1
|
Liu Z, Waters J, Rui B. Metabolomics as a promising tool for improving understanding of multiple sclerosis: A review of recent advances. Biomed J 2022; 45:594-606. [PMID: 35042018 PMCID: PMC9486246 DOI: 10.1016/j.bj.2022.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that usually affects young adults. The development of MS is closely related to the changes in the metabolome. Metabolomics studies have been performed using biofluids or tissue samples from rodent models and human patients to reveal metabolic alterations associated with MS progression. This review aims to provide an overview of the applications of metabolomics that for the investigations of the perturbed metabolic pathways in MS and to reveal the potential of metabolomics in personalizing treatments. In conclusion, informative variations of metabolites can be potential biomarkers in advancing our understanding of MS pathogenesis for MS diagnosis, predicting the progression of the disease, and estimating drug effects. Metabolomics will be a promising technique for improving clinical care in MS.
Collapse
Affiliation(s)
- Zhicheng Liu
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Jeffrey Waters
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Bin Rui
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
2
|
Rispoli MG, Valentinuzzi S, De Luca G, Del Boccio P, Federici L, Di Ioia M, Digiovanni A, Grasso EA, Pozzilli V, Villani A, Chiarelli AM, Onofrj M, Wise RG, Pieragostino D, Tomassini V. Contribution of Metabolomics to Multiple Sclerosis Diagnosis, Prognosis and Treatment. Int J Mol Sci 2021; 22:11112. [PMID: 34681773 PMCID: PMC8541167 DOI: 10.3390/ijms222011112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolomics-based technologies map in vivo biochemical changes that may be used as early indicators of pathological abnormalities prior to the development of clinical symptoms in neurological conditions. Metabolomics may also reveal biochemical pathways implicated in tissue dysfunction and damage and thus assist in the development of novel targeted therapeutics for neuroinflammation and neurodegeneration. Metabolomics holds promise as a non-invasive, high-throughput and cost-effective tool for early diagnosis, follow-up and monitoring of treatment response in multiple sclerosis (MS), in combination with clinical and imaging measures. In this review, we offer evidence in support of the potential of metabolomics as a biomarker and drug discovery tool in MS. We also use pathway analysis of metabolites that are described as potential biomarkers in the literature of MS biofluids to identify the most promising molecules and upstream regulators, and show novel, still unexplored metabolic pathways, whose investigation may open novel avenues of research.
Collapse
Affiliation(s)
- Marianna Gabriella Rispoli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Silvia Valentinuzzi
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna De Luca
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Di Ioia
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Anna Digiovanni
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Eleonora Agata Grasso
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Valeria Pozzilli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Alessandro Villani
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Antonio Maria Chiarelli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Marco Onofrj
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Richard G. Wise
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Damiana Pieragostino
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Paediatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Valentina Tomassini
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| |
Collapse
|
3
|
Zahoor I, Rui B, Khan J, Datta I, Giri S. An emerging potential of metabolomics in multiple sclerosis: a comprehensive overview. Cell Mol Life Sci 2021; 78:3181-3203. [PMID: 33449145 PMCID: PMC8038957 DOI: 10.1007/s00018-020-03733-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the nervous system that primarily affects young adults. Although the exact etiology of the disease remains obscure, it is clear that alterations in the metabolome contribute to this process. As such, defining a reliable and disease-specific metabolome has tremendous potential as a diagnostic and therapeutic strategy for MS. Here, we provide an overview of studies aimed at identifying the role of metabolomics in MS. These offer new insights into disease pathophysiology and the contributions of metabolic pathways to this process, identify unique markers indicative of treatment responses, and demonstrate the therapeutic effects of drug-like metabolites in cellular and animal models of MS. By and large, the commonly perturbed pathways in MS and its preclinical model include lipid metabolism involving alpha-linoleic acid pathway, nucleotide metabolism, amino acid metabolism, tricarboxylic acid cycle, d-ornithine and d-arginine pathways with collective role in signaling and energy supply. The metabolomics studies suggest that metabolic profiling of MS patient samples may uncover biomarkers that will advance our understanding of disease pathogenesis and progression, reduce delays and mistakes in diagnosis, monitor the course of disease, and detect better drug targets, all of which will improve early therapeutic interventions and improve evaluation of response to these treatments.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA. .,Department of Neurology, Henry Ford Hospital, Education & Research Building, Room 4023, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| | - Bin Rui
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Junaid Khan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA. .,Department of Neurology, Henry Ford Hospital, Education & Research Building, Room 4051, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
4
|
Higher fish consumption and lower risk of central nervous system demyelination. Eur J Clin Nutr 2019; 74:818-824. [PMID: 31395972 DOI: 10.1038/s41430-019-0476-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES The evidence for diet as a risk factor for multiple sclerosis (MS) is inconclusive. We examined the associations between fish consumption and risk of a first clinical diagnosis of central nervous system demyelination (FCD), a common precursor to MS. METHODS The 2003-2006 Ausimmune Study was a case-control study examining environmental risk factors for FCD, with participants recruited from four regions of Australia and matched on age, sex, and study region. Dietary intake data were collected using a food frequency questionnaire. We used conditional logistic regression models to test associations between fish consumption (total, tinned, grilled, and fried) and risk of FCD (249 cases and 438 controls), adjusting for history of infectious mononucleosis, smoking, serum 25-hydroxyvitamin D concentrations, socio-economic status, omega-3 supplement use, dietary under-reporting, and total energy intake. RESULTS Higher total fish consumption (per 30 g/day, equivalent to two serves/week) was associated with an 18% reduced risk of FCD (AOR 0.82; 95% CI 0.70, 0.97). While we found no statistically significant associations between grilled and fried fish consumption and risk of FCD, higher tinned fish consumption (per 30 g/day) was associated with a 41% reduced risk of FCD (AOR 0.59; 95% CI 0.39, 0.89). CONCLUSIONS Tinned fish is predominantly oily, whereas grilled and fried fish are likely to be a combination of oily and white types. Oily fish is high in vitamin D and very long chain polyunsaturated omega-3 fatty acids, both of which may be beneficial in relation to MS.
Collapse
|
5
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
6
|
van den Brink WJ, Hankemeier T, van der Graaf PH, de Lange ECM. Bundling arrows: improving translational CNS drug development by integrated PK/PD-metabolomics. Expert Opin Drug Discov 2018. [DOI: 10.1080/17460441.2018.1446935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- W. J. van den Brink
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - T. Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - P. H. van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Certara QSP, Canterbury Innovation House, Canterbury, United Kingdom
| | - E. C. M. de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
7
|
Beyer BA, Fang M, Sadrian B, Montenegro-Burke JR, Plaisted WC, Kok BPC, Saez E, Kondo T, Siuzdak G, Lairson LL. Metabolomics-based discovery of a metabolite that enhances oligodendrocyte maturation. Nat Chem Biol 2018; 14:22-28. [PMID: 29131145 PMCID: PMC5928791 DOI: 10.1038/nchembio.2517] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 10/11/2017] [Indexed: 01/24/2023]
Abstract
Endogenous metabolites play essential roles in the regulation of cellular identity and activity. Here we have investigated the process of oligodendrocyte precursor cell (OPC) differentiation, a process that becomes limiting during progressive stages of demyelinating diseases, including multiple sclerosis, using mass-spectrometry-based metabolomics. Levels of taurine, an aminosulfonic acid possessing pleotropic biological activities and broad tissue distribution properties, were found to be significantly elevated (∼20-fold) during the course of oligodendrocyte differentiation and maturation. When added exogenously at physiologically relevant concentrations, taurine was found to dramatically enhance the processes of drug-induced in vitro OPC differentiation and maturation. Mechanism of action studies suggest that the oligodendrocyte-differentiation-enhancing activities of taurine are driven primarily by its ability to directly increase available serine pools, which serve as the initial building block required for the synthesis of the glycosphingolipid components of myelin that define the functional oligodendrocyte cell state.
Collapse
Affiliation(s)
- Brittney A Beyer
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - Mingliang Fang
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
| | - Benjamin Sadrian
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - J Rafael Montenegro-Burke
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
| | - Warren C Plaisted
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - Bernard P C Kok
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Gary Siuzdak
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
8
|
Kanawaku Y, Hirakawa K, Koike K, Kanetake J, Ohno Y. Pattern recognition analysis of proton nuclear magnetic resonance spectra of postmortem cerebrospinal fluid from rats with drug-induced seizure or coma. Leg Med (Tokyo) 2017; 25:52-58. [PMID: 28457510 DOI: 10.1016/j.legalmed.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/22/2016] [Accepted: 01/13/2017] [Indexed: 11/26/2022]
Abstract
Cerebrospinal fluid (CSF) is routinely subjected to gross evaluation in postmortem investigations; however, its use in chemical evaluations has not been fully realized. Analysis of nuclear magnetic resonance (NMR) spectra with pattern recognition methods was applied to CSF samples. Rats were treated with pentylenetetrazol (PTZ) to induce seizure or pentobarbital (PB) to induce coma, and postmortem CSF was collected after CO2 gas euthanization. Pattern recognition analysis of the NMR data was performed on individual postmortem CSF samples. The aim of this study was to determine if pattern recognition analysis of NMR data could be used to classify the rats according to their drug treatment. The applicability of NMR data with pattern recognition analysis using postmortem CSF was also assessed. Partial Least Squares-Discriminant Analysis (PLS-DA) score plots indicated that the PTZ, PB, and NS (control) groups were clustered and clearly separated. PLS-DA correlation loading plots showed respective spectral and category variances of 41% and 42% for factor 1, and 17% and 27% for factor 2. Thus, factors 1 and 2 together described 58% (41%+17%) and 69% (42%+27%) of the variation, respectively. NMR study of postmortem CSF has the potential to be utilized as both a novel forensic neurochemistry method and in the clinical setting.
Collapse
Affiliation(s)
- Yoshimasa Kanawaku
- Department of Legal Medicine, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Keiko Hirakawa
- Department of Legal Medicine, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-8602, Japan
| | - Kaoru Koike
- Department of Primary Care and Emergency Medicine, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Syogoin, Sakyo-ku, Kyoto City, Kyoto 606-8507, Japan
| | - Jun Kanetake
- Department of Forensic Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Youkichi Ohno
- Department of Legal Medicine, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
9
|
Haanstra KG, Jonker M, 't Hart BA. An Evaluation of 20 Years of EU Framework Programme-Funded Immune-Mediated Inflammatory Translational Research in Non-Human Primates. Front Immunol 2016; 7:462. [PMID: 27872622 PMCID: PMC5098224 DOI: 10.3389/fimmu.2016.00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Aging western societies are facing an increasing prevalence of chronic inflammatory and degenerative diseases for which often no effective treatments exist, resulting in increasing health-care expenditure. Despite high investments in drug development, the number of promising new drug candidates decreases. We propose that preclinical research in non-human primates can help to bridge the gap between drug discovery and drug prescription. Translational research covers various stages of drug development of which preclinical efficacy tests in valid animal models is usually the last stage. Preclinical research in non-human primates may be essential in the evaluation of new drugs or therapies when a relevant rodent model is not available. Non-human primate models for life-threatening or severely debilitating diseases in humans are available at the Biomedical Primate Research Centre (BPRC). These have been instrumental in translational research for several decades. In order to stimulate European health research and innovation from bench to bedside, the European Commission has invested heavily in access to non-human primate research for more than 20 years. BPRC has hosted European users in a series of transnational access programs covering a wide range of research areas with the common theme being immune-mediated inflammatory disorders. We present an overview of the results and give an account of the studies performed as part of European Union Framework Programme (EU FP)-funded translational non-human primate research performed at the BPRC. These data illustrate the value of translational non-human primate research for the development of new therapies and emphasize the importance of EU FP funding in drug development.
Collapse
Affiliation(s)
- Krista G Haanstra
- Department of Immunobiology, Biomedical Primate Research Centre , Rijswijk , Netherlands
| | - Margreet Jonker
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, Netherlands; Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, Netherlands; Department of Neuroscience, University Medical Center, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Lean C, Doran S, Somorjai RL, Malycha P, Clarke D, Himmelreich U, Bourne R, Dolenko B, Nikulin AE, Mountford C. Determination of Grade and Receptor Status from the Primary Breast Lesion by Magnetic Resonance Spectroscopy. Technol Cancer Res Treat 2016; 3:551-6. [PMID: 15560712 DOI: 10.1177/153303460400300604] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Magnetic resonance spectra (MRS) from fine needle aspiration biopsies (FNAB) from primary breast lesions were analysed using a pattern recognition method, Statistical Classification Strategy, to assess tumor grade and oestrogen receptor (ER) and progesterone receptor (PgR) status. Grade 1 and 2 breast cancers were separated from grade 3 cancers with a sensitivity and specificity of 96% and 95%, respectively. The ER status was predicted with a sensitivity of 91% and a specificity of 90%, and the PgR status with a sensitivity of 91% and a specificity of 86%. These classifiers provide rapid and reliable, computerized information and may offer an objective method for determining these prognostic indicators simultaneously with the diagnosis of primary pathology and lymph node involvement.
Collapse
Affiliation(s)
- Cynthia Lean
- Institute for Magnetic Resonance Research, Dept. of Magnetic Resonance in Medicine, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dickens AM, Larkin JR, Griffin JL, Cavey A, Matthews L, Turner MR, Wilcock GK, Davis BG, Claridge TDW, Palace J, Anthony DC, Sibson NR. A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology 2014; 83:1492-9. [PMID: 25253748 PMCID: PMC4222850 DOI: 10.1212/wnl.0000000000000905] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 06/04/2014] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE We tested whether it is possible to differentiate relapsing-remitting (RR) from secondary progressive (SP) disease stages in patients with multiple sclerosis (MS) using a combination of nuclear magnetic resonance (NMR) metabolomics and partial least squares discriminant analysis (PLS-DA) of biofluids, which makes no assumptions on the underlying mechanisms of disease. METHODS Serum samples were obtained from patients with primary progressive MS (PPMS), SPMS, and RRMS; patients with other neurodegenerative conditions; and age-matched controls. Samples were analyzed by NMR and PLS-DA models were derived to separate disease groups. RESULTS The PLS-DA models for serum samples from patients with MS enabled reliable differentiation between RRMS and SPMS. This approach also identified significant differences between the metabolite profiles of each of the MS groups (PP, SP, and RR) and the healthy controls, as well as predicting disease group membership with high specificity and sensitivity. CONCLUSIONS NMR metabolomics analysis of serum is a sensitive and robust method for differentiating between different stages of MS, yielding diagnostic markers without a priori knowledge of disease pathogenesis. Critically, this study identified and validated a type II biomarker for the RR to SP transition in patients with MS. This approach may be of considerable benefit in categorizing patients for treatment and as an outcome measure in future clinical trials. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that serum metabolite profiles accurately distinguish patients with different subtypes and stages of MS.
Collapse
Affiliation(s)
- Alex M Dickens
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK
| | - James R Larkin
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK
| | - Julian L Griffin
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK
| | - Ana Cavey
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK
| | - Lucy Matthews
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK
| | - Martin R Turner
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK
| | - Gordon K Wilcock
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK
| | - Benjamin G Davis
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK
| | - Timothy D W Claridge
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK
| | - Jacqueline Palace
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK
| | - Daniel C Anthony
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK.
| | - Nicola R Sibson
- From the CR-UK/MRC Gray Institute for Radiation Oncology and Biology (A.M.D., J.R.L., N.R.S.), Department of Pharmacology (A.M.D., D.C.A.), Department of Chemistry (A.M.D., B.G.D., T.D.W.C.), Nuffield Department of Clinical Neurosciences (A.C., L.M., M.R.T.), and Nuffield Department of Medicine (G.K.W.), University of Oxford; and the Department of Biochemistry (J.L.G., J.P.), University of Cambridge, UK
| |
Collapse
|
12
|
van der Greef J, van Wietmarschen H, van Ommen B, Verheij E. Looking back into the future: 30 years of metabolomics at TNO. MASS SPECTROMETRY REVIEWS 2013; 32:399-415. [PMID: 23630115 DOI: 10.1002/mas.21370] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 06/02/2023]
Abstract
Metabolites have played an essential role in our understanding of life, health, and disease for thousands of years. This domain became much more important after the concept of metabolism was discovered. In the 1950s, mass spectrometry was coupled to chromatography and made the technique more application-oriented and allowed the development of new profiling technologies. Since 1980, TNO has performed system-based metabolic profiling of body fluids, and combined with pattern recognition has led to many discoveries and contributed to the field known as metabolomics and systems biology. This review describes the development of related concepts and applications at TNO in the biomedical, pharmaceutical, nutritional, and microbiological fields, and provides an outlook for the future.
Collapse
|
13
|
Preclinical (1)H-MRS neurochemical profiling in neurological and psychiatric disorders. Bioanalysis 2012; 4:1787-804. [PMID: 22877223 DOI: 10.4155/bio.12.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing development of animal models of neurological and psychiatric disorders in combination with the development of advanced nuclear magnetic resonance (NMR) techniques and instrumentation has led to increased use of in vivo proton NMR spectroscopy ((1)H-MRS) for neurochemical analyses. (1)H-MRS is one of only a few analytical methods that can assay in vivo and longitudinal neurochemical changes associated with neurological and psychiatric diseases, with the added advantage of being a technique that can be utilized in both preclinical and clinical studies. In this review, recent progress in the use of (1)H-MRS to investigate animal models of neurological and psychiatric disorders is summarized with examples from the literature and our own work.
Collapse
|
14
|
NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review. Anal Chim Acta 2012; 750:82-97. [DOI: 10.1016/j.aca.2012.05.049] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/25/2012] [Accepted: 05/26/2012] [Indexed: 01/09/2023]
|
15
|
Smolinska A, Attali A, Blanchet L, Ampt K, Tuinstra T, van Aken H, Suidgeest E, van Gool AJ, Luider T, Wijmenga SS, Buydens LM. NMR and Pattern Recognition Can Distinguish Neuroinflammation and Peripheral Inflammation. J Proteome Res 2011; 10:4428-38. [DOI: 10.1021/pr200203v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Agnieszka Smolinska
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Amos Attali
- Abbott Healthcare Products B.V., Weesp, The Netherlands
| | - Lionel Blanchet
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Kirsten Ampt
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Hans van Aken
- Abbott Healthcare Products B.V., Weesp, The Netherlands
| | | | | | - Theo Luider
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Sybren S. Wijmenga
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Lutgarde M.C. Buydens
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Slupsky CM, Cheypesh A, Chao DV, Fu H, Rankin KN, Marrie TJ, Lacy P. Streptococcus pneumoniae and Staphylococcus aureus Pneumonia Induce Distinct Metabolic Responses. J Proteome Res 2009; 8:3029-36. [PMID: 19368345 DOI: 10.1021/pr900103y] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carolyn M. Slupsky
- Department of Medicine, and Magnetic Resonance Diagnostics Centre, 550A HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Andriy Cheypesh
- Department of Medicine, and Magnetic Resonance Diagnostics Centre, 550A HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Danny V. Chao
- Department of Medicine, and Magnetic Resonance Diagnostics Centre, 550A HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Hao Fu
- Department of Medicine, and Magnetic Resonance Diagnostics Centre, 550A HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Kathryn N. Rankin
- Department of Medicine, and Magnetic Resonance Diagnostics Centre, 550A HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Thomas J. Marrie
- Department of Medicine, and Magnetic Resonance Diagnostics Centre, 550A HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | - Paige Lacy
- Department of Medicine, and Magnetic Resonance Diagnostics Centre, 550A HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| |
Collapse
|
17
|
Favé G, Beckmann ME, Draper JH, Mathers JC. Measurement of dietary exposure: a challenging problem which may be overcome thanks to metabolomics? GENES AND NUTRITION 2009; 4:135-41. [PMID: 19340473 DOI: 10.1007/s12263-009-0120-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 01/04/2023]
Abstract
The diet is an important environmental exposure, and its measurement is an essential component of much health-related research. However, conventional tools for measuring dietary exposure have significant limitations being subject to an unknown degree of misreporting and dependent upon food composition tables to allow estimation of intakes of energy, nutrients and non-nutrient food constituents. In addition, such tools may be inappropriate for use with certain groups of people. As an alternative approach, the recent techniques of metabolite profiling or fingerprinting, which allows simultaneous monitoring of multiple and dynamic components of biological fluids, may provide metabolic signals indicative of food intake. Samples can be analysed through numerous analytical platforms, followed by multivariate data analysis. In humans, metabolomics has been applied successfully in pharmacology, toxicology and medical screening, but nutritional metabolomics is still in its infancy. Biomarkers of a small number of specific foods and nutrients have been developed successfully but less targeted and more high-throughput methods, that do not need prior knowledge of which signals might be discriminatory, and which may allow a more global characterisation of dietary intake, remain to be tested. A proof a principle project (the MEDE Study) is currently underway in our laboratories to test the hypothesis that high-throughput, non-targeted metabolite fingerprinting using flow injection electrospray mass spectrometry can be applied to human biofluids (blood and urine) to characterise dietary exposure in humans.
Collapse
Affiliation(s)
- Gaëlle Favé
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK,
| | | | | | | |
Collapse
|
18
|
Orešič M. Bioinformatics and computational approaches applicable to lipidomics. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200800144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Murdoch TB, Fu H, MacFarlane S, Sydora BC, Fedorak RN, Slupsky CM. Urinary metabolic profiles of inflammatory bowel disease in interleukin-10 gene-deficient mice. Anal Chem 2008; 80:5524-31. [PMID: 18558774 DOI: 10.1021/ac8005236] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic debilitating disorder that is thought to have both genetic and environmental contributors. Commensal microflora have been shown to play a key part in the disease process. Metabolomics, the study of large numbers of small molecule metabolites, has demonstrated that disease and/or changes in gut microbial composition modulate mammalian urine metabolite fingerprints. The aim of this project was to associate the development of IBD with specific changes in a mouse urinary metabolic fingerprint. Interleukin-10 (IL-10) gene-deficient mice were raised alongside age-matched 129/SvEv controls in conventional housing. Urine samples (22 h) were collected at ages 4, 6, 8, 12, 16, and 20 weeks. Metabolite concentrations were derived from analysis of nuclear magnetic resonance spectra, and both multivariate and two-way analysis of variance (ANOVA) statistical techniques were applied to the resulting data. Principal component analysis and partial least-squares-discriminant analysis of urine derived from the control and IL-10 gene-deficient mice revealed that while both groups initially had similar metabolic profiles, they diverged substantially with the onset of IBD as assessed through external phenotypic changes. Several metabolites, including trimethylamine (TMA) and fucose, changed dramatically in the IL-10 gene-deficient mice following 8 weeks of age, concomitant with the known timeline for development of severe histological injury. This study illustrates that metabolomics is effective at distinguishing IBD using urinary metabolite profiles.
Collapse
Affiliation(s)
- Travis B Murdoch
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Gender-dependent progression of systemic metabolic states in early childhood. Mol Syst Biol 2008; 4:197. [PMID: 18523432 PMCID: PMC2483410 DOI: 10.1038/msb.2008.34] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/28/2008] [Indexed: 11/16/2022] Open
Abstract
Little is known about the human intra-individual metabolic profile changes over an extended period of time. Here, we introduce a novel concept suggesting that children even at a very young age can be categorized in terms of metabolic state as they advance in development. The hidden Markov models were used as a method for discovering the underlying progression in the metabolic state. We applied the methodology to study metabolic trajectories in children between birth and 4 years of age, based on a series of samples selected from a large birth cohort study. We found multiple previously unknown age- and gender-related metabolome changes of potential medical significance. Specifically, we found that the major developmental state differences between girls and boys are attributed to sphingolipids. In addition, we demonstrated the feasibility of state-based alignment of personal metabolic trajectories. We show that children have different development rates at the level of metabolome and thus the state-based approach may be advantageous when applying metabolome profiling in search of markers for subtle (patho)physiological changes.
Collapse
|
21
|
Psihogios NG, Gazi IF, Elisaf MS, Seferiadis KI, Bairaktari ET. Gender-related and age-related urinalysis of healthy subjects by NMR-based metabonomics. NMR IN BIOMEDICINE 2008; 21:195-207. [PMID: 17474139 DOI: 10.1002/nbm.1176] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
NMR-based metabonomic analysis is a well-established approach to characterizing healthy and diseased states. The aim of this study was to investigate inter-individual variability in the metabolic urinary profile of a healthy Greek population, not subjected to strict dietary limitations, by NMR-based metabonomics. The overall metabonomic urinalysis showed a homogeneous distribution among the population. The metabolic profile was examined in relation to gender and age, and reference intervals of major metabolites were determined. Multivariate data analysis led to the construction of two robust models that were able to predict the class membership of the subjects studied according to their gender and age. The most influential low molecular weight metabolites responsible for the differences in gender groups were citrate, creatinine, trimethylamine N-oxide, glycine, creatine and taurine, and for the differences in age groups they were citrate, creatinine, trimethylamine N-oxide and an unidentified metabolite (delta 3.78).
Collapse
Affiliation(s)
- Nikolaos G Psihogios
- Laboratory of Clinical Chemistry, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | | | | |
Collapse
|
22
|
Kurian S, Grigoryev Y, Head S, Campbell D, Mondala T, Salomon DR. Applying genomics to organ transplantation medicine in both discovery and validation of biomarkers. Int Immunopharmacol 2007; 7:1948-60. [PMID: 18039531 DOI: 10.1016/j.intimp.2007.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
The field of biomarker discovery made a significant leap over the past few decades. As we enter the Era of the Human Genome, thousands of biomarkers can be identified in a relatively high-throughput fashion. While such magnitude and diversity of biomarkers can be seen as a challenge by itself, the field is being moved forward by new advances in bioinformatics and Systems Biology. Because of the life and death nature of end stage organ failure that transplantation treats, the severe donor organ shortage, and the powerful and toxic drug therapies required for the lifetimes of transplant patients, we envision a future for biomarkers as tools to diagnose disease in its early stages, predict prognosis, suggest treatment options and then assist in the implementation of therapies. By harnessing the power of multiple technologies in parallel makes it possible to discover and then validate the next generation of biomarkers for transplantation. We see the road ahead diverge into two paths: one from biomarkers to diagnosis and therapy and the other to a new level of insight into the complex molecular networks that determine when a healthy state becomes diseased and dysfunctional.
Collapse
Affiliation(s)
- Sunil Kurian
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Nebert DW, Vesell ES. Can personalized drug therapy be achieved? A closer look at pharmaco-metabonomics. Trends Pharmacol Sci 2006; 27:580-6. [PMID: 17005258 DOI: 10.1016/j.tips.2006.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 08/31/2006] [Accepted: 09/14/2006] [Indexed: 11/26/2022]
Abstract
Between 1930 and 1990, several dozen high-penetrance, predominantly monogenic disorders were identified and characterized, which led some investigators to speculate that individualized drug treatment was just around the corner. Informative DNA tests were sought to determine genetic predisposition to toxicity and cancer, thereby identifying individuals in which a drug was likely to be effective and those at increased risk of drug toxicity. These assays represent the leading edge of phenotype-genotype association studies, which are a major goal of clinical pharmacology and pharmacogenomics. Because of the complexity of the genome, however, the task is more challenging than anticipated originally. In the past decade we have come to appreciate how difficult it is to determine unequivocally either an exact phenotype or genotype. In the near future it seems unlikely that, by themselves, either transcriptomics or proteomics will be particularly helpful in achieving individualized drug therapy. However, recent advances in metabonomics are exciting and show promise. In the future, and perhaps in combination with proteomics, metabonomics might complement genomics in achieving personalized drug therapy.
Collapse
Affiliation(s)
- Daniel W Nebert
- Division of Human Genetics, Department of Pediatrics and Molecular Developmental Biology, Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA.
| | | |
Collapse
|
24
|
Walsh MC, Brennan L, Malthouse JPG, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr 2006; 84:531-9. [PMID: 16960166 DOI: 10.1093/ajcn/84.3.531] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Metabolomics in human nutrition research is faced with the challenge that changes in metabolic profiles resulting from diet may be difficult to differentiate from normal physiologic variation. OBJECTIVE We assessed the extent of intra- and interindividual variation in normal human metabolic profiles and investigated the effect of standardizing diet on reducing variation. DESIGN Urine, plasma, and saliva were collected from 30 healthy volunteers (23 females, 7 males) on 4 separate mornings. For visits 1 and 2, free food choice was permitted on the day before biofluid collection. Food choice on the day before visit 3 was intended to mimic that for visit 2, and all foods were standardized on the day before visit 4. Samples were analyzed by using 1H nuclear magnetic resonance spectroscopy followed by multivariate data analysis. RESULTS Intra- and interindividual variations were considerable for each biofluid. Visual inspection of the principal components analysis scores plots indicated a reduction in interindividual variation in urine, but not in plasma or saliva, after the standard diet. Partial least-squares discriminant analysis indicated time-dependent changes in urinary and salivary samples, mainly resulting from creatinine in urine and acetate in saliva. The predictive power of each model to classify the samples as either night or morning was 85% for urine and 75% for saliva. CONCLUSIONS Urine represented a sensitive metabolic profile that reflected acute dietary intake, whereas plasma and saliva did not. Future metabolomics studies should consider recent dietary intake and time of sample collection as a means of reducing normal physiologic variation.
Collapse
Affiliation(s)
- Marianne C Walsh
- Nutrition Unit, Division of Clinical and Molecular Medicine, Trinity College, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
25
|
Abstract
The study of a collection of metabolites as a whole (metabolome), as opposed to isolated small molecules, is a fast-growing field promising to take us one step further towards understanding cell biology, and relating the genetic capabilities of an organism to its observed phenotype. The new sciences of metabolomics and metabonomics can exploit a variety of existing experimental and computational methods, but they also require new technology that can deal with both the amount and the diversity of the data relating to the rich world of metabolites. More specifically, the collaboration between bioinformaticians and chemoinformaticians promises to advance our view of cognate molecules, by shedding light on their atomic structure and properties. Modelling of the interactions of metabolites with other entities in the cell, and eventually complete modelling of reaction pathways will be essential for analysis of the experimental data, and prediction of an organism's response to environmental challenges.
Collapse
Affiliation(s)
- Irene Nobeli
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, UK.
| | | |
Collapse
|
26
|
van der Greef J, Adourian A, Muntendam P, McBurney RN. Lost in translation? Role of metabolomics in solving translational problems in drug discovery and development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2006; 3:205-211. [PMID: 24980409 DOI: 10.1016/j.ddtec.2006.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Too few drug discovery projects generate a marketed drug product, often because preclinical studies fail to predict the clinical experience with a drug candidate. Improving the success of preclinical-to-clinical translation is of paramount importance in optimizing the pharmaceutical value chain. Here, we advance the case for a molecular systems approach to crossing the preclinical-to-clinical translational chasm and for metabolomic analysis of readily accessible bodyfluids as a key technology in translational activities.:
Collapse
Affiliation(s)
- Jan van der Greef
- TNO Systems Biology, Netherlands Organization for Applied Scientific Research, Zeist, Netherlands
| | | | | | | |
Collapse
|
27
|
't Hart BA, Heije K. Broad spectrum immune monitoring in immune-mediated inflammatory disorders. Drug Discov Today 2005; 10:1348-51. [PMID: 16253871 DOI: 10.1016/s1359-6446(05)03572-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Bert A 't Hart
- Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | |
Collapse
|
28
|
Stretch JR, Somorjai R, Bourne R, Hsiao E, Scolyer RA, Dolenko B, Thompson JF, Mountford CE, Lean CL. Melanoma Metastases in Regional Lymph Nodes Are Accurately Detected by Proton Magnetic Resonance Spectroscopy of Fine-Needle Aspirate Biopsy Samples. Ann Surg Oncol 2005; 12:943-9. [PMID: 16177860 DOI: 10.1245/aso.2005.03.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 06/29/2005] [Indexed: 11/18/2022]
Abstract
BACKGROUND Nonsurgical assessment of sentinel nodes (SNs) would offer advantages over surgical SN excision by reducing morbidity and costs. Proton magnetic resonance spectroscopy (MRS) of fine-needle aspirate biopsy (FNAB) specimens identifies melanoma lymph node metastases. This study was undertaken to determine the accuracy of the MRS method and thereby establish a basis for the future development of a nonsurgical technique for assessing SNs. METHODS FNAB samples were obtained from 118 biopsy specimens from 77 patients during SN biopsy and regional lymphadenectomy. The specimens were histologically evaluated and correlated with MRS data. Histopathologic analysis established that 56 specimens contained metastatic melanoma and that 62 specimens were benign. A linear discriminant analysis-based classifier was developed for benign tissues and metastases. RESULTS The presence of metastatic melanoma in lymph nodes was predicted with a sensitivity of 92.9%, a specificity of 90.3%, and an accuracy of 91.5% in a primary data set. In a second data set that used FNAB samples separate from the original tissue samples, melanoma metastases were predicted with a sensitivity of 87.5%, a specificity of 90.3%, and an accuracy of 89.1%, thus supporting the reproducibility of the method. CONCLUSIONS Proton MRS of FNAB samples may provide a robust and accurate diagnosis of metastatic disease in the regional lymph nodes of melanoma patients. These data indicate the potential for SN staging of melanoma without surgical biopsy and histopathological evaluation.
Collapse
Affiliation(s)
- Jonathan R Stretch
- Sydney Melanoma Unit and Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gibney MJ, Walsh M, Brennan L, Roche HM, German B, van Ommen B. Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr 2005. [DOI: 10.1093/ajcn/82.3.497] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Michael J Gibney
- From the Nutrition Unit, Department of Clinical Medicine, Trinity College, Dublin, Ireland (MJG, MW, and HMR); the Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College, Dublin, Ireland (LB); the Department of Nutrition, University of California, Davis, CA and the Nestle Nutrition Research Centre, Lausanne, Switzerland (BG); and the TNO Quality o
| | - Marianne Walsh
- From the Nutrition Unit, Department of Clinical Medicine, Trinity College, Dublin, Ireland (MJG, MW, and HMR); the Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College, Dublin, Ireland (LB); the Department of Nutrition, University of California, Davis, CA and the Nestle Nutrition Research Centre, Lausanne, Switzerland (BG); and the TNO Quality o
| | - Lorraine Brennan
- From the Nutrition Unit, Department of Clinical Medicine, Trinity College, Dublin, Ireland (MJG, MW, and HMR); the Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College, Dublin, Ireland (LB); the Department of Nutrition, University of California, Davis, CA and the Nestle Nutrition Research Centre, Lausanne, Switzerland (BG); and the TNO Quality o
| | - Helen M Roche
- From the Nutrition Unit, Department of Clinical Medicine, Trinity College, Dublin, Ireland (MJG, MW, and HMR); the Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College, Dublin, Ireland (LB); the Department of Nutrition, University of California, Davis, CA and the Nestle Nutrition Research Centre, Lausanne, Switzerland (BG); and the TNO Quality o
| | - Bruce German
- From the Nutrition Unit, Department of Clinical Medicine, Trinity College, Dublin, Ireland (MJG, MW, and HMR); the Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College, Dublin, Ireland (LB); the Department of Nutrition, University of California, Davis, CA and the Nestle Nutrition Research Centre, Lausanne, Switzerland (BG); and the TNO Quality o
| | - Ben van Ommen
- From the Nutrition Unit, Department of Clinical Medicine, Trinity College, Dublin, Ireland (MJG, MW, and HMR); the Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College, Dublin, Ireland (LB); the Department of Nutrition, University of California, Davis, CA and the Nestle Nutrition Research Centre, Lausanne, Switzerland (BG); and the TNO Quality o
| |
Collapse
|
30
|
Gibney MJ, Walsh M, Brennan L, Roche HM, German B, van Ommen B. Metabolomics in human nutrition: opportunities and challenges. Am J Clin Nutr 2005; 82:497-503. [PMID: 16155259 DOI: 10.1093/ajcn.82.3.497] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metabolomics has been widely adopted in pharmacology and toxicology but is relatively new in human nutrition. The ultimate goal, to understand the effects of exogenous compounds on human metabolic regulation, is similar in all 3 fields. However, the application of metabolomics to nutritional research will be met with unique challenges. Little is known of the extent to which changes in the nutrient content of the human diet elicit changes in metabolic profiles. Moreover, the metabolomic signal from nutrients absorbed from the diet must compete with the myriad of nonnutrient signals that are absorbed, metabolized, and secreted in both urine and saliva. The large-bowel microflora also produces significant metabolic signals that can contribute to and alter the metabolome of biofluids in human nutrition. Notwithstanding these possible confounding effects, every reason exists to be optimistic about the potential of metabolomics for the assessment of various biofluids in nutrition research. This potential lies both in metabolic profiling through the use of pattern-recognition statistics on assigned and unassigned metabolite signals and in the collection of comprehensive data sets of identified metabolites; both objectives have the potential to distinguish between different dietary treatments, which would not have been targeted with conventional techniques. The latter objective sets out a well-recognized challenge to modern biology: the development of libraries of small molecules to aid in metabolite identification. The purpose of the present review was to highlight some early challenges that need to be addressed if metabolomics is to realize its great potential in human nutrition.
Collapse
Affiliation(s)
- Michael J Gibney
- Nutrition Unit, Department of Clinical Medicine, Trinity College, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
31
|
Witkamp RF. Genomics and systems biology - how relevant are the developments to veterinary pharmacology, toxicology and therapeutics? J Vet Pharmacol Ther 2005; 28:235-45. [PMID: 15953196 DOI: 10.1111/j.1365-2885.2005.00662.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This review discusses some of the recent developments in genomics and its current and future relevance for veterinary pharmacology and toxicology. With the rapid progress made in this field several new approaches in pharmacological and toxicological research have developed and drug discovery and drug development strategies have changed dramatically. In this review, the term genomics is used to encompass the three sub-disciplines transcriptomics, proteomics and metabolomics (or metabonomics) to describe the formation and fate of mRNA, proteins and metabolites, respectively. The current status and methods of the technology and some applications are briefly described. Although the DNA sequencing programmes are receiving considerable attention, the real value of genomics for pharmacology and toxicology is brought by the parallel developments in bio-informatics, bio-statistics and the integration of biology with mathematics and information technology. The ultimate level of integration is now mostly called systems biology, where mRNA, proteins and metabolites are being analysed in parallel, using a complete arsenal of analytical techniques (DNA-array, LC-MS/MS, GC-MS/MS, NMR, etc.). The information thus collected is analysed, integrated, linked to database information and translated to pathways and systems. This approach offers an enormous potential to study disease mechanisms and find new drug targets. Thus far, genomics and systems biology have not been introduced significantly in typical veterinary pharmacological and toxicological research programmes. The high costs and complexity connected to these large projects often form major obstacles for research groups with limited budgets. In other veterinary areas and disciplines, including infectious diseases, animal production and food-safety more examples of application are available. Genomics and bio-informatics provide outstanding opportunities to study pharmacology and toxicology in a more holistic way, taking into account the complexity of biological systems and based on the basic principles of physiology and the concept of homeostasis. Knowledge of biology, in vivo and in vitro models, and comparative pharmacology/toxicology is essential here, creating excellent opportunities for the veterinary trained scientist.
Collapse
|
32
|
Subramanian A, Gupta A, Saxena S, Gupta A, Kumar R, Nigam A, Kumar R, Mandal SK, Roy R. Proton MR CSF analysis and a new software as predictors for the differentiation of meningitis in children. NMR IN BIOMEDICINE 2005; 18:213-225. [PMID: 15627241 DOI: 10.1002/nbm.944] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article describes proton MR spectroscopic analysis of cerebrospinal fluid of 167 children suffering from meningitis and 24 control cases. Quantification of 12 well-separated and commonly observed cerebrospinal fluid metabolites viz., beta-hydroxybutyrate, lactate, alanine, acetate, acetone, acetoacetate, pyruvate, glutamine, citrate, creatine/creatinine, glucose (total) and urea was carried out using Bruker's NMRQUANT software with respect to a known concentration of sodium-3-(trimethylsilyl)-2,2,3,3-d4-propionate (TSP), serving as an external reference. The assignment of urea in CSF is reported for the first time by NMR. The presence of cyclopropane, observed for the first time in tuberculous meningitis overall in 85.1% of cases, acts as a finger-print marker for the differential diagnosis. Multivariate discriminant function analysis was carried out for the proton MR-detected metabolite information and the clinical symptoms data of the meningitis and control cases to find the important descriptors for classification, followed by a re-validation of the entire database. It was found that the control could be differentiated from the disease group with a success rate of 96.4%, followed by the differential diagnosis of tuberculous meningitis with a corresponding value of 77.2%. Excluding the presence of cyclopropane, bacterial meningitis could be classified 84.4% correct and viral meningitis with a rate of 83.3%. It is proposed that the NMR spectroscopic information, along with other routine clinical features, may serve as an additional diagnostic tool for the differential diagnosis of meningitis in children.
Collapse
Affiliation(s)
- Arunachalam Subramanian
- NMR Laboratory, Division of Sophisticated Analytical Instruments Facility (SAIF), Central Drug Research Institute, Lucknow, India
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 2005; 3:431-8. [PMID: 15821725 DOI: 10.1038/nrmicro1152] [Citation(s) in RCA: 640] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian gut microbiota interact extensively with the host through metabolic exchange and co-metabolism of substrates. Such metabolome-metabolome interactions are poorly understood, but might be implicated in the aetiology of many human diseases. In this paper, we assess the importance of the gut microbiota in influencing the disposition, fate and toxicity of drugs in the host, and conclude that appropriate consideration of individual human gut microbial activities will be a necessary part of future personalized health-care paradigms.
Collapse
Affiliation(s)
- Jeremy K Nicholson
- Biomedical Sciences Division, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK.
| | | | | |
Collapse
|
34
|
Wang M, Lamers RJAN, Korthout HAAJ, van Nesselrooij JHJ, Witkamp RF, van der Heijden R, Voshol PJ, Havekes LM, Verpoorte R, van der Greef J. Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phytother Res 2005; 19:173-82. [PMID: 15934013 DOI: 10.1002/ptr.1624] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The introduction of the concept of systems biology, enabling the study of living systems from a holistic perspective based on the profiling of a multitude of biochemical components, opens up a unique and novel opportunity to reinvestigate natural products. In the study of their bioactivity, the necessary reductionistic approach on single active components has been successful in the discovery of new medicines, but at the same time the synergetic effects of components were lost. Systems biology, and especially metabolomics, is the ultimate phenotyping. It opens up the possibility of studying the effect of complex mixtures, such as those used in Traditional Chinese Medicine, in complex biological systems; abridging it with molecular pharmacology. This approach is considered to have the potential to revolutionize natural product research and to advance the development of scientific based herbal medicine.
Collapse
Affiliation(s)
- Mei Wang
- SU Biomedicine, Utrechtsweg 48, P. O. Box 360, 3700 AJ Zeist, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lenz EM, Bright J, Wilson ID, Hughes A, Morrisson J, Lindberg H, Lockton A. Metabonomics, dietary influences and cultural differences: a 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. J Pharm Biomed Anal 2004; 36:841-9. [PMID: 15533678 DOI: 10.1016/j.jpba.2004.08.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 08/11/2004] [Indexed: 10/26/2022]
Abstract
The aim of this study was to assess the feasibility and comparability of metabonomic data in clinical studies conducted in different countries without dietary restriction. A (1)H NMR-based metabonomic analysis was performed on urine samples obtained from two separate studies, both including male and female subjects. The first was on a group of healthy British subjects (n = 120), whilst the second was on healthy subjects from two European countries (Britain and Sweden, n = 30). The subjects were asked to provide single, early morning urine samples collected on a single occasion. The (1)H NMR spectra obtained for urine samples were visually inspected and analysed chemometrically using principal components analysis (PCA). These inspections highlighted outliers within the urine samples and displayed interesting differences, revealing characteristic dietary and cultural features between the subjects of both countries, such as high trimethylamine-N-oxide (TMAO)-excretion in the Swedish population and high taurine-excretion, due to the Atkins diet. This study suggests that the endogenous urinary profile is subject to distinct cultural and severe dietary influences and that great care needs to be taken in the interpretation of 'biomarkers of disease and response to drug therapy' for diagnostic purposes.
Collapse
Affiliation(s)
- E M Lenz
- Department of Drug Metabolism and Pharmacokinetics, AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield SK10 4TG, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
't Hart BA, Laman JD, Bauer J, Blezer E, van Kooyk Y, Hintzen RQ. Modelling of multiple sclerosis: lessons learned in a non-human primate. Lancet Neurol 2004; 3:588-97. [PMID: 15380155 DOI: 10.1016/s1474-4422(04)00879-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The many, highly specific, biological therapies for immune-based diseases create a need for valid preclinical animal models. The wide immunological gap between human beings and laboratory mouse or rat models makes many disease models in these species invalid. In this review, we report a non-human-primate model of chronic multiple sclerosis (MS)-experimental autoimmune encephalitis (EAE) in the common marmoset (Callithrix jacchus)-that can help bridge this wide gap. The genetic and immunological similarity of marmosets and human beings and the clinical and neuropathological similarity of the EAE model to MS provide a unique experimental platform for research into basic immunopathogenetic mechanisms and for the development of more effective treatments for MS.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Griffin JL, Anthony DC, Campbell SJ, Gauldie J, Pitossi F, Styles P, Sibson NR. Study of cytokine induced neuropathology by high resolution proton NMR spectroscopy of rat urine. FEBS Lett 2004; 568:49-54. [PMID: 15196919 DOI: 10.1016/j.febslet.2004.04.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 04/15/2004] [Accepted: 04/16/2004] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis is a major cause of non-traumatic neurological disability. The identification of markers that differentiate disease progression is critical to effective therapy. A combination of NMR spectroscopic metabolic profiling of urine and statistical pattern recognition was used to detect focal inflammatory central nervous system (CNS) lesions induced by microinjection of a replication-deficient recombinant adenovirus expressing TNF-alpha or IL1-beta cDNA into the brains of Wistar rats. These animals were compared with a group of naïve rats and a group of animals injected with an equivalent null adenovirus. Urine samples were collected 7 days after adenovirus injection, when the inflammatory lesion is maximally active. Principal components analysis and Partial Least Squares-Discriminate analysis of the urine (1)H NMR spectra revealed significant differences between each of the cytokine adenovirus groups and the control groups; for the TNF-alpha group the main differences lay in citrate and succinate, while for the IL-1beta group the predominant changes occurred in leucine, isoleucine, valine and myo-inositol. Thus, we can identify urinary metabolic vectors that not only separate rats with inflammatory lesions in the brain from control animals, but also distinguish between different types of CNS inflammatory lesions.
Collapse
Affiliation(s)
- Julian L Griffin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
't Hart BA, Vogels J, Bauer J, Brok HPM, Blezer E. Non-invasive measurement of brain damage in a primate model of multiple sclerosis. Trends Mol Med 2004; 10:85-91. [PMID: 15102362 DOI: 10.1016/j.molmed.2003.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Early recognition of whether a product has potential as a new therapy for treating multiple sclerosis (MS) relies upon the quality of the animal models used in the preclinical trials. The promising effects of new treatments in rodent models of experimental autoimmune encephalomyelitis (EAE) have rarely been reproduced in patients suffering from MS. EAE in outbred marmoset monkeys, Callithrix jacchus, is a valid new model, and might provide an experimental link between EAE in rodent models and human MS. Using magnetic resonance imaging techniques similar to those used in patients suffering from MS pathological abnormalities in the brain, white matter of the animal can be visualized and quantified. Moreover, NMR spectroscopy, in combination with pattern recognition, offers an advanced uroscopic technique for the identification of biomarkers of inflammatory demyelination.
Collapse
MESH Headings
- Animals
- Animals, Outbred Strains
- Antigens, CD/immunology
- Biomarkers
- Brain/diagnostic imaging
- Brain/pathology
- CD4-Positive T-Lymphocytes/immunology
- Callithrix
- Chronic Disease
- Demyelinating Diseases/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Genes, MHC Class II/genetics
- Genes, MHC Class II/immunology
- Humans
- Magnetic Resonance Imaging
- Magnetic Resonance Spectroscopy
- Mice
- Multiple Sclerosis/diagnostic imaging
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Myelin Basic Protein/immunology
- Myelin Basic Protein/pharmacology
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Associated Glycoprotein/pharmacology
- Myelin-Oligodendrocyte Glycoprotein
- Radiography
- T-Lymphocytes, Cytotoxic/immunology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Biopharmaceutical Analysis, TNO Pharma, 3704 HE Zeist, The Netherlands.
| | | | | | | | | |
Collapse
|