronounced in parietal cortices and independent of white matter hyperintensities as a surrogate for cerebrovascular brain damage. Results provide evidence for a link between lateralized hypoperfusion and lateralized attentional weighting in asymptomatic, high-grade carotid stenosis. Data suggest that lateralized hypoperfusion with simultaneous spatial attentional bias might serve as a potential therapeutic target in one-sided carotid stenosis.
Collapse
Affiliation(s)
- Jens Göttler
- Department of Diagnostic and
Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität
München, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC),
Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Diagnostic and
Interventional Radiology, Klinikum rechts der Isar, Technische Universität München,
Munich, Germany
- Magnetic Resonance Research Center, Yale
University, New Haven, CT, USA
| | - Stephan Kaczmarz
- Department of Diagnostic and
Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität
München, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC),
Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Magnetic Resonance Research Center, Yale
University, New Haven, CT, USA
| | - Rachel Nuttall
- Department of Diagnostic and
Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität
München, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC),
Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Vanessa Griese
- Department of Diagnostic and
Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität
München, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC),
Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Natan Napiórkowski
- Department of Psychology,
Ludwig-Maximilians-Universität München, Munich, Germany
- Graduate School of Systemic
Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Kallmayer
- Department of Vascular and Endovascular
Surgery, Klinikum rechts der Isar, Technische Universität München, Munich,
Germany
| | - Isabel Wustrow
- I. Medizinische Klinik und Poliklinik,
Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hans-Henning Eckstein
- Department of Vascular and Endovascular
Surgery, Klinikum rechts der Isar, Technische Universität München, Munich,
Germany
| | - Claus Zimmer
- Department of Diagnostic and
Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität
München, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and
Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität
München, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC),
Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Clinic for Neurology, Klinikum rechts
der Isar, Technische Universität München, Munich, Germany
| | - Kathrin Finke
- Department of Psychology,
Ludwig-Maximilians-Universität München, Munich, Germany
- Hans-Berger-Department of Neurology,
Jena University Hospital, Jena, Germany
| | - Christian Sorg
- Department of Diagnostic and
Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität
München, Munich, Germany
- TUM Neuroimaging Center (TUM-NIC),
Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Psychiatry, Klinikum
rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
37
|
Bilgel M, Beason-Held L, An Y, Zhou Y, Wong DF, Resnick SM. Longitudinal evaluation of surrogates of regional cerebral blood flow computed from dynamic amyloid PET imaging. J Cereb Blood Flow Metab 2020; 40:288-297. [PMID: 30755135 PMCID: PMC7370613 DOI: 10.1177/0271678x19830537] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 11/17/2022]
Abstract
Surrogates of neuronal activity, typically measured by regional cerebral blood flow (rCBF) or glucose metabolism, can be estimated from dynamic amyloid PET imaging. Using data for 149 participants (345 visits) from the Baltimore Longitudinal Study of Aging, we assessed whether the average of early amyloid frames (EA) and R1 computed from dynamic 11C-Pittsburgh compound B (PiB) PET can serve as surrogates of rCBF computed from 15O-H2O-PET. R1 had the highest longitudinal test-retest reliability. Interquartile range (IQR) of cross-sectional Pearson correlations with rCBF was 0.60-0.72 for EA and 0.63-0.72 for R1. Correlations between rates of change were lower (IQR 0.22-0.50 for EA, 0.25-0.55 for R1). Values in the Alzheimer's metabolic signature meta-ROI were negatively associated with age and exhibited longitudinal declines for each PET measure. In age-adjusted analyses, meta-ROI rCBF and R1 were lower among amyloid+ individuals; EA and R1 were lower among males. Regional PiB-based measures, in particular R1, can be suitable surrogates of rCBF. Dynamic PiB-PET may obviate the need for a separate scan to measure neuronal activity, thereby reducing patient burden, radioactivity exposure, and cost.
Collapse
Affiliation(s)
- Murat Bilgel
- Laboratory of Behavioral Neuroscience,
National Institute on Aging (NIA), Baltimore, USA
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience,
National Institute on Aging (NIA), Baltimore, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience,
National Institute on Aging (NIA), Baltimore, USA
| | - Yun Zhou
- Department of Radiology and Radiological
Science, Johns Hopkins University School (JHU) of Medicine, Baltimore, USA
- Mallinckrodt Institute of Radiology,
Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Dean F Wong
- Department of Radiology and Radiological
Science, Johns Hopkins University School (JHU) of Medicine, Baltimore, USA
- Department of Psychiatry and Behavioral
Sciences, JHU School of Medicine, Baltimore, USA
- Department of Neuroscience, JHU School
of Medicine, Baltimore, USA
- Department of Neurology, JHU School of
Medicine, Baltimore, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience,
National Institute on Aging (NIA), Baltimore, USA
| |
Collapse
|
38
|
Wang Y, Mishra A, Brinton RD. Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000Res 2020; 9. [PMID: 32047612 PMCID: PMC6993821 DOI: 10.12688/f1000research.21599.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The brain undergoes two aging programs: chronological and endocrinological. This is particularly evident in the female brain, which undergoes programs of aging associated with reproductive competency. Comprehensive understanding of the dynamic metabolic and neuroinflammatory aging process in the female brain can illuminate windows of opportunities to promote healthy brain aging. Bioenergetic crisis and chronic low-grade inflammation are hallmarks of brain aging and menopause and have been implicated as a unifying factor causally connecting genetic risk factors for Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss metabolic phenotypes of pre-menopausal, peri-menopausal, and post-menopausal aging and their consequent impact on the neuroinflammatory profile during each transition state. A critical aspect of the aging process is the dynamic metabolic neuro-inflammatory profiles that emerge during chronological and endocrinological aging. These dynamic systems of biology are relevant to multiple age-associated neurodegenerative diseases and provide a therapeutic framework for prevention and delay of neurodegenerative diseases of aging. While these findings are based on investigations of the female brain, they have a broader fundamental systems of biology strategy for investigating the aging male brain. Molecular characterization of alterations in fuel utilization and neuroinflammatory mechanisms during these neuro-endocrine transition states can inform therapeutic strategies to mitigate the risk of Alzheimer's disease in women. We further discuss a precision hormone replacement therapy approach to target symptom profiles during endocrine and chronological aging to reduce risk for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
39
|
Jeong H, Chung YA, Ma J, Kim J, Hong G, Oh JK, Kim M, Ha E, Hong H, Yoon S, Lyoo IK. Diverging roles of the anterior insula in trauma-exposed individuals vulnerable or resilient to posttraumatic stress disorder. Sci Rep 2019; 9:15539. [PMID: 31664062 PMCID: PMC6820768 DOI: 10.1038/s41598-019-51727-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/04/2019] [Indexed: 11/29/2022] Open
Abstract
Distinct brain alterations in response to traumatic events may render trauma-exposed individuals either resilient or vulnerable to posttraumatic stress disorder (PTSD). This study compared regional cerebral metabolic rate of glucose (rCMRglu) among trauma-exposed individuals with current PTSD (PTSD group, n = 61), those without current PTSD (Resilience/Recovery group, n = 26), and trauma-unexposed controls (Control group, n = 54). All participants underwent brain [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) scans. Voxel-wise group differences in rCMRglu among the three groups were evaluated. Associations between rCMRglu and both PTSD severity and resilience were examined. The rCMRglu in the right anterior insula and adjacent prefrontal and striatal areas was lower in the PTSD group, while higher in the Resilience/Recovery group, compared to the Control group. In addition, the lower glucose metabolism of these areas was associated with higher severity and less improvement in PTSD symptoms in the PTSD group, while the higher levels of rCMRglu were correlated with stronger resilience in the Resilience/Recovery group. This study suggests distinct roles of the anterior insula in response to trauma between the PTSD and Resilience/Recovery groups. Heightened rCMRglu in the anterior insular regions may reflect an underlying mechanism of resilience against traumatic stress, while reduced rCMRglu may indicate vulnerability to PTSD.
Collapse
Affiliation(s)
- Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong-An Chung
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jiyoung Ma
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Gahae Hong
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jin Kyoung Oh
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myeongju Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea. .,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea. .,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea. .,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea. .,The Brain Institute and Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
40
|
Kiss T, Balasubramanian P, Valcarcel-Ares MN, Tarantini S, Yabluchanskiy A, Csipo T, Lipecz A, Reglodi D, Zhang XA, Bari F, Farkas E, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. GeroScience 2019; 41:619-630. [PMID: 31144244 PMCID: PMC6885080 DOI: 10.1007/s11357-019-00074-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/11/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022] Open
Abstract
Age-related impairment of angiogenesis likely has a critical role in cerebromicrovascular rarefaction and development of vascular cognitive impairment and dementia (VCID) in the elderly. Recently, we demonstrated that aging is associated with NAD+ depletion in the vasculature and that administration of NAD+ precursors exerts potent anti-aging vascular effects, rescuing endothelium-mediated vasodilation in the cerebral circulation and improving cerebral blood supply. The present study was designed to elucidate how treatment with nicotinamide mononucleotide (NMN), a key NAD+ intermediate, impacts age-related impairment of endothelial angiogenic processes. Using cerebromicrovascular endothelial cells (CMVECs) isolated from young and aged F344xBN rats, we demonstrated that compared with young cells, aged CMVECs exhibit impaired proliferation, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing [ECIS] technology), impaired ability to form capillary-like structures, and increased oxidative stress. NMN treatment in aged CMVECs significantly improved angiogenic processes and attenuated H2O2 production. We also found that pre-treatment with EX-527, a pharmacological inhibitor of SIRT1, prevented NMN-mediated restoration of angiogenic processes in aged CMVECs. Collectively, we find that normal cellular NAD+ levels are essential for normal endothelial angiogenic processes, suggesting that age-related cellular NAD+ depletion and consequential SIRT1 dysregulation may be a potentially reversible mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging. We recommend that pro-angiogenic effects of NAD+ boosters should be considered in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Marta Noa Valcarcel-Ares
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Pecs, Hungary
| | - Xin A. Zhang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
41
|
Staffaroni AM, Cobigo Y, Elahi FM, Casaletto KB, Walters SM, Wolf A, Lindbergh CA, Rosen HJ, Kramer JH. A longitudinal characterization of perfusion in the aging brain and associations with cognition and neural structure. Hum Brain Mapp 2019; 40:3522-3533. [PMID: 31062904 PMCID: PMC6693488 DOI: 10.1002/hbm.24613] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023] Open
Abstract
Cerebral perfusion declines across the lifespan and is altered in the early stages of several age-related neuropathologies. Little is known, however, about the longitudinal evolution of perfusion in healthy older adults, particularly when perfusion is quantified using magnetic resonance imaging with arterial spin labeling (ASL). The objective was to characterize longitudinal perfusion in typically aging adults and elucidate associations with cognition and brain structure. Adults who were functionally intact at baseline (n = 161, ages 47-89) underwent ASL imaging to quantify whole-brain gray matter perfusion; a subset (n = 136) had repeated imaging (average follow-up: 2.3 years). Neuropsychological testing at each visit was summarized into executive function, memory, and processing speed composites. Global gray matter volume, white matter microstructure (mean diffusivity), and white matter hyperintensities were also quantified. We assessed baseline associations among perfusion, cognition, and brain structure using linear regression, and longitudinal relationships using linear mixed effects models. Greater baseline perfusion, particularly in the left dorsolateral prefrontal cortex and right thalamus, was associated with better executive functions. Greater whole-brain perfusion loss was associated with worsening brain structure and declining processing speed. This study helps validate noninvasive MRI-based perfusion imaging and underscores the importance of cerebral blood flow in cognitive aging.
Collapse
Affiliation(s)
- Adam M. Staffaroni
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Yann Cobigo
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Kaitlin B. Casaletto
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Samantha M. Walters
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Amy Wolf
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Cutter A. Lindbergh
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging CenterUniversity of California at San Francisco (UCSF)San FranciscoCalifornia
| |
Collapse
|
42
|
O'Neill BV, Dodds CM, Miller SR, Gupta A, Lawrence P, Bullman J, Chen C, Dewit O, Kumar S, Dustagheer M, Price J, Shabbir S, Nathan PJ. The effects of GSK2981710, a medium-chain triglyceride, on cognitive function in healthy older participants: A randomised, placebo-controlled study. Hum Psychopharmacol 2019; 34:e2694. [PMID: 31124194 DOI: 10.1002/hup.2694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This double-blind, randomised, placebo-controlled, two-part study assessed the impact of GSK2981710, a medium-chain triglyceride (MCT) that liberates ketone bodies, on cognitive function, safety, and tolerability in healthy older adults. METHODS Part 1 was a four-period dose-selection study (n = 8 complete). Part 2 was a two-period crossover study (n = 80 complete) assessing the acute (Day 1) and prolonged (Day 15) effects of GSK2981710 on cognition and memory-related neuronal activity. Safety and tolerability of MCT supplementation were monitored in both parts of the study. RESULTS The most common adverse event was diarrhoea (100% and 75% of participants in Parts 1 and 2, respectively). Most adverse events were mild to moderate, and 11% participants were withdrawn due to one or more adverse events. Although GSK2981710 (30 g/day) resulted in increased peak plasma β-hydroxybutyrate (BHB) concentrations, no significant improvements in cognitive function or memory-related neuronal activity were observed. CONCLUSION Over a duration of 14 days, increasing plasma BHB levels with daily administration of GSK2981710 had no effects on neuronal activity or cognitive function. This result indicates that modulating plasma ketone levels with GSK2981710 may be ineffective in improving cognitive function in healthy older adults, or the lack of observed effect could be related to several factors including study population, plasma BHB concentrations, MCT composition, or treatment duration.
Collapse
Affiliation(s)
- Barry V O'Neill
- GSK Nutrition, GSK Consumer Healthcare, Brentford, UK.,Respiratory Health, GSK Consumer Healthcare, Nyon, Switzerland
| | - Chris M Dodds
- Department of Psychology, University of Exeter, Exeter, UK
| | - Sam R Miller
- Department of Quantitative Sciences, GlaxoSmithKline, Stevenage, UK
| | - Ashutosh Gupta
- Department of Quantitative Sciences India, GlaxoSmithKline, Bangalore, India
| | | | - Jonathan Bullman
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, Stevenage, UK
| | - Chao Chen
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, London, UK
| | - Odile Dewit
- Clinical Unit, GlaxoSmithKline, Cambridge, UK
| | | | | | | | - Shaila Shabbir
- Clinical Pharmacology Study Sciences and Operations, GlaxoSmithKline, Stevenage, UK
| | - Pradeep J Nathan
- Sosei Heptares, Cambridge, UK.,The School of Psychological Sciences, Monash University, Clayton, Australia.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
43
|
Castellano CA, Hudon C, Croteau E, Fortier M, St-Pierre V, Vandenberghe C, Nugent S, Tremblay S, Paquet N, Lepage M, Fülöp T, Turcotte ÉE, Dionne IJ, Potvin O, Duchesne S, Cunnane SC. Links Between Metabolic and Structural Changes in the Brain of Cognitively Normal Older Adults: A 4-Year Longitudinal Follow-Up. Front Aging Neurosci 2019; 11:15. [PMID: 30828297 PMCID: PMC6384269 DOI: 10.3389/fnagi.2019.00015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022] Open
Abstract
We aimed to longitudinally assess the relationship between changing brain energy metabolism (glucose and acetoacetate) and cognition during healthy aging. Participants aged 71 ± 5 year underwent cognitive evaluation and quantitative positron emission tomography (PET) and magnetic resonance imaging (MRI) scans at baseline (N = 25) and two (N = 25) and four (N = 16) years later. During the follow-up, the rate constant for brain extraction of glucose (Kglc) declined by 6%–12% mainly in the temporo-parietal lobes and cingulate gyri (p ≤ 0.05), whereas brain acetoacetate extraction (Kacac) and utilization remained unchanged in all brain regions (p ≥ 0.06). Over the 4 years, cognitive results remained within the normal age range but an age-related decline was observed in processing speed. Kglc in the caudate was directly related to performance on several cognitive tests (r = +0.41 to +0.43, allp ≤ 0.04). Peripheral insulin resistance assessed by the homeostasis model assessment of insulin resistance (HOMA-IR) was significantly inversely related to Kglc in the thalamus (r = −0.44, p = 0.04) and in the caudate (r = −0.43, p = 0.05), and also inversely related to executive function, attention and processing speed (r = −0.45 to −0.53, all p ≤ 0.03). We confirm in a longitudinal setting that the age-related decline in Kglc is directly associated with declining performance on some tests of cognition but does not significantly affect Kacac.
Collapse
Affiliation(s)
- Christian-Alexandre Castellano
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Carol Hudon
- Centre de Recherche sur le Vieillissement (CERVO) Brain Research Centre, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de la Capitale-Nationale, Québec, QC, Canada.,School of Psychology, Université Laval, Québec, QC, Canada
| | - Etienne Croteau
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Fortier
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Valérie St-Pierre
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Camille Vandenberghe
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Scott Nugent
- Centre de Recherche sur le Vieillissement (CERVO) Brain Research Centre, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de la Capitale-Nationale, Québec, QC, Canada
| | - Sébastien Tremblay
- Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nancy Paquet
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Lepage
- Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada.,CR-Centre hospitalier Universitaire de Sherbrooke (CHUS), Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de l'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Tamàs Fülöp
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric E Turcotte
- Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada.,CR-Centre hospitalier Universitaire de Sherbrooke (CHUS), Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de l'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Isabelle J Dionne
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada.,Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Potvin
- Centre de Recherche sur le Vieillissement (CERVO) Brain Research Centre, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de la Capitale-Nationale, Québec, QC, Canada
| | - Simon Duchesne
- Centre de Recherche sur le Vieillissement (CERVO) Brain Research Centre, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de la Capitale-Nationale, Québec, QC, Canada.,Department of Radiology, Université Laval, Québec, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie (CIUSSS) de L'Estrie-Centre hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada.,Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada.,Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
44
|
Quantification of the Biological Age of the Brain Using Neuroimaging. HEALTHY AGEING AND LONGEVITY 2019. [DOI: 10.1007/978-3-030-24970-0_19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Pan Y, Landsberg G, Mougeot I, Kelly S, Xu H, Bhatnagar S, Gardner CL, Milgram NW. Efficacy of a Therapeutic Diet on Dogs With Signs of Cognitive Dysfunction Syndrome (CDS): A Prospective Double Blinded Placebo Controlled Clinical Study. Front Nutr 2018; 5:127. [PMID: 30619873 PMCID: PMC6299068 DOI: 10.3389/fnut.2018.00127] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/28/2018] [Indexed: 02/04/2023] Open
Abstract
Cognitive dysfunction syndrome (CDS) is a common condition in senior dogs, which may be analogous to dementia such as Alzheimer's disease (AD) in people. In humans, AD has been associated with many risk factors such as reduced cerebral glucose metabolism, docosahexaenoic acid (DHA) deficiency, chronic oxidative stress, and chronic inflammation. By targeting some of these risk factors, we have developed two nutritional solutions (medium chain triglyceride, MCT and Brain Protection Blend, BPB) to enhance cognitive function and slow aging-induced cognitive decline. These have been positively evaluated in colony housed senior dogs and cats. The objective of this clinical study was to evaluate the effects of diets with MCTs and the BPB on client-owned dogs with CDS. Participating veterinary clinics screened senior dogs for signs of CDS as determined by a Senior Canine Behavior Questionnaire and a Canine Medical Health Questionnaire. Eighty-seven dogs were randomly enrolled into one of three diet groups with 29 dogs per group: Control, 6.5% MCT oil + BPB (6.5% MCT diet), 9% MCT oil + BPB (9% MCT diet). Diets were fed for a period of 90 days, and each dog's CDS signs were re-evaluated at day 30 and day 90. All 6 categories of the CDS signs were significantly improved (p <0.05) in the dogs given the 6.5% MCT diet at the end of the 90-day study. Control only improved in 4 out 6 categories. The 9% MCT diet only improved in dogs that accepted the diet. The results from this dog study confirm the benefits of MCT and BPB in managing clinical signs of CDS in dogs. The results support our hypothesis that targeting known risk factors associated with brain aging and AD is able to improve symptoms of CDS in dogs. These data may facilitate the development of similar nutrient blends to manage MCI and AD.
Collapse
Affiliation(s)
- Yuanlong Pan
- Nestlé Purina Research, St. Louis, MO, United States
| | | | | | | | - Hui Xu
- Nestlé Purina Research, St. Louis, MO, United States
| | | | | | | |
Collapse
|
46
|
Liu Y, Xu J, Zhu F, Ye H, Hu C, Huang J, Zheng Y. Research advances in the regulation of the putative ovarian germline stem cell niche on female germline stem cells. Syst Biol Reprod Med 2018; 65:121-128. [PMID: 30204491 DOI: 10.1080/19396368.2018.1515272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stem cells are ideal seeding cells, which have the potential for self-renewal and multiple differentiation, and they play a fundamental role in maintaining homeostasis and regenerating and repairing tissue. The discovery of female germline stem cells (FGSCs) brings much hope for the postnatal renewal of oocytes and solving some female infertility problems. Ovarian function declines with increasing female age. Moreover, ovarian germline stem cell niche-aging could be the main cause of ovarian senescence, which ultimately leads to decreased follicle generation, declining female fertility, and age-related diseases, such as osteoporosis and ovarian cancer. The ovarian germline stem cell niche is the surrounding microenvironment in which FGSCs live, and it helps control the biological characteristics of FGSCs in many ways, such as nutritional supply and immunological cytokine secretion. This paper reviews the knowledge about the ovarian germline stem cell niche and its probable regulatory mechanisms on FGSCs, which provides valuable scientific information and scope for the prevention and treatment of ovarian senescence. Abbreviations: BMP: bone morphogenetic protein; Dpp: decapentaplegic; FGSC: female germline stem cell; IL, interleukin; OGSC: ovarian germline stem cells; ROS: reactive oxygen species; TGF, transforming growth factor; TNF, tumor necrosis factor.
Collapse
Affiliation(s)
- Yangchun Liu
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,b Queen Mary College of Nanchang University , Nanchang , Jiangxi , PR China
| | - Jiao Xu
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,c First Clinical College of Nanchang University , Nanchang , Jiangxi , PR China
| | - Feiyin Zhu
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,b Queen Mary College of Nanchang University , Nanchang , Jiangxi , PR China
| | - Haifeng Ye
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,d The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province , Nanchang , Jiangxi , PR China
| | - Chuan Hu
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,d The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province , Nanchang , Jiangxi , PR China
| | - Jian Huang
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,d The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province , Nanchang , Jiangxi , PR China
| | - Yuehui Zheng
- a Jiangxi Medical College , Nanchang University , Nanchang , Jiangxi , PR China.,d The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province , Nanchang , Jiangxi , PR China
| |
Collapse
|
47
|
Zhang N, Gordon ML, Ma Y, Chi B, Gomar JJ, Peng S, Kingsley PB, Eidelberg D, Goldberg TE. The Age-Related Perfusion Pattern Measured With Arterial Spin Labeling MRI in Healthy Subjects. Front Aging Neurosci 2018; 10:214. [PMID: 30065646 PMCID: PMC6056623 DOI: 10.3389/fnagi.2018.00214] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/25/2018] [Indexed: 01/12/2023] Open
Abstract
Aim: To analyze age-related cerebral blood flow (CBF) using arterial spin labeling (ASL) MRI in healthy subjects with multivariate principal component analysis (PCA). Methods: 50 healthy subjects (mean age 45.8 ± 18.5 years, range 21-85) had 3D structural MRI and pseudo-continuous ASL MRI at resting state. The relationship between CBF and age was examined with voxel-based univariate analysis using multiple regression and two-sample t-test (median age 41.8 years as a cut-off). An age-related CBF pattern was identified using multivariate PCA. Results: Age correlated negatively with CBF especially anteriorly and in the cerebellum. After adjusting by global value, CBF was relatively decreased with aging in certain regions and relatively increased in others. The age-related CBF pattern showed relative reductions in frontal and parietal areas and cerebellum, and covarying increases in temporal and occipital areas. Subject scores of this pattern correlated negatively with age (R2 = 0.588; P < 0.001) and discriminated between the older and younger subgroups (P < 0.001). Conclusion: A distinct age-related CBF pattern can be identified with multivariate PCA using ASL MRI.
Collapse
Affiliation(s)
- Nan Zhang
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Marc L. Gordon
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hepstead, NY, United States
| | - Yilong Ma
- Center for Neurosciences, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Bradley Chi
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hepstead, NY, United States
| | - Jesus J. Gomar
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Shichun Peng
- Center for Neurosciences, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Peter B. Kingsley
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hepstead, NY, United States
- Department of Radiology, North Shore University Hospital, Northwell Health, Manhasset, NY, United States
| | - David Eidelberg
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hepstead, NY, United States
- Center for Neurosciences, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Terry E. Goldberg
- The Litwin-Zucker Research Center, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hofstra University, Hepstead, NY, United States
| |
Collapse
|
48
|
Moeini M, Lu X, Avti PK, Damseh R, Bélanger S, Picard F, Boas D, Kakkar A, Lesage F. Compromised microvascular oxygen delivery increases brain tissue vulnerability with age. Sci Rep 2018; 8:8219. [PMID: 29844478 PMCID: PMC5974237 DOI: 10.1038/s41598-018-26543-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/16/2018] [Indexed: 11/22/2022] Open
Abstract
Despite the possible role of impaired cerebral tissue oxygenation in age-related cognition decline, much is still unknown about the changes in brain tissue pO2 with age. Using a detailed investigation of the age-related changes in cerebral tissue oxygenation in the barrel cortex of healthy, awake aged mice, we demonstrate decreased arteriolar and tissue pO2 with age. These changes are exacerbated after middle-age. We further uncovered evidence of the presence of hypoxic micro-pockets in the cortex of awake old mice. Our data suggests that from young to middle-age, a well-regulated capillary oxygen supply maintains the oxygen availability in cerebral tissue, despite decreased tissue pO2 next to arterioles. After middle-age, due to decreased hematocrit, reduced capillary density and higher capillary transit time heterogeneity, the capillary network fails to compensate for larger decreases in arterial pO2. The substantial decrease in brain tissue pO2, and the presence of hypoxic micro-pockets after middle-age are of significant importance, as these factors may be related to cognitive decline in elderly people.
Collapse
Affiliation(s)
- Mohammad Moeini
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada.,Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Xuecong Lu
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada
| | - Pramod K Avti
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada.,Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rafat Damseh
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada
| | - Samuel Bélanger
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada
| | - Frédéric Picard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (IUCPQ), Québec, QC, Canada
| | - David Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Biomedical Engineering Department, College of Engineering, Boston University, Boston, MA, USA
| | - Ashok Kakkar
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Frédéric Lesage
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada. .,Research Center of Montreal Heart Institute, Montréal, QC, Canada.
| |
Collapse
|
49
|
Catchlove SJ, Macpherson H, Hughes ME, Chen Y, Parrish TB, Pipingas A. An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging. PLoS One 2018; 13:e0197055. [PMID: 29787609 PMCID: PMC5963791 DOI: 10.1371/journal.pone.0197055] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 04/25/2018] [Indexed: 11/26/2022] Open
Abstract
Background Understanding how vascular and metabolic factors impact on cognitive function is essential to develop efficient therapies to prevent and treat cognitive losses in older age. Cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF) and venous oxygenation (Yv) comprise key physiologic processes that maintain optimum functioning of neural activity. Changes to these parameters across the lifespan may precede neurodegeneration and contribute to age-related cognitive decline. This study examined differences in blood flow and metabolism between 31 healthy younger (<50 years) and 29 healthy older (>50 years) adults; and investigated whether these parameters contribute to cognitive performance. Method Participants underwent a cognitive assessment and MRI scan. Grey matter CMRO2 was calculated from measures of CBF (phase contrast MRI), arterial and venous oxygenation (TRUST MRI) to assess group differences in physiological function and the contribution of these parameters to cognition. Results Performance on memory (p<0.001) and attention tasks (p<0.001) and total CBF were reduced (p<0.05), and Yv trended toward a decrease (p = .06) in the older group, while grey matter CBF and CMRO2 did not differ between the age groups. Attention was negatively associated with CBF when adjusted (p<0.05) in the older adults, but not in the younger group. There was no such relationship with memory. Neither cognitive measure was associated with oxygen metabolism or venous oxygenation in either age group. Conclusion Findings indicated an age-related imbalance between oxygen delivery, consumption and demand, evidenced by a decreased supply of oxygen with unchanged metabolism resulting in increased oxygen extraction. CBF predicted attention when the age-effect was controlled, suggesting a task- specific CBF- cognition relationship.
Collapse
Affiliation(s)
- Sarah J. Catchlove
- Centre for Human Psychopharmacology, Swinburne University, Hawthorn Victoria, Australia
- * E-mail:
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Matthew E. Hughes
- Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia
- Australian National Imaging Facility, University of Queensland, St Lucia Queensland, Australia
| | - Yufen Chen
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Todd B. Parrish
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University, Hawthorn Victoria, Australia
| |
Collapse
|
50
|
Joris PJ, Mensink RP, Adam TC, Liu TT. Cerebral Blood Flow Measurements in Adults: A Review on the Effects of Dietary Factors and Exercise. Nutrients 2018; 10:nu10050530. [PMID: 29693564 PMCID: PMC5986410 DOI: 10.3390/nu10050530] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Improving cerebrovascular function may be a key mechanism whereby a healthy lifestyle, of which a healthy diet combined with increased physical activity levels is a cornerstone, protects against cognitive impairments. In this respect, effects on cerebral blood flow (CBF)—a sensitive physiological marker of cerebrovascular function—are of major interest. This review summarizes the impact of specific dietary determinants and physical exercise on CBF in adults and discusses the relation between these effects with potential changes in cognitive function. A limited number of randomized controlled trials have already demonstrated the beneficial effects of an acute intake of nitrate and polyphenols on CBF, but evidence for a relationship between these effects as well as improvements in cognitive functioning is limited. Moreover, long-term trans-resveratrol supplementation has been shown to increase CBF in populations at increased risk of accelerated cognitive decline. Long-term supplementation of n-3 long-chain polyunsaturated fatty acids may also increase CBF, but related effects on cognitive performance have not yet been found. Significant decreases in cerebral perfusion were observed by commonly consumed amounts of caffeine, while alcohol intake was shown to increase CBF in a dose-dependent way. However, the long-term effects are not clear. Finally, long-term exercise training may be a promising approach to improve CBF, as increases in perfusion may contribute to the beneficial effects on cognitive functioning observed following increased physical activity levels.
Collapse
Affiliation(s)
- Peter J Joris
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands.
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands.
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands.
| | - Thomas T Liu
- Center for Functional Magnetic Resonance Imaging (MRI), University of California San Diego, La Jolla, CA 92093-0677, USA.
| |
Collapse
|